
IoTLS: Understanding TLS Usage in Consumer IoT Devices

Muhammad Talha Paracha
Northeastern University

Daniel J. Dubois
Northeastern University

Narseo Vallina-Rodriguez
IMDEA Networks / ICSI / AppCensus Inc.

David Choffnes
Northeastern University

ABSTRACT

Consumer IoT devices are becoming increasingly popular, with

most leveraging TLS to provide connection security. In this work,

we study a large number of TLS-enabled consumer IoT devices to

shed light on how effectively they use TLS, in terms of establishing

secure connections and correctly validating certificates, and how

observed behavior changes over time. To this end, we gather more

than two years of TLS network traffic from IoT devices, conduct

active probing to test for vulnerabilities, and develop a novel black-

box technique for exploring the trusted root stores in IoT devices

by exploiting a side-channel through TLS Alert Messages. We find a

wide range of behaviors across devices, with some adopting best

security practices but most being vulnerable in one or more of

the following ways: use of old/insecure protocol versions and/or

ciphersuites, lack of certificate validation, and poor maintenance

of root stores. Specifically, we find that at least 8 IoT devices still

include distrusted certificates in their root stores, 11/32 devices are

vulnerable to TLS interception attacks, and that many devices fail

to adopt modern protocol features over time. Our findings motivate

the need for IoT manufacturers to audit, upgrade, and maintain

their devices’ TLS implementations in a consistent and uniform

way that safeguards all of their network traffic.

CCS CONCEPTS

• Security and privacy → Network security; Embedded sys-

tems security; • Networks → Network measurement; Network

security;

KEYWORDS

Internet of Things, IoT, Transport Layer Security, TLS, network

security, embedded systems security, measurement techniques

ACM Reference Format:

Muhammad Talha Paracha, Daniel J. Dubois, Narseo Vallina-Rodriguez,

and David Choffnes. 2021. IoTLS: Understanding TLS Usage in Consumer

IoT Devices. In ACM Internet Measurement Conference (IMC ’21), November

2ś4, 2021, Virtual Event, USA. ACM, New York, NY, USA, 14 pages. https:

//doi.org/10.1145/3487552.3487830

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

IMC ’21, November 2ś4, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9129-0/21/11. . . $15.00
https://doi.org/10.1145/3487552.3487830

1 INTRODUCTION

Consumer Internet-of-Things (IoT) devices such as voice assistants,

smart TVs and video doorbells are popular, with their prevalence

projected to be 75 billion by 2025 [14]. Most IoT devices rely on TLS,

the de facto secure transport protocol, to provide confidentiality,

integrity and authenticity of their network communications [26].

Numerous prior works have shown that TLS security properties

can be compromised due to development errors (e.g., [31]), insecure

configurations (e.g., [39]), and outdated clients (e.g., [20]). While

TLS usage has been studied extensively in mobile applications and

web browsers (e.g., [47], [49], [37]), there is little insight into its

effectiveness in the IoT ecosystem (e.g., [26]).

More specifically, there exists a research gap in understanding

whether TLS implementations in IoT devices: (i) establish connec-

tions using secure TLS versions and ciphersuites, (ii) correctly per-

form certificate validation while using a generally trusted set of root

certificates, and (iii) adopt new features as the protocol evolves over

time (e.g., modern ciphersuites). There are several challenges that

prevent the use of existing methodologies to study these aspects

of IoT devices. First, understanding TLS support on a significant

number of IoT devices requires blackbox testing techniques; this is

because source code is generally unavailable and firmware analy-

sis is not scalable. Second, most IoT devices provide limited ways

to trigger TLS traffic for measurementÐthe timing, destination,

and contents of their communication are all dependent on device

functionality and interactions. Third, existing vantage points offer

limited opportunities to track device behavior over time (e.g., re-

cent work considers only manufacturer-level device tracking using

ISP/IXP data [53]).

In this work, we address these challenges to study a large num-

ber of TLS-enabled consumer IoT devices (with over 200 million

units sold collectively). First, we shed light on the security of TLS

implementations and configurations in these devices using existing

and novel active measurement techniques that require only TLS

traffic interception. Second, based on the insight that devices gen-

erate significant network traffic when powered on, we automate

device reboots using smart plugs to trigger TLS activity for our

experiments. And third, we analyze ≈2 years of network traffic

from these devices via uncontrolled experiments to study how their

TLS usage changes over time. Altogether, we conduct active experi-

ments on 32 devices, and collect passive data from 40 devices, each

generating TLS traffic for at least 6 months.

Our main goals are to evaluate the security of TLS connections

established by IoT devices, how this changes over time, and whether

they correctly validate certificates. More specifically, we study how

devices’ TLS implementations are configured with respect to TLS

versions and ciphersuites supported, and provide the first longitu-

dinal analysis of how these properties change over time, as the TLS

165

IMC ’21, November 2–4, 2021, Virtual Event, USA Paracha, et al.

protocol and attacks against it evolve. We further check whether

the devices properly validate certificates to protect against the TLS

interception attacks, extending prior work by including a more com-

prehensive set of invalid certificates in our tests. We develop a novel

active testing strategy to reveal the trusted set of root certificates

on a device. These certificates form the łtrusted rootž of all security

guarantees provided by the TLS protocol and auditing them is par-

ticularly important given the recent rise in supply-chain attacks by

powerful adversaries [23, 54]. While prior works have studied root

stores in open platforms (e.g., operating systems and browsers), to

the best of our knowledge we are the first to investigate the validity

of root certificates used in IoT devices.

Our main research findings are listed below:

• The vast majority of devices establish connections using TLS

1.2 with secure ciphersuites, but rarely adopt TLS 1.3 or stop ad-

vertising insecure ciphersuites (DES, 3DES, RC4, EXPORT) over

time. Surprisingly, devices that do support the latest TLS versions

and strongest ciphersuites often encounter lack of server support.

In addition, 7 devices downgrade to deprecated protocol versions

or old ciphersuites in the face of an active on-path attacker.

• 11 devices are vulnerable to TLS interception attacksÐthey either

bypass certificate validation altogether or do not validate host-

names. Moreover, TLS connections from 7 vulnerable devices

contained sensitive data that can be exposed to attackers. We

responsibly disclosed these vulnerabilities to device vendors, and

at the time of writing one vendor confirmed that the issue was

fixed in response to our disclosure.

• At least 8 devices contain unexpired-yet-deprecated root certifi-

cates in their trusted root stores. Moreover, all of these devices

trusted at least one CA that has been explicitly distrusted by

popular browsers due to misbehavior (e.g, WoSign, TurkTrust,

Certinomis, CNNIC). In one device, CAs that were deprecated as

early as 2013 were present.

• TLS fingerprints from these devices reveal that multiple devices

likely use the same (often vulnerable) TLS library, and individ-

ual devices likely include multiple TLS libraries. For the former,

shared libraries mean that attackers can use knowledge of the

fingerprints and associated vulnerabilities to scale their attacks

to large numbers of devices. For the latter, multiple TLS libraries

hint at more opportunities for supply chain attacks (if different

implementations come from different vendors) and make TLS

security more challenging to maintain.

To ensure reproducibility and enable new research, we have

made all of our longitudinal TLS handshake data, controlled ex-

perimentation data and analysis software publicly available at:

https://github.com/NEU-SNS/IoTLS.

2 BACKGROUND

Transport Layer Security (TLS) is the de facto, IETF-standard, In-

ternet security protocol to provide confidentiality, integrity, and

authenticity of network communications. Since Netscape started

work on the TLS predecessor, Secure Sockets Layer (SSL), ≈25 years

ago, the protocol has undergone rigorous development featuring

various standardization efforts and releasesÐSSL 2.0 (1995), SSL

3.0 (1996), TLS 1.0 (1999), TLS 1.1 (2006), TLS 1.2 (2008) and TLS

1.3 (2018). This section provides relevant background information

about TLS.

Root Stores TLS generally uses digital certificates that bind host

identities with cryptographic material. These certificates are issued

by Certificate Authorities (CAs) and can be łrevokedž if they get

compromised. Server authentication is the most common TLS usage

where clients store relevant information about one or more trusted

CAs root certificates and require that servers present valid certifi-

cates from one of them to authenticate themselves. These certifi-

cates form a trusted set of łrootž store certificates deployed on end

systems; if the private key for any of these trusted root certificates

is compromised, the attacker can circumvent security guarantees

of all TLS connections by a client.1 Currently, web browsers and

operating systems ship with dozens of root certificates in their root

stores to enable TLS communication with a wide range of servers.

Due to the crucial importance of root certificates, these platforms

actively maintain their root stores to remove any certificates from

CAs that violate CA guidelines or get compromised.

Secure connection establishment A TLS łhandshakež is the

set of messages that establishes a secure session between two end

hosts. The process is initiated by a client to advertise its supported

protocol versions, ciphersuites (i.e., cryptographic algorithms), and

extensions (i.e., other advanced features). In response, a TLS server

decides the protocol version and ciphersuite to use based on its

compatibility. During the handshake, the client and server can

authenticate each other and compute cryptographic keys to be used

for confidentiality and integrity of the future communication. The

authentication typically involves validating the received certificate

chain. Any data sent after a successful handshake is encrypted.2

TLS Alert Messages can be sent at any point to notify the other

party of any errors (e.g., incompatible protocol version, signature

verification failure during certificate validation) or to simply close

the connection.

A TLS ClientHello can be used to infer the software responsible

for generating that connection. That is because clients and libraries

vary in the protocol versions, ciphersuites, extensions, and other

features they support. A TLS łfingerprintž is a permutation of these

features obtained fromClientHellos of a known application to enable

its detection in passively monitored TLS traffic from unknown

sources [38, 54]. We define a TLS instance as TLS implementation

(e.g., software library) and configuration (e.g., selected ciphersuites

and extensions) that collectively produce a given TLS fingerprint.

Ciphersuites Ciphersuites have also evolved over time. Depre-

cated ones need to be avoided for secure connection establishment.

More specifically, any usage of ciphersuites involving (DES, 3DES,

RC4 and EXPORT) demands for łimmediatež remediation [5, 21]

because of their vulnerability to attacks including, but not lim-

ited to, Biased Keystreams (2013) [25], FREAK (2015) [28], Logjam

(2015) [24], and Sweet32 (2016) [29]. Further, ClientHellos using

(NULL or ANON) ciphersuites do not offer authentication or en-

cryption and, as such, can only be used for specific (insecure) use

cases. Finally, modern ciphersuites involving (DHE or ECDHE) offer

perfect forward secrecy (i.e., protection of data communicated in

1Except for applications that use strategies such as key pinning.
2Assuming the NULL ciphersuite is not selected.

166

IoTLS: Understanding TLS Usage in Consumer IoT Devices IMC ’21, November 2–4, 2021, Virtual Event, USA

Table 1: List of the 40 TLS-supporting devices in our study. (*) denotes devices used only in passive experiments.

Cameras (n = 7) Smart Hubs (n = 7) Home Automation (n = 7) TV (n = 5) Audio (n = 7) Appliances (n = 7)

Blink Camera*
Amazon Cloudcam*
Zmodo Doorbell
Yi Camera
D-Link Camera
Amcrest Camera
Ring Doorbell*

Blink Hub
Smartthings Hub
Philips Hub
Wink Hub 2
Sengled Hub*
Switchbot Hub
Insteon Hub*

Smartlife Bulb
Smartlife Remote
Meross Dooropener
TP-Link Bulb
Nest Thermostat
TP-Link Plug
Wemo Plug

Fire TV
Samsung TV*
LG TV
Roku TV
Apple TV

Google Home Mini
Amazon Echo Plus
Amazon Echo Dot
Amazon Echo Dot 3
Amazon Echo Spot
Harman Invoke
Apple HomePod

GE Microwave
Samsung Washer*
Samsung Dryer
Samsung Fridge
Smarter iKettle
Behmor Brewer
LG Dishwasher*

the past despite a future compromise of secret keys) and therefore

should be adopted.

Vulnerabilities and attacks By 2020, major browsers had dep-

recated all TLS versions below 1.2 due to serious security flaws [3].

Yet, some TLS clients voluntarily downgrade connection security

upon handshake failure to improve compatibility with older servers.

The POODLE (2014) [46] attack exploited the behavior of major

web browsers and other clients to fallback to SSL 3.0 (known to be

insecure) and highlighted the risks of any fallback behavior. On the

other hand, the TLS interception class of attacks typically refer to

weaknesses in handshake validation that are exploited by on-path

attackers. These attacks are particularly severe as they allow secret

eavesdropping of all TLS communication sent between a client and

server on a compromised connection.

3 GOALS & ASSUMPTIONS

Our goals are to answer three research questions (RQs):

RQ1: Do devices securely establish TLS connections? Se-

curely establishing TLS connections means that devices use secure

TLS versions and ciphersuites. In this paper, we consider whether

devices are resilient to in-network adversaries (e.g., a network

provider) that have the ability to capture and manipulate TLS traffic

between an IoT device and the destinations it contacts. We focus

on device support for the latest, secure protocol versions, modern

ciphersuites, and negotiated TLS configurations between IoT clients

and their destinations. We use ≈2 years of passively collected longi-

tudinal IoT traffic to determine whether devices adopt new features

and abandon deprecated ones.

RQ2: Do devices properly validate TLS certificates? In this

paper, we focus on evaluating whether devices accept connections

with invalid certificates, and understanding whether their root

stores contain deprecated and/or distrusted root certificates. Specif-

ically, we focus on validation of the server certificate chain, host-

name and various X.509 extensions specified in RFC 2818 [18] and

RFC 5280 [19]. In addition, we evaluate the configured set of trusted

root certificates to determine whether devices protect against dis-

trusted and/or stale root certificates.

RQ3: What is the diversity of behaviors within and across

devices? The effectiveness of a single attack vector is limited to the

set of devices that share the same vulnerability. To understand the

breadth of the impact of potential attacks, we investigate howmany

devices exhibit the same TLS behavior and, potentially, the same

security issues. We further investigate whether individual devices

exhibit different TLS behavior for different connectionsÐindicative

of multiple TLS instances on the same device.

To answer these questions, instead of modeling IoT devices as

monolithic implementations, we treat them as complex devices

that can integrate third-party components and even allow users to

install third-party software as in the case of Smart TV platforms.

These cases can lead to additional risk of vulnerabilities due to the

need to maintain the security of these multiple TLS deployments

and development errors, both at the OS level and across third-party

developers.

Assumptions For this study, we assume that when a device

uses TLS, the corresponding traffic must be safeguarded to provide

authenticity, confidentiality and integrity. Note that we cannot in

general knowwhether the content of any specific TLS connection is

sensitive (e.g., contains personal data). When such connections are

used to transmit sensitive content such as users’ personal data or

a manufacturer’s confidential machine-learning models, there is a

clear need to protect it against attackers. While some TLS endpoints

may be public services that exchange non-sensitive data, we cannot

a priori distinguish such entities, and thus treat all endpoints that

use TLS as potentially sensitive.

4 METHODOLOGY

This section provides an overview of our methodology, analyses,

and how they relate to the research questions.

4.1 Testbed

IoT Devices We study 40 TLS-supporting IoT devices across

6 categories; Cameras, Smart Hubs, Home Automation, TV, Audio

and Other Appliances (Table 1). The testbed is configured to rep-

resent a smart home with a wide range of consumer IoT devices

connected to the Internet. All devices are located in an isolated

space designed to resemble a studio apartment. To interact with

devices that support companion apps, we installed and used these

apps on smartphones connected to the same network. Network

traffic collection is performed at a gateway that provides network

access only to our IoT testbed.

We use a software/firmware update discipline that we assume

to be typical of an IoT home scenario. Specifically, devices that

receive automatic updates are updated at whatever cadence the

manufacturer specifies. For devices that require manual interven-

tion for updates, we accepted the updates when explicitly asked by

the companion apps of devices. Note that we accept these updated

in an ad-hoc manner, and as such, these devices are not regularly

updated. We decided to use this approach because (a) we expect

many users to also use these devices in a similar way, and (b) getting

all devices to update at a regular interval could not be automated.

167

IMC ’21, November 2–4, 2021, Virtual Event, USA Paracha, et al.

Experimental Setup and Dataset Our study uses a combina-

tion of passive and active experiments. The key difference between

the two experiment types is that active experiments involve the us-

age ofmitmproxy [10] to intercept traffic while passive experiments

do not. Both experiments need some form of interaction with the

IoT devices for generating network activity.

In passive experiments we simply record the network traffic

generated by devices. This includes data while devices are not in use,

and also from interactions with ≈40 consenting study participants

enrolled in our IRB-approved study. These participants are members

of our academic institution, and are directed simply to use these

devices as they please. The passive dataset covers ≈2 years of traffic

from January 2018 to March 2020. Among the 40 devices in passive

experiments, every device generated traffic for at least 6 months,

while 32 devices did so for more than 12 months. Passive data allows

us to observe the real-world behavior of the devices (a) when they

are connected to the network without user interactions, and (b)

when users interact with them.

In active experiments, we intercept the traffic from our devices

by impersonating the server-side of TLS connections. To induce

the devices to generate TLS traffic for interception, we leverage

the observation that IoT devices generate significant traffic when

powered on [52]. Thus we programmatically use TP-Link power

plugs to turn devices off and back on again, causing them to boot

and potentially establish TLS connections. All 32 devices in active

experiments generated at least one TLS connection. The bulk of

our experiments were performed in March 2021.

Some devices broke, lost manufacturer support or would lose

WiFi connectivity until reconfigured again. As a result, such devices

did not generate traffic continuously throughout the entirety of

our passive experimentation period, and were omitted from the

active experiments (resulting in the discrepancy between number

of devices in active vs passive experiments).

In total, we gathered ≈17M TLS connections (per device average:

≈422K, median: ≈138K connections). Note that our active experi-

ments comprise controlled, repeatable experiments that are con-

ducted without study participants present and represent a snapshot

in time (at least 3 minutes after a device reboot). Passive experi-

ments are uncontrolled and they may include participant interac-

tions, thus they enable us to study longitudinal insights across a

variety of connections.

4.2 Instrumentation

We use the following instrumentation to gather data for analysis.

TLS handshake analysis (RQ1 and RQ3) To determine

whether devices establish secure TLS connections, we extract infor-

mation about TLS versions and ciphers advertised by clients and

selected by servers. We further parse the ClientHellos to extract

client fingerprints, and use this information to explore the diversity

of observed TLS instances.

TLS interception attacks (RQ2) We investigate whether de-

vices are susceptible to several active on-path attacks that an adver-

sary can use to compromise TLS connections (Table 2). We picked

these attacks because they do not require significant resources (e.g.,

compromising a root CA, or breaking a cipher using cryptanal-

ysis). They are related to proper certificate chain validation and

Table 2: Overview of the TLS interception attacks.

Attack Description

NoValidation Use a self-signed certificate to check whether a device per-
forms any certificate validation.

WrongHostname Use an unexpired legitimate certificate for a domain under
our control to check whether a device performs hostname
validation. We send the full chain linking to a trusted root
authority during handshake.

InvalidBasicConstraints Use certificate from the previous attack as a root CA to check
whether a device validates BasicConstraints extension. We
send the full chain linking to a trusted root authority during
handshake.

Table 3: Sources for obtaining historical data for CA root

certificates trusted by various platforms.

Platform
Total

versions
Earliest

version year
Comments

Ubuntu 9 2012 We install the ca-certificates pack-
age and fetch the /etc/ssl/certs/ca-
certificates.crt file from official Docker
images.

Android 10 2010 We use version-tagged commits for ei-
ther /platform /system/ca-certificates or
luni/src /main/files/cacerts [15, 16].

Mozilla 47 2013 We extract different file versions
from commit history for NSS’s secu-
rity/nss/lib/ckfw/builtins/certdata.txt
[12].

Microsoft 15 2017 We use the historical information pub-
lished by Microsoft about its trusted
root store certificates [9].

Table 4: Testing our technique for exploring root stores in

various TLS libraries. Only two were found to be amenable

(shown in italics).

Library Response for known CA with
invalid signature

Response for unknown
CA

MbedTLS (v2.21.0) Bad Certificate Unknown CA

OpenSSL (v1.1.1i) Decrypt Error Unknown CA

Oracle Java (v1.8.0) Certificate Unknown Certificate Unknown

WolfSSL (v4.1.0) Bad Certificate Bad Certificate

GNU TLS (v3.6.15) No Alert No Alert

Secure Transport

(macOS v11.3) No Alert No Alert

have previously been found effective against a wide variety of non-

browser TLS clients [39], so we extend these to IoT devices. We use

mitmproxy [10] for performing these attacks.

Note that a potential limitation of our study is that attempts to

test vulnerabilities (e.g., using self-signed certificates) will lead to

connection errors, and those in turn may cause a device (or some of

its functionality) to cease to work, thus suppressing further network

connections. To test the potential impact of this issue, we restart de-

vices and repeat all the above attacks with TrafficPassthroughwhere

we do not intercept any connections that previously failed when

under attack [11]. Encouragingly, we find that TrafficPassthrough

experiments did not lead to finding any new certificate validation

failures, even though they produced ≈20.4% more connections (av-

erage, in terms of new DNS or TLS hostnames) from these devices.

We speculate that these additional connections might be based

168

IoTLS: Understanding TLS Usage in Consumer IoT Devices IMC ’21, November 2–4, 2021, Virtual Event, USA

Table 5: IoT devices that downgrade security upon connection failures (✓ indicates downgrade).

Device
Failed

Handshake
Incomplete
Handshake

Behavior
Downgraded

/ Total Destinations

Amazon Echo Dot ✗ ✓ Falls back to using SSL 3.0 7 / 9

Amazon Echo Plus ✗ ✓ Falls back to using SSL 3.0 6 / 7

Amazon Echo Spot ✗ ✓ Falls back to using SSL 3.0 11 / 15

Amazon Fire TV ✗ ✓ Falls back to using SSL 3.0 13 / 21

Apple Homepod ✗ ✓ Falls back to using TLS 1.0 7 / 9

Google Home Mini ✗ ✓ Falls back to supporting a weaker ciphersuite and signature algorithm
(TLS_RSA_WITH_3DES_EDE_CBC_SHA and RSA_PKCS1_SHA1)

5 / 5

Roku TV ✓ ✓ Falls back from offering 73 ciphersuites to just 1 (TLS_RSA_WITH_RC4_128_SHA) 8 / 15

Table 6: IoT devices that support older TLS versions.

Device TLS 1.0 Available? TLS 1.1 Available?

Zmodo Doorbell ✓ ✓

Wink Hub 2 ✓ ✓

Yi Camera ✓ ✓

Philips Hub ✓ ✓

Smarter Brewer ✓ ✓

TP-Link Bulb ✓ ✓

Roku TV ✓ ✓

Meross Dooropener ✓ ✓

LG TV ✓ ✓

Google Home Mini ✓ ✓

Amazon Fire TV ✓ ✓

Amazon Echo Spot ✓ ✓

Amazon Echo Plus ✓ ✓

Amazon Echo Dot ✓ ✓

Amcrest Camera ✓ ✓

Samsung Fridge ✗ ✓

Samsung Dryer ✗ ✓

Wemo Plug ✓ ✗

on success responses from some earlier connections (e.g., a login

request) and, as such, only appear in TrafficPassthrough tests.

Root stores analysis (RQ2) We present a novel technique to

detect if a Certificate Authority (CA) root certificate is in the trusted

root store of an IoT device. Our key insight is that the TLS protocol

specifies different steps for clients when validating a certificate

with an unknown issuer compared to a certificate with known issuer

but invalid signatureÐopening a side channel to infer the presence

of trusted root certificates in a client’s root store. In this work, we

exploit this side channel using TLS Alert Messages.

We first use a self-signed root certificate with arbitrary Subject

Name to intercept a TLS connection originating from the device.

The device should fail to establish the connection if it is doing

proper certificate validation because our CA certificate is not in

its root store. We then intercept the same TLS connection using

a spoofed CA certificate, i.e., a self-signed root certificate with its

Subject Name, Issuer Name and Serial Number matching that of a

legitimate root certificate being tested. The client should reject this

certificate due to a signature validation error: while the subject

name, issuer name, and serial number all match a trusted root

certificate, we do not have the root CA’s private key to generate a

valid signature for the leaf certificate in chain. Thus our interception

attempt fails in both cases, but the failure could either be due to the

client not recognizing the arbitrary Subject Name in its root store,

or because it does recognize a Subject Name that is in its root store

but the leaf certificate has an invalid signature. If we are able to

observe this difference in device behavior, we can infer whether a

given CA certificate is trusted by the device or not.

We found that the TLS specification provides a mechanism to

observe this difference in behavior: per RFC 5246 (TLS 1.2) or RFC

8446 (TLS 1.3), a TLS client may choose to send a TLS Alert Message

during a connection failure. More specifically, clients can choose to

send unknown_ca alert to indicate that a trusted CA root certificate

could not be found when forming the chain and decrypt_error

alert to indicate for a signature check failure. For this work, we con-

sider a device amenable to our technique of root store exploration

if it sends different alerts based on the type of experiment run.

To realize this experiment, we use the approach from TLS inter-

ception attacks to boot devices, intercept their TLS connections,

and respond with self-signed certificates as described previously.

We then record any TLS Alert Messages that appear. It is crucial that

a connection from the same TLS instance is triggered from a device

every time a root CA is investigated. Otherwise, we cannot know if

our exploration is targeted towards one root store or multiple root

stores on the same device. For our experiments, our expectation

is that devices will follow the same procedure every time they are

rebooted.

To obtain a set of CA certificates to spoof, we gathered historical

data for CA certificates trusted by various platforms through the

sources described in Table 3. We use this data to make two distinct

set of certificates:

(1) Common CA certificates: we use the latest version of the root

store for each platform and extract currently unexpired certifi-

cates common to all of them.

(2) Deprecated CA certificates: we start with the earliest version

of the root store for each platform, and extract all certificates

removed from the successor version(s) of the store, but that

are currently unexpired. We exclude any certificate if it was

once removed but is still present in the latest version of the root

store.

Common CA certificates represent the ones trusted by all major

(non-IoT) platforms, and thus can be considered likely trustworthy.

Deprecated CA certificates represent cases where root certificates

are retired before expiration, or in some cases explicitly distrusted

(e.g., due to noncompliance with CA guidelines), and thus their

trustworthiness is (more) questionable. Note that our approach

cannot in general reveal all certificates in the root store; rather,

it can reveal only those included in our testing set. As such, our

analysis may omit non-public root, such as those in private PKIs.

169

IMC ’21, November 2–4, 2021, Virtual Event, USA Paracha, et al.

versions older than 1.2. We note that despite the large number of

these devices, TLS 1.2 was the most common protocol seen in estab-

lished connections from passive data. As such, the finding highlights

that completely protecting against active attackers requires devices

to not only advertise TLS 1.2, but also completely disable support

for older TLS versions.

Ciphersuites Similar to the protocol version, the selection of a

connection’s ciphersuite also happens during a connection hand-

shake and depends on client and server compatibility. For a con-

nection to follow best security practices, strong ciphersuites that

offer forward-secrecy (DHE, ECDHE) should be chosen, while those

that are either insecure (RC4, DES, 3DES, EXPORT) or do not offer

encryption or authentication (ANON, NULL) must be avoided. To

study the prevalence and client/server support for these cipher-

suites, we plot heatmaps for the advertised and established cipher-

suites over time. Each row represents a device, where each cell

is the fraction of connections that are insecure (Fig. 2) or strong

(Fig. 3) for a given month of the study. As before, gray cells indicate

months where there was no TLS traffic from the device. We make

the following observations:

Devices never support (ANON, NULL) ciphersuites. We did not

observe any TLS connection advertised or established using these.

Devices support weaker ciphersuites than the servers they talk to.

34 devices advertised insecure ciphersuites (Figure 2) but only 2

ever established connections using those (Wink Hub 2 and LG TV).

In contrast to support for TLS versions, the devices in our study

generally offered to use weaker security than what servers chose

to establish.

Devices tend to have better support for perfect forward secrecy than the

servers they connect to. 33 devices advertise support for forward

secrecy, but a large majority of devices (22) establish most of their

connections without it (Fig. 3).

Devices rarely improve usage of ciphersuites over time. Only 2

devices (Blink Security Hub ś 5/2019, SmartThings Hub ś 3/2020)

stopped advertising/using weak ciphers during our two-year study

(Fig. 2), while 5 (Apple HomePod ś 1/2020, Ring Doorbell ś 4/2018, Ap-

ple TV ś 3/2019, Wink Hub & Blink Security Hub ś 10/2019) adopted

perfect forward secrecy (Fig. 3). Surprisingly, Apple TV (10/2018)

appeared to increase support for weak ciphers over time.

Devices show varying support for ciphersuites during multiple months.

Many devices support insecure ciphersuites in a fraction of their

connections as opposed to all or none. Similar to the case with

protocol version, the varying support suggests the presence of

multiple TLS instances in a device.

Comparison with prior work We now compare TLS versions

seen from the IoT devices in our testbeds with those observed

in prior work. Note that prior work [41, 43] looked at all traffic

from a network provider, not only IoT devices. Specifically, when

looking at North American vantage points in November, 2019, a

recent study [41] found that ≈60% of client connections support

TLS 1.3, while our study found only ≈17% of IoT device connections

support TLS 1.3. In April, 2018, Kotzias et al. [43] found that ≈10%

connections advertise RC4 ciphersuite support while we find ≈60%

of connections do. Relative to other sources of Internet traffic such

Table 7: IoT devices vulnerable to TLS interception attacks.

(✓ indicates vulnerability).

Device
No-

Validation
InvalidBasic-
Constraints

Wrong-
Hostname

Vulnerable/Total
Destinations

Zmodo Doorbell ✓ ✓ ✓ 6 / 6

Amcrest Camera ✓ ✓ ✓ 2 / 2

Smarter Brewer ✓ ✓ ✓ 1 / 1

Yi Camera ✓ ✓ ✓ 1 / 1

Wink Hub 2 ✓ ✓ ✓ 1 / 2

LG TV ✓ ✓ ✓ 1 / 2

Smartthings Hub ✓ ✓ ✓ 1 / 3

Amazon Echo Plus ✗ ✗ ✓ 1 / 8

Amazon Echo Dot ✗ ✗ ✓ 1 / 9

Amazon Echo Spot ✗ ✗ ✓ 1 / 17

Amazon Fire TV ✗ ✗ ✓ 1 / 21

Table 8: Summary of support for different certificate revo-

cation methods among IoT devices.

Method Devices (Count)

Certificate Revocation
Lists (CRLs)

Samsung TV (1)

Online Certificate Status
Protocol (OCSP)

Samsung TV, Apple TV, Apple Home Pod (3)

OCSP Stapling Fire TV, Samsung TV, Echo Spot, Apple Home Pod, Apple TV,
Harman Invoke, Echo Dot, Wink Hub 2, Google Home Mini, LG

TV, Samsung Fridge, Smartthings Hub (12)

as browsers, IoT devices and their online infrastructure are slow to

adopt modern protocol features and to deprecate insecure ones.

Takeaways Our longitudinal study revealed good and bad news

about TLS usage in IoT devices. On the positive side, the IoT devices

in our study often rely on TLS1.2 or above, do not support (NULL,

ANON) ciphersuites and often support better protocol versions

than the servers they connect to. On the negative side, many of

the devices in our study do not use the latest protocol version, still

support some weak ciphersuites, and tend to not upgrade to modern

protocol features over time. Our findings suggest that althoughmost

IoT devices establish reasonably secure TLS connections, device

manufacturers can improve when it comes to maintaining updated

TLS libraries and configurations over time. This will help to reduce

their exposure to attacks over time.

5.2 Certificate validation

In this section, we use active experiments to evaluate how well IoT

devices validate TLS certificates for the connections they establish.

It is important to note that failure to properly validate certificates

makes devices susceptible to interception attacks, where the at-

tacker can recover the plaintext content of encrypted connections.

To understand the correctness of certificate validation, we test three

aspects. First, we identify whether devices are susceptible to inter-

ception attacks via the techniques presented in Table 2. Second, we

determine whether devices conduct certificate revocation checking.

Last, we evaluate our novel probing strategy to reveal the set of

trusted root CAs and determine whether devices continue to trust

unexpired root certificates that have been deprecated, particularly

focusing on distrusted certificates.

172

IoTLS: Understanding TLS Usage in Consumer IoT Devices IMC ’21, November 2–4, 2021, Virtual Event, USA

To better understand the nature of shared TLS instances, we

produced a graph of devices and applications with the same finger-

prints. There are three types of nodes in the graph: devices (from

our study) and applications (from Kotzias et al.[43]) that generate

TLS fingerprints, and the set of unique fingerprints that are shared

among them. Edges between a device/application and fingerprint

indicate that we observed a device or application using that finger-

print. Figure 5 visualizes this graph. In the figure, the thicker edges

correspond to the most-used fingerprint (and likely, the most-used

TLS instance) for each device. Note that the graph includes an edge

only if the TLS fingerprint it connects to is shared with at least one

other node, i.e., all non-shared fingerprints and edges are removed

from the figure to improve readability. Dashed edges represent a

fingerprint shared with a labeled application from Kotzias et al.[43],

and thus they do not represent observed traffic in our study.

Our first observation is that devices and applications from the

same manufacturer share fingerprintsÐthis can be observed with

labeled clusters (e.g., Amazon, Microsoft, and Apple). It is not sur-

prising that these devices are likely using the same TLS instances,

but it nonetheless could be good news for maintaining security

because it indicates that the manufacturer likely needs to maintain

one set of TLS instances across devices. These shared instances also

suggest that many of our findings apply to other devices belonging

to the same manufacturers that are not in our testbed.

Our next observation is about devices that share fingerprints

with applications in the fingerprint database. For example, the dom-

inant fingerprint from Amazon Fire TV is the same as one from

android-sdk, and we verified that the device runs a fork of Android

OS [6]. Similarly, six devices exhibit the same TLS fingerprints as

the OpenSSL library, likely indicating that OpenSSL is used on those

devices. This helps to explain why our technique for root stores ex-

ploration worked for Invoke, LG TV, and Wink Hub 2: despite being

produced by different manufacturers, they all share fingerprints

with OpenSSLÐone of the two libraries we found amenable to the

root stores exploration technique.

While we pointed out above that shared TLS instances can be

good in the sense that they are easier to maintain, sharing can also

be a double-edged sword. Specifically, a security vulnerability in one

TLS instances can immediately impact large numbers of devices. For

example, in the TLS certificate validation analysis, we found that

Amazon devices fall back to TLS 1.0 during a downgrade attack. The

TLS fingerprinting analysis shows that this is likely because they

share the same vulnerable implementation. (Interestingly, the Echo

Dot 3 is the only Amazon device in our testbed not susceptible to the

downgrade attack, and its fingerprints have smaller overlap with

those from other Amazon devices.) Importantly, our observations

hint at a way for an attacker to scale attacks by identifying and

exploiting vulnerable TLS implementations that are shared among

multiple devices.

Takeaways IoT devices show similarity of TLS fingerprints with

(i) other devices from the same manufacturer (e.g., all Amazon de-

vices), and (ii) various TLS clients (e.g., LG TV and Wink Hub 2

with OpenSSL)Ðsuggesting that our findings apply to many more

devices not tested in our experiments, and that security vulnerabil-

ities found in one instance can affect large numbers of devices. We

also found that multiple TLS instances are deployed in the same

device in many cases, potentially making it difficult to maintain

TLS security over time.

6 DISCUSSION

Recommendations Client support for TLS security has been an

underexplored area in recent research. Our findings, however, paint

a complex picture of connection security and certificate validation

in connections from IoT devices. For instance, some devices support

the latest secure TLS features but still negotiate weak connections

due to lack of server support. Similarly, some devices fail to validate

certificates, but only for some connections. Device root stores are

infrequently updated (if at all), and several devices likely include

multiple TLS instances.

The user risks due to insecure/incorrect TLS implementations in

their IoT devices are similar to the risks for any other systems using

TLS, such as web browsers and other apps. For example, MITM

attacks may be carried out not only by any on-path attackers (e.g.,

a malicious router), but by other devices on the same user network

as well, such as a malicious IoT device using ARP spoofing. If the

attack is successful, it can expose potentially sensitive user data,

such as microphone data from a smart speaker or login credentials.

To mitigate this, our key recommendation to consumer IoT de-

vice manufacturers is to audit, upgrade and maintain their devices’

TLS instances in a consistent and uniform way that safeguards all

of their network traffic. One way to do this is to provide TLS as

an operating system service (i.e., POSIX socket call) as proposed

by O’Neill et al. [48]. Multiple components within a device, and

multiple devices in the IoT ecosystem can then use the service to

enable TLS in a consistent way. In a similar vein, we encourage

industry groups like the IoxT alliance [8] to incorporate TLS secu-

rity standards into their guidelines for manufacturers to follow, as

well as verification tests. In fact, the IoxT alliance can also join the

CA/Browser Forum consortium [4] to adopt the same standards as

web browsers when it comes to trust in root certificates.

IoT devices can also rely on certificate pinning, a technique to

mandate the use of particular certificates in the chain sent by a

server, to mitigate some of the vulnerabilities found in our study.

More specifically, the interception attacks we presented (Table

7) could have been prevented with the proper use of certificate

pinning. But it is important to highlight that certificate pinning

is not a panaceaÐpinning can help only in cases of compromised

root stores if the leaf certificate is pinned (rather than the root).

Further, certificate validation checks are necessary even if pinning

is implemented. Otherwise, devices might appear secure but will

remain susceptible to sophisticated MITM attacks (e.g., [40]).

An internal or third-party auditing service can also help IoT ven-

dors keep their TLS instances up-to-date with the evolving security

recommendations. IoT devices can be configured to create TLS con-

nections to the auditing service at regular intervals (e.g., once every

reboot). The service can then audit the security of the connections

(e.g., ciphersuites offered by the device during handshake). As new

attacks are discovered, the service can contact manufacturers to

alert them about new vulnerabilities and mitigations.

Another possible mitigation strategy that IoT users can use is to

interpose a trusted network component between their IoT devices

and the Internet, similar to the one proposed by Hesselman et al.

175

IMC ’21, November 2–4, 2021, Virtual Event, USA Paracha, et al.

[40], to verify that TLS connections are being securely established.

If such verification fails, the component pauses the connection and

reports the issue to the user, which is left with the choice whether

to allow the insecure TLS connection or not, as it happens for web

browsers.

Limitations Our study had several limitations. First, we chose

a limited number of devices to make the scope of our experiments

practical. As such, our results are biased by the selection of (a) pop-

ular consumer devices, and (b) multiple devices from the same man-

ufacturer. Second, our choice of TLS interception attacks reflected

the ones that are easily exploitable by an in-network adversary.

Other sophisticated attacks that use cryptanalysis on a sufficiently

large amount of network traffic (e.g., POODLE, SWEET32) are diffi-

cult to mount (e.g., need JavaScript injection to repeatedly trigger

requests) but could nonetheless compromise TLS security in some

IoT devices. Third, the coverage of our analyses could be improved

by (i) relying on techniques from other works to automate device

interactions (e.g., using smartphones [45], reverse-engineering ex-

posed APIs [55]), and (ii) inspecting source-code when possible

(e.g., firmware extraction from memory, rooting Android-based

devices, crawling third-party marketplaces).

Unfortunately, all these techniques require device-specific efforts

and do not generally scale well to other devices. Finally, our tech-

nique to explore root stores does not generalize for all devices. One

reason is that some implementations choose to not send any TLS

alerts over connection failures. Moreover, unlike TLS 1.2, which

mandated the usage of łappropriatež alerts on encountering fatal

errors, TLS 1.3 made it optional. This motivates the need to search

for better techniques to exploit the side-channel and explore root

stores in more IoT devices.

Responsible disclosure We contacted manufacturers of the

11 IoT devices to responsibly disclose our successful interception

attacks (Table 7). Unlike other devices that showed weaknesses due

to stale root stores or compatibility with older protocol versions

and weaker ciphersuites, these devices had vulnerabilities severe

enough that we were able to actively exploit them and extract

decrypted TLS communications from their first-party connections.

Unfortunately, one vendor categorized the issue as łSSL/TLS best

practicesž and as such out-of-scope for their vulnerability disclosure

program; two other vendors believed the issue to not be serious as

the information disclosed in compromised TLS connections was not

sensitive; one vendor mistakenly believed that the issue was due to

their choice of using a custom root certificate; and only one vendor

confirmed that the issues were fixed by releasing a firmware update.

We believe these manufacturer responses reveal a wide range of

beliefs about TLS security and how they should be improved. We

conclude that despite some initiative by manufacturers to secure

the devices such as the aforementioned IoxT alliance, there is still

plenty of room for improvement of TLS usage in the IoT ecosystem.

Ethical considerations This study involved human subjects

that participated after completing informed consent materials that

are part of our IRB-approved study. No personal or sensitive data

about individuals is collected as part of this study. The active exper-

iments exploited vulnerabilities only for the devices in our lab, and

we did not use any information gleaned from these experiments to

attack other devices or cloud services.

We anonymized only the manufacturer responses to our disclo-

sures. When making this decision, we balanced risks and benefits

to relevant parties. Namely, we saw no additional risks to con-

sumers with these devices, as our measurement strategy is now

public and anyone can reproduce it for any device. However, we

see potential benefits to naming vendors. First, any vendors that

have not updated devices after the responsible disclosure period

might find new incentives to do so given public knowledge of the

flaws. Second, consumers with devices that are not updated can use

this information to discontinue their use. Further, we believe the

research community can benefit from this information to reproduce

and extend our work, potentially finding other opportunities to

improve IoT security. In this vein, we follow the precedent set by

prior work on IoT device security [26] that also revealed names in

a similar way, and helped us with reproducibility during our exper-

iments. To summarize, the vulnerabilities have been responsibly

disclosed, following community norms, and we believe the bene-

fits of transparency outweigh any additional risks from publicly

naming manufacturers after the responsible disclosure period.

7 RELATEDWORK

IoT/TLS vulnerability detection Alrawi et al.’s SoK [26] is the

closest work to ours regarding the security evaluation of IoT de-

vices. Their work covered 45 devices from four different dimensions;

devices themselves along with their cloud endpoints, communica-

tion channels and mobile apps. Their analysis was not focused on

TLS usage, and despite some overlap, it is different from our work

in the following key ways. First, they explored the server-side se-

curity of TLS connections by establishing connections to devices

or their cloud endpoints; in contrast, we explore the client-side

security by analyzing the TLS connections initiated by devices. Sec-

ond, they used self-signed certificates to assess device validation

of certificates, while our analyses rely on more techniques with

invalid certificates and also explore the CA root certificates trusted

by devices. And third, their analysis represented a snapshot in time

while we use passive data to explore 2-year longitudinal trends of

TLS usage.

Longitudinal TLS measurements There is a significant body

of research on analyzing TLS usage from different vantage points

i.e., passive monitoring of university networks [41ś43], server-side

connection logs [35], active Internet scans [27, 33, 34], browser

telemetry data [37], and Android usage statistics [51]. In this work,

we study longitudinal TLS usage from a vantage point missing in

prior work: traffic from IoT devices in a simulated smart home.

Root store analysis To the best of our knowledge, Fadai et al.

[36] is the only work to have investigated the historical data for

Mozilla’s trusted certificates. They evaluated the trust implications

of root certificates from several platforms in terms of the owner

status (i.e., private entity or governmental organization) and coun-

try of origin. Other works proposed techniques to restrict the set

of root CAs trusted by users based on the insights that (i) CAs

commonly sign a handful of top-level domains [42], (ii) some CAs

have not signed any certificates used by the HTTPS servers [50],

and (iii) unique browsing history enables individualization of the

176

IoTLS: Understanding TLS Usage in Consumer IoT Devices IMC ’21, November 2–4, 2021, Virtual Event, USA

trusted CAs set [30]. Some works have also focused on the user-

trusted certificates present in the wild and that do not belong to

audited root storesÐVallina-Rodriguez et al. [54] explored vendor

and app-specific additions to the official Android root store, and

Durumeric et al. [35] explored the additions due to middleboxes

such as an antivirus software or a corporate proxy. In this work, we

explore the root stores of IoT devices where inspection is difficult

due to their blackbox nature.

TLS Fingerprinting TLS fingerprinting has been used fre-

quently in the past to infer client behaviors ś from detecting mal-

ware [22] to the usage of censorship circumvention tools [38] and

client identification [35, 41, 43, 51]. In this work, we explore how

TLS fingerprinting sheds light on some of our findings in a setting

where a wide variety of IoT devices are available, and network

traffic may originate from multiple clients and networking libraries

within the same device.

8 CONCLUSION

This paper filled an important knowledge gap in our understand-

ing of TLS behavior from consumer IoT devices using more than

two years passive measurements along with active experiments to

reveal TLS vulnerabilities. We find a wide range of security-related

TLS behaviors ranging from good (a large majority of tested de-

vices use TLS 1.2 or higher), to bad (more than half of the devices

advertise deprecated TLS versions or insecure ciphersuites in a

significant fraction of their connections), and critically flawed (11

devices are vulnerable to TLS interception attacks because they

do not properly validate server certificates). Further, we find that

devices are slow to adopt new TLS versions and to secure the set of

supported ciphersuites, and they also rarely remove deprecated and

distrusted CA certificates from their root stores. Finally, we used

TLS fingerprinting to identify cases where individual devices use

multiple distinct TLS instances, and those where different devices

use the same TLS instancesÐeachwith implications for security, e.g.,

shared vulnerabilities that can facilitate attack scaling. We conclude

that TLS clients in IoT devices have much room for improvement,

and we recommend that manufacturers adopt uniformly secure TLS

instances and industry standards [8], and conduct regular auditing

and updating to ensure their devices’ connections remain secure.

To ensure reproducibility and enable new research, we have

made all of our longitudinal TLS handshake data, controlled ex-

perimentation data and analysis software publicly available at:

https://github.com/NEU-SNS/IoTLS.

9 ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Karyn Ben-

son, for their helpful feedback. This research was supported by the

following grants: NSF (BehavIoT CNS-1909020, ProperData SaTC-

1955227), EU’s H2020 Program (TRUST aWARE, Grant Agreement

No. 101021377), Spanish National Grant ODIO (PID2019-111429RB-

C22) and Consumer Reports (Digital Lab Fellowship for Daniel J.

Dubois).

REFERENCES
[1] [n. d.]. 1493822 - Removal of "Visa eCommerce Root" CA from Mozilla Root Pro-

gram. https://bugzilla.mozilla.org/show_bug.cgi?id=1493822. ([n. d.]). (Accessed
on 05/16/2021).

[2] [n. d.]. 1552374 - Remove Certinomis - Root CA. https://bugzilla.mozilla.org/
show_bug.cgi?id=1552374. ([n. d.]). (Accessed on 05/16/2021).

[3] [n. d.]. Apple, Google, Microsoft, and Mozilla come together to
end TLS 1.0 | Ars Technica. https://arstechnica.com/gadgets/2018/10/
browser-vendors-unite-to-end-support-for-20-year-old-tls-1-0/. ([n. d.]). (Ac-
cessed on 05/14/2021).

[4] [n. d.]. CAB Forum | Certification Authorities, Web Browsers, and Interested
Parties Working to Secure the Web. https://cabforum.org/. ([n. d.]). (Accessed
on 09/27/2021).

[5] [n. d.]. ELIMINATING_OBSOLETE_TLS_UOO197443-20.PDF. https:
//media.defense.gov/2021/Jan/05/2002560140/-1/-1/0/ELIMINATING_
OBSOLETE_TLS_UOO197443-20.PDF. ([n. d.]). (Accessed on 05/25/2021).

[6] [n. d.]. Fire OS Overview | Amazon Fire TV. https://developer.amazon.com/docs/
fire-tv/fire-os-overview.html. ([n. d.]). (Accessed on 11/21/2020).

[7] [n. d.]. Google Online Security Blog: Distrusting WoSign and StartCom Certifi-
cates. https://security.googleblog.com/2016/10/distrusting-wosign-and-startcom.
html. ([n. d.]). (Accessed on 05/26/2021).

[8] [n. d.]. ioXt - The Global Standard for IoT Security. https://www.ioxtalliance.org/.
([n. d.]). (Accessed on 05/26/2021).

[9] [n. d.]. Microsoft Trusted Root Certificate Program: Partici-
pants - TechNet Articles - United States (English) - TechNet Wiki.
https://social.technet.microsoft.com/wiki/contents/articles/31634.
microsoft-trusted-root-certificate-program-participants.aspx. ([n. d.]).
(Accessed on 05/19/2021).

[10] [n. d.]. mitmproxy - an interactive HTTPS proxy. https://mitmproxy.org/. ([n.
d.]). (Accessed on 05/26/2021).

[11] [n. d.]. mitmproxy/tls_passthrough.py at main · mitmproxy/mitmproxy.
https://github.com/mitmproxy/mitmproxy/blob/main/examples/contrib/tls_
passthrough.py. ([n. d.]). (Accessed on 05/26/2021).

[12] [n. d.]. mozilla-central: certdata.txt. https://hg.mozilla.org/mozilla-central/file/
tip/security/nss/lib/ckfw/builtins/certdata.txt. ([n. d.]). (Accessed on 05/19/2021).

[13] [n. d.]. net/data/ssl/blocklist - chromium/src - Git at Google. https://chromium.
googlesource.com/chromium/src/+/refs/heads/main/net/data/ssl/blocklist/. ([n.
d.]). (Accessed on 05/26/2021).

[14] [n. d.]. Number of IoT devices 2015-2025 | Statista. https://www.statista.com/
statistics/471264/iot-number-of-connected-devices-worldwide/. ([n. d.]). (Ac-
cessed on 12/02/2020).

[15] [n. d.]. platform/libcore - Git at Google. https://android.googlesource.com/
platform/libcore/. ([n. d.]). (Accessed on 05/19/2021).

[16] [n. d.]. Refs - platform/system/ca-certificates - Git at Google. https://android.
googlesource.com/platform/system/ca-certificates/+refs. ([n. d.]). (Accessed on
05/19/2021).

[17] [n. d.]. Revoking Trust in Two TurkTrust Certificates - Mozilla
Security Blog. https://blog.mozilla.org/security/2013/01/03/
revoking-trust-in-two-turktrust-certficates/. ([n. d.]). (Accessed on 05/16/2021).

[18] [n. d.]. rfc2818. https://datatracker.ietf.org/doc/html/rfc2818. ([n. d.]). (Accessed
on 05/22/2021).

[19] [n. d.]. rfc5280. https://datatracker.ietf.org/doc/html/rfc5280. ([n. d.]). (Accessed
on 05/22/2021).

[20] [n. d.]. This POODLE Bites: Exploiting The SSL 3.0 Fallback. https://www.openssl.
org/~bodo/ssl-poodle.pdf. ([n. d.]). (Accessed on 05/03/2021).

[21] [n. d.]. TLS Cipher String · OWASP Cheat Sheet Series. https:
//web.archive.org/web/20190716105553/https://cheatsheetseries.owasp.org/
cheatsheets/TLS_Cipher_String_Cheat_Sheet.html. ([n. d.]). (Accessed on
05/16/2021).

[22] [n. d.]. TLS Fingerprinting in the Real World - Cisco Blogs. https://blogs.
cisco.com/security/tls-fingerprinting-in-the-real-world. ([n. d.]). (Accessed
on 11/25/2020).

[23] [n. d.]. What You Need To Know About the SolarWinds Supply-
Chain Attack | SANS Institute. https://www.sans.org/blog/
what-you-need-to-know-about-the-solarwinds-supply-chain-attack/. ([n. d.]).
(Accessed on 04/04/2021).

[24] David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. 2015. Imperfect forward secrecy: How Diffie-Hellman
fails in practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security. 5ś17.

[25] Nadhem J AlFardan, Daniel J Bernstein, Kenneth G Paterson, Bertram Poettering,
and Jacob CN Schuldt. 2013. On the Security of RC4 in TLS and WPA. In USENIX
Security Symposium. 173.

[26] Omar Alrawi, Chaz Lever, Manos Antonakakis, and Fabian Monrose. 2019. SoK:
Security Evaluation of Home-Based IoT Deployments. In 2019 IEEE Symposium
on Security and Privacy (SP). 1362ś1380. https://doi.org/10.1109/SP.2019.00013

177

IMC ’21, November 2–4, 2021, Virtual Event, USA Paracha, et al.

[27] Johanna Amann, Oliver Gasser, Quirin Scheitle, Lexi Brent, Georg Carle, and
Ralph Holz. 2017. Mission accomplished? HTTPS security after DigiNotar. In
Proceedings of the 2017 Internet Measurement Conference. 325ś340.

[28] Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. 2015. A messy state of the union: Taming the composite state
machines of TLS. In 2015 IEEE Symposium on Security and Privacy. IEEE, 535ś552.

[29] Karthikeyan Bhargavan and Gaëtan Leurent. 2016. On the practical (in-) security
of 64-bit block ciphers: Collision attacks on HTTP over TLS and OpenVPN. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. 456ś467.

[30] Johannes Braun and Gregor Rynkowski. 2013. The Potential of an Individualized
Set of Trusted CAs: Defending against CA Failures in the Web PKI. In 2013
International Conference on Social Computing. 600ś605. https://doi.org/10.1109/
SocialCom.2013.90

[31] Chad Brubaker, Suman Jana, Baishakhi Ray, Sarfraz Khurshid, and Vitaly
Shmatikov. 2014. Using frankencerts for automated adversarial testing of certifi-
cate validation in SSL/TLS implementations. In 2014 IEEE Symposium on Security
and Privacy. IEEE, 114ś129.

[32] Sze Yiu Chau, Omar Chowdhury, Endadul Hoque, Huangyi Ge, Aniket Kate,
Cristina Nita-Rotaru, and Ninghui Li. 2017. Symcerts: Practical symbolic execu-
tion for exposing noncompliance in X. 509 certificate validation implementations.
In 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 503ś520.

[33] Zakir Durumeric, James Kasten, Michael Bailey, and J Alex Halderman. 2013.
Analysis of the HTTPS certificate ecosystem. In Proceedings of the 2013 conference
on Internet measurement conference. 291ś304.

[34] Zakir Durumeric, Frank Li, James Kasten, Johanna Amann, Jethro Beekman,
Mathias Payer, Nicolas Weaver, David Adrian, Vern Paxson, Michael Bailey,
and J. Alex Halderman. 2014. The Matter of Heartbleed. In Proceedings of the
2014 Conference on Internet Measurement Conference (IMC ’14). Association for
Computing Machinery, New York, NY, USA, 475ś488. https://doi.org/10.1145/
2663716.2663755

[35] Zakir Durumeric, Zane Ma, Drew Springall, Richard Barnes, Nick Sullivan, Elie
Bursztein, Michael Bailey, J Alex Halderman, and Vern Paxson. 2017. The Security
Impact of HTTPS Interception.. In NDSS.

[36] Tariq Fadai, Sebastian Schrittwieser, Peter Kieseberg, and Martin Mulazzani.
2015. Trust me, I’m a Root CA! Analyzing SSL Root CAs in Modern Browsers
and Operating Systems. In 2015 10th International Conference on Availability,
Reliability and Security. IEEE, 174ś179.

[37] Adrienne Porter Felt, Richard Barnes, April King, Chris Palmer, Chris Bentzel,
and Parisa Tabriz. 2017. Measuring HTTPS adoption on the web. In 26th USENIX
Security Symposium (USENIX Security 17). 1323ś1338.

[38] Sergey Frolov and Eric Wustrow. 2019. The use of TLS in Censorship Circum-
vention.. In NDSS.

[39] Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh, and
Vitaly Shmatikov. 2012. The most dangerous code in the world: validating SSL
certificates in non-browser software. In Proceedings of the 2012 ACM conference
on Computer and communications security. 38ś49.

[40] Cristian Hesselman, Jelte Jansen, Marco Davids, and Ricardo de O Schmidt. 2017.
SPIN: a user-centric security extension for in-home networks. Technical Report.
SIDN Labs Technical report SIDN-TR-2017-002.

[41] Ralph Holz, Jens Hiller, Johanna Amann, Abbas Razaghpanah, Thomas Jost,
Narseo Vallina-Rodriguez, and Oliver Hohlfeld. 2020. Tracking the deployment
of TLS 1.3 on the Web: A story of experimentation and centralization. ACM
SIGCOMM Computer Communication Review 50, 3 (2020), 3ś15.

[42] James Kasten, Eric Wustrow, and J Alex Halderman. 2013. CAge: Taming cer-
tificate authorities by inferring restricted scopes. In International Conference on
Financial Cryptography and Data Security. Springer, 329ś337.

[43] Platon Kotzias, Abbas Razaghpanah, Johanna Amann, Kenneth G. Paterson,
Narseo Vallina-Rodriguez, and Juan Caballero. 2018. Coming of Age: A Longi-
tudinal Study of TLS Deployment. In Proceedings of the Internet Measurement
Conference 2018 (IMC ’18). Association for Computing Machinery, New York, NY,
USA, 415ś428. https://doi.org/10.1145/3278532.3278568

[44] Yabing Liu, Will Tome, Liang Zhang, David Choffnes, Dave Levin, Bruce Maggs,
Alan Mislove, Aaron Schulman, and Christo Wilson. 2015. An End-to-End Mea-
surement of Certificate Revocation in the Web’s PKI. In Proceedings of the 2015
Internet Measurement Conference (IMC ’15). Association for Computing Machin-
ery, New York, NY, USA, 183ś196. https://doi.org/10.1145/2815675.2815685

[45] Anna Maria Mandalari, Daniel J. Dubois, Roman Kolcun, Muhammad Talha
Paracha, Hamed Haddadi, and David Choffnes. 2021. Blocking without Breaking:
Identification and Mitigation of Non-Essential IoT Traffic. In Proc. of the Privacy
Enhancing Technologies Symposium (PETS).

[46] Bodo Möller, Thai Duong, and Krzysztof Kotowicz. 2014. This POODLE bites:
exploiting the SSL 3.0 fallback. Security Advisory (2014).

[47] Marten Oltrogge, Nicolas Huaman, Sabrina Amft, Yasemin Acar, Michael Backes,
and Sascha Fahl. 2021. Why Eve and Mallory Still Love Android: Revisiting
TLS (In) Security in Android Applications. In 30th USENIX Security Symposium
(USENIX Security 21).

[48] MarkO’Neill, Scott Heidbrink, JordanWhitehead, Tanner Perdue, LukeDickinson,
Torstein Collett, Nick Bonner, Kent Seamons, and Daniel Zappala. 2018. The
Secure Socket API: TLS as an Operating System Service. In 27th USENIX Security
Symposium (USENIX Security 18). 799ś816.

[49] Damilola Orikogbo, Matthias Büchler, and Manuel Egele. 2016. CRiOS: Toward
large-scale iOS application analysis. In Proceedings of the 6thWorkshop on Security
and Privacy in Smartphones and Mobile Devices. 33ś42.

[50] Henning Perl, Sascha Fahl, and Matthew Smith. 2014. You Won’t Be Needing
These Any More: On Removing Unused Certificates from Trust Stores. In In-
ternational Conference on Financial Cryptography and Data Security. Springer,
307ś315.

[51] Abbas Razaghpanah, Arian Akhavan Niaki, Narseo Vallina-Rodriguez, Srikanth
Sundaresan, Johanna Amann, and Phillipa Gill. 2017. Studying TLS usage in
Android apps. In Proceedings of the 13th International Conference on emerging
Networking EXperiments and Technologies. 350ś362.

[52] Jingjing Ren, Daniel J. Dubois, David Choffnes, Anna Maria Mandalari, Roman
Kolcun, and Hamed Haddadi. 2019. Information Exposure for Consumer IoT
Devices: A Multidimensional, Network-Informed Measurement Approach. In
Proc. of the Internet Measurement Conference (IMC).

[53] Said Jawad Saidi, AnnaMariaMandalari, RomanKolcun, HamedHaddadi, Daniel J
Dubois, David Choffnes, Georgios Smaragdakis, and Anja Feldmann. 2020. A
Haystack Full of Needles: Scalable Detection of IoT Devices in the Wild. In
Proceedings of the ACM Internet Measurement Conference. 87ś100.

[54] Narseo Vallina-Rodriguez, Johanna Amann, Christian Kreibich, Nicholas Weaver,
and Vern Paxson. 2014. A Tangled Mass: The Android Root Certificate Stores. In
Proceedings of the 10th ACM International on Conference on emerging Networking
Experiments and Technologies. 141ś148.

[55] Janus Varmarken, Hieu Le, Anastasia Shuba, Athina Markopoulou, and Zubair
Shafiq. 2020. The TV is Smart and Full of Trackers: Measuring Smart TV Ad-
vertising and Tracking. Proceedings on Privacy Enhancing Technologies 2020, 2
(2020).

178

	Abstract
	1 Introduction
	2 Background
	3 Goals & Assumptions
	4 Methodology
	4.1 Testbed
	4.2 Instrumentation

	5 Results
	5.1 TLS Connection Security
	5.2 Certificate validation
	5.3 Diversity of TLS Behavior

	6 Discussion
	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

