




Moby 249

bootstrap information required for clients to function in

the absence of the wide-area communication medium.

Trust in Contacts: The Moby design uses a notion of

trust built on users’ contacts. We assume that a user

trusts contacts they communicate with frequently. In

our simulations, we take this to be the set of all users

stored as a contact in a client’s phonebook who have

been contacted more than a threshold number of times2,

under the assumption that such contacts are real peo-

ple and known to users (i.e., trusted at some level). In

practice, users can customize their lists of trusted con-

tacts to augment this heuristic with knowledge of who is

trustworthy. We further develop this notion of trust to

include pairs of users who have never directly communi-

cated, but who share a large portion of mutual contacts.

2.3 Threat Model

We present Moby’s threat model in this section using

terminology introduced by Diaz et al. [17] and later (§ 4)

show how we defend against it.

Inducing Blackouts: The adversary is global and ac-

tive for wide-area communication channels (e.g., IP-

based communication via cellular or WiFi networks).

Specifically, the adversary can induce blackouts of the

secure wide-area communication channel that is used

for communication in the absence of a blackout. These

blackouts could span a city, state, or even a country.

The adversary is local for the ad-hoc Moby network.

A global adversary for Moby network is impractical, as

it requires covering the entire geographic region with

short range radios. Thus, we omit such global attacks

from our threat model. Below we consider the active

and passive attacks this local adversary can mount.

Passive Monitoring: The local adversary can be pas-

sive and monitor a fraction of all Moby network traffic.

Introducing Malicious Messages: The local adver-

sary can actively introduce arbitrary messages into the

Moby network to attack the network. These messages

can be introduced at arbitrary locations to attempt

denial-of-service attacks on the network. Further, the

adversary can modify messages it observes and send

those modified messages into the network.

Active Jamming: The local adversary can actively

jam network connections. Recall that jamming the en-

tire network is not possible because the adversary is lo-

2 We use a threshold of one to get an upper bound on the im-

pact of trust in our simulation results, but this can be a user-

configurable parameter.

cal. Further, such global jamming would be impractical

given the geographic span of the network proposed.

User Coercion: The adversary can mount internal at-

tacks, but these are by definition local. In this case, the

adversary is active and launches network attacks from

existing members of the Moby networkṪhe adversary

can also launch passive monitoring attacks from such

compromised hosts, contributing a vantage point to the

passive monitoring mentioned above.

3 System Design

The Moby ecosystem is composed of several compo-

nents that combine to provide blackout-resistant com-

munication. Fig. 1 depicts the sequential operation of

Moby. The trust establishment protocol is performed

over a secure wide-area communication medium (step 1

in Fig. 1). In the case of a blackout (steps 2-4 in Fig. 1),

each Moby client participates in the Moby network (step

3 in Fig. 1) by relaying Moby messages. A client can

introduce messages into the Moby network (step 2 in

Fig. 1) and receive messages from it (step 4 in Fig. 1).

We refer to this property of using two communication

channels as bi-modal operation. A client can simultane-

ously participate in both these modes.

A Moby client, via the secure wide-area communi-

cation channel, establishes trust with other clients. Our

implementation of Moby does this with every contact

on its phonebook that also runs Moby. Clients update

their list of trusted clients based on the outcome of this

step, and use this list in the Moby network to decide

whether to hold or drop messages they receive.

The Moby network is a blackout-resistant

anonymity network. We expect Moby users to install

and use Moby as their default messaging application.

Moby clients utilize this network to originate, receive,

and relay Moby messages within it. During periods of

Internet connectivity, the Moby network ad-hoc net-

work can be used to provide sender-receiver anonymity,

a property absent from many widely used Internet mes-

saging applications. Moby builds trust scores between

communicating users as they exchange messages with

each other. During periods of Internet blackouts, the

Moby network is the only medium through which clients

can communicate. Moby provides best-effort delivery

during these blackouts and uses trust scores computed

earlier to prioritize messages.



Moby 250

3.1 Trust Establishment Protocol

The trust establishment protocol is performed by a pair

of Moby clients over a secure channel. Moby clients

bootstrap information for each other using this proto-

col. To participate in the Moby network, clients use

a list of trusted clients (referred to as a Trust List)

to decide whether a Moby message should be held or

dropped when received. Clients check this list to see if

they recognize the client that relayed the message, to

make that decision (§3.2.6). Clients use cryptographic

material that provides forward-secret, out-of-order resis-

tant, end-to-end encrypted messaging. A pair of clients

use this material to encrypt messages sent via the Moby

network. To satisfy these properties in our implementa-

tion, we use the Double Ratchet (DR) algorithm [40].

Signal’s [2] implementation of DR includes sender and

receiver identifiers in messages, we do not include these

identifiers in Moby to ensure sender-receiver anonymity

(further discussed in §3.1.2). A client uses a long-lived

signing key and a corresponding verification key to rec-

ognize clients in the Moby network (§3.2.4).

At the end of trust establishment both clients will

have: updated Trust Lists, cryptographic materials for

communication, and verification keys for each other.

The trust establishment protocol must run over a

pre-existing secure communication channel, regardless

of the medium of communication. Thus, it can run either

over the Internet, given an underlying channel (e.g., a

messaging application) that is secure, or manually when

two clients meet each other. Note, however, that the

Moby network should not be used as this secure chan-

nel. For a given pair of clients to communicate via the

Moby network, the trust establishment protocol must

be run at least once between them. In our implementa-

tion, this protocol is run against all contacts in a client’s

phone book on first installation of the application and

whenever a new contact is added on a given device.

It could be run more or less frequently, depending on

the deployment scenario. Trust scores computed do not

change during a blackout and should only be updated

once a secure channel for trust establishment is restored.

We now present each component in detail and how

they are used in Moby.

3.1.1 Trust in Moby

The concept of trust in Moby is realized by message

trust values and user trust lists.

Trust Value Calculation and Updates: A Moby

client computes the trust value associated to another

client on completing a Moby Handshake. Clients use in-

formation about how many contacts they share in com-

mon and how many times an opposite client is contacted

to calculate the trust value for that client. We describe

a general approach for computing trust, then provide

details of the specific formulation of trust value compu-

tation that we use in our system.

To compute a numeric trust value for a pair of

clients, we consider the following abstract function:

Trust Valueclient = f (contacts, communications) (1)

To extend a client’s trust list, we support the notion of

indirect trust that incorporates the notion of transitiv-

ity: if client A trusts client B, and client B trusts client

C, then client A trusts client C. In this example, A and

C are 1-hop trusted clients (assuming there is no direct

communication between A and C to otherwise establish

direct trust).

Each Moby message contains a trust value in it as

well. This value is first set by the sender and is updated

at each client that receives it and relays it in the Moby

network. Clients update this value based on who for-

wards the message. Thus, for a message:

Trust Valuemessage = f (old value, client value) (2)

In our implementation, we use binary trust: all con-

tacts are marked either trusted or untrusted. Similarly,

all messages are marked trusted or untrusted. We use

binary trust as it captures the upper bound that can be

achieved by other trust models for a given hop count. A

fine grained trust system could perform, at best, as well

as our binary model. These update operations therefore

tell us whether an opposite client is trusted and likewise

whether a message is trusted.

The binary trust system is one method of computing

trust values. It provides a coarse-grained model of trust

where entities are either trusted or untrusted. Compu-

tation of trust values are configurable; a real number

trust value that provides a fine-grained model of trust

could be used.

Trust Lists: A trust list is comprised of the following

information for each client that is trusted: unique con-

tact information, a verification key, a trust value, and a

hop value. The contact information is a unique identi-

fier for that client, e.g. username or phone number. The

verification key is a public key for the signing key used

by that client. The trust value is a numerical indicating

how much that client is trusted. The hop value is the

shortest distance to the client (e.g. if client A trusts B,

and B trusts C, then A has a hop count of 1 for C).

Each Moby client maintains an instance of a Trust

List; while participating in the Moby network, this list





Moby 252

currently store. We improve this classical protocol with

Trust Lists, which determine whether a client stores or

drops messages. Last, we define an optional post ex-

change protocol for cases where a pair of clients do not

recognize each other.

3.2.1 Link Layer Technologies

Our protocol uses wireless network technologies to de-

tect whether a participating client is in communication

range and to exchange messages with these clients. In

the case of our implementation, the ones used are Blue-

tooth and Wi-Fi Direct. We use these link layer proto-

cols because they are widely supported on mobile de-

vices, but any point-to-point technology could be used.

3.2.2 Client Discovery

The Moby Client Discovery step involves discovering

other clients that are within the communication range

of the client executing it. If multiple such clients exist,

Discovery returns a list of all of them and each one of

them is used in the next set of steps. Moby is not de-

signed to hide the fact that it is installed on a device,

thus, we do not require this link layer protocol to satisfy

any security properties. In our prototype, we use Wi-Fi

Direct for usability reasons (see §6).

3.2.3 Sending and Receiving Moby Messages

Moby Network Message: In the context of the Moby

network, a Moby message contains the following com-

ponents:

– A plaintext Time to Live (TTL) value, set by the

sender of the message.

– A plaintext Trust value, initially set by the sender,

changed at each client that relays the message (see

§3.2.4).

– An end-to-end encrypted payload and associated

MAC, using the ephemeral keys that the sender and

receiver share.

The TTL is a (wall-clock) timestamp after which the

message should be dropped by all clients. We require

the TTL and Trust values to be in plaintext as they

need to be read/modified by all Moby clients; attacks

on these values are discussed in §4.3. A sender must first

execute Trust Establishment (§3.1) with the receiver to

send them a message.

Sending a Message: The sender produces an en-

crypted payload and MAC via the Encrypt-then-MAC

method using the shared cryptographic material. It then

sets a large trust value and a random large TTL value

binned by the hour and places the message onto its

own Message Queue. (A random, binned TTL value pre-

vents a local attacker from tracing message origin to the

sender, to an extent.) Messages propagate the network

when Message Exchanges occur.

Receiving a Message: When new messages are added

to a client’s Message Queue following Signature verifi-

cation and trust value updates, the messages need to be

checked to see if the intended destination is the receiv-

ing client. A receiving client checks each new message

with each session it has for its contacts. If, for any ses-

sion, a computed MAC matches the MAC attached to

the message, the receiver knows the sender of the mes-

sage and can decrypt it. We present pseudocode for this

in Appendix B. Note each message remains in the re-

ceiver’s queue until the queue policy (§3.2.6) determines

it should be dropped. This prevents an adversary from

inferring client message reception.

3.2.4 Message Exchange

Moby Message Exchange involves sending a Message

Queue, a Salted Fingerprint, the salt used, and the Sig-

nature generated over both the queue and fingerprint.

Clients use the Client Discovery protocol to identify

hosts to perform Message Exchanges with. If multiple

clients are discovered, a random client is chosen to per-

form this step.

Message Queue: The Moby Message Queue is an or-

dered list of Moby messages sorted based on the message

trust values. As we use binary trust in our evaluation,

all trusted messages would be at the front of the queue

with untrusted ones behind them.

Signature: The Signature is produced by a client that

sends the queue. The key used to produce this Signature

is the signing key corresponding to the verification key

advertised by the client during Trust Establishment (

§3.1). Given this verification key, the receiver of a queue

can verify the integrity of the queue and infer the iden-

tity of the forwarder. The protocol uses this information

to decide how to process the new messages received.

Salted Fingerprint: Signature verification is an ex-

pensive process as compared to hash computation;

knowing the verification key for the Signature would

make this more efficient. Adding a key fingerprint would

achieve this; we make sure to use a salted hash of the

fingerprint constructed as follows H(fingerprint ‖salt)

where salt is a random string of at least 32 characters.

We salt this fingerprint to prevent adversaries from ob-

serving fingerprints they have not seen before. Thus, a

client can identify which verification key to use by first

computing the hash of the salt with all stored finger-



Moby 253

prints and comparing it with the received hash. Fol-

lowing this, the client verifies the Signature, and can

associate the message to a sender (in case a match is

found). We salt fingerprints to protect verification keys

in the network from adversaries (§4.3).

3.2.5 Post Exchange PSI-CA

To compute trust scores of clients not encountered be-

fore a blackout, a pair of Moby clients can perform a

PSI-CA computation following a successful Message Ex-

change. This step is optional as PSI-CA is an expensive

operation, both in terms of computation and communi-

cation overheads.

In our implementation, we always perform this step,

which involves exchanging PSI-CA protocol messages

between a pair of clients. The input sets are populated

using fingerprints of signing keys of already-trusted

clients. Based on the output of this protocol, a client de-

cides to trust or not trust the opposite client. No other

information is to be sent in this step as the underlying

link layer technologies provide no security guarantees.

3.2.6 Message Queue Policy

Moby clients have limited resources in terms of stor-

age space and bandwidth for message exchange. Thus a

message queue policy is necessary for a client to decide

whether to hold or drop messages.

When a Moby client receives new messages, it up-

dates each message’s trust in the queue based on the

client from whom it is received. Following this, new mes-

sages are added to the local queue based on this updated

trust value. Message queues are sorted lists based on

trust values. In case the message queue fills up, mes-

sages with the least trust value are dropped. If multiple

least-trusted messages have the same trust value, one

of them is chosen at random and dropped. This priori-

tization of trust values to store messages helps prevent

network congestion attacks and makes sure that legiti-

mate messages stand a chance of delivery when adver-

saries flood the network with dummy messages. A flood

would result in queues filling up, but legitimate mes-

sages would be at the front of these queues given that

they should on average have higher trust values com-

pared to messages from adversaries.

In the binary model of trust values, the implications

of this policy would be that trusted messages are always

prioritized over untrusted ones. If the queue is filled

with trusted messages, one would be dropped at ran-

dom. Similarly, untrusted messages are picked at ran-

dom when they need to be dropped.

3.2.7 Moby Data Structures

A client that participates in the Moby network main-

tains the following data structures for forwarding mes-

sages: a signing key, a Trust List containing contacts’

verification keys and cryptographic state for each direct

contact, and an ordered list of Moby messages.

The signing key is an asymmetric key, with an asso-

ciated verification key and fingerprint. These are used to

sign message queues and verify signatures as shown in

§3.2.4. The message queue contains all Moby messages

the client wishes to send or relay sorted by the trust

value associated to that message.

The list of cryptographic states associated to users

are established in the Moby Handshake (§3.1.3) and en-

able this client to communicate via Moby messages. Us-

ing this cryptographic state, a client must be able to

encrypt a message and compute a MAC for it or verify

a MAC and decrypt the corresponding message.

4 Security

In this section, we discuss a variety of attacks and

how the Moby ecosystem defends against such attacks.

The adversary’s capabilities are described in the threat

model (§2.3). We briefly discuss the security of the wide-

area communication medium and then discuss attacks

on the Moby network.

4.1 Wide-Area Communication Medium

We assume there is a wide-area communication medium

(e.g., the Internet) that can be disconnected by the ad-

versary. We further assume that secure messaging over

the wide-area medium exists (e.g., end-to-end encryp-

tion via Signal); securing the wide-area channel is con-

sidered orthogonal to Moby’s goals.

4.2 Denial-of-Service (DoS) Attacks

We now discuss several Denial-of-Service attacks on the

Moby network.

Local Jamming: Using specialized jamming hardware

that blocks the link-layer communication medium, the

adversary could prevent Moby network communications

within a small geographic region. Given the geographic

span of the Moby network, the adversary could perform

this attack on a part of the network; we present our

findings related to such an attack in § 5.5.2. No known

defenses exist for such jamming techniques; users in the



Moby 254

jammed region would be directly affected, but those out-

side the region would not.

Network Flooding: An adversary could perform a

denial-of-service attack on the Moby network by flood-

ing the network with malicious messages sent at arbi-

trary locations. Doing so, the adversary would try to fill

the queues of all participating clients; legitimate mes-

sages would be dropped by clients as their queues would

be filled with malicious messages.

Moby uses trust values to defend against such at-

tacks. A malicious message would gain only as much

priority as the client that introduces it into the network.

We argue that adversaries will find it difficult to ob-

tain high trust values. The main reason is that Moby pri-

marily incorporates trust based on contacts in a user’s

phonebook, something that is difficult for an adversary

to control. Even if an adversary were to convince a user

to add malicious contacts to a phonebook, we argue that

either these would be small in number relative a user’s

non-malicious contacts, or there would be so many ma-

licious contacts that it would be conspicuous and de-

tectable. Thus, we assume that on average malicious

clients will have substantially lower trust values than

non-malicious ones.

Given that malicious clients would not have high

trust values in the legitimate network, these messages

would get discarded faster than legitimate messages. We

show the resilience of Moby to such an attack in §5.5.3.

User Flooding: In such an attack, an adversary sends

a number of Moby messages to one specific Moby client.

The goal of this is to exhaust the resources of that client,

by causing it to perform operations on this message

(storing, processing, etc.). Such an attack has limited

effectiveness. For an adversary to send a message to a

client, trust establishment needs to be performed with

that client first. Therefore, this can only be performed

by a client’s trusted entities and not all clients.

Flooding via Coercion: In a coerced flooding attack,

the nodes that flood the Moby network with malicious

messages lie within the system. These attackers would

be on some contact lists and use this trust to carry out

an attack. Such attacks are effective, but limited given

that a small number of users can be coerced. We show

the extent of such attacks in §5.5.4

Handshake Attack: An adversary could initiate many

handshakes with clients within wireless range, to get

them to waste energy performing computations. Such

an attack would not scale as multiple malicious nodes

would need to be present at a specific location to at-

tack all users. If there are few such attackers, legiti-

mate nodes in the area would still be able to perform

exchanges; if there are many attackers, this attack be-

comes a jamming attack (discussed earlier). Thus, this

attack could disable relatively small geographic regions

of the network where the attackers are located, but it

would not disrupt the entire Moby network.

4.3 Attacking a Moby Message

These attacks involve trying to exploit a Moby message

to obtain information about communicating clients or

to disrupt its propagation through the Moby network.

Sender/Receiver Tag Identification or Spoofing:

The Moby MAC as described in 3.2.7 has the property

that it can be verified only if a user has knowledge of

a secret. This secret is known only to the sender and

receiver. Thus, an adversary cannot identify the sender

or receiver given the MAC without having compromised

the shared secret. Further, they cannot produce a MAC

that is accepted by a receiver and hence cannot spoof

the sender or receiver for a given message. Lastly, mes-

sages are introduced and removed from message queues

of clients in a way that prevents local adversaries from

inferring the senders and receivers of messages (as dis-

cussed in §3.2.3).

Attacking the TTL Value: Moby messages contain

TTL values that are in plaintext (can be read/modified

by any intermediary client). Tampering with the TTL

value is possible and would be equivalent to introducing

a malicious message into the network. These modified

messages would only gain as much priority as the en-

tity that modified it. Thus, regardless of the TTL val-

ues, these modified messages would get discarded sooner

than legitimate messages based on trust values. Attack-

ing message TTL values would therefore not affect the

overall performance of the Moby network.

Payload Attack: An adversary could try to obtain in-

formation about the message being sent between a pair

of users based on the payload of a Moby network. To

prevent this, all message payloads are end-to-end en-

crypted; only the sender and receiver of the message can

read the contents of the payload, given the adversary

cannot break standard cryptographic building blocks.

Fingerprint Enumeration: Fingerprints associated

to a clients verification key are used as input in the PSI-

CA protocol (in both places PSI-CA is used). Thus, if

an adversary has knowledge of all the verification keys

used in the Moby network it could use that in Equa-

tion 1 to maximize the first component. Moby protects

against this using salted fingerprints so enumeration is

not possible.



Moby 255

4.4 Moby Network User Inference

Moby uses link-layer technologies that broadcast the use

of Moby. Thus, it is easy to infer that a person is running

Moby client on their device based on these broadcasts.

We do not defend against such attacks.

4.5 Trust Link Identification

The adversary could try to infer which user trusts which

other user in the Moby network in this attack. This

would be possible if the adversary could infer trusted

contacts in the handshake phase. We use PSI-CA to

protect against this; an entity that performs the hand-

shake only obtains the cardinality of overlap and not

which elements overlap itself. Further, tricking an en-

tity into performing a handshake with the adversary is

a challenge as well, which protects against such identi-

fication attacks.

4.6 Trust Establishment Attack

An adversary could try to maximize its trust value for

other attacks on the Moby network. This is prevented as

follows. The trust establishment step is only performed

with users that are sufficiently trusted (§3.1). Further,

the overlap value computed using PSI-CA is capped;

an upper bound is set to the number of elements used

as input in that protocol. By setting reasonably con-

servative limits, one can mitigate dictionary attacks on

client trust lists (i.e., when an attacker claims to trust

all Moby clients to maximize set intersection values).

4.7 Post Exchange PSI-CA Attacks

The PSI-CA exchange, when done over an insecure

channel could leak some information. The fact that a

pair of clients are performing this exchange would imply

that they do not trust each other. On the other hand, if

this is executed even if clients trust each other, it would

add unnecessary overheads to the Moby network. Thus,

this piece of the system is marked optional and is up to

the client and/or implementer to decide.

Next, a man-in-the-middle attack could be per-

formed if PSI-CA were performed over an unreliable

channel. Although authenticated PSI exists [16], it is not

sufficiently fast for cardinality computation and thus we

do not use it. As securing the PSI-CA protocol over an

insecure channel is not a goal of this paper, we do not

explore this any further.

4.8 Out-of-Scope Attacks

Targeted Attacks: Attacks where one user, or a set

of users are targeted by the adversary whereby they are

followed, monitored, burglarized, coerced, and the like.

Such attacks can not be solved with a technical solution.

Secure Devices: We do not defend against attacks on

Moby client devices via malware, or other side-channels.

5 Simulation-Based Evaluation

To evaluate Moby’s system design at scale, we perform

trace-based simulations on our filtered dataset contain-

ing cell tower data of 268,596 users for the span of

a week. We begin by describing our data, simulation

framework, and simulation experiments. We then use

our experiments to analyze the impact of key Moby pa-

rameters and the simulation environment on our key

performance metrics: message delivery ratios (number

of messages delivered to number of messages sent) and

message latencies. We evaluate Moby both in the ab-

sence of an attack, and using an adversary who floods

the network with dummy messages as part of a DoS

attack. We find that Moby substantially outperforms

Epidemic/Firechat under a network adversary. Firechat

uses Epidemic routing over a mesh network and thus is

identical to the Epidemic routing we evaluated. In the

best-case scenarios we investigated, Epidemic/Firechat

routing achieves 1.15% delivery rate under an adversary,

while Moby achieves 13.96% in the same conditions.

Note that Moby uses contact lists, call histories and

hop counts to realize trust graphs while Rangzen [28]

uses an already provided social graph. Thus we could

not compare these approaches due to a lack of a large

mobility dataset with both call information and social

graphs. We could not compare with Briar [11] because

it lacks a formal specification. Finally, we investigated

using other mobility traces (e.g., from taxis) but could

not identify a realistic way to map those mobile nodes

to Moby trust graphs.

5.1 Dataset

Our dataset contains call data records from a large Eu-

ropean cellular provider’s network deployment, gath-

ered in 2009. During that one year, we observe that

25,719,853 users placed 6,000,444,782 phone calls and

sent 1,642,489,960 messages. The dataset specifies the

cell tower (and its geographic location) used for each

phone call or text message, which allows us to roughly



Moby 256

geolocate a user at that moment of communication.

Each user is anonymized and assigned a randomly gen-

erated unique ID; thus our data contains no user iden-

tifiers whatsoever. (Note that the dataset contains nei-

ther user-identifiable data—phone numbers are replaced

with random strings—nor precise geolocations, the data

is kept in secure access-controlled environments, and the

research protocol was approved by our IRB.) We discuss

the limitations of our dataset in §7.

Data Filtering: We perform a number of filtering op-

erations on this dataset to use in our simulation frame-

work. First, we filter the data to consider a specific geo-

graphic region; the span of the region is that of a highly

populated city in the European country for which we

have data. Next, we analyze the pattern of communi-

cations that users in that region have for the span of

the year of data. We do so to pick the most represen-

tative week of the year on which to run our simula-

tions. We compare communication statistics in terms of

calls placed, messages sent and number of users that

participate for a given day. Lastly, we filter users that

send/receive messages in our simulation by a liveness

metric which is the number of hours a user is observed

communicating (via calls or messages) in the span of

days we select. After the filtering steps, we end up with

268,596 users (liveness of 1) who are simulated. For plots

in this section, we use a liveness of 4 (78,486 users).

Tower Distribution: After filtering, our simulations

use 786 towers that cover an area of ≈180km2. To

approximate range of the cells corresponding to these

towers, we calculate the average distance between each

tower and its five closest neighbors. Averaging this value

across all towers in the network and dividing by two to

get a radius, we find the the average range of towers to

be 118m (σ =86m). Thus, for much of the region, the

range of cells that users connect to is relatively small,

and thus users connected to the same cell are in many

cases capable of connection via the wireless channels

needed for the ad-hoc network.

5.2 Simulation Framework

We implement a custom network simulator to mea-

sure the performance of Moby as well as previous sys-

tems. The simulator uses call data records to simulate

users and their movements, and advances time in one-

hour increments, due to the one-hour granularity of our

dataset. Each user in the system has a message queue;

messages sent by the user are added to the queues at

the right hour (based on when they are sent). When a

pair of users are sufficiently close to each other (asso-

ciated to the same cell tower for an hour), a message

exchange is simulated between them. At message ex-

change time, the simulator executes the Moby routing

using trust information for the corresponding pair of

users. Last, the simulator can simulate network adver-

saries that perform attacks on the network.

Thus, we have a framework to simulate the Moby

network and measure the guarantees it provides if de-

ployed in the real world. Using the simulator we obtain

performance metrics in terms of message delivery ratios

and message latencies.

5.3 Experiments Performed

To compare Moby with previous systems for ad-hoc net-

works, we perform network simulations using the Epi-

demic routing algorithm, using our filtered dataset. We

explore a number of different simulation and Moby pa-

rameters, including some that are relevant only for at-

tack scenarios (e.g., volume of attack messages injected

into the network).

Note that in the absence of an active network ad-

versary, we found that the Moby routing protocol per-

forms nearly identically to Epidemic/Firechat routing,

and we show only Moby performance in those scenar-

ios. We directly compare Moby and Epidemic/Firechat

routing only under attack scenarios.

5.4 Simulation Parameters

This section details our simulation parameters (see Ap-

pendix C for a compact summary) and presents the val-

ues we explore along with why these were chosen.

Fixed Parameters: We begin by picking a geographic

region corresponding to a large metropolitan area to

filter out the set of users we simulate from the large

dataset we possess. Moby is intended for deployment

in dense urban areas that provide many opportunities

for clients to exchange messages, so we do not evalu-

ate suburban or rural areas. We use 3 days of data to

drive our simulations after testing longer timescales (up

to 7 days), as longer spans did not further improve de-

livery ratios, and results overall were not substantially

different. We analyze the daily mobility and daily com-

munication patterns for the chosen region for the year

in terms of total calls made, total messages sent, and

total users observed. We use this information to pick a

set of days that match the average number of messages

sent in a region over 3 days; the days chosen are the

53rd to the 56th day of the year.



Moby 257

Based on the communication patterns of the partic-

ipating users, we set the number of messages to be sent

to 30,000. Messages are sent in the first 48 hours of the

simulation with “cooldown" period of 24 hours when no

new messages are introduced to the network, to allow

time for delivery of recently generated messages. Sources

for these messages are picked randomly from the set of

users, and corresponding destinations are picked based

on the contact list of the source user. To account for any

bias from source selection, we perform multiple simula-

tions for each configuration, each with a different ran-

dom selection of senders. We present average metrics

since the range of results across such simulations was

only 0.2–0.5%. To model a real-world message load on

the Moby network, the number of messages sent each

hour is proportionate to the text messages that users

sent during that hour in our trace data. (We found sim-

ilar results when using number of calls instead of text

messages.) The contact list is set to a constant value for

all simulations, details about this list are in §5.1.

Connectivity: Due to the lack of precise user location

information in our dataset, we varied the percentage of

users that perform a message exchange within a tower.

We noticed a negligible drop in delivery ratios (under

1% for all TTLs) when half the pairs of users perform

message exchanges; further, even when only 10% of user

pairs connected to the same tower can exchange mes-

sages, performance of the network drops by less than

5% for TTLs 24 and higher and even lower (under 2%)

for TTLs 48 and higher. To focus our analysis on other

factors that affect the Moby network, our evaluations

below use the setting where all users connected to the

same tower per hour perform exchanges. For more de-

tails about performance with fewer users being able to

conduct exchanges, see Appendix E.

Varied Simulation Parameters: We vary other pa-

rameters in their respective ranges to observe their ef-

fects and to monitor their interact with each other. We

define liveness of a user as the number of hours the user

appears in the dataset for the given span of days. Live-

ness is varied between 1 and 12 in increments of 2. The

number of DoS messages injected into the network per

hour varies from 0 to 10, that number of messages is

sent to all users at that location at the given hour.

Varied Moby Parameters: We investigate several

Moby configuration parameters to understand their

trade-offs with respect to performance. Per user queue

size is varied between 5,000 and 30,000 in increments of

5,000. The time to live (TTL) for each message is varied

between 12 and 72 hours in increments of 12 hours. In

our figures, when we refer to “TTL N”, we mean “N

hours after each message was sent.” Thus our figures

refer to average performance for a given initial TTL,

and not wall-clock time in the simulation. The trust list

parameter is varied. Different trust lists are generated

for different hop values, i.e. hop 0 implies that all con-

tacts are trusted, 1 implies that all 1 hop contacts are

trusted as well, and so on. We explored nonbinary trust

based on call frequency (where trust in a client is the

number of communications with that client divided by

the total number of communications). While the result-

ing trust values were asymmetric, we found that results

were very similar to (symmetric) binary trust (further

discussed in§ 7). Thus we use only the simpler binary

trust approach in our evaluation. We evaluate the im-

pact of indirect trust by varying hop counts among 0

(no indirect trust), 1 and 2.

A summary of parameters is in Appendix C.

5.5 Performance Results

We now present performance results for Epi-

demic/Firechat routing and Moby routing in terms

of message delivery rates and message latencies when

run using our filtered dataset. We find that Epi-

demic/Firechat and the Moby routing protocols per-

forms nearly identically in the absence of an adversary.

We then compare Moby with Epidemic/Firechat under

an active denial of service performing adversary.

5.5.1 Performance in the Absence of an Adversary

We now investigate the performance of Moby without

an adversary. Our goal is to identify the impact of Moby

parameters (TTL and queue size) on message delivery

and latency. We find that in the simulated environment,

there are performance trade-offs for these parameters,

and we highlight combinations that are most effective.

Delivery Ratios: For simulations in the absence of an

adversary, we vary liveness, user queue size, and time to

live (TTL). We observe that for different liveness val-

ues, delivery ratios vary, but overall trends for queue

size and TTL hold; liveness is directly proportional to

delivery ratio. Thus, we present metrics for simulations

with a liveness of 4 (78,486 users), all other liveness val-

ues showed us similar trends.

To investigate the effect of varying queue sizes and

TTLs on delivery ratios, we plot delivery ratio on the

y-axis and TTLs on the x-axis and draw lines linking

simulations with same queue size values in Fig. 3. For

queue sizes less than 30,000 (all messages in the net-

work), we find that delivery ratios first rise up to a



Moby 258

12 24 36 48 60 72

0.2

0.4

0.6

0.8

1

Time To Live (h)

D
el

iv
er

y
R

a
ti

o

QS 5,000 QS 20,000

QS 10,000 QS 25,000

QS 15,000 QS 30,000

Fig. 3. Effects of varying time to live

for a queue size in terms of delivery

ratios. Increasing TTLs leads to a rise in

delivery ratio up to a point after which

a drop occurs due to filled user message

queues.

10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

% of Network jammed

F
ra

ct
io

n
D

el
iv

er
y

R
a
ti

o
o
f

E
p

id
em

ic
/
F

ir
ec

h
a
t

TTL:12 Random TTL:12 Oracle

TTL:48 Random TTL:48 Oracle

TTL:72 Random TTL:72 Oracle

Fig. 4. Impact of jamming on delivery

ratio compared to Epidemic/Firechat

routing. Lower TTLs suffer worse deliv-

ery ratios under jamming, and jamming

popular locations (Oracle) is more effi-

cient than random, as expected.

12 24 36 48 60 72

0

0.05

0.1

0.15

Time To Live (h)

D
el

iv
er

y
R

a
ti

o

Epidemic/Firechat Moby 1 hop

Moby 0 hop Moby 2 hop

Fig. 5. Performance of Epi-

demic/Firechat, Moby 0, 1, and 2 hop

during a DoS attack. Moby routing con-

sistently outperforms Epidemic/Firechat

in such environments, with higher trust

hops performing better.

Average Latencies (h)

TTL (h) Minimum Mean Maximum Avg Std Dev

12 4.84 5.49 5.77 3.56

24 9.15 12.08 14.7 7.35

36 9.67 15.11 18.68 9.28

48 9.79 17.57 23.81 11.68

60 9.79 16.6 20.63 12.74

72 7.02 12.74 17.21 10.06

Table 1. Statistics for average latencies for the set of simulations

grouped by time to live. Average latencies initially increase with

TTL, and drop under very large TTLs due to higher number of

messages being delivered closer to when they were sent.

point after which a drop occurs. Follow the line with

solid boxes (queue size 10,000), we find that the delivery

ratio first rises going from TTL 12 to TTL 24 but then

begins to drop after 24. This tells us that for a given

queue size value, there is an ideal TTL value at which

the network performs the best, increasing TTL beyond

that point causes the queues of numerous clients to fill

up with messages that cannot be delivered, thus leading

to lower delivery ratios.

As we increase the queue size, keeping TTL con-

stant, we find that delivery ratios increase up to a point,

after which there is no improvement (at around 30,000

queue entries).

Message Latencies: We now look at the average mes-

sage latencies for a simulation, averaging values over the

set of all delivered messages. We find that the spread of

latency values for messages delivered in each simulation

is large, and thus computed the minimum, mean, maxi-

mum, and standard deviation of latencies, averaged over

the set of simulations with the same TTL; the results are

in Table 1. Following the means (2nd column), we no-

tice an increase until TTL 48, after which latency drops.

We analyzed message delivery patterns and message la-

tency patterns for each simulation, and found that most

of the messages that get delivered in these simulations,

get delivered close to when they were sent, but con-

tinue to occupy user queue space due to the TTLs be-

ing large. (Note that unlike in a traditional IP routing

network, messages stay in the queues until the TTL ex-

pires.) This adversely reduces delivery ratios, but the

average latency is lower because the messages that are

delivered tend to be delivered quickly.

Setting Optimal Parameters: Most messaging sys-

tems strive for high delivery ratios and low latencies; we

explore the effect of all parameters on both these statis-

tics to find the optimal parameters to tune Moby. We

primarily concentrate on the effects of both queue size

and TTL on both delivery ratios and latencies. To sum-

marize our analysis, we found that common factors for

good performance are relatively large queue sizes (to

increase delivery ratios) with moderately sized TTLs

(36 hours or higher for larger queue size) to tame queue

buildup. Under such conditions, Moby achieves high de-

livery ratios (>0.8) with latencies in the range of 15–17.5

hours. Please see Appendix D for more detail on our pa-

rameter space exploration.

5.5.2 Performance During a Jamming Attack

To understand the impact of a jamming attack on the

Moby network we consider two attacks: randomly jam-

ming locations and jamming the locations most visited

by users (which we refer to as oracle attacks as it re-

quires a priori knowledge). When a region is jammed,



Moby 259

10 100 500 1,000

10,000

15,000

20,000

25,000

30,000

Number initially compromised

N
u

m
b

er
fi

n
a
ll

y
co

m
p

ro
m

is
ed

Fig. 6. To understand the extent of a compromised user attack,

we vary the initial number of compromised users in the x-axis

(10, 100, 500, 1000) and measure the total number of users that

are affect at the end of the simulation in the y-axis.

no users can exchange messages in that region. The lat-

ter gives us an upper bound on the attack’s effectiveness.

Fig. 4 plots the results of jamming attacks for differ-

ent TTLs. The y-axis is the delivery ratios as fractions

of the baseline result (Epidemic/Firechat without jam-

ming), and the x-axis is the fraction of the simulated re-

gion that is jammed. Each line represents a TTL value

and jamming strategy; we omit some TTLs because they

exhibited similar trends as the ones shown. As expected,

we observe that delivery ratios drop as the jammed re-

gion increases and random jamming is less effective than

an oracle attack.

While these results may indicate that jamming can

be an effective attack, it is important to put the re-

sults in context. Jamming just 10% of the Moby network

involves covering a large geographic area (78 cell tow-

ers, ≈ 4.5km2) which already requires significant cover-

age and would likely incur substantial collateral dam-

age. Further, obtaining a jamming oracle is difficult as

movement patterns during a blackout would be unpre-

dictable. Lastly, our results show that Moby is resistant

to low amounts of jamming, for random or oracle based

attacks. Thus, the effect of such an attack on our system

is limited under practical constraints.

5.5.3 Performance During a DoS Attack

For simulations in the presence of an adversary, we vary

liveness, user queue size, time to live, number of mali-

cious messages sent, and the contacted threshold (i.e.,

the minimum number of communications between users

to be considered trusted, as explained in Table 2). We

generate malicious messages as follows: we place an

adversary at each message-exchange location (i.e., cell

tower) and send a fixed number of malicious messages

to every user at the location every hour. In total, thou-

sands of attack messages are generated per hour, while

the number that get propagated depends on the number

of users at the location at each hour. After testing var-

ious values for number of malicious messages sent per

hour, we find that delivery ratios fall drastically (even

for low rates). Based on this, we selected a rate of 10

messages per location per hour, as this was sufficient to

make Epidemic routing’s delivery ratio near zero.

We simulate Epidemic/Firechat routing in this ma-

licious environment and compare the results we obtain

to those for the Moby routing protocol. We plot a curve

for each routing protocol (Epidemic/Firechat and Moby

with different levels of indirect trust) with delivery ra-

tios on the y-axis and time to live (TTL) values on the

y-axis in Fig. 5. The solid squares line shows the perfor-

mance of Epidemic/Firechat routing, while the hollow

triangle, solid triangle, and solid circle lines show the

performance of Moby routing with 0 (only direct trust),

1 (trust contacts of trusted contacts) and 2 hop trust

metrics, respectively. Recall that our binary trust model

provides an upper bound on message delivery when com-

pared to other trust models.

Our first key observation is that Epidemic/Firechat

performance is abysmal under attack—delivery ratios

are approximately 0.01 across all tested TTL values.

The reason is that the message queues are filled with

malicious messages, leaving little-to-no room for legiti-

mate messages to be forwarded or delivered. It also mo-

tivates the need for an attack mitigation strategy. Next,

we note that even without indirect trust (the 0-hop

curve), Moby substantially increases delivery ratios—by

up to 5x in the case of large TTLs. We see a similar trend

for larger hop values (allowing indirect trust), with the

exception that larger hop values leads to substantially

better delivery ratios (up to 0.14, an approximately 14x

improvement over Epidemic/Firechat). This is because

the network of directly trusted clients is quite sparse,

and using indirect trust allows the network to be denser

and thus support more trusted message exchanges dur-

ing network attacks. Thus, while Moby cannot recover

the original performance while under a large-scale at-

tack, it still manages to deliver a substantial fraction of

messages compared to the case of no active attack.

5.5.4 DoS via Compromised Users

We now estimate the extent of a DoS attack where an

adversary uses trusted clients to flood and fill message

queues of legitimate clients, thus leaving no trusted slots

for legitimate communication. In this model, which is

based on a simpler simulation that does not require

modeling message transmission, a trusted user that



Moby 260

comes in contact with a compromised user is considered

to be DoSed. We focus on the number of compromised

users instead of delivery ratios, as they represent the

portion of the Moby network that is disabled indepen-

dent of the message transmission patterns.

We pick initial users at random, varying the number

picked in the x-axis, and plot total users DoSed on the

y-axis in Fig. 6. We perform 10 experiments for each

scenario and show averages and standard deviation error

bars. To understand the maximum extent of this attack,

we use two-hop trust. Even with a small set of such

users, the attack is effective for a significant subset of

users; however, the attack has diminishing returns as the

number of compromised users increases. On average, we

see between 3.92% and 10.61% users being finally DoSed

for the range of initial users we test. While effective, it

is an open question whether such a compromise attack

can be successfully mounted at scale.

6 Implementation and Evaluation

To provide further evidence of the feasibility of Moby,

we built a prototype client app and evaluated energy

costs of running it on a mobile device.

6.1 Implementation Details

We implement the Moby app as a fork of Signal An-

droid app [2] with modifications implementing all func-

tionality of a Moby client. We use Signal’s infrastruc-

ture as the “secure wide-area communication medium”

mentioned in Section 3.1.2. Moby trust establishment

is performed with handshake messages sent via Signal.

This is performed with all contacts on the first installa-

tion of the app and subsequently with any new contacts

the user adds. Handshake messages are crafted in such

a way that they can be recognized only by other Moby

clients and ignored by non-Moby Signal users. Clients

respond to handshake messages following the protocol

Moby Handshake protocol (Section 3.1.3).

The Moby app performs client discovery by adver-

tising Bluetooth MAC addresses via Wi-Fi Direct bea-

cons. Message Exchanges and Post Exchange PSI-CA

are done over Bluetooth using MAC addresses obtained

in this discovery phase.

These technologies are used in combination to allow

the application to discover clients and transmit data

without any user interaction. Discovering nearby de-

vices via Bluetooth requires user interaction while set-

ting Wi-Fi Direct beacons does not. Sending messages

over Wifi Direct requires user interaction whereas send-

ing them over Bluetooth insecure connections does not.

These link layer technologies could be updated in the

future; Moby uses them as black-boxes. as they do not

affect components of Moby built on top of them.

The asymmetric key cryptography used for a Moby

client’s public key is RSA with a key size of 2048

bits. The Double Ratchet [40] protocol’s Symmetric-key

ratchet provides the necessary properties required by

the cryptographic material defined in Section 3.1.2. Our

implementation uses the Double Ratchet instance used

by Signal for a given Moby client, and we ratchet only

the Symmetric-key, as break-in resistance (provided by

the second ratchet) is not required and out of scope.

We use only the encrypted payload and standard MACs

that we obtain from this instance of Double Ratchet. We

do not add any source or destination identification in-

formation; thus, only the client we share this instance of

the algorithm with will be able to verify that the mes-

sage is meant for it. We perform a small study among

the authors to verify the functionality of the application

and present its open source implementation [9].

6.2 Power Consumption

We now measure the power consumption of our Moby

clientimplementation using the Battor [33] power mon-

itor, which provides power readings. We use two Nexus

5 devices, and conducted three measurements on each

device (variance among experiment results was suffi-

ciently small to rely on three measurements). We inves-

tigated the power consumption of all client operations

and found that PSI-CA was the most power-consuming

step. We test different values of PSI set sizes and present

them in Appendix F; discussing a set size of 100 here.

Each test device carries 31464 Joules of energy when

fully charged; A PSI-CA operation with 100 input el-

ements consumes 2.5 J of energy and uses 3s of CPU

time. This implies 12,586 such exchanges can be per-

formed on a charged phone, assuming no other opera-

tions of the phone consume energy. To summarize, we

found that mobile devices can handle a large number of

message exchanges on a single charge; however, the en-

ergy consumption is nontrivial. As such, an implemen-

tation needs to carefully consider the input set sizes (to

limit energy consumption per exchange). Further, there

should be a small number of options (e.g., 25, 50, 100,

200) for input set sizes, to prevent fingerprinting of users

by ensuring non-unique set sizes.

Note that measurements were performed on a previ-

ous version of Moby that did not include salted finger-



Moby 261

prints (before signing) or salt generation. These steps

add minor overheads that do not change power con-

sumption of the PSI-CA operation.

7 Discussion

In this section, we discuss some limitations of Moby in

order to help clarify what Moby’s design achieves.

Binary and Nonbinary Trust: Our system uses bi-

nary trust values instead of a trust value that takes on a

range of values between zero and one. To justify this de-

cision, we explored the use of a nonbinary trust metric

where trust in a user is calculated using communication

frequencies. Specifically, we calculate trust in a client

as the number of communications with that client di-

vided by the total number of communications, where

communications include both calls and text messages.

When running simulations with these trust values, we

found differences between binary and nonbinary trust

that we not statistically significant. Thus we use only

binary trust in our simulations.

We analyzed why there were insignificant differences

by studying message queues. Trust in Moby is used to

decide whether a message should remain in a client’s

queue or be dropped. For nonbinary trust to affect our

simulations, we would need a case where a client’s queue

is filled entirely with trusted messages. In such cases

trust values would affect which messages get to stay

and which ones get dropped. However, we observe that

such cases are rare; in all cases, the number of untrusted

messages always outnumber trusted ones. Thus, trusted

messages never compete for space in message queues

and nonbinary trust performs the same as binary trust.

Formal Proof of Anonymity: We provide a heuris-

tic, but not formal, proof of anonymity for Moby (Ap-

pendix A). This informal proof considers each aspect of

anonymity and relies on the non-existence of a global

passive adversary. It does not formalize Moby compo-

nents to prove anonymity properties.

Latency of Moby: Moby aims to provide commu-

nication when wide-area networks (i.e., the Internet)

are shut down. It does not guarantee message delivery

or timely message delivery. Our evaluation of the sys-

tem tells us that latencies achieved are relatively high

(§ 5.5.1). This is an important limitation of the system;

however, we believe that some form of secure communi-

cation is better than no communication at all.

We also note that higher delays occur for messages

that must traverse large geographic distances to reach

their destinations. In contrast, there are use cases such

as rallies or protests where messages need to be trans-

mitted over short distances. In such scenarios, delays

are expected to be small.

Dataset Limitations: As with any trace-driven simu-

lation, there are limitations to our approach. First, we

underestimate the set of locations a user visits because

we obtain cell tower locations for a user only when they

make/receive a call or send/receive a text message. Fur-

ther, the coarse location granularity based on cell towers

means that we cannot precisely identify when two users

are within range to share Moby messages; we vary the

number of users exchanging messages within an hour at

a particular tower to model cases where not all users

connected to the same tower can communicate wire-

lessly during a blackout. Lastly, to construct the “con-

tacts” list for a user, we assume that each user contacted

(calls or texts) is part of this list.

Despite these limitations and assumptions, to the

best of our knowledge this is largest set of trace data

available to us that includes not only information about

user mobility but also the set of phone numbers con-

tacted by those users. Even using conservative assump-

tions about contact lists and the set of users who can

forward messages when connected to the same tower,

we show that Moby provides reasonably efficient com-

munication during blackout periods.

Movement Patterns During Blackouts: As stated

above, we use movement patterns of users collected dur-

ing periods of Internet connectivity, while evaluating a

region under an Internet blackout. Unfortunately, we do

not have a way to predict movement patterns of users

during blackouts. This is a limitation of our evaluation

that we acknowledge but can not address.

Extending Moby to Other Systems: Our approach

can be ported to any short-message system that can

tolerate delays and dropped messages during blackouts.

However, we do not believe that Moby can be extended

to arbitrary communication systems. Experience shows

that purpose-built anonymity systems (e.g., P2P down-

loading [25] and voice communication [24]) can outper-

form general-purpose ones. That said, generalizability

remains an important and unsolved goal.

8 Related Work

Anonymous Communication During a Blackout:

Closely related works to Moby include Rangzen [28],

Briar [11], FireChat [32], and Bridgefy [3], all of which

support anonymous communication during blackouts.

Rangzen presents a microblogging platform that pro-



Moby 262

vides fewer security guarantees than Moby; which in ad-

dition to more security properties, provides a messaging

platform. Briar provides a messaging system but uses

different communication channels to relay these mes-

sages, requiring that users be on the same local network

for Briar to deliver messages. It also expects users to

establish trust manually in person. Moby in contrast,

does not require manual trust establishment and pro-

vides message delivery even if users are not in proximity

to each other. FireChat uses a mobile ad-hoc network

to forward messages, but only for a short time window.

In addition, FireChat is neither private nor secure [45].

Bridgefy provides an SDK claiming to be private and

secure but is broken in practice [7].

Secure and/or Anonymous Networks: Our work is

inspired by a wide range of usable, secure and/or anony-

mous communication tools, such as Tor [18], I2P [1],

Signal [2], Herd [24], Dissent [36], and Mesh [4]. Un-

like these networks, Moby provides secure, anonymous

communication during Internet blackouts.

Secure Encounters: There exist solutions that pro-

vide secure ways to discover and recognize devices [27].

Moby does not require its usage as it does not consider

cross encounter linkability as a security concern. Fur-

ther, SDDR is highly user unfriendly as it requires root

privileges and breaks usability of applications using it.

Trust Networks: Using a notion of trust among partic-

ipating nodes has been explored in the past; centralized

approaches [13, 43] to do so can be effective, but are not

practical in our system due to their centralized nature.

Previous decentralized approaches [39, 46, 47] were not

designed for communication during blackouts and thus

cannot be applied in our network.

Trust-based systems like EigenTrust [22] use global

trust values for users while Moby uses local trust. Other

reputation-based systems for assigning trust or rep-

utability, e.g., TrustRank [19], are incompatible with

Moby because they assume a set of pre-trusted entities.

Anonymity in Moby-Like Networks: Anonymous

communications in networks that have similar network

architecture like Moby has been studied before [21]. This

solution considers a different threat model without the

exploration of network attacks of any sort and trusting

all participating nodes. They do provide sender-receiver

unlinkability but do not guarantee receiver anonymity,

which is impractical in malicious environments.

Opportunistic Communication Networks: Moby

uses a simple opportunistic routing protocol over a

delay-tolerant ad-hoc network to forward messages

anonymously during a blackout. While it is possible to

use sophisticated routing protocols that optimize per-

formance, we use a relatively straightforward routing

protocol. Optimized routing protocols [26, 29] share

extra information to make routing more efficient, but

this leads to sharing information about users and hence

makes these protocols vulnerable to identification at-

tacks. Recent work focused on security, anonymity, and

privacy in opportunistic networks [5, 10, 21] consider

different threat models in comparison to Moby. Unlike

these, Moby is resistant to active network adversaries.

Modeling Mobile Users: Similar to us, prior works

use CDR data to model network properties including

communication patterns [12], mobility [34, 35], and so-

cial ties [23]. We are the first to use such data to evaluate

anonymous communications during blackouts.

9 Conclusion

We presented the design, implementation, and eval-

uation of Moby—a blackout-resistant anonymity net-

work for message communication via mobile devices.

Moby’s bi-modal design combines a wide-area commu-

nication channel and an ad-hoc network to provide se-

cure, attack-resistant communication during disruptions

to Internet connectivity. Moby uses a notion of trust

built upon the notion that most parties who communi-

cate via calls or text message trust each other more than

those who do not. Moby establishes such trust between

clients over a secure channel over the Internet during

times of connectivity, then uses this trust in Moby’s

novel ad-hoc network protocol to thwart network ad-

versaries. We implemented and used a custom network

simulator and a large set of user mobility and communi-

cation traces from a cellular provider to identify the im-

pact of configuration parameters on performance, and

demonstrate how trust leads to as much as a 14x im-

provement in message delivery rates when under a DoS

attack. We implemented the Moby client as a proof-of-

concept Android app and demonstrated the feasibility

of running the app in terms of power consumption.

Acknowledgments

We thank our anonymous reviewers, and our shepherd

Saba Eskandarian. This work was supported by the

National Science Foundation (Grants: SaTC-1618955

and ProperData SaTC-1955227). Any opinions, find-

ings, and conclusions or recommendations expressed in

this material are those of the authors and do not neces-

sarily reflect the views of the NSF.



Moby 263

References

[1] The invisible internet project (I2P). https://geti2p.net/en/

about/intro, 2019.

[2] Signal, 2019. https://signal.org.

[3] bridgefy, 2022. https://bridgefy.me/.

[4] Mesh, 2022. https://mesh.im/.

[5] Paarijaat Aditya, Viktor Erdélyi, Matthew Lentz, Elaine Shi,

Bobby Bhattacharjee, and Peter Druschel. Encore: Private,

context-based communication for mobile social apps. In

Proceedings of the 12th Annual International Conference on

Mobile Systems, Applications, and Services, MobiSys ’14,

pages 135–148, New York, NY, USA, 2014. ACM.

[6] Africa News. Ethiopia restores internet access after shut-

down for exams, June 2017. http://www.africanews.

com/2017/06/08/ethiopia-restores-internet-access-after-

\shutdown-for-exams/.

[7] Martin R Albrecht, Jorge Blasco, Rikke Bjerg Jensen, and

Lenka Mareková. Mesh messaging in large-scale protests:

Breaking bridgefy. In Cryptographers’ Track at the RSA

Conference, pages 375–398. Springer, 2021.

[8] Anonymized for submission. Private communication with a

humanitarian field worker in Syria., September 2017.

[9] Anonymous. Moby proof of concept code, 2019. https:

//anonymous.4open.science/r/0f48ac77-399c-4ddd-9abe-

f28e6782ef4c/.

[10] M. S. Arafath and K. U. R. Khan. Opportunistic sensor net-

works: A survey on privacy and secure routing. In 2017 2nd

International Conference on Anti-Cyber Crimes (ICACC),

pages 41–46, March 2017.

[11] Biar Project. Briar, 2017. https://briarproject.org/how-it-

works.html.

[12] Julián Candia, Marta C González, Pu Wang, Timothy

Schoenharl, Greg Madey, and Albert-László Barabási. Un-

covering individual and collective human dynamics from

mobile phone records. Journal of physics A: mathematical

and theoretical, 41(22):224015, 2008.

[13] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago

Pregueiro. Aiding the detection of fake accounts in large

scale social online services. In Proceedings of the 9th

USENIX conference on Networked Systems Design and Im-

plementation, pages 15–15. USENIX Association, 2012.

[14] H. Corrigan-Gibbs, D. Boneh, and D. Mazières. Riposte:

An anonymous messaging system handling millions of users.

In 2015 IEEE Symposium on Security and Privacy, pages

321–338, May 2015.

[15] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast

and private computation of cardinality of set intersection

and union. In International Conference on Cryptology and

Network Security, pages 218–231. Springer, 2012.

[16] Emiliano De Cristofaro and Gene Tsudik. Practical private

set intersection protocols with linear complexity. In Inter-

national Conference on Financial Cryptography and Data

Security, pages 143–159. Springer, 2010.

[17] Claudia Diaz, Stefaan Seys, Joris Claessens, and Bart Pre-

neel. Towards measuring anonymity. In International

Workshop on Privacy Enhancing Technologies, pages 54–

68. Springer, 2002.

[18] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor:

The second-generation onion router. In Proceedings of the

13th USENIX Security Symposium, August 2004.

[19] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan Pedersen.

Combating web spam with trustrank. In Proceedings of the

Thirtieth International Conference on Very Large Data Bases

- Volume 30, VLDB ’04, pages 576–587. VLDB Endowment,

2004.

[20] Human Rights Watch. India: 20 internet shutdowns in 2017,

June 2017. https://www.hrw.org/news/2017/06/15/india-

20-internet-shutdowns-2017.

[21] Rob Jansen and Robert Beverly. Toward Delay Tolerant

Network Anonymity: Threshold Pivot Scheme. In Proceed-

ings of the Military Communications Conference (MILCOM

2010), 2010.

[22] Sepandar D. Kamvar, Mario T. Schlosser, and Hector

Garcia-Molina. The eigentrust algorithm for reputation

management in p2p networks. In Proceedings of the 12th

International Conference on World Wide Web, WWW ’03,

pages 640–651, New York, NY, USA, 2003. ACM.

[23] Márton Karsai, Nicola Perra, and Alessandro Vespignani.

Time varying networks and the weakness of strong ties.

Scientific Reports, 4(1), May 2014.

[24] Stevens Le Blond, David Choffnes, William Caldwell, Peter

Druschel, and Nicholas Merritt. Herd: A Scalable, Traffic

Analysis Resistant Anonymity Network for VoIP Systems.

In Proceedings of the 2015 ACM Conference on Special

Interest Group on Data Communication, SIGCOMM ’15,

pages 639–652, New York, NY, USA, 2015. ACM.

[25] Stevens Le Blond, David Choffnes, Wenxuan Zhou, Peter

Druschel, Hitesh Ballani, and Paul Francis. Towards efficient

traffic-analysis resistant anonymity networks. In Proceedings

of the ACM SIGCOMM 2013 Conference on SIGCOMM,

SIGCOMM ’13, page 303–314, New York, NY, USA, 2013.

Association for Computing Machinery.

[26] Jeremie Leguay, Timur Friedman, and Vania Conan. Eval-

uating mobility pattern space routing for DTNs. arXiv

preprint cs/0511102, 2005.

[27] Matthew Lentz, Viktor Erdélyi, Paarijaat Aditya, Elaine Shi,

Peter Druschel, and Bobby Bhattacharjee. SDDR: light-

weight, secure mobile encounters. In 23rd USENIX Security

Symposium (USENIX Security 14), pages 925–940, 2014.

[28] Adam Lerner, Giulia Fanti, Yahel Ben-David, Jesus Garcia,

Paul Schmitt, and Barath Raghavan. Rangzen: Anonymously

Getting the Word Out in a Blackout. arXiv:1612.03371 [cs],

December 2016. arXiv: 1612.03371.

[29] Anders Lindgren, Avri Doria, and Olov Schelén. Probabilistic

Routing in Intermittently Connected Networks. In Service

Assurance with Partial and Intermittent Resources, Lecture

Notes in Computer Science, pages 239–254. Springer, Berlin,

Heidelberg, 2004. DOI: 10.1007/978-3-540-27767-5_24.

[30] New Scientist. Earthquake shakes the internet, January

2007. https://www.newscientist.com/article/mg19325852-

300-earthquake-shakes-the-internet/.

[31] New York Times. After a Cyberattack, Germany Fears

Election Disruption, December 2016. https://www.

nytimes.com/2016/12/08/world/europe/germany-russia-

hacking.html?mcubz=3.

[32] Open Garden. Firechat, 2018. https://www.opengarden.

com/firechat/.



Moby 264

[33] Aaron Schulman, Thomas Schmid, Prabal Dutta, and Neil

Spring. Phone power monitoring with battor. In 17th ACM

International Conference on Mobile Computing and Net-

working (MobiCom 2011), 2011.

[34] M Shahzamal, M F Parvez, M A U Zaman, and M D Hos-

sain. Mobility Models for Delay Tolerant Network: A Sur-

vey. International Journal of Wireless & Mobile Networks,

6(4):121–134, August 2014.

[35] C. Song, Z. Qu, N. Blumm, and A.-L. Barabasi. Limits of

Predictability in Human Mobility. Science, 327(5968):1018–

1021, February 2010.

[36] Ewa Syta, Henry Corrigan-Gibbs, Shu-Chun Weng, David

Wolinsky, Bryan Ford, and Aaron Johnson. Security analysis

of accountable anonymity in dissent. ACM Trans. Inf. Syst.

Secur., 17(1), August 2014.

[37] Telegraph. Unprecedented cyber attack takes Liberia’s entire

internet down, November 2016. http://www.telegraph.co.

uk/technology/2016/11/04/unprecedented-cyber-attack-

takes-liberias-\entire-internet-down/.

[38] The Guardian. Iraq shuts down the internet to stop pupils

cheating in exams, May 2016. https://www.theguardian.

com/technology/2016/may/18/iraq-shuts-down-internet-to-

stop-pupils-\cheating-in-exams.

[39] N. Tran, J. Li, L. Subramanian, and S. S. M. Chow. Optimal

Sybil-resilient node admission control. In 2011 Proceedings

IEEE INFOCOM, pages 3218–3226, April 2011.

[40] Trevor Perrin and Moxie Marlinspike. The Double Ratchet

Algorithm, November 2016.

[41] Nirvan Tyagi, Yossi Gilad, Derek Leung, Matei Zaharia, and

Nickolai Zeldovich. Stadium: A distributed metadata-private

messaging system. In Proceedings of the 26th Symposium

on Operating Systems Principles, SOSP ’17, pages 423–440,

New York, NY, USA, 2017. ACM.

[42] Amin Vahdat, David Becker, et al. Epidemic routing for

partially connected ad hoc networks. 2000.

[43] W. Wei, F. Xu, C. C. Tan, and Q. Li. SybilDefender: A De-

fense Mechanism for Sybil Attacks in Large Social Networks.

IEEE Transactions on Parallel and Distributed Systems,

24(12):2492–2502, December 2013.

[44] Alma Whitten and J Doug Tygar. Why johnny can’t en-

crypt: A usability evaluation of pgp 5.0. In Proceedings of

the 8th USENIX Security Symposium, volume 348, Wash-

ington, D.C., 1999.

[45] WIRED. Protesters adore firechat but it’s still not secure,

2014. http://www.wired.co.uk/article/firechat-app-hong-

kong-protesters.

[46] H. Yu, P. B. Gibbons, M. Kaminsky, and F. Xiao. Sybil-

Limit: A Near-Optimal Social Network Defense Against

Sybil Attacks. IEEE/ACM Transactions on Networking,

18(3):885–898, June 2010.

[47] Haifeng Yu, Michael Kaminsky, Phillip B. Gibbons, and

Abraham D. Flaxman. SybilGuard: Defending Against Sybil

Attacks via Social Networks. IEEE/ACM Trans. Netw.,

16(3):576–589, June 2008.

A Heuristic Proof of Anonymity

Moby provides end-to-end encryption, forward secrecy

and sender-receiver anonymity. To provide these fea-

tures, we begin with a protocol that provides end-to-

end encryption and forward secrecy. In the case of our

implementation, we use the Double Ratchet (DR) algo-

rithm. We make the following modifications to provide

sender-receiver anonymity.

Sender Anonymity: The Moby network is intended

to be deployed as a geographically distributed ad-hoc

wireless network, making a global adversary that can

observe the entire network impractical. Thus, in a net-

work where all senders cannot be observed, a participant

that introduces a message to the network cannot be dis-

tinguished from one that is forwarding it. If a network

observer sees a client that sends out a message, it cannot

tell if this client is the sender or a forwarder. Therefore,

messages are sender anonymous as an adversary cannot

identify who the sender of a given message is.

An attacker could potentially observe TTLs and

try to use them to infer senders. We add noise to the

TTLs in messages to prevent leaking information about

senders.

Receiver Anonymity: Prior to a blackout, Moby

clients establish trust with each other, and as part of

trust establishment they receive cryptographic material

to be used for blackout communications. On performing

encryption with this material, a client produces an en-

crypted payload and an associated MAC for the payload.

Without knowledge of the key shared between clients,

an adversary cannot decrypt this payload, nor can it

compute the MAC associated with it. Thus, Moby mes-

sages lack information pointing to who the receiver of a

payload is, and provide receiver anonymity.

To further ensure receiver anonymity, receivers of

messages behave in a similar manner to clients that

don’t receive messages, by holding received messages in

their message queues to prevent observers from detect-

ing message reception.

Extensibility: Moby defines its cryptographic compo-

nents in a way that developers can easily modify them

without impacting other aspects of the Moby protocol.

Drop in replacements for DR, with certain modifica-

tions, could be used while still following the protocol

defined by Moby to attain the guarantees it provides in

terms of network communications.



Moby 265

1: procedure ProcessMessageQueue(newMessages)

2: for message in newMessages do

3: for contact in allContacts do

4: MACKey ←MAC key for contact

5: computedMAC ←

HMAC(messageP ayload, MACKey)

6: if computedMAC = messageMAC then

7: New message received

8: else

9: Add message to local queue after update

10: end if

11: end for

12: end for

13: end procedure

Fig. 7. Steps involved in checking if a message received via a

message exchange is meant for a Moby client.

B Receiving a Moby Network

Message

When a client receives a message via the Moby network,

it needs to check if it is the intended destination of that

message. Most messaging systems use destination iden-

tifiers to accomplish this, but Moby messages lack such

information to provide sender anonymity. Thus, clients

follow the algorithm presented in Figure 7. For every

message in the set of new messages, the receiving client

checks every session it shares with its contacts and com-

putes HMAC s using the message payload and each MAC

Key. If the computed HMAC matches the one attached

to the message, the client knows that the message was

meant for it, and who the sender is, based on the MAC

Key that resulted in the match.

Thus, without attaching identifiers to a Moby mes-

sage, Moby clients can figure out who senders of the

message are, and identify that they were the intended

destination. Although this process is computationally

expensive, it is worth using to attain sender/receiver

anonymity.

C Moby Simulation Parameters

Table 2 summarizes the parameters we use in Moby sim-

ulations.

D Trade-Offs Between Delivery

Ratios and Latencies

Most messaging systems strive for high delivery ratios

and low latency. While the previous paragraphs consid-

5 10 15 20

0.2

0.4

0.6

0.8

1
B

A

TTL: 12
TTL: 72

Average Latency

D
el

iv
er

y
R

a
ti

o

QS 5,000 QS 10,000

QS 15,000 QS 20,000

QS 25,000 QS 30,000

Fig. 8. Scatter plot of average latency versus delivery ratio

for various simulation parameters. Cluster A indicates config-

urations that have the lowest latency (due to low TTLs) and

Cluster B identifies those with reasonably good trade-offs

between latency and delivery ratio.

ered delivery ratios and latencies in isolation, we now

investigate to what extent we can tune Moby to offer

both reasonably high delivery ratios and low latency.

To analyze the effects of varying user queue size and

time to live (TTL) on both delivery ratio and average

message latencies, we plot delivery ratios on the y-axis

and average message latencies on the x-axis in Fig. 8.

We present metrics for simulations with a liveness of

4, all other liveness values resulted in similar trends.

Note that values closer to the top left of the figures are

generally considered better: those result in both higher

deliver ratios and lower latency.

To help with reading the figure, we manually anno-

tated the graph with two clusters and a curve. Starting

with Cluster A, we can clearly identify cases where there

is the lowest latency—but this comes at the cost of low

delivery ratios. Such cases come from simulations using

a TTL of 12, for all queue sizes, 5,000 to 30,000, and

the low latency is easily explained by the low TTL.

Considering Cluster B, we find cases that have rea-

sonably high delivery ratios (>0.8) with latencies near

the middle of the range (15-17.5 hours). These high de-

livery ratios are observed for high queue size simula-

tions: 15,000 (TTL: 36), 20,000 (TTL: 36, 48), 25,000

(TTL: 36 - 72), and 30,000 (TTL: 36 - 72). The common

factors for such performance are relatively large queue

sizes (to increase delivery ratios) with moderately sized



Moby 266

Parameter

Name

Description Values Reasoning

Number of

Days

The total number of days the simulation runs 3 days Captures the functionality of the network

Number of

Messages

The total number of messages sent over the du-

ration of the simulation

30,000 Based on number of messages sent by

users

Cooldown The duration of the simulation (towards the end)

when messages are not sent out

24 hours Longer cooldowns lead to redundant re-

sults

Liveness The minimum number of hours a user needs to

participate in the dataset to be considered in the

simulation

1, 2, 4, 6, 8, 12 Larger values lead to smaller sets of eli-

gible users

Queue Size The size of a message queue for a simulated user 5000, 10000,

15000, 20000,

25000, 30000

Larger queue sizes are capped by the

number of messages sent

Time to Live The amount of time a message is alive in the

simulation

12, 24, 36, 48,

60, 72

Capped by the simulation duration

Number of

DoS Mes-

sages

The number of messages sent by a malicious en-

tity in an hour per cell tower

0, 2, 4, 6, 8, 10 Higher values lead to redundant results

Contacted

Threshold

For a user, the minimum number of times an-

other user needs to be contacted to be consid-

ered part of its contact list

1, 2, 3, 4 Higher values lead to redundant results

Hop Count The maximum number of hops away a user can

be to be considered trusted

0, 1, 2 Higher values means trusting users who

are in general complete strangers

Table 2. Simulation parameters and corresponding values.

TTLs (36 hours or higher for larger queue size) to tame

queue buildup.

We next highlight an interesting trend using the line

linking hollow squares in Fig. 8. This represents TTL

12–72 (increments of 12) for the queue size 5,000. We

notice that keeping a queue size constant, increasing

the TTL first increases delivery ratios and then leads

to a drop in Fig. 3; similarly, varying parameters this

way leads to an increase in average latency and then a

drop in the average latency. The drop in delivery ratio

also results in a drop in average latency as messages get

delivered earlier in the simulation at which point queues

get filled with messages that never get delivered.

E Effect of Exchange Probability

on Delivery Ratios

One of the limitations of our dataset is that we lack

precise geolocation information for users. We, however,

do possess user to tower mappings for when these users

send/receive text messages or call/receive calls. Since

we are unable to model fine-grained proximity between

users at the same tower and use this to estimate the

probability of successful messages exchanges between

users, we instead use a probabilistic approach. Namely,

we uniformly randomly sample a fraction of pairs of

Exchange Probability

TTL 100 50 10 8 4 2 1

12 .7318 .7282 .6193 .5807 .3862 .1281 .134

24 .9421 .9402 .8959 .8762 .7438 .3687 .366

36 .9688 .9678 .9401 .9275 .8417 .5561 .957

48 .9822 .9817 .9655 .9572 .8940 .6521 .1469

60 .9842 .9837 .9693 .9618 .9071 .6881 .195

72 .9847 .9842 .9709 .9638 .9111 .6961 .2062

Table 3. Drop in delivery ratios as Exchange Probability is re-

duced.

users connected to a tower during an hour, and simu-

late the case where only those pairs of users exchange

messages during that hour. We then explore the effects

of varying this random fraction of pairs exchanging mes-

sages on delivery ratios for epidemic routing. We explore

the following percentages: 1, 2, 4, 8, 10, 50, and 100%.

Table 3 shows the drop in delivery ratios as ex-

change probability is reduced, for various TTLs. We

observe a negligible drop in performance from 100% to

50% (under 0.5%) with larger drop as the percentage

is decreased; we see critical drops in performace for ex-

change probabilities under 5%. We observe that higher

TTLs have more resistance to low exchange probabili-

ties, notice that even 8% yields high delivery ratios for

TTLs 36 and higher. These trends are understandable as

fewer message exchanges would naturally lead to poorer

message propagation, which in turn reduces delivery ra-



Moby 267

tios. Whereas higher TTLs allow messages to stay in

circulation longer, that counteracts low exchange proba-

bilities. Interestingly, even at low exchange probabilities

(e.g., 10%), we see that the performance of the network

drops by under 5% for TTL 24 and even lower (under

2%) for higher TTLs. This supports the viability of a

large-scale deployment of Epidemic routing, and thus

Moby.

F PSI-CA Power Consumption

We measure power consumption of our Moby client im-

plementation on two Nexus 5 devices using the Battor

power measurement device. We find that PSI-CA is the

most CPU and power intensive step of the client and

thus measure consumption for different intersection set

sizes. We present results for this in Fig. 9, with PSI

set sizes on the x-axis and the CPU time (left) and

energy consumed (right) are the y-axes. We observe

a clear trend indicating substantially more CPU and

power consumption for larger set sizes, and the con-

sumption scales approximately linearly with set size.

Thus, a way to limit the power consumption of Moby is

to either eliminate PSI-CA entirely, or use reasonably

small set sizes (e.g., pick a subset of 100 contacts as

input).

0
10

0
20

0
30

0
40

0
50

0
0

5

10

15

PSI set size

C
P

U
u

sa
g
e

ti
m

e
(s

)

0
10

0
20

0
30

0
40

0
50

0
0

5

10

15

PSI set size

E
n

er
g
y

(J
)

Fig. 9. Evaluation of the CPU/power consumed by the prototype

performing a PSI operation for various PSI set sizes.


	Moby: A Blackout-Resistant Anonymity Network for Mobile Devices
	1 Introduction and Motivation
	2 Goals and Assumptions
	2.1 Goals and Non-Goal
	2.2 Assumptions
	2.3 Threat Model

	3 System Design
	3.1 Trust Establishment Protocol
	3.1.1 Trust in Moby
	3.1.2 Cryptographic Material
	3.1.3 Moby Handshake

	3.2 Moby Network Protocol
	3.2.1 Link Layer Technologies
	3.2.2 Client Discovery
	3.2.3 Sending and Receiving Moby Messages
	3.2.4 Message Exchange
	3.2.5 Post Exchange PSI-CA
	3.2.6 Message Queue Policy
	3.2.7 Moby Data Structures


	4 Security
	4.1 Wide-Area Communication Medium
	4.2 Denial-of-Service (DoS) Attacks
	4.3 Attacking a Moby Message
	4.4 Moby Network User Inference
	4.5 Trust Link Identification
	4.6 Trust Establishment Attack
	4.7 Post Exchange PSI-CA Attacks
	4.8 Out-of-Scope Attacks

	5 Simulation-Based Evaluation
	5.1 Dataset
	5.2 Simulation Framework
	5.3 Experiments Performed
	5.4 Simulation Parameters
	5.5 Performance Results
	5.5.1 Performance in the Absence of an Adversary
	5.5.2 Performance During a Jamming Attack
	5.5.3 Performance During a DoS Attack
	5.5.4 DoS via Compromised Users


	6 Implementation and Evaluation
	6.1 Implementation Details
	6.2 Power Consumption

	7 Discussion
	8 Related Work
	9 Conclusion
	A Heuristic Proof of Anonymity
	B Receiving a Moby Network Message
	C Moby Simulation Parameters
	D Trade-Offs Between Delivery Ratios and Latencies
	E Effect of Exchange Probability on Delivery Ratios
	F PSI-CA Power Consumption


