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ABSTRACT

As part ofthe cosmology analysis using Type la Supernovae (SN 1a) in the Dark Energy Survey (DES). we present photometrically
identified SN la samples using multi-band light-curves and host galaxy redshifts. For this analysis, we use the photometric
classification framework SUPERNNova trained on realistic DES-like simulations. For reliable classification, we process the DES
SN programme (DES-SN) data and introduce improvements to the classifier architecture, obtaining classification accuracies of
more than 98 per cent on simulations. This is the first SN classification to make use of ensemble methods, resulting in more
robust samples. Using photometry, host galaxy redshifts, and a classification probability requirement, we identify 1,863 SNe la
from which we select 1,484 cosmology-grade SNe la spanning the redshift range of 0.07 < e < 1.14. We find good agreement
between the light-curve properties of the photometrically-selected sample and simulations. Additionally, we create similar SN la
samples using two types of Bayesian Neural Network classifiers that provide uncertainties on the classification probabilities. We
test the feasibility of using these uncertainties as indicators for out-of-distribution candidates and model confidence. Finally, we
discuss the implications of photometric samples and classification methods for future surveys such as Vera C. Rubin Observatory
Legacy Survey of Space and Time (LSST).
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1 INTRODUCTION

2020). Photometric classification will be particularly crucial for the
upcoming Legacy Survey of Space and Time (LSST) at the Vera C.
Rubin Observatory, which is expected to discover up to 107 SNe over

the next decade (LSST Science Collaboration et al. 2009).

To fully exploit the power of current and future time-domain surveys,

itis necessary to classify astrophysical objects using only photometry.

Surveys such as the Supernova Legacy Survey (SNLS), Sloan Digi-
tal Sky Survey (SDSS) SN Survey (SDSS-II), Pan-STARRS (PS1),
and the Dark Energy Survey (DES) have discovered thousands of
supernovae (SNe) but the majority have not been spectroscopically
classified (Astier et al. 2006; Frieman et al. 2008; Sako et al. 2018;
Rest et al. 2014; Foley et al. 2018; Bernstein et al. 2012; Smith et al.

* E-mail: anioller@swin.edu.au
f Author affiliations are shown in Appendix C

The Dark Energy Survey Supernova programme (DES-SN) ob-
tained photometry of more than 30,000 candidate SNe over its five
years of operation. These include thousands of high-redshift SNe la,
ofwhich only several hundred have been spectroscopically classified.
The first three years of the DES-SN detected and spectroscopically
classified 251 SNe la (Smith et al. 2020). Together with low redshift
SNe from the Harvard-Srnithsonian Center for Astrophysics surveys
(CfA3, CfA4; Hicken et al. 2009, 2012) and the Carnegie Supernova
Project (CSP; Contreras etal. 2010; Stritzinger et al. 201 1), these SNe
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were used to constrain cosmological parameters (Dark Energy Sur-
vey 2019). The DES-SN candidate sample also contains other types
of transients that have been used for astrophysical and cosmological
studies: core-collapse SNe (de Jaeger et al. 2020), superluminous
SNe (SLSNe; Smith et al. 2018; Angus et al. 2019; Inserra et al.
2021), rapidly evolving transients (Wiseman et al. 2020b; Pursiainen
et al. 2018) and 'peculiar’' events (Gutierrez et al. 2020; Grayling
et al. 2021).

To classify SNe without spectroscopy, a number of methods have
been developed to classify them using their light-curves, i.e., their ob-
served brightness evolution in different biters. Due to their cosmolog-
ical use, much work has focused on disentangling SNe la from other
SN types. The majority have been trained and tested on simulations,
with only a handful applied to large SN surveys (Sako et al. 2011;
Moller et al. 2016; Muthukrishna et al. 2019; Moller & de Boissiere
2019; Villar et al. 2019, 2020). Several photometric classihers have
been developed and incorporated into the SNIa-cosmology analysis
pipeline PIPPIN (Elinton & Brout 2020), including SNIRF (based on
the architecture developed by Dai et al. 2018), SUPERNNOVA (Moller
& de Boissiere 2019) and SCONE (QU et al. 2021).

In this work, we use the non-parametric framework SUPERNNOVA
(SNN; Moller & de Boissiere 2019) to obtain photometrically clas-
sibed SN la samples from DES-SN. SNN has several strengths it: (i)
requires only photometric information (fluxes and time) for classi-
hcation, (ii) does not rely on the extraction of features, (hi) can be
trained to classify any type of transient event, (iv) can use redshifts to
improve accuracy, (v) has been thoroughly tested using simulations,
(vi) includes algorithms that assign uncertainties to classihcation
probabilities such as Bayesian Neural Networks (BNNs), and (vii) is
already being applied to real survey data, including early light-curve
classihcation in alert streams (FINK broker; Moller et al. 2021).

Photometrically classihed SN la samples have started to be used in
cosmology. Fust constraints on the cosmic expansion using data from
SDSS-II and PS1 have shown the feasibility of using these samples
for cosmology and their competitive constraining power on the Dark
Energy (Sako et al. 2011; Hlozek et al. 2012; Campbell et al. 2013;
Jones et al. 2017, 2018). Most of these results use the Bayesian
Estimation Applied to Multiple Species method (BEAMS; Kunz
etal. 2007) and its extension BEAMS with Bias Corrections' (BBC;
Kessler & Scolnic 2017). These methods incorporate classihcation
probabilities of SNe la into the analysis, thus requiring accurate
classihcation probabilities. Recent work estimates the contamination
for cosmological constraints in the DES-SN sample using SNN at
less than 1.4 per cent (Vincenzi et al. 2021). Aside from cosmology,
photometrically classihed samples with SNN have also been used to
study SN la rates (Wiseman et al. 2021).

This paper is organised as follows: We introduce the DBS survey
and DES-SN candidate sample in Section 2. In Section 3 we present
pre-processing needed for accurate classihcation, SUPERNNOVA, re-
alistic simulations, training and classihcation mechanisms and their
metrics. In Section 4 we select photometrically classihed SNe la
using host galaxy redshift information together with multi-band pho-
tometry. We explore the use of BNNs for classihcation in Section 5.
Finally, in Section 6, we discuss our results and their implications for

future surveys such as LSST.

2 DES-SN 5-YEAR

The Dark Energy Survey (DBS) was a 6-year photometric survey

that used the Dark Energy Camera (DECam; Flaugher et al. 2015)
on the Victor M. Blanco telescope in Chile to survey 5000 deg2 of

the southern hemisphere. For time-domain science, DBS imaged ten
3-deg- in the griz Biters during the first five years (Abbott et al.
2018). Eight of these ten fields (XI, X2, El, E2, Cl1, C2, SI, and
S2) were observed to a single-visit depth of m % 23.5 mag ('shallow
fields'), and the other two 'deep fields' (X3.C3) were observed to a
depth of m =3 24.5 mag.

2.1 DES-SN candidate sample

Transients were identified using the DBS Difference Imaging Pipeline
pirrimG (Kessler et al. 2015) coupled with a machine learning algo-
rithm (Goldstein et al. 2015) to reduce artefacts. A candidate SN is
defined from the difference image measurements by requiring at least
two detections with a signal-to-noise ratio (SNR) larger than five in
any filter. This criteria is designed to remove artefacts and asteroids.

Each DES-SN candidate was originally associated with a host
galaxy using the shallower SVA survey, created from DBS Science
Verification data. For the DES-SN analysis, we use deep co-adds
in Wiseman et al. (2020a). The major source of host galaxy red-
shift information was the Australian Dark Energy Survey (OzDES)
programme obtaining spectra with the 2dF fibre positioner and
AAOmega spectrograph on the 3.9-m Anglo-Australian Telescope
(Yuan et al. 2015; Childress et al. 2017; Lidman et al. 2020). SN
hosts in OzDES were observed up to a limiting 7 magnitude of % 24.
Further details on host galaxy association can be found in Gupta et al.
(2016); Vincenzi et al. (2020).

For the 31,636 candidates, 29,113 have an identified host and
11,350 have a spectroscopic redshift (~ 30 per cent ofthe candidates).

A sub sample of candidates were selected for real-time spectro-
scopic follow-up observations for classification. For the first 3 years
of the survey.the spectroscopically classified sample is presented in
Smith et al. (2020). In this work, we use for comparison a preliminary
spectroscopic sample containing additional classifications from the
full 5 years of DES-SN. This sample contains 415 spectroscopically
confirmed SNe la (including all 251 spectroscopically classified SNe
la from the DES-SN 3-year analysis), 84 core-collapse SNe, 2 pecu-
liar SNe la, 20 SLSNe, 55 AGN, | Tidal disruption event (TDE), and
2 M-stars. We highlight that this spectroscopically classified sample
is not complete (Kessler et al. 2019b) and does not represents the
true abundances of different transients in nature.

In this work we use the fluxes and uncertainties obtained from
prrrimG (Kessler et al. 2015) for the DES-SN candidate sample.

2.2 Filtering multi-season and other transients

The DES-SN 5 year candidate sample contains not only supernovae
but also astrophysical events such as fast transients and AGNs. These
events, called out-of-distribution (OOD) or anomalies, can be hard
to characterise and thus simulate, therefore photometric classifiers
are usually not trained to identify them.

To reject fast, very low SNR transients or transients that have
a limited photometric sampling (e.g. transients occurring near the
end or beginning of the observing season), we select only transients
that have at least 3 nights with a detection that has passed the DBS
Real/Bogus image classifier (Goldstein et al. 2015).

To reduce the number of slowly-evolving transients that span sev-
eral observing seasons or multi-season candidates (e.g. AGNs) and
spurious detections we make use of two selection criteria. Fust, we
compute the ratio between number of epochs with detections that
pass the Real/Bogus classifier, and the total number of epochs with
detections. To reject light-curves with long variability periods, we
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require this ratio to be the same as in the real-time classification
pipeline in Smith et ah (2020). Second, we remove artefacts and
transients that have detections in multiple observing seasons. We
note that this cut can remove real supernovae, i.e. multiple SNe very
close-by in the same galaxy, and is not 100% efficient.

With this filtering, the sample is reduced from 31, 636 to 14,070
candidates. This reduces the number of candidates and then contami-
nation; however, some residual AGN and other types of SNe remain.
We find that this sample includes 405 spectroscopically classified
SNe la (247 of which are in the DES-SN 3yr sample), 83 core-
collapse SNe, 2 peculiar' SNe la, 19 SLSNe, 37 AGN, | TDE and |
M-star.

2.3 Selection Requirements (cuts)

We apply a series of selection cuts on both the quality of the light-
curves and the quality of the redshifts. A thorough review on these
cuts and their impact on systematics can be found in Vincenzi et al.

2021,

2.3.1 Loose selection cuts

We select transients that have redshifts obtained from spectra from
either the SN or its host galaxy (Lidman et al. 2020) using quality
tags in Vincenzi et al. (2020). In this work, we also include lower
resolution redshifts from PRIMUS since they are precise enough for
photometric classificationl. After this selection cut we obtain 6,635
SN candidates.

Furthermore, we restrict these redshifts to be within the range
of the SNe la expected for DES-SN and thus in our' simulations,
z 6 [0.05,1.3]. This cut also removes stars in our catalogues.

We fit the light-curves using the SALT2 model (Guy et al. 2007).
We require that: (i) at least two filters have at least one observation
with SNR larger than 5, (ii) at least one photometric measurement
before peak brightness r0, and (hi) at least one photometric point ten
days after peak brightness.

We select a sample of 2,381 light-curves that satisfy these sam-
pling criteria and have a SALT2 fit that converges and is within
SALT2 model boundaries for stretch, x1 e [-4.9,4.9] and colour
¢ 6 [-0.49,0.49], We photometrically classify these candidates in
the following. This sample contains a subsample of spectroscopi-
cally classified candidates which we will use as a reference: SNe la:
366 (DES-SN 3-year: 228), CC 13, SLSN 2, AGN 3. The SALT2
parameters (amplitude, stretch, color) are not used by SNN.

2.3.2 JLA-like cuts

We will consider an additional set of cuts after photometric classifi-
cation based on the criteria in Vincenzi et al. (2021). They will only
be applied when specified. X

These cuts are designed to select cosmology-grade SNe la and are
based on those from the Joint Light-curve Analysis: -3.0 < xq < 3.0,
-0.3 < ¢ < 0.3, and crTl < | and 0>0 < 2 (Betoule et al. 2014).
Where c, xq, a>o, crTl are estimated using SALT2 and represent
colour; stretch and uncertainty on fo and xq respectively. These cuts

| The redshifts from the PRIsnr MUIti-object Survey (PRIMUS) were ob-
tained using the Inanrori Magellan Areal Camera and Spectrograph camera
on the Magellan I Baade 6.5 nr telescope (Coil et al. 2011). They are less
accurate and they have a higher rate of catastrophic failure, thus not suitable
for cosmological constraints.

DES-SN 5YR photometrically identified SNe la 3

are implemented in SN la cosmology analyses to restrict SNIa pa-
rameters to the valid model range, and to reject peculiar SNIa. We
also use a SALT2 fit probability > 0.001 selection.

3 PHOTOMETRIC CLASSIFICATION

We use the photometric classification algorithm SUPERNNOVA (SNN)
to select SN la from the DES-SN 5-year candidate sample that pass
loose selection cuts. We introduce pre-processing necessary for ac-
curate photometric classification of our DES-SN 5-year data (Sec-
tion 3.1). We generate realistic simulations of the DES-SN survey
to train and test our photometric classification method (Section 3.2)
and the framework SNN (Section 3.3). We evaluate performance and
find the best configuration for our framework using small simula-
tions (Section 3.4). We then train optimised models for photometric
classification of the DES-SN 5-year sample using larger simulations

(Section 3.5).

For accurate photometric classification, the simulations used to train
the models and the data to be classified should be similar. While light-
curve simulations strive to resemble survey data, pre-processing of

3.1 DES-SN data pre-processing

the survey data is required to assure this.

First, DES-SN data were taken over five consecutive seasons. Each
DBS season represented about five months of observations per year;
SNe last only for months, thus are only detected in a subset of this
photometry. In our simulations (see Section 3.2), supernovae are
simulated within a rest-frame time span, e.g. -30 days before to 100
days after peak luminosity. To select an equivalent time window in
the DES-SN 5-year data, we first obtain an estimated time of peak
brightness (0) using the SuperNova ANAlysis software (SNANA;
Kessler et al. 2009). This r0 estimate is not obtained using SALT2
(Guy et al. 2007), but instead based on max flux in region of dense
detections to avoid pathological estimates from a single pathologi-
cal flux in another season. Once the peak has been determined for
each light-curve, we select and classify photometric points within
an observed time-window around the light-curve peak of [-30,100]
days.

Light-curves may contain photometry that has been flagged as
flawed. We require that SNN discard photometry that is not reli-
able using the bitmap flag provided by SOURCE EXTRACTOR (Berlin
& Arnouts 1996) and pirrimc (Kessler et al. 2015). These photo-
metric outliers are not present in the simulations used to train our
photometric classifier. This is in particular’ important when using
normalisation schemes, which will be introduced in Section 3.3.1,
since they use maximum fluxes to normalise the light-curves. If that
maximum flux comes from a bad photometric point, the light-curve
will be distorted and therefore classification will not be accurate.
This photometry quality criteria reduces the number of photometric

measurements by 6% but keeps the number of transients unchanged.

3.2 Simulations of the DES-SN survey

SNN is used with simulations from the supernova analysis software
(snana Kessler et al. 2009) and within the pippin orchestration frame-
work (Hinton & Brout 2020). The simulations incorporate informa-
tion from DES-SN observations (PSF, sky noise, zero point), with
detection efficiencies vs. SNR estimated on fake SNe that were over-
laid on images and processed with pirrima. Simulations include SNe
that have partial light-curves due to season boundaries or observing
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Table 1. Simulations used for training and testing SNN . Columns indicate
simulation name, approximate number of light-curves generated and number
of light-curves when balancing simulations to have the same number of
normal Type la and other SNe.

Simulation Number of  Balanced number of
name light-curves (106) light-curves (106)
TRAIN-SIM 4.5 3.63
S-TRAIN-SIM 2.0 1.4
TEST-SIM 0.8 Not applicable

gaps imitating realistic weather conditions. Detailed information on
the inputs necessary to obtain realistic DES-SN simulations can be
found in Kessler et al, (2019b). We also make use of recent updates
in the library of simulated host galaxies for DES-SN as introduced
by Vincenzi et al, (2020). This host galaxy library includes the de-
pendence of SN rates on galaxy properties such as stellar mass and
galaxy star formation rate.

We simulate a variety of SNe using volumetric rates and input
parameters as described in Vincenzi et al, (2020), Our simulations are
performed over a redshift range 0.05 < z < 1.3. These simulations
contain normal SNe la, peculiar’ SNe la and core-collapse SNe,

Normal SNe la are generated using the SALT2 SED model pre-
sented in Guy et al, (2007), trained for the JLA sample (Betoule et al,
2014) and extended to UV and IR wavelengths (Pierel et al, 2018)
to improve the redshift coverage of our’ simulated SNe, Volumetric
rates from Frohmaier et al, (2019) are used. The intrinsic stretch and
colour’ distributions are taken from Scolnic & Kessler (2016) and we
use the G10 intrinsic scatter model from Kessler et al, (2013) based
on Guy et al, (2010), Peculiar SNe la include SN91bg-like (Kessler
etal, 2019a) and SNe lax (Jha 2017) with models updates in Vincenzi
et al, (2021).

We make use of three different core-collapse SN template col-
lections: V19 (Vincenzi et al, 2019), J17 (Jones et al, 2017) and
templates used in the Supernova Photometric Classification Chal-
lenge (SPCC; Kessler et al, 2010), The main differences between
these templates include: the number of SNe used to create them, the
rates used, and the interpolation methods and wavelength coverage.
Detailed information on these templates can be found in Vincenzi
et al, (2019).

Our baseline simulations, and used unless specified, are generated
using V19 core-collapse SN templates. Relative core-collapse SN
rates are given by Li et al, (2011) updated in Shivvers et al, (2017)
and the total rate is assumed to follow the cosmic star formation
history presented in Madau et al, (2014) normalised by the local SN
rate of Frohmaier et al, (2019).

We generate different simulations to train (TRAIN-SIM and a
smaller S-TRAIN-SIM for computing efficiency of certain evaluation
tasks) and test (TEST-SIM) SNN as shown in Table 1, For training,
after generating the simulation, we randomly trim the simulation to
ensure a balanced training sample, with the same number of normal
SNe la and non-normal la (core collapse SNe and peculiar SNe
la). Volumetric rates guarantee that the mixture of non-la SNe is
consistent with measur ed rates. We note thatthe size of the S-TRAIN-
SIM training set is the same as the complete sample used in Moller &
de Boissiere (2019). Having defined our simulated samples we now

turn to methods of classifying them.

3.3 SUPERNNOVA (SNN)

SUPERNNOVA (Moller & de Boissiere 2019) is a deep learning frame-

work for light-curve classification. It makes use of fluxes and their
measurement uncertainties over time for accurate classification of
time-domain candidates. Additional information such as host galaxy
redshifts can be included to improve performance,

SNN includes different classification algorithms, such as LSTM2
Recurrent Neural Networks (RNNs) and two approximations for
Bayesian Neural Networks (BNNs), We show in Fig, | the classifica-
tion probabilities from different methods for a given SN light-curve.
These probabilities can be used to select a sample by performing a
threshold cut or by weighting the contribution of candidates by their
classification score as in the BEAMS and BBC methods (Vincenzi
et al, 2021; Kunz et al, 2007; Kessler & Scolnic 2017),

Light-curve simulations are used to train SNN to classify can-
didates into different classes. For cosmology, it can be trained to
accurately classify SNe la versus other other kinds of transients. For-
tune-domain astronomy, where brokers are designed to disentangle
multiple types of transients, SNN can classify subtypes of SNe or
transients simultaneously.

Throughout this work we only perform a binary classification, i.e.,
a normal SN la or a non-la SN, Our results are expressed in the form
of a prediction of the SN type by using a threshold on the obtained
SN la probability, P. larger than 0.5,

3.3.1 SNN normalization schemes: cosmo and cosmo quantile

Since light-curve fluxes and uncertainties exhibit large variations,
SNN supports different input data (e.g,, fluxes, flux-uncertainties and
time steps) and normalisation schemes (Moller & de Boissiere 2019).
In previous work, the default was the globaP normalisation. However,
to avoid cosmological bias when using redshifts for classification,
it is important to avoid using distance information encoded in the
apparent magnitudes.

For classification using redshifts, we introduce two new normali-
sation schemes in SNN that ignore distance information: cosmo and
cosmojquantile”™ In these schemes, for a given light curve, fluxes
and then respective uncertainties are normalised by the maximum
light-curve flux in any filter (cosmo) or the 99th quantile of the flux
distribution to avoid normalisation using an outlier (cosmojquantile),
This normalises the fluxes for each light-curve to | or near 1, and
retains colour and signal-to-noise information for the classification.
The normalisation ofthe time step, given as an inputto SNN, remains
log transformed and displaced to zero as in the global normalisation
scheme.

To evaluate these new normalisation schemes, we measure the
classification accuracy of SN la vs non-SN la including redshift as
an input using simulations from Moller & de Boissiere (2019) since
these were the simulations used to benchmark the SNN framework.
We bird that they slightly improve performance with accuracies of
99.330.02 per cent for both cosmo m\dcosmo_quantile as compared
to the 98.43 + 0.08 per cent accuracy of the global normalisation
scheme using same dataset, redshift information and default settings
(seeds and hyper-par ameters), In the following analysis, we will use
only the cosmo_gquantile norm since it has similar’ accuracy to cosmo

2 Long short-term memory (LSTM; Hochreiter & Schmidhuber 1997 ))

3 Features, /, are log transformed and scaled. The log transform (A\) uses the
minimum value ofthe feature in all band-passes min(/) and a constant (>)to
centre the distribution at zero as follows; f1 = log (-min (/)~+/-+ e). LTsing
the mean and standard deviation of the log transform (p, cr(f})). standard
scaling is applied: /= (J\- p(fi))/cr(J\).

4 Both normalisation schemes are available at: https://github.com/
supernnova/SuperNNova
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RNN LSTM

BNN MC dropout (MC)

BNN Bayes by Backprop (BBB)

Observer frame days

Figure 1. SUPERNNovA (SNN) classification for the DES-SN candidate
DBS 17C2hgm atredshift 0.473 +0.001 using three different neural networks:
baseline RNN, BNN MC dropout (MC ), and BNN Bayes by Backprop (BBB).
All methods were trained with the TRADM-SIM simulation. Top row shows
the SN candidate light-curve from DBS (normalised flux with cosmo_quantile
method in band-passes g.r.i.z: time in Observer Erarne days). Bottom rows
shows the classification scores for each method (SN la: maroon, non SN
la: orange). Classification scores use all the data before a given date. The
BNN methods provide classification uncertainties (shadowed regions show
68 per cent and 95 per cent contours). Each BNN method provides different
estimations, this is explored in Section 5.2, The large uncertainties in the clas-
sification probability represent the lack of confidence in this classification.
Bor this example, uncertainties around days 20-30 are correlated with the
lower SNR, while around days 50-60 that correlation is less straight forward
to interpret and could be linked to the secondary peak visible in most filters.

for the simulatioi  art is more robust against photometry outliers in

real data.

3.4 SNN configuration for performance and robustness

We next study the performance of SNN when classifying SNe using
photometry and host galaxy redshifts. We also characterise the clas-
sification robustness with respect to the training templates, and find
the best set of hyper-parameters tor our DES-SNIa sample. We use

DES-SN 5YR photometrically identified SNe la 5

Table 2. Classification accuracies for models trained by replacing a subset of
templates from the original configuration in Section 3.2,

Changed template accuracy

JLA instead of extended SNIa model 97.96 + 0.05
without peculiar SNe la 98.21 + 0.01
J17 instead of V19 core-collapse model 98.06 £ 0.07
SPCC templates instead of V19 core-collapse model ~ 98.59 + 0.03

the S-TRAIN-SIM simulations introduced in section 3.2, for com-
putational efficiency and to compare results with those of Moller &
de Boissiere (2019), to train a classification model. Our simulation
was class-balanced (half normal SNe I and half non-la SNe) and
randomly split in 80 per cent for training, 10 per cent for validation
and 10 per cent for metrics evaluation. Uncertainties in the accu-
racy represent the standard deviation of predictions from five models
obtained with different seeds.

Using the default configuration of SNN we obtain a classification
accuracy 0f97.73 + 0.04% for the cosmo_quantile norm. While this
accuracy is high, it is ~ 1% lower than the benchmark in Moller &
de Boissiere (2019) for a similar training set size. Since the SNN
architecture has not been changed, we investigate if this can be
attributed to the more complex and realistic DES-SN 5-year sim-
ulations in Section 3.4.1. We then investigate whether a modified
architecture can improve the classification model and thus its accu-
racy in Section 3.4.2. We highlight that SNN does not reach its peak
performance when trained using the smaller S-TRAIN-SIMS. Thus,
larger simulations are needed to improve the model performance.

3.4.1 Templa lact on performance

Here, we study how the set of templates used to generate the train-
ing simulation impacts the metrics of our classification algorithm.
We train different models using simulations that are similar in size
(equivalent to S-TRAIN-SIM) but are generated by replacing a sub-
set oftemplates from the original configuration. Obtained accuracies
are shown in Table 2.

Models trained with SPCC and 117 templates obtain higher accu-
racies than those trained with V19 templates. This is consistent with
the accuracy decrease of our present model when compared to that
of Moller & de Boissiere (2019). This is evidence of the more com-
plex classification task with the updated simulations. We highlight
that V19 uses a large variety of core-collapse templates with greater
diversity than previous core-collapse models, 117 and SPCC, From
these, SPCC has the fewest number of non-la templates and thus less
diversity. SPCC templates were used in Moller & de Boissiere (2019)
simulations. The impact of changes like using the 1ILA SALT2 model
is less. This shows that the complexity of the classification task in-
creases largely with the updated and more diverse core-collapse SN
population in the V19 templates and the inclusion of peculiar SNe
la.

We thus attribute the decrease on accuracy to the more complex
task of disentangling SNe la from core-collapse and peculiar SNe la

generated with updated templates.

3.4.2 Hyper-parameters

We investigate whether network hyper-parameters could be modi-
fied to improve performance (for a list of available hyper-parameters.
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see Moller & de Boissiere 2019). We train ora models using us-
ing 20 per cent of the S-TRAIN-SIM simulations (280.033 light-
curves). We modify: batch size (128.512), dropout (0.05,0.1,0.2),
bidirectional (True, False), hidden dimensions (32, 64,128), number
of layers (2,3,4), two learning policies (cyclic and non-cyclic) and
different cyclic phases when using cyclic ([5,10,15], [20,40, 60]).
We bird that the accuracy in different configurations varies up to
= 2%. We find that deeper (3 or 4 layers) and wider networks (up to
64 hidden dimensions) result in the biggest changes to the accuracy.
This reflects the increasing complexity of the classification task with
updated SN templates. Our chosen configuration for S-TRAIN-SIM
is: batch size 512, dropout 0.05, bidirectional network, 64 hidden di-
mensions, 4 layers, and non-cyclic learning policy. Using the whole
S-TRAIN-SIM dataset with this new configuration, the classification
accuracy rises to 98.10 + 0.06 per cent.

3.5 SNN trained models for DES-SN 5-year analysis

In the following we use SNN models trained with a larger dataset to
improve classification accuracy, TRAIN-SIM, and the best configu-
ration of SNN found in the previous section. We increase the batch
size to 1024 for efficient resource allocation. The larger simulation
and optimised hyper-parameters provide a better classification accu-
racy with accuracies above 98% as shown in Table 3. Accuracies are
computed with a balanced test set, where half of the candidates are
SNe la and half are non-la SNe.

To evaluate the accuracy, efficiency and purity of our photometric
samples, we estimate the performance of our models in the inde-
pendent TEST-SIM. This simulation is not balanced and thus reflect
the relative rate between SN types. We present performance metrics
for different levels of selection cuts in Table 4. We highlight that we
provide the balanced accuracy which shows that after the ILA-like
cuts, the remaining non-la SNe are harder to disentangle. A thorough
analysis on systematics linked to this classification method can be
found in Vincenzi et al. (2021).

In this work, the traditional classification method is named "single
model". This method represents classifications done using proba-
bilities obtained from one SNN trained model with a single seed.
In the following, we provide a mean value and uncertainty on the
metric or classified sample of the "single model" method by taking
the probabilities obtained with 5 models trained with different seeds.
These probabilities are then used to compute the mean and standard

<3

For cosmology, we aim to have a classification method that is not

deviation ofthe metrics listed in Table 3.

3.5.1 Ensemble methods

highly sensitive to statistical fluctuations in the model and training
dataset. In ML, ensemble methods have been shown obtain more
robust predictions (Dietterich 2000; Lakshminarayanan et al. 2016)
and have been introduced for regression in astronomy (Kim et al.
2015; Carrasco Kind & Brunner 2014). To produce ensemble classi-
fications, predictions from multiple models are combined. This can
be viewed as a mechanism of Bayesian marginalisation (Wilson &
Izmailov 2020; Izmailov et al. 2021) and an alternative to Bayesian
Neural Networks using Variational Inference explored in Section 5.

We explore two possible ensemble methods: "probability averag-
ing" and "target averaging". Probability averaging uses the proba-
bility scores and averages them to select light-curves that are above
the 0.5 probability threshold of being SN la. The "target average"
method averages the predictions and selects the most common one.

Table 3. SNN Baseline Performance vs. method on TRAIN-SIM without
cuts. The chosen method in this work is the Ensemble (probability average)

and is highlighted in bold.

method balanced accuracy  efficiency purity

single model 98.33 +0.01 98.65 +£0.05  98.03 +0.06

ensemble (target av.) 98.43 +£0.02 98.81 +£0.02  98.08 +0.02

ensemble (prob. av.) 98.45 +0.01 98.80 +0.02  98.11 +0.02
cosmo_quantile

single model 98.35 +0.01 98.68 £0.07  98.03 +0.05

ensemble (target av.) 98.45 + 0.005 98.84 +£0.02  98.09 +0.01

Ensemble (prob. av.)

98.46 + 0.01 98.83 + 0.03

98.10 + 0.03

Table 4. SNN Baseline Performance vs. method on TEST-SIM with loose
selection and TLA-like cuts.

method balanced accuracy  efficiency purity
with loose selection cuts
single model 98.61 +0.03 99.61 +0.02 99.43 +0.02
ensemble (prob. av.) 98.69 £0.01 99.68 +£0.01  99.45 £ 0.005
+ ILA-like cuts
single model 98.26 +0.06 99.81 +£0.01 99.7 £0.01
Ensemble (prob. av.)  98.36 + 0.01 99.86 = 0.01  99.71 + 0.005

Uncertainties are computed using the standard deviation of the metric
for three different sets of five models with different seeds.

We find that ensemble methods increase the accuracy and purity %
0.1% fromjust using one model prediction, or "single model", as can
be seen in Table 3. We find a 99.4% overlap between photometrically
selected Type la SNe using both the ensemble and single model
methods. In the following, we will use the "probability average"

m different models as our ensemble method.

Each ensemble in this work is obtained using the predictions of 5
models trained with different seeds, also called an "ensemble set".
To study the performance of ensemble methods, we compute metrics
using the output of 3 ensemble sets, quoting then mean and standard
deviation.

3.5.2 Generalisation

In this Section we verify the ability of our trained models to classify
data generated using different simulation templates. This is called
generalisation and showcases the adaptation of ora SNN models to
new unseen data.

We evaluate the accuracy of our models when trained with sim-
ulations generated using SNe la, peculiar SNe and the VI9 core-
collapse templates but applied to simulations generated using other
core-collapse templates such as 117 or SPCC. We observe a decrease
of < 0.5% in accuracy, which shows that our V19 trained models
generalise well to other templates of core-collapse SNe.

We find that ensemble methods such as probability average re-
duces the loss in accuracy due to changes in the data by 0.2% relative

5 We provide only two-significant figures. The uncertainties are negligible
and less than 0.005.
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to the single model. This is expected as ensemble methods are usually

more robust and thus generalise better than single models.

3.6 Bayesian Neural Networks (BNNs)

In scientific analyses using machine-learning outputs, it is important
to evaluate the reliability of a model's predictions, expressed through
uncertainties. Uncertainties can be divided into: Aleatoric, usually
linked to measurementuncertainties (e.g. noise or other effects of data
acquisition); Epistemic or model uncertainty, which encompasses
uncertainties in the training set and NN architecture.

In this section we introduce Bayesian Neural Networks (BNNs)
which are a promising method to provide uncertainties reflecting the
model's confidence on the prediction.

To compute uncertainties, we obtain different classification prob-
abilities for a given input and evaluate then variance. In NN this is
equivalent to finding a posterior distribution of weights. Typically,
this posterior distribution is intractable for deep neural networks, thus
different methods have been developed to approximate it. A review
on BNNSs, approximation methods and then use in astronomy can be
found in Charnock et al. (2020).

In this Section we use two BNN implementations approximating
the posterior distribution of weights: MC dropout (Gal & Ghahra-
mani 2015) and Bayes by Backprop (Fortunate et al. 2017). MC
dropout (MC in the following) provides a Bayesian interpretation by
using the same dropout mask at the different NN layers including
the recurrent ones (each time step). Bayes by Backprop (BBB in the
following) learns a posterior distribution of weights which can then
be sampled. Both methods have been previously implemented and
tested on simulations in SNN (Moller & de Boissiere 2019).

3.6.1 BNN classification probabilities and uncertainties

For both methods, to obtain the classification probability distribution,
we sample the predictions from our BNN 50 times. This sampling
number is also known as as the number of inference samples. ns.
In the following we compute the classification probability, Pj for g
given light-curve, X,- as the mean of sampled probabilities:

¢ < . >
Pi=—

ns

V=1 /
where 7 e [1,7ix] is the index of'inference samples, pj (X) is the 7th
sample ofthe classification probability distribution for the light-curve

We compute the classification probability uncertainty for a given
light-curve X, as the standard deviatibn of sampled probabilities:

w JV

where j e [1,;7] is the index of inference samples, pj (X,) is a clas-

ns \ T

sification probability for the given light-curve X, for each inference
sample j. and Pj is given by Equation 1.

3.6.2 BNN trained models

Using the TRAIN-SIM simulations we train the two Bayesian mod-
els, MC and BBB, for light-curve classification with host galaxy red-
shifts. Both methods obtain high classification accuracies for the en-
semble probability average method, 98.33 +£0.01 and98.11 +0.01 for
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Table 5. Performance metrics of BNNs evaluated using TEST-SIM simula-
tions with JLA-like cuts. These simulations are indicative of the expected
purity and efficiency of our photometrically classified samples.

method accuracy efficiency purity
MC with JLA-like cuts
single model 98.01 +£0.03 98.41 £0.03 97.63 £0.07
ensemble (prob. av.) 98.11 +£0.01 98.51 +£0.06  97.73 +0.05
BBB with JLA-like cuts
single model 98.01 £0.03 98.41 £0.03 97.63 £0.07
ensemble (prob. av.)  98.11 +0.01 98.51 +£0.06  97.73 +0.05

MC dropout and BBB respectively. Balanced accuracies are slightly
lower than the ensemble method in Table 3. These may be improved
by adjusting of the hyper-parameters. We choose to keep the cur-
rent configuration and focus on the behaviour' of the classification
uncertainties.

Traditionally, BNNs are not used in ensembles, combining pre-
dictions by different models. To do so, ideally, the probability distri-
butions for each model in the ensemble set should be concatenated
into a "joint probability distribution". Then, the ensemble classifi-
cation probability would be computed using Equation | sampling
ns times the 'joint probability distribution". However, this can be
computationally expensive. Using TEST-SIM simulations, we find
that averaging the mean probability obtained for each model in the
ensemble set is a close approximation of the one obtained using
"joint probability distribution". We find that the differences between
probabilities using the approximation and the "joint distribution" are
centred at 0.00 + 0.01 and accuracies change by less than 0.1%. We
use this approximation in the following for computational efficiency.

We also test approximating ensemble uncertainties as the sum
of uncertainties from each model in the ensemble set assuming the
covariance between models is zero. We find on average that the
uncertainties obtained with this approximation and from the "joint
probability distribution" are similar. However, we note that the ap-
pwoxhnation for the BBB method has a larger dispersion than the
one for the MC method. We will evaluate the potential use of BNN
classification uncertainties in Section 6.2.

We use TEST-SIM to evaluate the expected metrics for our photo-
metrically classified samples with JLA-like cuts in Table 5. The sam-
ples obtained with BNNs have less than 3% contamination but that
is higher than our Baseline DES-SNIa samples with JLA-like cuts.
BNN performance could be eventually be improved with a different
network configuration and initialisation. However, for comparison

we keep this architecture for the analysis in Section 5.

4 DES-SN 5-YEAR PHOTOMETRICALLY CLASSIFIED
SNE 1A

In this Section, we photometrically classify DES-SN 5-year can-
didates with host spectroscopic redshifts using our baseline RNN
trained in Section 3.5.

Fust, we classify candidates thatpass loose cuts using SNN trained
with host galaxy redshifts in Section 4.1. We further constrain the
sample using JLA-like cuts and visual inspection in Section 4.2. We
discuss possible contamination of this sample in Section 4.3 and its
classification efficiency in Section 4.4. We summarise the properties
of'the baseline photometrically classified SN la sample with JLA-like
cuts in Section 4.5.
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Table 6. DES-SNIa photometric samples with different selection cuts. In the
last row. we define the Baseline DES-SNIa sample using a single ensemble
set probability threshold. Columns indicate: the number of photometrically
selected SNe la and the number of spectroscopically classified SNe la con-
tained in that sample.

+JLA-like cuts
photo la

loose selection cuts

method photo la  spec la spec la

186UH 35343
18677 3547

1478+ 32043
14825 321-ci

single model
ensemble (prob. av.)

Baseline DES-SNIa sample 1863 354 1484 321

4.1 Photometric classification

We use our baseline RNN model to select photometrically classified
SNe la. We show the number of selected light-curves in Table 6 and
their overlap with spectroscopic SN samples defined in Section 2.

As shown in Sections 3.5.1 and 3.5.2, ensemble methods provide
more robust predictions than single model methods. We select our
Baseline SNe la sample using the "probability average" method and
the cosmo_quantile norm. This normalisation is more robust towards
photometry outliers present in our analysis. We note that the overlap
between cosmo and cosmo_quantile probability average sample is
larger than 98% and between cosmo_quantile probability average
and single model samples is larger than 99%.

Our Baseline DES-SNIa sample contains 1,863 photometrically
identified SNe la passing loose selection cuts. In this sample, twelve
spectroscopically classified SNe la are not selected, representing less
than 1% of the photometric sample. We do not find a particular' red-
shift or SALT2 parameter preference for these lost SNe la. Visual
inspection reveals some light-curves have variable quality photome-
try which could contribute to the mis-classification.

The baseline sample with loose selection cuts can be used to study
astrophysical properties of SNe la like correlations with then host
galaxies, diversity and rates. In the following, we further constrain

this sample with cosmology-grade cuts as in Vincenzi et al. (2021

4.2 Cuts towards a cosmology sample (JLA-like)

We further constrain our sample by applying selection ed on
SALT?2 light-curve fits and redshift quality.

Fust, we implement additional requirements on the fitted SALT2
parameters of the photometrically selected SNe la. As in Vincenzi
et al. (2021), we implement the ILA-like SALT2 cuts from the
Joint Light-curve Analysis (Betoule et al. 2014) introduced in Sec-
tion 2.3.2. Second, we select only candidates which have a high-
precision spectroscopic redshift. We eliminate those candidates that
have redshifts provided by PRIMUS since the spectra are of lower-
resolution, more prone to catastrophic failures and not high-quality
enough for cosmology analysis.

The results of these cuts in the photometrically selected samples
are shown in Table 6. We highlight that the JLA-like cuts reduce the
scatter in the number of SNe, as can be seen by the reduced standard
deviation in the Table when compared to the sample without JLA-like
cuts. We obtain a Baseline DES-SNIa sample with JLA-like cuts of
1,484 photometrically classified SNe la. The missing spectroscopic
SNe la are found to be redder in average and at all redshifts with a
median around 0.5.

A summary of the selection criteria used to obtain this sample can

be found in Table 7. General properties of these samples are further
studied in Section 4.5.

4.3 Contamination

As shown in Vincenzi et al. (2021) and in Table 4 contamination
from core-collapse and peculiar SNe in a SNN classified sample
with quality cuts is expected to be less than 1%. This estimate was
obtained using SN simulations containing various types of core-
collapse and peculiar SNe. We inspect the Baseline DES-SNIa sam-
ple with JLA-like cuts obtained in the previous section and do not
find any spectroscopically identified core-collapse or peculiar' SNe.
We note that spectroscopic samples are not complete and DES-SN
follow-up preferentially targeted suspected Type la SNe.

In this section, we explore a different type ofpotential contaminant,
"out-of-distribution" candidates such as AGNs and other unknown
transients. These candidates can be erroneously classified since they
are not present in the simulated training sample and thus we do not
know how SNN classifies them.

We find no spectroscopically identified AGN, SLSNe or other SN
spectral types in our Baseline DES-SNIa sample but 5 candidates
with host spectra showing AGN features. We find that DES16E2nb,
DESI6X1 ext, DES13X3dbe are displaced by more than 1" from
the centre of the galaxy (additionally DES16E2nb is a spectroscopic
Type la SN) and the other two candidates are displaced between 0.5"
and 1". At these separations, the light-curves from these candidates
are not dominated by the AGN which we confirm by inspection of
the light-curves. Therefore we keep these photometrically selected
SNe la in our Baseline DES-SNIa sample.

We also perform visual inspection of the light-curves in the Base-
line DBS sample. We find 3 candidates that can be visually tagged
as multi-season visually: DES16E2nb a spectroscopic SN la with
close by AGN, DES16C3nd two SN la in a galaxy (Scolnic et al.
2020), DES14E2rpm a spectroscopic SN la with a fake SN inserted
at the same coordinates (fakes were inserted to evaluate the detection
efficiency in DES-SN images, see Brout et al. 2019)We keep all
these candidates since they are real supernovae with fake or other SN

ght-curves that do not overlap.

Photometrically classified Type la SNe samples are expected to
have some level of contamination from core-collapse and peculiar
SNe and possibly by other transients. For the Baseline DES-SNIa
sample in this work we find no clear' evidence of contamination from
core-collapse and peculiar SNe or long-term variables such as AGNs.

4.4 Classification efficiency

Traditionally, in cosmology analyses using spectroscopically classi-
fied SNe samples, modelling selection effects is crucial to estimate
biases and systematic uncertainties.

Selection effects arise from a combination of SN detection and
other effects. They are usually modelled as an efficiency with respect
of an observed magnitude. For host galaxy selection, Vincenzi et al.
(2020) uses the host galaxy r band magnitude, wSlost. For spectro-
scopic classification. Smith et al. (2020); Kessler et al. (2019b) use
the modelled supernova peak magnitude in the; band, ;peap computed
from the best-fit SALT2.

To determine if there is a selection efficiency decrease due to
photometric classification, we inspect the differences between the
peak observed magnitude in the ; band of our Baseline DES-SNIa
sample compared to simulated SNe la in DES-SN 5-year in Figure 2.
Our Baseline DES-SNIa photometric sample follows the expected
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Table 7. Effect of the selection cuts on the candidate sample. We show results for the shallow and deep fields, as well as the total number. Note that some events
belong to both shallow and deep fields due to field overlap. Columns show the cut, the number of selected candidates, the number of spectroscopic SN la in the

sample and the Section where the sample is described.

cut shallow deep total
selected  specla  selected specla  selected specla  section

DES-SN 5-year candidate sample 29203 415 7500 93 31636 415 2.1
Multi-season 13868 405 4428 88 14070 405 22
Redshifts in 0.05<z<1.3 6556 401 1812 85 6590 401 2.3.1
SALT2 loose selection 2380 366 698 71 2381 366 231
RNN>0.5 (Baseline DES-SNIa) 1863 354 502 76 1863 354 4.1
JLA-like (Baseline DES-SNIa JLA) 1484 321 408 73 1484 321 42
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Figure 2. Distributions of redshift, SALT2 x1, SALT2 c¢ and peak magnitude in i-band rpeak for our Baseline DES-SNIa sample from Section 4 for the shallow

(yellow) and deep (maroon) fields

. We show one simulated realisation of DES-SN 5-year sample. Poisson uncertainties are assumed. Both the simulation and data pass JLA-like cuts. The
goodness-of-ht for each histogram is shown as the ~/number of bins on each plot.

SN la peak magnitude distribution from simulations but we find an
excess on the maximum magnitude with a reduced =2.1. We do
not Hud evidence for addiWion effiiciency effects from the
photometric classification procedur

4.5 Colour and stretch eveolution

We study the properties of the Baseline DES-SNIa sample with JLA-
like cuts and compare it to that expected from realistic simulations.
In Section 4.4 we found that the effects of classification efficiency
are negligible, thus we don't correct for this efficiency and use sim-
ulations including only detection and host galaxy redshift efficiency
introduced in Section 3.2.

Figure 2 shows the redshiftzHD and SALT?2 fitted colour ¢, stretch
xi and /peap distributions for the DES-SNIa 5-year photometric sam-
ple classified using host galaxy redshifts. Figure 2 also shows one
realisation of a DES-SN 5-year simulated SNe la. Uncertainties are

calculated as the square-root of the number of candidates per bin.
There is decent agreement between the simulation and data, although
the reduced y~ are somewhat larger than expected from statistical
fluctuations.

In Figure 3 we show the redshift evolution of our' sample's colour
and stretch. Our baseline sample matches the trends expected from
the simulation. Although there are some slight differences outside
the 68% simulation contour (equivalent to lcr for a Gaussian distri-
bution) in particular for the shallow fields.

These differences might result from the small number of candi-
dates (the last two redshift bins have only 24 and 16 SNe la), unac-
counted classification contamination, unaccounted selection effects
or whether there is redshift evolution in the intrinsic SN population
(Scolnic & Kessler 2016; Popovic et al. 2021; Nicolas et al. 2021)
or the effect of dust needs to be introduced (Jha et al. 2007; Mandel
et al. 2011, 2017; Brout & Scolnic 2021). The optimisation of the
simulation and systematics studies is outside the scope of this work.
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Table 8. Photometric classification of light-curves with Bayesian Neural
Networks. Columns indicate: the number of photometrically selected events
and the number of spectroscopic SNe la contained in that sample. We show
these samples with JLA-like SALT2 cuts as in Section 4.2 and when adding
a cut in the BNN classification uncertainty.

+JLA-like +JLA-like -i-unc

method photola  specla photola  specla
MC dropout
single model 1532+ 3354 1513+6 333+%
ensemble (prob. av.) 1535~ 336tg 15204 3337
Baseline MC sample 1535 336 1520 333
BBB

single model 1526+% 3345 1487+6 328t
ensemble (prob. av.) 1528t 3350 1483+6 324+

Baseline BBB sample 1529 336 1483 324

We now turn to select other photometric samples using the novel

Bayesian Neural Networks and explore their possible use.

5 PHOTOMETRICALLY CLASSILIED SNE 1A WITH
BAYESIAN NEURAL NETWORKS

In this section we explore the use of Bayesian Neural Networks
(BNNs) for classification. While the accuracy of these Networks is
equivalent to the baseline RNN used in Section 4, BNNs also provide
classification uncertainties.

We first obtain photometric samples using two BNN schemes
(MC and BBB, Section 5.1). We then evaluate the classification
uncertainties from BNNs (Section 5.2), and summarise our findings
(Section 5.3).

5.1 BNN photometric sample

We apply our BNN trained models to candidates passing loose an
JLA-like cuts introduced Sections 2.3.1 and 2.3.2. This candidate
sample contains 1,701 light-curves that are then photometrically
classified.

Using BNN probabilities, the average probability ensemble
method and a threshold of P larger than 0.5, we obtain about 3%
more candidates than our Baseline DES-SNIa sample with JLA-like
cuts in Table 6 for both BNN methods. The additional BNN selected
supernovae, 52 MC and 51 BBB, have distributions of colour, stretch
and redshifts that are representative of the Baseline DES-SNIa sam-
ple selected using the RNN models (Section 4). We find that | and
6 SNe la in the Baseline DES-SNIa sample are not selected by MC
and BBB methods. These missing SNe la have red colours and are
at median redshifts close to 0.5. The BNN samples are thus probing
a similar parameter space to the Baseline DES-SNIa sample.

As in the previous sample, we find no spectroscopically identified
AGN, SLSNe or other SN spectral types in our BNN photometric
sample. We find the same 5 candidates with nearby spectra showing
AGN features which are kept due to then large enough separation
> 0.5", with the AGN. In a cosmological sample however, these can-
didates will be eliminated due to possible issues with the measured
photometry.

5.2 BNN uncertainties

In this Section we try to interpret which types of uncertainties are
captured in the outputs of the BNN model: aleatoric or epistemic.
BNNs provide classification probability distributions that a priori
indicate a confidence level on the prediction. These uncertainties are
shown in Figure | for each classification step. Here we only evaluate
the final uncertainty (final time step) for each event.

In Figure 4 we show the distribution of classification uncertainties
for different samples. We compare the uncertainties derived from
the data and from simulations. For most samples, the simulation
and data uncertainty distributions are similar. This indicates that the
simulations and data resemble closely after JLA-like cuts. However,
a large difference is found where there is no selection cut which is
further explored in Section 6.2.

Both BNN methods provide different order of magnitude ofuncer-
tainties estimates and distribution of mean uncertainties (e.g. BBB is
more clustered in low uncertainty regions), possibly due to initialisa-
tion parameters or intrinsic properties of the method. Accounting for
those differences is not straight-forward, see Moller & de Boissiere
(2019) for a discussion on this topic.

We compare BNN uncertainties as a function oflight-cur ves prop-
erties in Figure 5. We find that MC dropout and BBB exhibit different
behaviours for both data and simulations.

We find both indications in favour (+) and against (-) interpretation

of classification uncertainties as a particular' type:

a. aleatoric uncertainty: linked to measurement uncertainties
(+) classification uncertainties are correlated to SNR in data. Bright
candidates and those with higher quality light-curves have on
average smaller classification uncertainties for both BNNs.
(-) this correlation is not seen in the simulations for any of the
BNNSs.

b. epistemic uncertainty: linked to training sets or model

(+) Large uncertainties are more prevalent in classification proba-
bilities far from | (high probability of being a SN la) and 0 (low
probability of being SN la) for both simulations and DES-SN 5-year
data.

(-) candidates that fulfil selection cuts should more closely resemble
simulated SNe la, thus it is puzzling the increase on median un-
certainty when applying cuts in particular' for the MC method (see
Figure 4).

These various behaviours highlights the challenges on quantifying
uncertainties in complex problems such as astronomical data clas-
sification. In Appendix A we explore further correlations between
classification uncertainties and SALT2 fit light-curve properties.

We continue exploring the interpretability of the BNNs uncertain-
ties by adding a threshold on the uncertainties for SNIa sample selec-
tion, as in Moller & de Boissiere (2019) and more recently in Butter
et al. (2021). We note that establishing a threshold for uncertainties
is not straight-forward. While the whole probability distribution has
a calibration that can be verified using diagnostic as reliability dia-
grams (DeGroot & Elenberg 1983; Moller & de Boissiere 2019), the
probability uncertainties do not. We chose to eliminate candidates
with the highest uncertainties (eliminating candidates that are out-
side of 99 percentile of the uncertainty distribution). This cut rejects
candidates that were in the RNN sample: 12 for the MC model and
45 for BBB. These candidates are not found to be distributed prefer-
entially in a ¢, vq or redshift. We visually inspect these light-curves
and found that a large proportion have photometry that are outliers.

7207 AMf L0 U0 19SN qe[Iuid] Aq [691199/169OBIS/SBIUW/E60 "0 [ /10P/d[01He-30UBAPE/SeIu/Wwod dno orwapese//:sdyy woly papeojumoq



0.20

-0.20

-0.25
-0.50
-0.75

~1.00
zHD

DES-SN 5YR photometrically identified SNe la 11

zHD

Figure 3. Redshift dependence of SALT2 ¢ and x| for he Baseline DES-SNIa photometric sample and simulated SNe la for shallow (yellow, left) and deep
(right, maroon) fields using the DES-SN host galaxy spectroscopic efficiency (Vincenzi et al. 2020) both with JLA-like cuts. For the simulation, orange lines are
rolling averages of the measured parameters, in grey 150 realisations of SNe la in the DES-SN 5-year survey and in soliakg## the area covered by the 68% of
these realisations. The mean and the standard deviation are shown for data using black markers.
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Figure 4. Classification uncertainties obtained for BNN ensemble models.
Columns indicate which sample is used. For eacn\&#Rt in a given sample,
we obtain their classification uncertainty”; from the two BNN methods, MC
and BBB (orange and blue respectively). We show median uncertainties for
data in circles for: all DES-SN 5-year data (no selection cuts), and Baseline
BNN SNIa samples with JLA-JIke cuts. For comparison, we show in squares
the median uncertainties obtained fqr tire whole simulation (first column) and
simulated photometric samples with JLA-like cuts (second column). For both
the data and simulations, we show as errorbars the extent of the 68% of the
distribution. The different behaviour of simulated MC uncertainties and that
of DES-SN 5-year candidate sample is further studied in Figure 7.

5.3 BNN photometric sample contribution

The SNIa samples obtained using BNN methods are found to be
similar to the one provided by our Baseline DES-SNIa sample in
Section 4. We evaluate BNN uncertainties and show that they are

consistent between simulations and data in average after JLA-like
cuts, showing a good agreement between data and simulation pre-
dictions. However, BNN uncertainties are difficult to interpret and
assess quantitatively (e.g. assigning an uncertainty threshold).

We find that uncertainties exhibit different behaviours in the two
BNN methods and between data and simulations. While the higher
uncertainties in the MC BNN method for the data could point to-
wards the presence of out-of-distribution candidates, the evidence is
npt conclusive and is not seen in the BBB method. We will further ex-
plore the possible contribution of BNNs in photometric classification
without any selection cuts in Section 6.2.

Cuts on uncertainty values potentially improve our photometric
SNIa samples by rejecting candidates with photometry that con-
tains outliers. These is a promising avenue shown to improve the
quality of samples, both in quality of the data and rejection of out-
of-distribution events, in previous work using simulations Moller
& de Boissiere (2019) and more recently with astronomical data in
Butter et al. (2021).

6 FROM DES TO RUBIN OBSERVATORY LSST

For the LSST survey, where up 107 SNe will be detected over 10
years, photometric classification will become increasingly important.

In this work, we have presented different methods for photometric
classification with redshift information. We compare the samples
obtained with these different methods in Section 6.1 and explore
possible applications of Bayesian Neural Networks in future surveys,
such as LSST in Section 6.2.
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Figure 5. Distribution of classification uncertainty for Baseline MC dropout (upper row) and Bayes by Backprop technique (lower row). We show uncertainties
as a function of classification probability for all fields (left), SNR of'the third brightest point in the light-curve (SNRMAX3, columns 2 and 3), and redshift (zHD,
columns 4 and 5). Coloured lines show the median of the data with solid blue representing all fields, dotted yellow representing shallow fields, and dot-dash red
representing the deep fields. Simulations are shown by the grey dashed lines. Shaded regions show the 68% percentile.

6.1 DES-SNIa photometric samples

The DES-SN 5-year data contains thousands of potential SNe la. We
show in Table 7 the different steps used in this work to obtain our
Baseline DES-SNIa JLA sample from the DES-SN 5-year candidate
sample. Cuts applied before photometric classification reduce the
candidate sample by 90%. Photometric classification and JLA-like
cuts refine the sample with a small 20% reduction. While this reduc-
tion is small, it reduces contamination from ~ 10% to below 1.4%,
as shown in (Vincenzi et al. 2021) and in Section 4.

In addition to our Baseline DES-SNIa sample classified us-
ing RNN probabilities, we have explored identifying samples with
Bayesian Neural Networks. We compare these samples with with
the preliminary DES-SN 5-year spectroscopically classified SNe la
sample in Figure 6. As expected, we Hud that photometric samples
using RNNs or BNNs provide larger numbers of SNe la than the
spectroscopic sample, probing a larger parameter space. We do not
Hud a substantial difference in the parameter distributions between
different photometric classification methods.

We highlight that the photometric samples peak at fainter mag-
nitudes and higher redshifts than the preliminary DES-SN 5-year
spectroscopic SNe la sample.This has the potential to reduce selec-
tion biases and opens the possibility of stronger statistical analyses
with the large numbers of SNe la. This will also be true for the
immense SN samples obtained with LSST.

6.2 Bayesian Neural Networks as a proxy

Introduced as a promising method to quantify model uncertainties,
BNNs have not yet been widely used in classification tasks. In Sec-
tion 5, we have shown the difficulties for uncertainty interpretation
given the different uncertainty values for the BNN methods. However,
a potential use could be rejecting candidates with large uncertainties,
as they sometimes have light-curves with photometry outliers.
Here, we explore other possible uses of BNN uncertainties, using

samples that have not been constrained with selection cuts. We aim
to answer two questions: (i) can BNN uncertainties be used as an
indicator of the representativity ofthe training set for a given dataset?
(ii) can BNN uncertainties replace selection cuts? We address these
questions in Sections 6.2.1 and 6.2.2 respectively. The former could
be useful to choose the set of SED templates to simulate a survey.
As some selection cuts require feature extraction, the latter could
be valuable to avoid this tune-consuming process by using instead

assihcation uncertainties from non-parametric classifiers as SNN .

.1 BNNs uncertainties vs. simulation representativity

Fust, we use simulations to assess the expected behaviour of un-
certainties when training sets are not representative of the testing
data.

We examine how the uncertainties change when using the trained
model in Section 3.6.2 and applied to individual simulations with
normal Type la supernovae and core-collapse SNe generated with
the VI9, SPCC and J17 templates. We expect that the trained model
is representative of the VI9 simulation. This will not be true for J17
and SPCC.

We Hud that both the single seed and ensemble methods have
accuracies which decrease for J17 and SPCC simulations by % 0.5%
for both types of BNNs. We see an increase in the mean model
uncertainty on classified light-curves generated with J17 and SPCC,
however this change is within uncertainties. For both BNNs we Hud
a longer and more significant tail for the uncertainty distributions
when classifying J17 and SPCC simulations (ending at ~ 0.4 — 0.43
compared to ~ 0.35 for V19).

Next, we compare uncertainties when classifying DES-SN 5-year
data with independent BNN models trained with the V19, J17 and
SPCC simulations. We find thatthe mean model uncertainty increases
for SPCC and J17 classification models for MC dropout but not
for BBB SPCC model but again within uncertainties. The tail of
the uncertainties varies between ~ 0.40 — 0.47 for all classification
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Figure 6. Distributions of redshift, SALT2 ¢, x1 and peak magnitude in the / band rpeak: for the samples with JLA cuts: preliminary DES-SN 5-year SNIa
spectroscopically classified (maroon). Baseline DES-SNIa (RNN) (blue) and Baseline MC and BBB SNIa samples, purple and orange, respectively. We note

that the MC and BBB samples distributions almost completely overlap one other.

models. We see a longer tail for the uncertainty distributions for BBB
but not for MC SPCC classihcation.

In summary, we do not bird strong evidence of BNN uncertain-
ties being sensitive to models trained with different core-collapse
templates. There is a small but inconclusive tendency to increase un-
certainties for J17 and SPCC in simulations. While these templates
are different, the changes may be too small to be captured by BNN

uncertainties.

6.2.2 BNN uncertainties as a proxyfor selection cuts?

We further study the distribution of classification uncertainties for
samples selected with different cuts.

Fust, we check the behaviour of uncertainties with simulations.
Uncertainties are distributed with a peak at low values and a de-
creasing long tail. We find that as the sample is refined through cuts
in redshift, SALTS convergence, and others, the maximum uncer-
tainty is reduced. For example, ifthe simulated sample passes loose
selection cuts and then a JLA-like cut is applied, the maximum un-
certainty in the distribution reduces from 0.37 to 0.26 in MC dropout
and from 0.34 to 0.25 in BBB. We do not find a significant change
in the median distribution since it is dominated by small uncertainty
values.

For the DES-SN 5-year data we show the distribution of classi-
fication uncertainties in Figure 7 with different selection cuts (see
Section 2.3.1). As selection cuts are applied, the maximum uncer-
tainties reduces for both methods as in simulations.

We highlight an interesting behaviour seen for MC dropout clas-
sification uncertainties. We find that this method assigns high uncer-
tainties to candidates that do not have a secured redshift and candi-
dates that are filtered with the multi-season cut. While the model was
trained to use host galaxy redshifts, it can provide a classification
for objects using a default value provided, here an assigned redshift
of -9. While these candidates are clearly outliers (the redshift pro-
vided for classification is -9) and can be eliminated using simple
cuts, this could indicate that MC dropout uncertainties are indicative
of out-of-distribution candidates. Importantly, many of these high-
uncertainty candidates are classified with probability larger than 0.5
which, without selection cuts, would end up in our photometric sam-
ple ifno selection cuts were applied. We do not see this behaviour' in
the BBB model.

The multi-season veto and redshift availability cut effectively elim-
inates the light-curves producing the high-uncertainty peak for MC

dropout. After these cuts, the most impactful cut for higher uncertain-
ties is linked to the SALT and JLA quality cuts. This is not surprising
since these cuts restrict the SN properties range to the ones for normal
SNe la.

In summary, we find that BNN methods behave differently when
classifying out-of-distribution candidates defined as light-curves
without redshift. Interestingly, the high-uncertainty peak found for
the MC dropout method in Figure 7 reflects a possible interpretabil-
ity of these uncertainties. This interpretability could help to quickly
identify the presence of anomalies in the dataset which were not in
the training sets of the model.

For current surveys, our candidate samples are small enough to
easily identify out-of-distribution events using feature distributions.
However, for future surveys such as Rubin LSST this may prove
difficult given the expected detection of 10 million transient can-
didates per night. Here we Bird that BNN uncertainties from MC
dropout scheme can provide an indication whether there are out-of-
distribution events in a given candidate sample and further selection

cuts may be required.

7 CONCLUSIONS

In this work we train Type la vs. non la classification models using
large realistic DES-like simulations and apply them to DES-SN 5-
year data.

We introduce pre-processing of DES-SN light-curves for accu-
rate photometric classification. This includes selection of light-curve
time-span, photometry quality cuts and selection cuts to limit out-of-
distribution candidates that are not included in the training set (e.g.
AGNS).

We present samples classified with host galaxy redshifts using
SNN Recurrent Neural Networks and explore the use of Bayesian
Neural Networks. We introduce the use of ensemble predictions for
SN classification. We find that selecting SNe using an ensemble of
models is more robust and stable than any single model.

Using host galaxy spectroscopic redshifts, we select a Baseline
DES-SNIa sample of 1,863 photometrically identified Type la SNe.
This sample can be used for astrophysical studies of the properties
of SNe la and then environments. For cosmology, we apply JLA-
like cuts and select 1,484 photometrically classified SNe la. This
sample is more than three times larger than the DES-SN 5-year
spectroscopically confirmed SNIa sample and covers a larger redshift
range. Most of the spectroscopically identified SNe la in DES-SN
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Figure 7. Uncertainties obtained with the two BNN methods (MC and BBB) for the DES-SN 5-year candidate sample, through different selection cuts:
multi-season filtering, redshifts, SALT2 convergence and JLA-like cuts; and our photometrically identified sample (filled histograms). We show the number of

events in the y-axis in log scale. MC dropout uncertainties seem to identify those out-of-distribution candidates that have no resdshift information (black line) or

are filtered multi-season events. This secondary peak drives the mean uncertainty behaviour for MC dropout in Figure 4.

are included in this photometric sample. These 1,484 photometrically
identified SNe la are currently the largest single-survey high-quality
SN la sample and is being used for studies such as rates and SNe la
host-galaxy properties.

We find that the properties of the SNe la in our Baseline DES-Ia
sample are reproduced in the simulations. We anticipate that with
further refinements (improved host galaxy libraries and more accu-
rate dust models), the agreement between the simulations and the
data will improve.

Additionally, we explore the use of uncertainties provided by
Bayesian Neural Networks for identifying out-of-distribution can-
didates and defining representative training sets. We highlight some
of'the BNN pitfalls and the difficulty of comparing classification un-
certainties between variational inference methods. We find that the
MC dropout BNN provides potentially interpretable uncertainties
for out-of-distribution event detection and improving the photomet-
ric sample. This work is the first known application of two BNN
methods on real astrophysical data for classification tasks.

This work is part of the DES-SN 5-year cosmology analysis. We
have optimised simulations, the SNN architecture, as well as de-
veloped data pre-processing methods. These methods are a revision
from those presented in Vincenzi et al. (2021) where contamination
is found to be less than 1.4% for photometrically classified samples.
We find that photometric quality is key for robust classification, and
an improved sample can be expected from using high-quality Scene
Modelling Photometry (Brout et al. 2019).

For future surveys such as LSST, photometric classification will
be key to fully harness the power of these surveys. Photometric clas-
sification with host redshift information will enable using large, low-
contamination, high-quality samples for measuring cosmological pa-
rameters. Potentially, MC BNN could provide useful information to
filter transient samples in large surveys. Extensions to this work in-
clude photometric classification without redshift, which will assist in
the allocation of follow-up resources for host galaxy redshift acquisi-
tion (such as Time-Domain Extragalactic Survey TiDES; Frohmaier
et al. in prep, Swann et al. 2019) and for other astrophysical studies.

to
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duce plots and results. Sample classification probabilities are avail-
able in Zenodo https://doi.org/18.5281/zenodo. 5984368.
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APPENDIX A: UNCERTAINTIES AND FITTED
PARAMETERS

In Section 5.2 we explored the interpretability of BNN uncertainties.
We concluded that this interpretation was not straight forward from
our results. Here we extend this discussion by exploring possible
correlations with other light-cur ve properties derived from a SALT2
fit in Figure Al.

In general, we find that uncertainties tend to be larger for the data
when compared with simulations. The uncertainties in BBS method
varies more with the parameters.

We note that the classification uncertainties are large for red and
high stretch SNe in the DBS 5-year sample. The median classification
probability is also lower for these candidates. If the uncertainties are
epistemic due to a smaller training set, then they would be large for
the ends of the normal SNe la SALT2 parameter distributions since
training sets have fewer such candidates. However, we do not Bird
this behaviour; Another possible effect could be that bluer SNe la
are more easily standardisable as previous literature suggests and
thus then classification is more robust (Kelsey et al. 2021; Brout &
Scolnic 2021). However, as this tendency is only observed in data
and not simulations, no conclusion can be confidently drawn.

The peak magnitude in i-band behaviour in data agrees with that
of the SNR of'the light-curve. Brighter candidates are classified with
higher confidence than fainter ones. However, as in the previous
Section we do not see such a behaviour in the simulation.

While the correlation between supernova properties and classifi-
cation uncertainties are interesting to explore, they are difficult to
interpret since multiple effects could be contributing to the uncer-
tainties. Tests based on simple physical systems could provide hints
towards further interpretability, such as recent work by Caldeira &
Nord (2020).

APPENDIX B: DBS 5-YEAR PHOTOMETRICALLY
SELECTED SNE IA

A Table with photometrically classified SNe la from all selection
methods with their respective probabilities for a subsample of DBS
5-year data is provided at https://doi.org/18. 5281/zenodo.
5984368. Samples are selected using P larger than 0.5 for each
method plus selection cuts.
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Table Bl. Example of SNN classification probabilities for DES 5-year candidates. A full list of classification probabilities for all DBS 5-year candidates that are
selected for any of the samples in this paper is found in https: //doi .org/1®. 5281/zenodo. 5904368. We show probabilities for baseline Recurrent Neural
Network (RNN) in Section 4) and Bayesian Neural Networks methods MC dropout (MC) and Bayes by Backprop (BBB) in Section 5. For each method we
provide classification probabilities rounded in two decimals for five different SNN initialisation seeds, S0 = 0, s| = 55, so = 100, sg = 1000, sg = 30469 and the
ensemble average probability of these five seeds se?0.

TIAUC RNN MC BBB
1Q Ji s2 I3 J4 set0  jo Si 2 3 J4 set0  Jo 11 12 3 J4 set0

DES17S2gpk 099 095 099 0.99 1.00  0.98 1.00 096 098 098 099 098 0.97 .00 092 099 098 097
DES14S2bck 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES14S2anv 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES15S2myji 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES13X3woy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES14S2aoi 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES13C3xhy 073 0.99 1.00 032 0.00 0.61 082 099 054 094 0.60 0.78 046 082 085 098 0.63 075
DES15X3dyt 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES14Elgvc 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES13S2ead 0.99 1.00 1.00 1.000 098 0.99 1.00  0.98 1.00 .00 099 0.99 0.99 1.00 098 098 098 0.99
DES16Slbyw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DESI16E2bp 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DESI15EInzd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16X3enk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16X3hy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16X3M 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES15C2mcu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES13Xlhxs 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES13Xlbama 0.99 098 0.99 0.99 1.00  0.99 095 094 092 096 094 094 0.88 088 0.66 093 0.89 0.85
DES17C2acb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16C3bab 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES17E2elx 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DESI14E2fyd 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16C3bq 097 099 079 031 1.00  0.81 095 083 0091 0.94 100 0937 078 095 0.69 094 087 085

DES15C3mes 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES15C3meu 1.00  0.99 1.00 1.00 098 0.99 1.00 097 090 089 099 095 1.00 098  0.89 1.00 098 097
DES16X3brw 079 002 035 002 025 029 099 094 096 097 071 0.92 0.91 095 064 086 073 0.82
DES14Xltbo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 \ 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00
DES15X3dyv 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16E2dcg 0.71 0.01 0.50 033 056 042 095 098 094 095 093 095 088 086 075 0.69 096 0.83
DES16E2dch 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DESI15C2iuv 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES13X2gnl 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16Elbyy 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES15E2mhj 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES14E2cmo 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES14E2hhu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES13Elaftw 1.00 1.00 1.00 1.00 1.00 1.00  VE00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES14C2ocp 1.00 1.00 1.00  0.98 .00 0.99 0.99 1.00  0.99 .00 099 0.99 1.00 099 083 099 095 095
DES13X2jdk .00 097 099 099 099 0.99 099 097 099 098 096 0098 098 098 096 095 098 0.97
DESI14E2clm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES17C3blq 0.01 1.00 096 032 099 0.66 0.94 .00 0.79 035 029 0.67 093 075 096 096 0.18 0.76
DESI16E2blm 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES15X3auw 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES15X2mey 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES15C30dz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES14C3oce 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 073 099 0.89 099 098 092
DES15X2mfa 099 099 099 08 099 097 099 097 097 094 095 0.96 093 098 094 093 096 095
DES16S2buz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES16C3thz 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES17C2emh 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES17ElIbmf 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES17C3ivv 1.00 0.63 096 1.00 0.89 0.81 099 098 092 090 092 099 099 099 098 1.00  0.99
DES17Elblu 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 097 1.00 098 098 098
DES14S2ftj 1.00 1.00 1.00 1.00 1.00 1.00 1.00  0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES17E2bmb 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
DES17Clify 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

DES16Xldrk 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
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classification probability

0.8 1.0

Figure Al. Distribution of classification uncertainties for DES 5-year data (maroon) and simulation (grey) using the two BNNs, MC dropout and Bayes by
Backprop. We show uncertainties as a function of SNR of the third brightest point in the light-curve, redshift, colour, stretch and peak /-band magnitude. The
median and 68 percentile are shown as a dashed line and filled coloured area. Data is shown as diamonds coloured by the median probability in that parameter
bin and a maroon coloured area representing the 68% percentile of the distribution.
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