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Abstract

In this work, we present classification results on early supernova light curves from SCONE, a photometric classifier
that uses convolutional neural networks to categorize supernovae (SNe) by type using light-curve data. SCONE is
able to identify SN types from light curves at any stage, from the night of initial alert to the end of their lifetimes.
Simulated LSST SNe light curves were truncated at 0, 5, 15, 25, and 50 days after the trigger date and used to train
Gaussian processes in wavelength and time space to produce wavelength–time heatmaps. SCONE uses these
heatmaps to perform six-way classification between SN types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. SCONE is able
to perform classification with or without redshift, but we show that incorporating redshift information improves
performance at each epoch. SCONE achieved 75% overall accuracy at the date of trigger (60% without redshift),
and 89% accuracy 50 days after trigger (82% without redshift). SCONE was also tested on bright subsets of SNe
(r< 20 mag) and produced 91% accuracy at the date of trigger (83% without redshift) and 95% five days after
trigger (94.7% without redshift). SCONE is the first application of convolutional neural networks to the early-time
photometric transient classification problem. All of the data processing and model code developed for this paper
can be found in the SCONE software package1 located at github.com/helenqu/scone (Qu 2021).
Unified Astronomy Thesaurus concepts: Photometry (1234); Light curves (918); Supernovae (1668); Classification
(1907); Gaussian Processes regression (1930); Neural networks (1933)

1. Introduction

Observations of transient and supernova phenomena have
informed fundamental discoveries about our universe, ranging
from its expansion history and current expansion rate
(Riess 1998; Perlmutter et al. 1999; Freedman et al. 2019; Riess
et al. 2019) to the progenitor physics of rare and interesting
events (Pursiainen et al. 2018; Armstrong et al. 2021). In the
near future, next-generation wide-field sky surveys such as the
Vera C. Rubin Observatory Legacy Survey of Space and Time
(LSST; Ivezić 2019) will have the ability to observe larger
swaths of sky with higher resolution and certainly uncover even
more new and exciting astrophysical phenomena.

These surveys promise to generate ever-larger volumes of
photometric data at unprecedented rates. However, the
availability of spectroscopic resources is not expected to scale
nearly as quickly. Thus, the challenge of effectively allocating
these limited resources is more important than ever. For type Ia
SN cosmology, spectroscopic information is used to minimize
contamination in constructing pure and representative samples
of SNe Ia to continue to constrain the dark energy equation of
state. For supernova physicists, spectra uncover important
information about an event’s potential progenitor processes
(Filippenko 2005; Perets et al. 2010; Modjaz et al. 2014;
Sollerman et al. 2021). Spectra taken near peak brightness of an
event are optimal because they include mostly transient
information and are not dominated by host galaxy features.

With millions of alerts each night, fast and accurate
automatic classification mechanisms will be needed to replace
the time-consuming process of manual inspection. More

specifically, the ability to perform classification early on in
the lifetime of a transient would allow for ample time to take
spectra at the peak luminosity of the event or at multiple points
over the course of the event’s lifetime.

1.1. Photometric Supernova Classification

An impressive body of work has emerged over the past
decade on photometric classification of supernovae. Since only
a small percentage of discovered supernovae have ever been
followed up spectroscopically, a reliable photometric classifier
is indispensable to the advancement of supernova science.
The Supernova Photometric Classification Challenge

(SNPhotCC; Kessler et al. 2010a, 2010) created not only an
incentive to invest in photometric SN classification, but also a
data set that would be used to train and evaluate classifiers for
years to come. Successful approaches range from empirical
template-fitting (Sako et al. 2008) to making classification
decisions based on manually extracted features (Richards et al.
2012; Karpenka et al. 2013). The more recent Photometric
LSST Astronomical Time-series Classification Challenge
(PLAsTiCC; The PLAsTiCC team et al. 2018) diversified the
data set by asking participants to differentiate between 14
different transient and variable object classes, including the six
common supernova types included in this work. The top entries
made use of feature extraction paired with various machine-
learning classification methods, such as boosted decision trees
and neural networks (Hložek et al. 2020). Ensemble methods, in
which the results of multiple classifiers are combined to create
the final classification probability, were widely used as well.
Deep learning is a branch of machine learning that seeks to

eliminate the necessity of human-designed features, decreasing
the computational cost as well as avoiding the introduction of
potential biases (Charnock & Moss 2017; Moss 2018; Naul
et al. 2018; Aguirre et al. 2019). In recent years, many deep
learning techniques have been applied to the challenge of
photometric SN classification.
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Recurrent neural networks (RNNs) are designed to learn
from sequential information, such as time-series data, and have
been used with great success on this problem. Charnock &
Moss (2017) applies a variant of RNNs known as Long Short
Term Memory networks (LSTMs; Hochreiter & Schmidhuber
1997) to achieve impressive performance distinguishing SNIa
from core collapse (CC) SNe. Muthukrishna et al. (2019) use a
gated recurrent unit (GRU) RNN architecture to be able to
perform real-time and early light-curve classification. Möller &
de Boissière (2020) perform both binary classification and
classification by type with full and partial light curves using
Bayesian RNNs. Villar et al. (2020b) use a GRU RNN as an
autoencoder to smooth out irregularities in light-curve data that
are then fed into a random forest classifier.

Convolutional neural networks (CNNs), which are used in
this work, are a state-of-the-art image recognition architecture
(LeCun et al. 1989, 1998; Krizhevsky et al. 2012; Zeiler &
Fergus 2014). Pasquet et al. (2019) address the issue of
nonrepresentative training sets by using a CNN as an
autoencoder to learn from unlabeled test data. Carrasco-Davis
et al. (2021) developed an image time-series classifier as part of
the ALeRCE alert broker, using a CNN to differentiate between
various transient types as well as bogus alerts.

Outside of these traditional models, deep learning is still
providing new and creative solutions to the photometric
transient classification problem. Convolutional recurrent neural
networks are used to classify a time series of image stamps by
Kodi Ramanah et al. (2021) to detect gravitationally lensed
supernovae. A newer type of deep learning architecture, known
as a transformer, achieves a very impressive result when
applied to the PLAsTiCC data set by Allam & McEwen (2021).
A variational autoencoder is used by ParSNIP (Boone 2021) to
develop a low-dimensional representation of transient light
curves that uses redshift-annotated photometric data to perform
full light-curve photometric classification and generate time-
varying spectra, among other tasks.

1.2. Early Photometric Supernova Classification

Though much progress has been made on the photometric
supernova classification problem, most of the solutions tackle
classification of full supernova light curves retrospectively.
However, the earlier an object can be classified, the more
opportunities there are for the community to perform follow-up
observation. Spectroscopic or photometric follow-up at early
stages not only reveals insights into progenitor physics, but can
also serve as a benchmark for further observations at later
epochs. SN type IIb, for example, exhibit hydrogen features in
early spectra that quickly disappear over time (Woosley et al.
1987). Shock breakout physics is another use case of follow-up
observation. Armstrong et al. (2021) were the first to report
capturing the complete evolution of a shock cooling light
curve, a short-lived event preceding peak luminosity that
reveals properties of the shock breakout and progenitor star for
stripped-envelope supernovae such as the IIb.

Despite the general focus on full light-curve classification,
several notable works have addressed the challenge of early
photometric classification. Sullivan et al. (2006) were able to
not only differentiate between SNIa and CC SN, but also
predict redshift, phase, and light-curve parameters for SNIa
using only two or three epochs of multiband photometry data.
Poznanski et al. (2007) also performed binary Ia versus CC
SNe classification, but using a Bayesian template-fitting

technique on only single-epoch photometry and photometric
redshift estimates. PSNID (Sako et al. 2008, 2011), the
algorithm that produced the highest overall figure of merit in
SNPhotCC, was used by the Sloan Digital Sky Survey
(Frieman et al. 2008) and the Dark Energy Survey (Smith
et al. 2020) to classify early-time and full supernova light
curves.
The work of Muthukrishna et al. (2019) is a recent

application of deep learning techniques specifically to early-
time transient classification. A GRU RNN is trained and tested
on a PLAsTiCC-derived data set of 12 transients, including
seven supernova types, that are labeled at each epoch with
“pre-explosion” prior to the date of explosion and the correct
transient type after explosion. Thus, the model is able to
produce a classification at each epoch of observation. Möller &
de Boissière (2020) have also produced an RNN-based
photometric classifier that is capable of classifying partial
supernova light curves, but primarily achieves good results for
Ia versus CC SN classification. Villar et al. (2020a) use a
recurrent variational autoencoder architecture to perform early-
time anomaly detection for exotic astrophysical events within
the PLAsTiCC data set, such as active galactic nuclei and
superluminous SNe. Finally, LSST alert brokers such as
ALeRCE (Sánchez-Sáez et al. 2021) specialize in accurate
early-time classification of transient alerts.

1.3. Overview

Originally introduced in Qu et al. (2021), hereafter Q21, as a
full light-curve photometric classification algorithm, SCONE
was able to retrospectively differentiate Ia versus CC SN with
>99% accuracy and categorize SNe into six types with >98%
accuracy without redshift information. Our approach centers on
producing heatmaps from two-dimensional Gaussian processes
fit on each light curve in both wavelength and time dimensions.
These flux heatmaps of each supernova detection, along with
“uncertainty heatmaps” of the Gaussian process uncertainty,
constitute the data set for our model. This preprocessing step
smooths over irregular sampling rates between filters, mitigates
the effect of flux outliers, and allows the CNN to learn from
information in all filters simultaneously.
Section 2 outlines the details of the data sets and models

used in this work, and we discuss the classifier’s performance
on the various data set types in Section 3, including a
comparison with existing literature. We state our conclusions
and goals for future work in Section 4.

2. Methods

2.1. Simulations

For this work, SCONE was trained and tested on a set of
LSST deep drilling field (DDF) simulations. The data set was
created with SNANA (Kessler et al. 2009) using the
PLAsTiCC transient class models for supernovae types Ia, II,
Ibc, Ia-91bg, Iax, and SLSN (Guy et al. 2010; Kessler et al.
2010; Kasen & Bildsten 2010; Kessler et al. 2013; Jha 2017;
Nicholl et al. 2017; Guillochon et al. 2018; Villar et al.
2017, 2017; Pierel et al. 2018; The PLAsTiCC team et al. 2018;
Kessler et al. 2019). The relative rates and redshift distribution
are identical to those of the data produced for the PLAsTiCC
challenge. This is the same data set used to evaluate SCONE’s
categorical classification performance in Q21. No cuts on
individual low S/N ratio light-curve points were made, but
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light curves with fewer than two 5σ detections were removed,
as ttrigger would be ill-defined in those cases. We note that, in
observed data, transient light-curve samples will contain SNe
contaminated by other galactic astrophysical sources, but
methods such as Sánchez-Sáez et al. (2021) are reliably able
to distinguish extragalactic and galactic events. Thus, we can
assume the feasibility of creating a pure sample of SN light
curves such as the one used in this work.

2.2. Trigger Definition

We define a detection as any observation exceeding the 5σ
signal-to-noise ratio (S/N) threshold. We define the trigger as
the next detection that occurs at least one night after the first. In
this work, the data set with the least photometric information
includes observations up to (and including) the date of trigger.
Thus, all SNe in our data sets have at least two epochs of
observation. As the date of first detection is also a common
choice of trigger date in other transient surveys, the implica-
tions of this discrepancy are explored further in Section 3.3. We
present results on a data set where the distinction between these
two definitions is small, i.e., ttrigger� tfirst detection+ 5.

2.3. Data Sets and Heatmap Creation

2.3.1. ttrigger + N Data Sets

To evaluate SCONE’s classification performance on light
curves at different stages of the supernova lifetime, five sets of
heatmaps were created from the simulations described in
Section 2.1. All sets of heatmaps take data starting 20 nights
prior to the date of trigger (ttrigger) and end at N= 0, 5, 15, 25,
and 50 days after the date of trigger, respectively. Hereafter,
these are collectively referred to as “ttrigger+N data sets.”

Prior to training, the light-curve data is processed into
heatmaps. We use the approach described by Boone (2019) to
apply two-dimensional Gaussian process regression to the raw
light-curve data to model the event in the wavelength (λ) and
time (t) dimensions. We use the Matérn kernel ( 3

2
n = ) with a

fixed 6000Å characteristic length scale in λ and fit for the
length scale in t. Once the Gaussian process regression model
has been trained, we obtain its predictions on a λ, t grid and call
this our “flux heatmap.”
It is important to note that the Gaussian processes are fit on

light curves truncated at N days after trigger in each data set
and not given access to light-curve information past the cutoff
date. Thus, though the λ axis is not affected by the different
choices of N, the t range of the input light-curve data varies for
each ttrigger+ N data set. For the data sets in this work, the λ, t
grids were chosen to preserve the shape of the resulting
heatmap despite the fact that the number of nights of light-
curve data varies between the ttrigger+ N data sets. λ is chosen
to be 3000< λ< 10, 100 Å with a 221.875Å interval for all
data sets, while the t interval depends on the number of nights
of data: ttrigger− 20� t� ttrigger+ N with a N 20

180
+ day interval,

where N= 0, 5, 15, 25, 50. This ensures that all heatmaps have
size 32× 180.
In addition to the flux heatmap, we also take into account the

uncertainties on these predictions at each λi, tj, producing an
“error heatmap.” We stack these two heatmaps depthwise for
each SN light curve and divide by the maximum flux value to
constrain all entries to [0,1]. This 32× 180× 2 tensor is our
input to the convolutional neural network.
An example of the heatmaps and associated light curves of a

single SN in all five data sets is shown in Figure 1. Results on
the ttrigger+ N data sets are described in Section 3.2.

Figure 1. An SNII (z = 0.39) shown in all five heatmap data sets along with the light curves and Gaussian process fits used to create each heatmap. The flux and flux
error measurements from the raw photometry are shown as points with error bars, while the Gaussian process fits to each photometry band are shown as curves. The
Gaussian process errors, which are used to create the heatmaps in the middle column, are not shown in the light-curve plots. The x-axis limit of the plots in each row
are different, as the light curve is truncated according to the label on the left for each row in the figure.
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2.3.2. Bright Supernovae

Our model was also evaluated on the subset of particularly
bright supernovae from the ttrigger+ 0 and ttrigger+ 5 data sets
to emulate a real-world use case of SCONE for spectroscopic
targeting, as bright supernovae are better candidates for
spectroscopic follow-up. “Bright SNe” included in these data
sets were chosen to be SNe with last included detection r< 20
mag. With this threshold, there were 907 SNe in the ttrigger+ 0
bright data set and 5088 SNe in the ttrigger+ 5 bright data set.
As described in more detail in Section 2.4, SCONE was trained
with a standard ttrigger+ N training set combined with 40% of
the ttrigger+ N bright data set, and tested on the ttrigger+ N
bright data set. Results on these data sets are described in
Section 3.5.

2.3.3. Mixed Data Set

In order to evaluate SCONE’s ability to classify SNe with
any number of nights of photometry, a sixth data set (the
“mixed” data set) was created from the same PLAsTiCC
simulations. Data is taken starting 20 nights prior to the date of
trigger (as with the ttrigger+N data sets) but truncated at a
random night between 0 and 50 days after trigger. Due to the
choice of the t interval described in Section 2.3.1, heatmaps
with any number of nights of photometry data are all the same
size and can thus be mixed in a single data set in this manner.
We train SCONE on this mixed data set and evaluate its
performance on each of the ttrigger+ N data sets in Section 3.6.

2.4. Data Set Train/Test Split

Due to the importance of class balancing in machine-
learning data sets, the same quantity of SNe from each SN type
was selected to create the ttrigger+N and mixed data sets used
to train, validate, and test SCONE. For this purpose, 7685 SNe
of each of the six types were randomly chosen, as this was the
quantity of the least abundant type. Thus, the size of each full
data set was 46,110. An 80/10/10 training/validation/test
split was used for all results in this work. The sizes of the
training, validation, and test subsets of each data set can be
found in Table 1.

For evaluation on the bright data sets, SCONE was trained
on a hybrid training set of 40% of the ttrigger+ N bright data set
combined with a ttrigger+N training set, prepared as described
in Section 2.3.1. Thus, the training set was not quite class-
balanced, as the bright data set is not class-balanced but the
ttrigger+ N training set is. The trained model was then evaluated
on the full bright data set to produce the results shown in
Figure 10. Due to the imbalanced nature of the bright data sets,
the confusion matrices in this figure take the place of an
accuracy metric, which could be misleading. We chose to
include 40% of the bright data set in the training process, to
ensure that the model has seen enough of these particularly
bright objects to make reasonable predictions.

2.5. Model

In this work, we report early light-curve classification results
using the vanilla SCONE model developed in Q21 as well as a
variant of SCONE that incorporates redshift information. The
architecture of SCONE with redshift is shown in Figure 2. Both
redshift and redshift error are concatenated with the output of
the first dropout layer and used as inputs to the fully connected
classifier. The model uses spectroscopic redshift information
when available and photometric redshift estimates if not.
Prior to training and testing, the input flux and error

heatmaps are divided by the maximum flux value of each
heatmap for normalization. This means that absolute brightness
information is not used for classification. All results in this
work, with and without redshift, used the sparse categorical
crossentropy loss function, the Adam optimizer (Kingma &
Ba 2014), and trained for 400 epochs with a batch size of 32.
SCONE without redshift used a constant 1e-3 learning rate,
whereas SCONE with redshift used a constant 5e-4 learn-
ing rate.

2.6. Computational Performance

The time required for the heatmap creation process was
measured using a sample of 100 heatmaps on a single 32-core
NERSC Cori Haswell compute node (with Intel Xeon
Processor E5-2698 v3). The time required to create one
heatmap was 0.03± 0.01 seconds. When producing larger-
scale data sets, this process is also easily parallelizable over
multiple cores or nodes, to further decrease heatmap crea-
tion time.
SCONE without redshift has 22,606 trainable parameters

and SCONE with redshift has 22,670 trainable parameters,
while other photometric classification models require at least
hundreds of thousands. The performance gains of this simple
but effective model compounded with a small training set make
SCONE lightweight and fast to train. The first training epoch
on a NVIDIA V100 Volta GPU takes approximately 17 s (4 ms

Table 1
Training, Validation, and Test Data Set Sizes for the ttrigger + N Data Sets.

Data Set Number of Each Type Total Size

Training 6148 36888
Validation 769 4614
Test 768 4608

Full 7685 46110

Figure 2. SCONE architecture with redshift information for categorical early light-curve classification.
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per batch with a batch size of 32), and subsequent training
epochs take approximately 5 s each with TensorFlows data set
caching. The first training epoch on a Haswell node takes
approximately 12 (625 ms per batch), and subsequent epochs
take approximately 6 minutes each. Test time per batch of 32
examples is 3 ms on GPU and 10 ms on a Haswell CPU.

3. Results and Discussion

3.1. Evaluation Metrics

The accuracy of a set of predictions describes the frequency
with which the predictions match the true labels. In this case,
we define our prediction for each SN example as the class with
highest-probability output by the model, and compare this to
the true label to obtain an accuracy.

The confusion matrix is a convenient visualization of the
correct and missed predictions by class, providing a bit more
insight into the model’s performance. The confusion matrices
shown in Figure 4 are normalized such that the (i,j) entry
describes the fraction of the true class, i, classified as class j.
The confusion matrices in Figure 10 are colored by the
normalized values, just like Figure 4, but overlaid with absolute
(non-normalized) values. For both figures, the (i,i) entries, or
those on the diagonal, describe correct classifications.

The receiver operating characteristic (ROC) curve makes
use of the output probabilities for each class rather than simply
taking the highest-probability class, as the previous two metrics
have done. We consider an example to be classified as class i if
the output probability for class i, or pi, exceeds some threshold
p (pi> p). The ROC curve sweeps values of p between 0 and 1
and plots the true-positive rate (TPR) at each value of p against
the false-positive rate (FPR).

TPR is the percentage of correctly classified objects in a
particular class, or true positives (TP), as a fraction of all
examples in that class, true positives and false negatives
(TP+FN). Other names for TPR include recall and efficiency.
The values along the diagonal of the normalized confusion

matrices in Figure 4 are efficiency values:

Efficiency TPR
TP

TP FN
.= =

+

FPR is the percentage of objects incorrectly classified as a
particular class, or false positives (FP), as a fraction of all
examples not in that class, false positives and true negatives
(FP+TN):

FPR
FP

FP TN
.=

+

The area under the ROC curve, or AUC, is used to evaluate
the classifier from its ROC curve. A perfect classifier would
have an AUC of 1, while a random classifier would score (on
average) a 0.5.
The precision or purity of a set of predictions is the

percentage of correctly classified objects in a particular
predicted class:

Precision
TP

TP FP
.=

+

3.2. ttrigger+N Data Sets

The accuracies our model achieved without redshift on each
ttrigger+ N data set are described in Table 2, and the accuracies
with redshift are described in Table 3. These tables show that
redshift unequivocally improves classification performance,
especially at early times when there is little photometric data to
learn from. The inclusion of redshift information not only
increases the average accuracies for each data set but also
improves the model’s generalizability, as the standard devia-
tions for the validation and test accuracies are lower overall in
Table 3.
The largest improvement in accuracy between ttrigger+ N

data sets occurred between 0 and 5 days after trigger for all data
sets. Because the explosion likely reached peak brightness
during this period, the light curves truncated at five days after

Table 2
Training, Validation, and Test Accuracies without Redshift Information for Each Early Light-curve Data Set

Accuracy without Redshift Days after Trigger

0 day 5 day 15 days 25 days 50 days

Training 58.36 ± 0.14% 68.92 ± 0.21% 73.99 ± 0.14% 76.89 ± 0.29% 80.93 ± 0.14%
Validation 59.57 ± 0.51% 70.74 ± 0.59% 73.31 ± 3.01% 79 ± 0.84% 82.5 ± 2.35%
Test 59.66 ± 0.43% 70.05 ± 0.63% 73.66 ± 2.36% 79 ± 0.86% 82.2 ± 1.8%

Note. These averages and standard deviations were computed from five independent runs of SCONE.

Table 3
Training, Validation, and Test Accuracies with Redshift Information for Each Early Light-curve Data Set

Accuracy with Redshift Days after Trigger

0 day 5 day 15 days 25 days 50 days

Training 72.73 ± 0.27% 79.61 ± 0.3% 83.07 ± 0.2% 84.68 ± 0.2% 87.17 ± 0.26%
Validation 74.78 ± 0.18% 80.52 ± 1.42% 83.98 ± 1.15% 86.75 ± 0.5% 89.2 ± 0.85%
Test 74.27 ± 0.51% 80.2 ± 0.93% 84.14 ± 1.37% 86.71 ± 1% 89.04 ± 0.39%

Note. These averages and standard deviations were computed from five independent runs of SCONE.
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trigger include much more information necessary for differ-
entiating between the SN types.

Figure 3 shows the accuracy evolution over time for each
supernova type in the test sets. From the test sets with redshift
plot on the right, it is clear that the jump in overall accuracy
between 0 and 5 days after trigger can be attributed to the sharp
accuracy boost experienced by SNIbc at 5 days after trigger.
Overall, SNIbc benefited the most from the inclusion of
redshift, though classification performance on all types saw
improvement. Note that, as described in Section 2.3, all
heatmaps are normalized to values between 0 and 1 so absolute
flux values are not used to differentiate between types. Thus,
the model cannot rely on relative luminosity information.

The confusion matrices for ttrigger+ {0, 5, 50} test sets with
and without redshift information are shown in Figure 4. The top
two panels are early epoch classification results (0 and 5 days
after trigger) and the bottom panel shows late epoch results.
The confusion matrices from intermediate epochs (15 and 25
days after trigger) were omitted for brevity.

At the date of trigger (top panel of Figure 4), the
incorporation of redshift information primarily prevents con-
fusion between SLSN-I and SNIbc. True SLSN-I events
misclassified as SNIbc decreased from 11% on average to 2%
with redshift. True SNIbc misclassified as SLSN-I decreased
from 16% on average to 2% with redshift. Overall, SLSN-I
were classified with 91% accuracy with redshift compared to
69% without redshift, and SNIbc were classified with 54%
accuracy with redshift compared to 36% without redshift. All
types saw marked improvement in classification performance
without redshift from 0 to 5 days after trigger, while
classification with redshift saw drastic improvement in SNIbc
accuracy but only minor improvement for other types. Finally,
the effect of added redshift becomes less noticeable by late
epochs, where classification accuracy (along the diagonal) is
only mildly improved in the bottom panel of Figure 4.

The confusion matrices in Figure 4 are normalized by true
type, meaning that the values in each row sum to unity. Thus,
the values along the diagonal are efficiency scores. Normalizing

by predicted type, such that the values in each column sum to
unity, would result in purity scores along the diagonal.
However, since all data sets used in Figure 4 are class-
balanced, the purity scores can be reconstructed from these
confusion matrices by dividing each main diagonal value by
the sum of the values in its column.
The data sets used for the confusion matrices in Figure 4

were also used to create ROC curves for each SN type. ROC
curves for test sets without redshift are shown on the left side of
Figure 5, and ROC curves for test sets with redshift are shown
on the right. The addition of redshift information seems to most
notably improve the model’s ability to classify SLSN-I—all
three panels on the right show SLSN-I as the highest AUC
curve, whereas all three panels on the left show SNIa-91bg
with a higher AUC curve than SLSN-I. This is consistent with
our earlier observations from the confusion matrices and
accuracy plots.
The information in the ROC curves for all ttrigger+ N data

sets is summarized in Figure 6, showing AUC over time plots
with and without redshift. The performance looks quite
impressive, starting at an average AUC of above 0.9 with
redshift at the date of trigger and increasing to 0.975 by 50 days
after trigger. Without redshift, average AUC is still respectable,
starting at 0.88 and increasing to 0.97.

3.3. Approximating a First-detection Trigger Definition

Another common trigger definition used in transient surveys
places the trigger at the date of the first detection (tfirst detection)
rather than the second, which is the definition followed in this
work. In order to more directly compare SCONE’s results with
those of other classifiers following the first detection trigger
definition, the distribution of ttrigger− tfirst detection was examined
as well as SCONE’s performance on the subset of the
ttrigger+ 0 data set with date of second detection (ttrigger) at
most 5 days after the date of first detection (i.e.,
ttrigger� tfirst detection+ 5).
Figure 7 shows that> 65% of ttrigger dates are no more than

5 days after the date of first detection. To further understand the

Figure 3. Accuracy/efficiency over time for each supernova type without redshift (left) and with redshift (right) for the ttrigger + N test data sets. The values used in
this plot correspond with the diagonals on each normalized confusion matrix in Figure 4.
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Figure 4. Normalized confusion matrices produced by SCONE without (left) and with (right) redshift for the ttrigger + {0, 5, 50} test sets (heatmaps created from light
curves truncated at 0, 5, and 50 days after the date of trigger). These matrices were made with test set classification performance from five independent runs of
SCONE.
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direct impact of this choice of trigger definition, SCONE was
tested on the subset of the ttrigger+ 0 data set with date of
second detection (ttrigger) at most 5 days after the date of first
detection. This cut ensures that the light curves used for

classification are not given substantially more information than
those created with the first detection trigger definition. The
normalized confusion matrices for the ttrigger� tfirst detection+ 5
data set are shown with and without redshift in Figure 8.

Figure 5. Receiver operating characteristic (ROC) curves produced by SCONE without (left) and with (right) redshift for the ttrigger + {0, 5, 50} test sets (heatmaps
created from light curves truncated at 0, 5, and 50 days after the date of trigger).
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With redshift, SCONE’s performance primarily suffers on
SLSN-I and SNIa classification. SLSN-I appears to more
strongly resemble SNIax and SNIbc at early times, as the
SNIax confusion rose to 8% from 1% and the SNIbc confusion
rose to 11% from 2%. SNIa were commonly misclassified as
SNIa-91bg at early times, which is not reflected in the
ttrigger+ 0 confusion matrices in Figure 4. Surprisingly, true
SNIa-91bg were not misclassified as SNIa despite the
prevalence of SNIa misclassified as SNIa-91bg. Without
redshift, however, SCONE’s performance on the ttrigger�
tfirst detection+ 5 subset very closely resembles the ttrigger+ 0
results shown in Figure 4.

3.4. Baseline Model

A multilayer perceptron model (MLP; Hornik et al. 1989)
was developed as a baseline for direct comparison to SCONE.
MLP architectures are a simple type of feedforward neural
network with at least three layers (input, hidden, output) in
which each node in a particular layer is connected to every
node in the subsequent layer. They have been successfully used

in many general as well as image classification tasks (Liu et al.
2021; Tolstikhin et al. 2021).
The 32× 180× 2 input heatmap is split into 180 non-

overlapping “patches” of size 32× 1. The patches were chosen
to be full height in the wavelength dimension, to remain
consistent with the full height convolutional kernels used in
SCONE. A 180× 64-dimensional hidden layer is then
computed via h x W breluij i

j
ji j1, 1, 1,= +( ), where xrelu =( )

xmax 0,( ) is the rectified linear unit, x j is the jth input heatmap
patch,W1 is the weight matrix learned by the network, and b1 is
the learned bias vector. The dimensionality of the hidden layer
is then squashed to a single 64-dimensional vector with global
average pooling: h2,i= average(h1,ij). Finally, the output class
is computed via y h W bk i ji j k2, 2, 2,s= +( ) , where x k

e
e

xk

j
xj


s =

å
( )

is the softmax function, W2 is the learned weight matrix, and b2
is the learned bias vector.
Without redshift, our model achieved a test accuracy of 56%.

With redshift, the test accuracy improved to 67.19%. The
performance of the MLP on the ttrigger+ 0 data set with and
without redshift is summarized in the confusion matrices in
Figure 9. Compared to the performance of SCONE on the
ttrigger+ 0 data set in the top panel of Figure 4, the MLP is less
accurate at classifying most SN types, most noticeably with
redshift. The degraded but still respectable performance of the
MLP on classification both with and without redshift shows
that these supernova types can indeed be differentiated in some
hyperdimensional space by a neural network, and that SCONE
in particular possesses the required discriminatory power for
this task.

3.5. Bright Supernovae

Bright supernovae, defined as supernovae with last included
r-band observation r< 20 mag, were identified from both the
ttrigger+ 0 and ttrigger+ 5 data sets. Since fewer (and likely
dimmer) observations were included for each supernova in the
ttrigger+ 0 data set, there are much fewer examples of bright
supernovae than in the ttrigger+ 5 data set. The bright

Figure 6. Area under the ROC curve (AUC) without (left) and with (right) redshift over time for each supernova type.

Figure 7. Distribution of ttrigger − tfirst detection in a SCONE test data set of
4608 SNe.
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supernovae subsets of these data sets are referred to as the
“bright ttrigger+ N data sets.”

To evaluate the performance of SCONE on identifying
bright supernovae at early epochs, the model was trained on a
regular class-balanced ttrigger+N training set, prepared as
described in Section 2.4, combined with 40% of the bright
ttrigger+ N data set. The results of testing the trained SCONE
model on the bright ttrigger+ N data sets are shown in
Figure 10. These confusion matrices, like the ones in
Figure 4, are colored by efficiency score. However, since the
data set is not class-balanced, the overlaid values are absolute
(non-normalized) to preserve information on the relative
abundance of each type. Thus, an efficiency (purity) score for
each type can be calculated by dividing each main diagonal
value by the sum of the values in its row (column). The overall
accuracies as well as the total number of SNe in each data set
are summarized in Table 4.

The benefits of redshift information are much more
pronounced for certain types than others. As also noted in
analyses of Figures 4 and 6, the quantity of SNIbc misclassified

as SLSN-I was significantly reduced in results from SCONE
with redshift information. At the date of trigger, 44.4% of
SNIbc were misclassified as SLSN-I without redshift. This
contamination rate was reduced to only 3.7% with redshift.
However, classification of bright SNIa seems relatively
unaffected by the presence of redshift information. Five days
after trigger, SNIa were classified with an efficiency/accuracy
of 98.6% and a purity score of 98.1% without redshift, and
97.4% efficiency/accuracy and 99.1% purity with redshift.

3.6. Mixed Data Set

Training on the ttrigger+N data sets represents one way of
deploying SCONE for real-world transient alert applications,
while training on a mixed data set is a much less computationally
expensive alternative. On one hand, testing a ttrigger+N-trained
model on a ttrigger+N test set yields the best classification
accuracies. However, this approach requires the creation of
separate data sets for each choice of N, which could be an
expensive initial time investment, depending on the number of

Figure 9. Normalized confusion matrices produced by the baseline MLP model without (left) and with (right) redshift for the ttrigger + 0 test set (heatmaps created
from light curves truncated at the date of trigger).

Figure 8. Normalized confusion matrices produced by SCONE without (left) and with (right) redshift for the ttrigger � tfirst detection + 5 subset of the ttrigger + 0 test set.
This cut ensures that the light curves used for performance evaluation are not given substantially more information than those created with the first detection trigger
definition.
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data sets and size of each data set (see Section 2.6 for
computational requirements for heatmap creation). In this work,
only five data sets (N= 0, 5, 15, 25, 50) were created, but
perhaps N= 0, 1,K,50 will be needed to accurately classify real-
world transient alerts with any number of nights of photometry.
Training on a mixed data set, where each heatmap is created
with a random number of nights of photometry after trigger, is a
viable alternative for resource- or time-constrained applications.

To directly compare the performance of SCONE trained on
the mixed data set and the ttrigger+N data sets, the model trained
on a mixed data set was tested on each individual ttrigger+N data
set. The accuracies over time split by SN type are summarized in
Figure 11. Compared to the results of SCONE trained and tested
on each individual ttrigger+N data set (Figure 3), the accuracies

are lower but still respectable. The performance at the date of
trigger is the most dissimilar, with average accuracy 74% with z
for a model trained on ttrigger+ 0 and 64% with mixed. The
performance of the mixed-trained model performs similarly to
the ttrigger+N-trained model by 5 days after trigger, however,
with both averaging just under 80% with z. The AUCs over time
split by SN type are shown in Figure 12. These AUC plots are
comparable to the ttrigger+N AUCs in Figure 6, indicating that
the performances of both models are comparable when averaged
over all values of the prediction threshold p. However, the
predicted class for categorical classification is not typically
calculated with respect to a threshold; rather, it is defined as the
class with the highest prediction confidence for each example.
Thus, the AUCs are analogous to analyzing the performance on
each type as its own binary classification problem, resulting in
slight discrepancies from the accuracies.

3.7. Comparison with Existing Literature

At the time of this writing, the only work in existing literature
with a similarly strong focus on early photometric classi-
fication of supernovae is RAPID (Muthukrishna et al. 2019,

Figure 10. Early epoch confusion matrices with (right) and without (left) redshift for the bright supernovae (<20 magnitude) in each ttrigger + N data set. SCONE was
trained with a class-balanced ttrigger + N training set combined with 40% of <20 magnitude supernovae. These confusion matrices were created by testing the trained
SCONE model on the full <20 magnitude supernovae data set. The confusion matrices are colored according to normalized accuracies, as in Figure 4, and are overlaid
with absolute (non-normalized) values since the data set is imbalanced.

Table 4
Test Accuracies with and without Redshift Information for the Bright Data Sets

Total Accuracy without z Accuracy with z

bright ttrigger + 0 907 82.91% 91.18%
bright ttrigger + 5 5088 94.65% 95.2%
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hereafter M19), a GRU RNN approach to photometric transient
classification that differentiates between 12 transient types,
including seven supernova types. RAPID differs in several
significant ways from the data, model, and results presented in
this work. We highlight some of the differences in these two
works below.

3.7.1. Comparison of Methods

The most obvious difference is in the type of neural network
architecture used for classification. RAPID uses a unidirec-
tional RNN architecture, which is designed to learn from time-
series data chronologically. SCONE employs a convolutional
neural network architecture, which is most commonly used for

image recognition tasks. In this instance, however, SCONE is
designed to read in data chronologically. Convolutional layers
in a CNN work by computing functions on a “sliding window”
of the input image, thereby allowing the model to learn small-
scale structures in the image. This window, or the convolu-
tional kernel, is typically a small square chosen to match the
characteristic length scale of structures in the images.
SCONE’s convolutional kernel, however, is chosen to span
the full height of the input heatmap, resulting in a window that
slides chronologically along the horizontal, or time, axis.
M19 trained and tested on a data set of simulated Zwicky

Transient Facility light curves, which have g- and r-band
photometry, compared to the LSST light curves used in this
work, with ugrizY photometry bands. In addition to the six

Figure 11. Test set accuracy/efficiency without (left) and with (right) redshift over time for SCONE trained on the mixed data set and tested on each individual
ttrigger + N data set. The values used in these plots correspond with the diagonals on a normalized confusion matrix.

Figure 12. Area under the ROC curve (AUC) without (left) and with (right) redshift over time for SCONE trained on the mixed data set and tested on each individual
ttrigger + N data set.
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supernova types that this work focuses on, M19 includes four
rare transient classes (pair instability supernovae, intermediate
luminosity transients, calcium-rich gap transients (CART), and
tidal disruption events) as well as point-Ia and KN.

Other differences include the addition of a “pre-explosion”
class, rest- versus observer-frame time intervals, and the choice
of trigger definition. M19 chooses to include an additional class,
“pre-explosion,” to describe examples at time steps prior to the
occurrence of the transient event. M19 also converts time
intervals out of the observer frame by dividing by 1+ z, which is
not done in this work in order to ensure that mistakes in redshift
estimates will not be propagated to affect the light-curve data.
Finally, M19 uses the first-detection trigger date definition, while
this work defines ttrigger to be the date of the second detection.

3.7.2. Comparison of Results

The results of SCONE classification with redshift (right side
panels of Figures 4–6) is used to compare with RAPID’s
results, as RAPID also incorporates redshift information. As
described in the previous section, this work differs in many
ways from M19, and the following comparison does not
account for these differences; a rigorous comparison of the two
models against a single data set is left to a future work.

Most notably, SCONE improves upon RAPID’s SNIbc and
SNII classification accuracy, while RAPID performs very well
at classifying early-time SNIa. From Figure 7 of M19, 12% of
SNIbc are correctly classified two days after detection,
compared to SCONE’s 54% accuracy at the date of trigger.
In RAPID’s results, 30% of true SNIbc are misclassified as
CART, which is not included in the data sets in this work. The
second- and third-largest contaminants (SNIax at 19%, then
SNIa and SNIa-91bg at 8% each), are both part of this analysis.
From Figure 4, we find that SNIax and SNIa-91bg are also
major contaminants for SCONE at 23% and 11%, respectively,
at the date of trigger and 16% and 4%, respectively, five days
after trigger. However, there is no significant contamination
from SNIa, with contamination rates at 4% on the date of
trigger and 1% five days after trigger.

Two days after detection, SNII is classified at 7% accuracy by
RAPID, compared to 64% accuracy at the date of trigger by
SCONE. The primary contaminant of SNII for RAPID 2 days
after detection is SNIa at 21%, which is not reflected in SCONE’s
results, where the contamination rate is 6% at the date of trigger
and 3% five days after trigger. The second-largest contaminant,
SLSN-I, is also not an issue in SCONE’s SNII classification.
Surprisingly, the improvement over time of RAPID’s SNII
classification accuracy outpaces its SNIbc classification accuracy,
as it is able to achieve 49% accuracy on SNII 40 days after
detection, compared to 31% accuracy on SNIbc.

While SCONE’s SNIa classification accuracy slowly climbs
from 77% at the date of trigger to 93% 50 days after trigger,
RAPID is able to classify SNIa at 88% accuracy almost
immediately after detection. A future direct comparison will aid
in concluding whether this discrepancy is due to differences in
the data sets, such as M19ʼs exclusion of z� 0.5 objects, or
something more fundamental to the model architectures.

4. Conclusions

Our ability to observe the universe has improved in leaps and
bounds over the past century, allowing us to find new and rare
transient phenomena, enrich our understanding of transient

physics, and even make cosmological discoveries aided by
observational data. Our photometric observing capabilities
greatly outpace the rate at which we can gather the associated
spectroscopic information, resulting in a vast trove of
photometric data sparsely annotated by spectroscopy. In the
era of large-scale sky surveys, with millions of transient alerts
per night, an accurate and efficient photometric classifier is
essential not only to make use of the photometric data for
science analysis, but also to determine the most effective
spectroscopic follow-up program early on in the life of the
transient.
In this work, we presented SCONE’s performance classify-

ing simulated LSST early-time supernova light curves for SN
types Ia, II, Ibc, Ia-91bg, Iax, and SLSN-I. As an approach
based on neural networks, SCONE avoids the time-intensive
manual process of feature selection and engineering, and
requires only raw photometric data as input. We showed that
the incorporation of redshift estimates as well as errors on those
estimates significantly improved classification accuracy across
the board, and was especially noticeable at very early times.
Notably, this is the first application of convolutional neural
networks to this problem.
SCONE was tested on three types of data sets: data sets of

light curves that were truncated at 0, 5, 15, 25, and 50 days
after trigger (ttrigger+N data sets); bright (<20 magnitude)
subsets of the ttrigger+ {0, 5} data sets; and a data set of light
curves truncated at a random number of nights between 0 and
50 (“mixed”). Without redshift, SCONE was able to classify
ttrigger+ 0 light curves with 60% overall accuracy, which
increases to 82% at 50 days after trigger. SCONE with redshift
information starts at 74% overall accuracy at the date of trigger
and improves to 89% 50 days after trigger. Confusion matrices,
ROC plots, and accuracy over time as well as AUC over time
plots of results with and without redshift were presented to
better understand classification performance and identify areas
of improvement. For the bright subsets, overall accuracy is
>90% at the date of trigger with redshift and over 80%
without. These results improve to around 95% accuracy both
with and without redshift by five days after trigger. The overall
accuracy over time of a model trained on a mixed data, tested
on the ttrigger+ N data sets, shows some degradation in
accuracy at very early epochs, but may be a worthwhile
lightweight alternative to the more resource-intensive process
of creating many ttrigger+ N data sets.
We showed that SCONE’s performance with redshift is

competitive with existing work on early classification, such as
M19, while improving on computational time requirements.
SCONE has a lightweight preprocessing step and can achieve
impressive performance with a small training set. It requires
only hundredths of a second to preprocess each light curve into
a heatmap, and seconds for each training epoch on GPU. This
makes SCONE a great candidate for incorporation into alert
brokers for LSST and future wide-field sky surveys.
In future work, we plan to apply this model to real data to

further validate the approach. We also plan to extend SCONE
to classify both full-duration and early light curves for more
transient and variable classes in the PLAsTiCC simulations.
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