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ABSTRACT

Severe acute respiratory syndrome - coronavirus 2 (SARS-CoV-2) continues to effect communities across the world. One way to combat these effects is to enhance our
collective ability to remotely monitor community spread. Monitoring SARS-CoV-2 in wastewater is one approach that enables researchers to estimate the total
number of infected people in a region; however, estimates are often made at the sewershed level which may mask the geographic nuance required for targeted
interdiction efforts. In this work, we utilize an apportioning method to compare the spatial and temporal trends of daily case count with the temporal pattern of viral
load in the wastewater at smaller units of analysis within Austin, TX. We find different lag-times between wastewater loading and case reports. Daily case reports for
some locations follow the temporal trend of viral load more closely than others. These findings are then compared to socio-demographic characteristics across the

study area.

Introduction

It has been over two years since the severe acute respiratory syn-
drome coronavirus 2 (SARS-CoV-2), which causes coronavirus disease
2019 (COVID-19), caused a worldwide lockdown (WHO, 2020). Unlike
previous outbreaks of human pathogenic viruses (e.g., SARS-CoV-1 in
2003, HIN1 in 2009, and the Middle East respiratory syndrome [MERS]
coronavirus epidemic between 2012 and 2015), the high transmissivity
rate of SARS-CoV-2 made this outbreak unique (Fauci et al., 2020; Godri
Pollitt et al., 2020; Petersen et al., 2020; Rodpothong and Auewarakul,
2012). At least part of the high transmissivity is attributable to the lag
between viral shedding and the onset of physical symptoms (Petersen
et al., 2020). This lag, coupled with the substantial hurdles associated
with large-scale testing early in the pandemic, made quarantine mea-
sures less effective in reducing transmission (Kucharski et al., 2020).
Although many countries have implemented (and continue to imple-
ment) physical distancing requirements, mask mandates, and re-
strictions on indoor and outdoor gatherings, more than 532 million
COVID-19 cases have been confirmed worldwide (JHU, 2021). Howev-
er, many scientists believe the reported cases underestimate the actual
count due to problems with testing (availability, false negatives),
asymptomatic individuals, and a reluctance for testing by some symp-
tomatic individuals (Alwan, 2020; Tanne, 2020; Wu et al., 2020). Alwan
(2020) suggests that one of the main factors contributing to testing
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reluctance is the financial impact of missing work for those without paid
time off or sick leave.

The ability to work remotely influences the financial impact of a
positive COVID-19 test. For people who cannot work remotely after a
positive COVID-19 test, the financial impacts could be devastating,
while those who can work remotely likely feel much less of an impact.
Remote work is not an option for many industries focusing on service (e.
g., restaurants, hotels, janitorial services), construction, or the gig-
economy (e.g., Instacart, Uber), among many others. A positive
COVID-19 test for such a worker could mean that they go without pay.
For most people, losing income is not a viable option. This potential loss
means that many individuals choose to work, regardless of COVID-19
status. Compounding these challenges is that employees in these
aforementioned industries skew towards lower-income minority groups
(Goldman et al., 2021). As a result, recent research finds a dispropor-
tionate representation of minority populations in COVID-19 cases,
hospitalizations, and deaths (S. J. Kim and Bostwick, 2020; Munoz-Price
et al., 2020; Wadhera et al., 2020).

Due to testing difficulties (e.g., availability), reluctance to test,
asymptomatic individuals, and the lag between viral shedding and
physical symptoms, it is challenging to accurately identify COVID-19
community case counts (Wu et al., 2020). This uncertainty has made
mounting an appropriate response strategy problematic (Noh and
Danuser, 2021). To that end, a growing number of researchers are
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turning to wastewater epidemiology to assess viral loads in a sewershed
(Larsen and Wigginton, 2020). This work has primarily focused on
developing surveillance tools to test for SARS-CoV-2 RNA (Ahmed et al.,
2020; La Rosa et al., 2020), identify ideal sampling points within a sewer
network (Balboa et al., 2021; Yeager et al., 2021), and compare
SARS-CoV-2 concentrations in wastewater with reported cases
(Medema et al., 2020; Randazzo et al., 2020). Results from these studies
highlight the value of wastewater in monitoring the prevalence of
COVID-19 within a sewershed and the assocaited communities. How-
ever, from a response and mitigation perspective, the size of a sewershed
makes it difficult to pinpoint specific sub-communities for treatment,
testing, and supplies without supplementing sampling at the wastewater
treatment plant with sampling of key manholes in the sewershed.
Increasingly, studies are exploring the efficacy of wastewater moni-
toring to provide actionable insights for COVID-19 response. This in-
cludes the recent work by Scott et al. (2021) who utilized gene markers
to monitor the spread of COVID-19 on a U.S. college campus, Pillay et al.
(2021) who provided a unique perspective on wastewater monitoring in
South Africa, and Saththasivam et al. (2021) who were the first to
measure SARS-CoV-2 RNA fragments in wastewater in Qatar. This work
continues to evolve with some of the most recent studies taking place
internationally, such as in Madrid (Lastra et al., 2022). For more infor-
mation on the state of the art in monitoring we recommend the recent
review by Lahrich et al. (2021). In this study, we aim to contribute to this
growing body of research by exploring the spatial variation in
SARS-CoV-2 loading at wastewater treatment plants and daily reported
COVID-19 cases at the ZIP code level in Austin, Texas. To do this, we
begin by exploring the spatio-temporal variation of daily COVID-19
cases for each ZIP code falling within two sewershed catchment areas.
We then compare the temporal relationship of SARS-CoV-2 wastewater
loading (N-gene copies/day) and daily reported COVID-19 cases to un-
cover the temporal dynamics of viral shedding and case reporting at a
more granular spatial scale. Our cross-correlation time-series analysis
identifies the presence of lead periods between spikes in SARS-CoV-2
loading and reported cases when considering the aggregate number of
cases in the sewershed and wastewater loadings. However, when we
disaggregate and apportion cases to the individual ZIP codes based on
the population within the sewershed, the lag periods are generally the
same, but variation in the strength of correlations between ZIP code case
reports and loading levels become clear. The results of this paper support
the use of wastewater analysis as a surveillance tool and highlight how
case disaggregation and geospatial analysis can enhance surveillance.

Background

The concept of community vulnerability connects to anthropogen-
ically induced or natural hazards — typically large pollution releases,
hurricanes, tornados, and other events with the potential to cause sig-
nificant damage to the built and natural environment. In this context,
vulnerability is defined as a community’s susceptibility to harm or the
potential for loss within the community (Cutter, 1996; Weichselgartner,
2001). Building a deeper understanding of the link between community
vulnerability and hazard risk is critical for minimizing the damage
caused by disasters — whether anthropogenic or natural.

The ongoing COVID-19 pandemic, by any standard, is a disaster.
Millions of people have died (JHU, 2021), the pandemic continues to
cripple economies (Bauer et al., 2020), and the ripple effects of the
pandemic will manifest for many years (British Academy, 2021; Hor-
owitz et al., 2021). Simply put, the world was woefully underprepared
for an event of this magnitude, as evidenced by a general reluctance to

Spatial and Spatio-temporal Epidemiology 42 (2022) 100521

act on early information about the virus (Caduff, 2020), the rampant
spread of misinformation (H. K. Kim et al., 2020), lack of testing
(Caduff, 2020), scarcity of medical supplies (Ranney et al., 2020), and
general supply-chain problems (Guan et al., 2020). Moreover, the virus
exposed many inadequacies associated with our collective ability to
respond to this type of event, highlighting how the most vulnerable
communities face the highest risk of COVID-19 illness and death, due, in
part, to difficulties associated with monitoring community spread and
prevalence (S. J. Kim and Bostwick, 2020).

Socioeconomic health inequities of COVID-19

Post-hoc research on COVID-19 case rates reveals patterns of effects
between COVID-19 and socio-demographics that parallel similar
research on other environmental and social inequities. The burdens
fueled by COVID-19 have fallen disproportionately on vulnerable and
marginalized communities. This finding appears to be scale agnostic,
with research confirming these patterns across cities (DiMaggio et al.,
2020), counties (Liao and De Maio, 2021), states (Karaca-Mandic et al.,
2021), and regions (Strully et al., 2021). These burdens range from
higher percentages of positive tests to increased hospitalizations and
mortality.

More specifically, recent work in Louisiana found that Black Amer-
icans made up 70.6% of the COVID-19 hospitalizations and 76.3% of
COVID-19 deaths, even though only 36% of the population for the study
area is Black (Price-Haywood et al., 2020). Likewise, in Milwaukee,
Wisconsin, a cross-sectional analysis revealed that Black males were at
higher risk of testing positive for COVID-19 and being hospitalized due
to COVID-19 complications than were their racial and ethnic counter-
parts (Munoz-Price et al., 2020). Almagro & Orane-Hutchinson (2020)
reported similar results, identifying a significant, positive relationship
between low-income majority-minority areas and the percentage of
positive COVID-19 tests in New York City. Furthermore, Mahajan &
Larkins-Pettigrew (2020) and Karmakar et al. (2021) both show the
existence of significant racial inequities in COVID-19 mortality using
data from across the United States.

Many medical professionals point to the health inequities in the
United States as the underlying reason for some of the racial disparities
in COVID-19-related health outcomes (Bibbins-Domingo, 2020). For
example, pre-existing conditions can make the risk of COVID-19 illness
greater. Because minority communities are disproportionately affected
by diabetes, hypertension, obesity, and other ailments (Towne et al.,
2017; Zarefsky, 2020), their mortality risk for COVID-19 is much higher.
In addition to comorbidities, members of minority groups are more
likely to be part of the low-wage essential workforce, such as bus drivers,
custodians, service workers, and other front-line industry workers
(Bibbins-Domingo, 2020). Indeed, Almagro & Orane-Hutchinson (2020)
tested and confirmed that working in transportation, construction, and
other service industry occupations was positively and significantly
associated with positive COVID-19 tests. Because these workers typi-
cally do not have paid time off or sick leave (Schneider and Harknett,
2021), they might feel less inclined to be tested or stay home from work
following a positive test or symptom onset. As a result, the actual
COVID-19 case count might be much higher in such communities. Thus,
even though free COVID-19 testing is available, testing is unlikely to be
the most reliable means for monitoring COVID-19 prevalence within a
community.

Finally, recent research suggests that commercial activity, specif-
ically the movement of people between work and home, is an important
explanatory factor in the spread of COVID-19 (Bontempi et al., 2021;
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Fig. 1. Austin study area with the two wastewater treatment service areas highlighted.

Grubesic et al., 2021). Indeed, recent studies have demonstrated an
interesting link between COVID-19 transmission in communities where
individuals are likely to work at “risky” facilities with the potential for
high infection rates (Towers et al., 2022). In short, individuals who
commute to and from jobs that place them at higher risk of infection are
in-essence two-way vectors for transmission. They may transport the
virus to and from the locations where they work and live.

Proactive monitoring

Proactive monitoring is essential for preparedness and effective
resource allocation (Lin Moe and Pathranarakul, 2006). Due to the
concern regarding underestimation of the actual case count and level of
community spread of COVID-19, scholars have been advancing
SARS-CoV-2 monitoring in wastewater. Farkas et al. (2020) detailed that
viral concentrations in wastewater can provide an essential indicator of
viral disease prevalence in a community. While the methods for
concentrating and detecting SARS-CoV-2 in wastewater continue to be
developed, many researchers have successfully extracted SARS-CoV-2
RNA from untreated sludge samples or other bulk wastewater sam-
pling points (Balboa et al., 2021; Palmer et al., 2021). Quantifying the
viral concentration in wastewater samples typically involves
reverse-transcription, quantitative, real-time polymerase chain reaction
(RT-qPCR), digital PCR, or digital-drop PCR (ddPCR) methods. For
example, Ahmed et al. (2020) employed RT-qPCR to determine the

SARS-CoV-2 concentration in wastewater to estimate the prevalence of
COVID-19 among those who lived within the target Australian sew-
ershed, while (Liu et al., 2020) reported that the ddPCR test returned
fewer false negatives in low viral load specimens than did RT-qPCR
methods. The results from Suo et al. (2020) also suggest that ddPCR
might be better than RT-qPCR for minimizing false negatives.

Wastewater-based epidemiology lends itself to an early-warning and
preparedness system for decision-makers and health officials. For
example, several recent studies document the presence of SARS-CoV-2in
wastewater weeks before the first case was actually reported (La Rosa
et al., 2020; Medema et al., 2020; Randazzo et al., 2020). Moreover,
results from other studies suggest that one can use wastewater moni-
toring to track the prevalence of the virus as it ebbs and flows within a
community over time. For example, Ahmed et al. (2020) explored this
temporal dynamic and found some initial alignment between the decline
in the first COVID-19 case wave and wastewater loading. Kumar et al.
(2021) also published promising results, graphically depicting a corre-
lation between wastewater SARS-CoV-2 concentrations and reported
COVID-19 cases with a wastewater lead time of 1-2 weeks. Weidhaas
et al. (2021) report a similar wastewater lead time.

Interestingly, Nemudryi et al. (2020) documented an even more
dynamic relationship that varied depending on a waning (decreasing) or
waxing (increasing) of COVID-19 case numbers. During the waning
period (decrease in cases after initial surge), patient-reported symptom
onset preceded detectable levels of SARS-CoV-2 in the wastewater by
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eight days,” with a spike in positive COVID-19 tests two days after
wastewater detection. Conversely, during a waxing phase (resurgence),
symptom onset was found to precede wastewater detection by five days,
with positive tests following four days after SARS-CoV-2 was detected in
the wastewater. Given that this analysis was performed in the relatively
small city of Bozeman, Montana, the lag between symptom onset and
wastewater detection might be longer than expected due to the difficulty
in detecting SARS-CoV-2 in wastewater for the small COVID-19-positive
population.

These studies highlight the potential for wastewater monitoring as an
early-warning system and method for estimating the prevalence of
COVID-19 within the communities served by a given sewershed. How-
ever, one drawback of current approaches is the lack of explicitly ac-
counting for the number of people or facilities that are contributing to
the wastewater. For example, consider the equation to estimate viral
gene copies used in this analysis:

@

CoV — 2 loading = ( gene copies ) . (L wastewater)

L wastewater day

Eq. (1) can then be transformed to estimate the number of ill in-
dividuals within the sewershed (Weidhaas et al., 2021) with some as-
sumptions about how much effluent each individual contributes. That
said, the estimate of total number of infected individuals based on
SARS-CoV-2 concentration critically depends on knowing the size of the
population contributing wastewater in the sewershed.

Unfortunately, sewersheds rarely align with administrative bound-
aries; instead, they often bisect locations where the population is known
(e.g., census tracts, counties, ZIP codes). This is because many sewer
systems are designed for gravity wastewater collection systems (GWCS)
or pressure collection. The former relies heavily on the elevation
changes across the landscape to control where and how wastewater
flows through the system (Islam, 2017). The latter depends on a series of
pumps to move the water through the system. To make the system as
efficient as possible, they are designed and modified to optimize flow,
which will not always conform to administrative boundaries (Mis-
zta-Kruk, 2016). There also are reporting challenges with COVID-19
cases. Agencies typically assign COVID-19 case counts to each admin-
istrative unit (e.g., tract or ZIP code). As a result, researchers interested
in estimating case counts or positive case rates based on gene copies of
SARS-CoV-2 in wastewater must apportion the population and the
number of cases to match the service area of the sewershed. If one has
information about the population with sufficient granularity, it is
possible to geocode (i.e., add latitude and longitude coordinates)
household addresses to provide a highly accurate estimate of the pop-
ulation within the sewershed (Weidhaas et al., 2021). However, this
level of granularity is not always available, leading to the use of rough
population estimates based on large regional areas (Ahmed et al., 2020).

While wastewater-based epidemiology provides an initial indication
of COVID-19 community prevalence, it remains challenging to identify
and effectively direct intervention resources to sub-communities that
might be more vulnerable to COVID-19 and actively experiencing
community spread. These challenges are especially acute when the
sewersheds bisect administrative units, which is the case for Austin,
Texas (Fig. 1). This work explores an approach that will help facilitate a
more spatially granular assessment of COVID-19 cases and SARS-CoV-2
loading in wastewater. To accomplish this task, we utilize daily reported
COVID-19 cases in Austin, Texas, and SARS-CoV-2 wastewater data from
the two major sewersheds in Austin (Fig. 1). We begin by calculating
space-time clusters of COVID-19 case prevalence across the ZIP codes in
Austin, TX. Then, we perform a cross-correlation analysis between

% All laboratory confirmed cases of COVID-19 were contacted via telephone
and asked a series of questions, including the date they first started to feel
symptoms.
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SARS-CoV-2 loading in wastewater and daily reported COVID-19 cases
for the proportion of each ZIP code that falls within the sewershed of
interest. Not only does this allow us to determine the lead time between
viral shedding and reported cases, but it also allows us to determine
whether the reported cases in some ZIP codes follow the wastewater
loadings more closely than others. If so, it would provide a more
nuanced understanding of which communities are experiencing more
extensive community spread and require more response resources.

Data and methods
Data collection

We obtained case information from the City of Austin’s COVID-19
dashboard (APH, 2021). Reported cases are laboratory-confirmed, offi-
cial city numbers and are reported at the ZIP code level. We gathered
case data from May 2020 through January 2021 for each ZIP code in
Austin. We transformed the reported cumulative cases to reflect the new
daily cases by subtracting the previous day’s cumulative case count (t-1)
from the current day’s cumulative case count (t).

Wastewater collection

Flow-weighted, 24-hour composite samples of primary clarifier
effluent (500-1000 mL) were collected from May 2020 - January 2021
from the two major wastewater treatment plants in Austin, Texas:
Walnut Creek (WC) and South Austin Regional (SAR) wastewater
treatment plants (Fig. 1). The WC sewershed covers 169.2 sq. miles and
processed approximately 53 million gallons per day (MGD) during the
study period. The SAR sewershed covers 251.2 sq. miles and processed
approximately 43 MGD during the study period (Palmer et al., 2021).
Samples generally were collected three times per week at the WC
wastewater treatment plant and two times per week at the SAR waste-
water treatment plant. Samples were transported on ice to the labora-
tory at the University of Texas at Austin, mixed, divided into 50-mL
aliquots, and stored at —20 °C.

Sample processing and RNA extraction

The wastewater samples were processed and RNA extracted ac-
cording to the recommended protocol in Palmer et al. (2021). Briefly,
triplicate 50-mL aliquots for each wastewater sample were placed in a
room temperature water bath for 1.5h to thaw. Aliquots were then
pasteurized at 60 °C for 1.5 h. Two-phase centrifugation at 4500 xg for
5min at 4 °C resulted in a pellet that was subsequently resuspended in
the lysis buffer provided in the MagMax Microbiome Ultra Nucleic Acid
Isolation kit (ThermoFisher, Waltham, Massachusetts). Homogenization
was conducted in the lysing tubes of the kit via four rounds of disruption
in a FastPrep-24 (MP Biomedicals; Santa Ana, California) at 4.0 m/s for
20 s and centrifugation at 13,000 xg for 15-20s.

RNA was extracted with the MagMax Microbiome Ultra Nucleic Acid
Isolation kit according to the manufacturer’s instructions utilizing the
KingFisher Flex system (ThermoFisher, Waltham, Massachusetts).
Extracted RNA was stored at —20 °C. The nucleic acid concentration was
measured spectrophotometrically with the Synergy Neo 2 Hybrid Multi-
Mode Reader (BioTek; Winooski, Vermont).

SARS-CoV-2 quantification by RT-qPCR

The SARS-CoV-2 concentrations of aliquots were determined via
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triplicate RT-qPCR reactions on each RNA extract, using a ViiA7 Real-
Time PCR System (ThermoFisher; Waltham, Massachusetts) and the
CDC nCOV_N2 primer/probe set (Integrated DNA Technologies [IDT],
Coralville, Iowa). A standard curve (20,000, 2000, 200, 20, and 2 N gene
copies/pL) was prepared via a serial dilution of the 2019-nCoV_N_Posi-
tive Control (IDT). RT-qPCR reactions had a total volume of 20 pL, and
contained: 5 uL of TagMan™ Fast Virus 1-Step Master Mix (Thermo-
Fisher; Waltham, Massachusetts), 1.49 pL of the CDC nCOV_N2 primer/
probe set mix (for a final concentration of 500 nM of each primer and
125 nM of probe), 8.51 uL of PCR-grade water, and 5 uL of RNA extract.
The thermal cycler conditions recommended by the CDC were used:
50 °C for 5 min, 95 °C for 20 s, and 40 cycles of 95 °C for 15 s and 60 °C
for 60s. The limit of detection (LOD) of triplicate N2 assays was
determined to be 7.5 N gene copies per reaction via six serial dilutions
(100,000 to 1 copy per reaction) of the 2019-nCoV_N_Positive Control
SARS-CoV-2 plasmid standard and subsequent 20 replicates of standards
with 10, 5, 2.5, and 1 copy per reaction. Because we utilized 50-mL
sample aliquots and 200-pL. elution buffer, the LOD translates to
6000 N gene copies/L of wastewater. RT-qPCR reactions that did not
yield amplification were not assigned a concentration value, and the
lack of amplification was noted per the protocol followed by Ahmed
et al. (2020a). Samples that did not yield an average concentration of the
N gene above the LOD were not included in the correlational analyses.
The validity of RT-qPCR results was ensured by including positive
controls (2019-nCoV_N_Positive Control, IDT) and negative controls
(PCR-grade water) in every RT-qPCR plate. The SARS-CoV-2 concen-
tration in each extract was calculated in units of N gene copies/uL
extract by averaging the triplicate reactions for each extract. The
average SARS-CoV-2 concentration of each wastewater sample in units
of N gene copies/L wastewater was calculated by using the aliquot
volume (50 mL), the volume of elution buffer (200 pL), and the con-
centrations of the extracts. Finally, the average concentration of
SARS-CoV-2 is calculated for each wastewater sample and multiplied by
the plant’s wastewater flowrate for that day (L/d) to obtain the loading
of SARS-CoV-2 (N gene copies/d) (Appendix A).

Case data preparation

The area served by each treatment plant and each ZIP code in the
Austin area is shown in Fig. 1. It is important to note that several ZIP
codes on the periphery of Austin only partially overlap with the sew-
ersheds. Therefore, an essential first step in analyzing the correspon-
dence between SARS-CoV-2 wastewater loading and COVID-19 case
count is to apportion cases to each ZIP code based on the percent of the
population in each ZIP code that falls within the sewershed area. Several
alternative approaches can facilitate this apportionment. First, one
could take a purely area-based approach. This approach scales cases by
the percent area of each ZIP code that overlaps with the sewershed.
However, this simplistic approach fails to account for locations with
sparsely (or densely) populated areas. Second, one could use the popu-
lation of nested administrative units (e.g., block groups or tracts within a
ZIP code) that fall within the sewershed to apportion cases. This alter-
native is more accurate than the area-based approach but will likely face
similar issues as the first approach if the sewershed bisects the smaller
administrative units, if the administrative unit is sparsely populated, or
if the population concentrates in a small area of a larger administrative
unit. Third, one could utilize the locations of structures in the admin-
istrative unit. Here, the cases are scaled to reflect the proportion of
structures within each administrative unit for the sewershed. This
approach provides a more accurate representation of population loca-
tions while also directly accounting for wastewater sources.

Spatial and Spatio-temporal Epidemiology 42 (2022) 100521

We employed the third approach and began by clipping each ZIP
code area to match the spatial bounds of the sewershed. Next, we used a
comprehensive structure shapefile to identify the count of structures
within each ZIP code and the sewershed boundaries. Next, we divided
the number of structures falling within the sewershed portion of the ZIP
code (Ssruc:) by the total number of structures in the ZIP code (Spw) to
build a scaling factor for case counts. Specifically, we multiplied this
proportion by the total daily case count reported for each ZIP code (2),
then, after scaling the cases, we calculated the daily case rate for each
ZIP code (or ZIP code portion overlapping the sewershed area) at time
(t) for each ZIP code (i) per 10,000 residents (3).

struct

apportioned_cases = ——— * daily case count (2)
total

H t
daily cases|

COVID — 19 Case Rate! = ( §
! population;

) + 10,000 ®)

The case rate (3) for each time period (t) for each ZIP code (i) was
used for the space-time cluster analysis to facilitate a more objective
comparison of COVID-19 cases across areas with different populations.

Daily cases — wastewater correlation analysis

Sewershed level

We performed cross-correlations between the wastewater loading at
each treatment plant (N gene copies/day) and the apportioned new daily
cases” in aggregate (total for all ZIP codes in the sewershed area) and to
each ZIP code individually. Where the wastewater data are concerned,
the WC wastewater treatment plant contained three dates (10/13/20,
10/14/20, 10/15/20) with two loading values. For these cases, we took
an average of the two values. In addition, loading data from 11/23/20 —
12/2/20 and 12/9/20 — 12/30/20) were omitted from both wastewater
datasets because the samples collected on these days had a holding time
at 4 °C that exceeded 7 days. We used loading and case data collected
between 7/1/20 and 1/11/21 for the SAR sewershed and 5/17/20 to 1/
6/21 for WC sewershed.

For the sewershed area analysis, we plotted SARS-CoV-2 loading data
for WC and SAR against new daily reported cases. We applied a temporal
lag (t+1, t+2,...t+ 10) to the reported date for the loading data in
order to shift it forward in time because SARS-CoV-2 detection in
wastewater often precedes symptom onset and case reporting. Next, we
used case data corresponding to the date of the lagged loading values
and calcualted a Pearson correlation to compare. For example, when
analyzing a lag of one day, the COVID-19 case data from 7/2/20 would
be paired with the 7/1/20 loading data.

ZIP code analysis

We began the ZIP code level analysis by z-score standardizing both
the COVID-19 case counts and SARS-CoV-2 wastewater loadings. We
then fit smoothing curves to both datasets using the locally weighted
scatterplot smoothing (LOWESS) technique (Nemudryi et al., 2020). The
model uses a local weighting value to determine the influence that
surrounding points have when determining the value of the smoothed
estimate. After several iterations utilizing different weights, we deter-
mined that 0.20 offered a good balance between over and underfitting
for the wastewater data and 0.166 for the case data. Next, the waste-
water data was iteratively lagged relative to the case data in one-day
increments beginning at t-15 days and ending and t+ 15 days. Next,
we calculated a Pearson cross-correlation value between wastewater
loading and daily case numbers for each lag period, subsequently
recording the lag at which the highest cross-correlation value (max
synchrony) was found. Finally, we added both of these measures as an
attribute of the ZIP code shapefile for mapping. The lag at which max

4 Hereafter any reference to cases is related to the apportioned numbers.
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Fig. 2. Correlation between SARS-CoV-2 wastewater loading and apportioned aggregate case count for each sewershed at different time lags. Lag time indicates how
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Fig. 3. The max synchrony value represents the highest correlation between wastewater loading and case count for each ZIP code. The reported time lag indicates the
day (lag) associated with the highest correlation between wastewater loading values and case data. Sewersheds are outlined in green and blue.

synchrony occurs provides a general measure of how far ahead waste-
water loading preceded case reporting, while the max synchrony value
itself will measure how strong the relationship between wastewater
loading and reported cases is for each ZIP code.

Space-time analysis
We also performed a space-time cluster analysis of the daily COVID-

19 case rates using apportioned case numbers to identify the spatial and
temporal clusters of COVID-19 across the sewershed ZIP codes. We

employed a space-time variation of the local Moran’s I statistic, which
determines the percentage of time that each ZIP code was a member of a
hotspot (high case numbers surrounded by areas of similarly high case
numbers), cold spot (low case numbers surrounded by areas of similarly
low case numbers), or outlier (low cases surrounded by high cases, or
vice versa) throughout our study period. The local Moran’s I is defined
as follows:

n—1
Ii=xi_x ZWQ(I]‘—X) (4)

s
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Fig. 4. Graphical display of the spatio-temporal COVID-19 hotspot clusters for
each ZIP code. Coloring corresponds to the amount of time that each ZIP code
was a members of a space-time case hotspot denoted as a percent of the total
days (320) of reported case data used in the analysis.

0-1.5

Where x; is the attribute for feature i, X is the global average of
attribute x, wy; is the weight between feature i and j, and S? is the
variance for attribute x. We classify a feature (i.e., ZIP code area) as part
of a hotspot, cold spot, outlier, or not significant based on the value of I
and its associated z-score and p-value. In addition to spatial neighbors j,
the space-time variation of the local Moran’s I considers temporal
neighbors (z) at a lag of two-time steps, allowing us to evaluate the
persistence of clusters across both space and time. We evaluate these
results in light of several socioeconomic measures, including a social
vulnerability index calculated by the Centers for Disease Control (CDQ).?

Results

Once we apportioned the new daily cases to each ZIP code, we
conducted cross-correlations between cases and wastewater loading at
the aggregate sewershed level and at the ZIP code level. Both of these
were performed according to the respective sewershed. When using case
data aggregated to the sewershed level, the cross-correlations revealed a
significant positive correlation between loading and new daily cases for
both sewersheds (WC: r=0.697, p-value <0.001; SAR: r=0.648, p-
value <0.001). Fig. 2 displays the lag time plot and correlation co-
efficients. The results indicate a significant positive correlation (p-value
< 0.05) for all lag times (Appendix B); however, the correlation coeffi-
cient was the highest when wastewater was shifted backwards in time by
1-2-days for WC and 1-day for SAR. Both treatment plants had a second

5 https://www.atsdr.cdc.gov/placeandhealth/svi/index.html
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local maxima in correlation coefficient when wastewater data preceded
cases by 7- and 8-days (Fig. 2). These maxima align with previous
findings, which reported SARS-CoV-2 trends in wastewater appearing
2-8 days before reported COVID-19 cases (Karthikeyan et al., 2021).

We then performed a similar cross-correlation analysis but used the
apportioned case data for each ZIP code. Using the ZIP code as the unit
of analysis allowed us to map the correlation value for each ZIP code and
the lag when max synchrony occurred (Fig. 3). The results reveal vari-
ation in the strength of the correlation and the lag when the correlation
is strongest. Overall, the correlation between wastewater loading and
new daily reported cases for each ZIP code was generally high, with an
average Pearson value of 0.79 (p < 0.05) and 0.85 (p<0.05) for WC and
SAR, respectively.

Both sewersheds share a certain degree of heterogeneity in max
synchrony values (right panel Fig. 3). There was a more noticeable east
to west trend associated with the max synchrony values in the WC
compared to SAR, with the values getting smaller (less correlated) as one
moves from the east to the west. In SAR, the synchrony values do not
appear to show as strong of an east-west spatial trend. There are also
several ZIP codes with low correlation values within Central Austin. This
result is not necessarily surprising given the diurnal nature of the pop-
ulation in these areas (i.e., large daytime, commuter populations;
smaller nighttime, residential populations) and also the high population
of younger individuals (at UT Austin) who may have been asymptomatic
and not tested, which may have contributed to an irregular pattern of
wastewater loading and case reporting.

The time lag associated with the highest correlation also varied by
ZIP code, and interestingly, by sewershed. Recall that we lagged
wastewater loading values against case values in 1-day intervals such
that positive lag numbers indicate that SARS-CoV-2 wastewater loadings
preceded COVID-19 case reporting. ZIP codes in the SAR sewershed
generally have a shorter lag period as compared to those for the WC
sewershed. Several ZIP codes in the SAR sewershed had a lag of 0;
however, there were several other locations in SAR where wastewater
loading preceded reported cases by one and four days, and one ZIP code
where max synchrony occurred at a 13-day lag (78744). Also of note in
the SAR sewershed were two ZIP codes with a negative lag value (78712,
78705). A negative result indicates that COVID-19 cases precede SARS-
CoV-2 wastewater loadings. Although this result is possible, the likeli-
hood that it is spurious increases due to these ZIP codes again being
associated with the University of Texas at Austin which was a COVID-19
testing hub and has a large young-adult population.

In the WC service area, except for a few areas, most of the ZIP codes
show a max synchrony when wastewater loading preceded positive case
reports by seven days. The seven-day lag for WC departs from the
aggregated analysis (Fig. 2), which found the highest correlation at a lag
between zero and two days. That said, it should be noted that the syn-
chrony values for the 1-7 day lag calculated for each ZIP code were
separated by roughly a few hundredths in correlation value. It is also
worthwhile to recognize the spike in correlation at the seven-day lag
point for the aggregate analysis in Fig. 2. This provides some support for
the 7-day finding in the disaggregated analysis.

Cluster analysis

After apportioning the daily COVID-19 time-series data, we used case
rate (cases/10,000 people) to conduct a space-time cluster analysis. The
analysis identified which ZIP codes were associated with COVID-19
hotspots, cold spots, and outliers as well as how long they remained
part of each cluster throughout the study period. For illustrative
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Fig. 5. Underlying socio-demographic patterns across the Austin, TX metropolitan layer with the sewershed boundaries overlain. The diversity index (top right)
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higher score while areas with more homogeneity with respect to race and ethnicity receive a lower score. Total minority population (top right) measures the size of
the minority population within each block group. Median household income for each block group is illustrated in the bottom left, and the social vulnerability index
(top right) provides a composite measure of vulnerability based on many variables identified as corresponding to vulnerability to exogenous shocks.
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Table 1

Pearson correlation values between the max synchrony values calculated for
each ZIP code from the correlation between wastewater loading and new daily
cases and several socioeconomic'! indicators of interest.”

Time as Diversity Med. HH SVI Commuting
Hotspot Index Inc. population
Combined 0.3143* 0.2085 0.1629 0.2426 .2828*
Max
Synchrony
SAR Max 0.3117 0.0636 0.3513 0.1086 .4109*
Synchrony
‘WC Max 0.5528** 0.5124** —0.2703 0.5219** .1783
Synchrony
Significance
(p-value):
**<0.01,
*<0.05

purposes, we focus on hotspots. Fig. 4 displays the percentage of time
that each ZIP code was part of a hotspot cluster (if at all).

In general, the pattern of COVID-19 hotspots follows an east to west
trend with values high in the east and low in the west, signifying that ZIP
codes in the east were a spatial and temporal hotspot for COVID-19
cases. In addition, many of the ZIP codes identified as part of a
COVID-19 hotspot for a large percentage of the study period were the
same ZIP codes with large synchrony values illustrated in Fig. 3.

The east-west trend in COVID-19 space-time hotspots is similar to
several underlying socio-demographic patterns. To provide more nuance
to these patterns, we illustrate the underlying socio-demographic pat-
terns within Austin at the block group level in Fig. 5, with the ZIP codes
outlined in dark gray. The figure highlights the stark east-west trend for
most of the city. ZIP codes located in East Austin have a higher level of
diversity (racial and ethnic makeup, top left panel), have a higher
population of minority groups (top right), and exhibit higher social
vulnerability (bottom right) as compared to West Austin. In contrast
high median income areas are concentrated in West and central West
Austin (bottom left panel). We also assess the spatial distribution of the
percentage of the working population that commutes between 25 and
60 min for work (Appendix C) which does appear to follow a similar
pattern to that of the synchrony values in Fig. 4.

In addition to the visual patterns illustrated in Fig. 5, we tested the
correlation between each ZIP code’s max synchrony value (the corre-
lation between the SARS-CoV-2 wastewater loading data and new daily
COVID-19 cases) and several of the socioeconomic variables and time as
a hotspot (Table 1). Simultaneous analysis of ZIP codes yields two sig-
nificant relationships where max synchrony is positively associated with
ZIP codes that were spatial and temporal COVID-19 hotspots and the
number of commuters. This result is partially expected, given that hot-
spots of COVID-19 are likely to be major contributors of SARS-CoV-2
levels in the wastewater and that areas with large commuting pop-
ulations are positively associated with synchrony values, suggesting a
relationship between commuting and viral shedding. Median household
income, although not significant, shows only a very small correlation for
each sewershed, although it is negative for WC (discussed in more detail
below).

Interestingly, although a visual comparison of the max synchrony
values for each ZIP code (Fig. 3) and the socioeconomic variables in the
SAR sewershed (Fig. 5) might suggest some significant correlations,
statistical testing revealed the contrary; only one of the relationships is
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significant. Recall that in ZIP codes with greater diversity, the index
values are higher. With growing evidence to suggest that minority
groups are disproportionately affected of COVID-19, we expected to see
a large positive correlation between the max synchrony value and the
diversity and minority index. Similarly, even though median household
income was not significantly related to max synchrony in the SAR
sewershed, the coefficient is positive, which is also unexpected. The
coefficient for commuting population is both positive and significant,
providing some evidence to suggest that commercial activity, as repre-
sented by traveling to and from work, may increase exposure and
transmissivity.

The ZIP codes within the WC sewershed broadly exemplify what we
expected to see across the region. Except for median household income
(which is in the expected direction), all of the coefficients were signifi-
cant with the expected sign. Specifically, for ZIP codes in the WC sew-
ershed, those with a larger max synchrony value (more association
between reported daily case count and wastewater loading) are posi-
tively related to the amount of time the ZIP code was a COVID-19 hot-
spot, a higher diversity index value, and a higher social vulnerability
index value.

Discussion

The work presented here demonstrates how the disaggregation and
apportioning of COVID-19 cases to smaller units of analysis can reveal
more nuanced information regarding community spread when used in
conjunction with the level of SARS-CoV-2 wastewater loading measured
via RT-qPCR. Specifically, after apportioning cases to each respective
ZIP code within the treatment plant sewershed, our analysis revealed
that case counts for some ZIP codes follow the peaks and troughs of
SARS-CoV-2 wastewater loading more closely than do others. When
assessing in which ZIP codes the case counts best match the wastewater
loading over time, we identified some spatial patterns that align with
more vulnerable communities. We also found that by working at the ZIP
code level rather than the aggregate sewershed area, we can forecast
new case reports at an earlier time. Clinical testing for SARS-CoV-2
generally happens within 3 to 9 days after symptom onset (Freeman
et al., 2021), with viral shedding beginning before symptom onset.
Although the aggregated ZIP code data would provide a foreshadowing
of case reports 1-2 days in advance, the ZIP code level analysis suggests
that some locations wastewater loading values might precede case re-
ports by 7-10 days. There are several implications of these findings
worth further discussion.

First, we conducted cross-correlation analyses to examine the effect
of disaggregating case data to a smaller unit of analysis (sewershed level
vs. ZIP code level). For both analyses, we used the ratio of structures
within the sewershed area for each ZIP code to total structures in order
to apportion new daily cases to each ZIP code. Both analyses found that
SARS-CoV-2 wastewater loading increased before the reporting of
COVID-19 cases. However, there were differing temporal lags for the
results. Specifically, the highest lag correlation for the aggregate anal-
ysis was between 1 and 2 days, while the highest lag correlation for the
disaggregate analysis was generally between 3 and 7 days (and earlier
for some), depending on ZIP code. There was a noticable second spike in
correlation values for the aggregate analysis at the 7 day mark, although
not as strong. These results confirm that wastewater loading is a viable
approach for surveillance but that the sewershed-level (aggregate data)
might not provide sufficient lead time for preparedness. Thus, the use of
disaggregate case data could be better for an early-warning system.
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Second, many studies have documented the positive relationship
between COVID-19 case rate and vulnerable communities (DiMaggio
et al., 2020; Strully et al., 2021). We know that both low-income and
minority communities have a higher chance of contracting COVID-19
and suffering from COVID-19 related illness due to their higher expo-
sure rates. Unfortunately, it is also true that testing rates are lower in
these communities for a variety of reasons. This analysis offers a new
perspective on understanding the geography of community spread.
Using temporal cross-correlation between SARS-CoV-2 wastewater
loading and COVID-19 cases, we identified the ZIP codes with the
highest correlation between COVID-19 loading and daily reported cases
at the ZIP code level. Our ability to assess the strength of these corre-
lations is related to how we scaled cases. With a deeper understanding of
these specific ZIP codes that are contributing more to the wastewater
loading, responders can efficiently allocate human resources and
response efforts. Moreover, a recent study has identified a link between
the probability of contracting COVID-19 from surface water and areas
where wastewater treatment plants (max capacity of >10,000 popula-
tion equivalents) discharge effluent (Wang et al., 2022). The approach
taken in this study could further inform this type of surface water
analysis by comparing where wastewater treatment plants are dis-
charging effluent and the case rates of the surrounding communities.
This would be especially important for understanding whether vulner-
able groups were disproportionately exposed to COVID-19 via waste-
water treatment discharge.

Third, an important finding from this analysis was the lack of evi-
dence (at the aggregate level) pointing to a correlation between COVID-
19 cases in majority-minority communities and wastewater loading. It
was only after we investigated the ZIP codes within respective sew-
ersheds that the results matched our expectations. Still, only one of the
sewersheds (WC) showed a significant correlation between max syn-
chrony and the socioeconomic variables. These same relationships were
not significant for the SAR sewershed or the region more broadly. One
explanation for this result concerns the geographic concentration of
minority communities in Austin. Comparing the distribution of the mi-
nority population and diversity scores at the block group level in Fig. 5
to the distribution of synchrony values in Fig. 4, two important points
are revealed. First, in SAR, the concentration of minority groups within
any single ZIP code is not as high compared to WC. Second, the max
synchrony values associated with each ZIP code in SAR are compara-
tively dispersed. While there does appear to be a correlation between
minority groups in WC, the case data reported at the ZIP code level does
not provide us with enough granularity to determine whether the same
is true in SAR. This is the likely reason why the SAR correlations in
Table 1 are neither significant nor in the expected direction. That said, it
is worthwhile to remember that without disaggregating the data and
analyzing these relationships at the ZIP code level, we would not have
been able to say anything regarding specific relationships between
vulnerable communities, COVID-19 loading, and daily reported cases.
As a result, the approach of case disaggregation for sewershed analyses
still shows promise as a mechanism for more granular hotspot moni-
toring, preparedness, and mitigation decisions.

1 HH is short for household income
2 8VI is short for Social Vulnerability Index
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Limitations and future directions

One limitation of this work is related to the reporting of COVID-19
cases, where cases are added to the count on the COVID-19 dashboard
on the date that test results become available rather than being added to
the count on the date that the specimen was collected; thus, the vari-
ability with respect to the length of time for analyzing the clinical
sample could affect the strength of the correlation analysis performed
herein. Where the lag times are concerned, we cannot say for certain
why we see some variation in the peak correlation time between
wastewater loading and case reports. It may have something to do with
the distance that each ZIP code is to the treatment plant but would need
more data to be sure. This is a valuable avenue for future research as it
may help disentangle when and to what extent specific communities are
experiencing an outbreak. Another limitation of this work is the fre-
quency of wastewater testing (two samples per week at SAR and three
samples per week at WC). We also recognize that wastewater monitoring
is not available nor feasible in all parts of the world, and thus there are
some limitations for the generalizability of the approach detailed here.
To that extent, researchers should focus on where and how to place
sensors within informal sewer systems (those without a treatment plant)
in order to gain insight in to where and to what extent COVID-19 is
prevalent in these communities

It is also important to recognize the general pattern uncovered in this
analysis compared to the location of treatment plants. With the general
east-to-west trend of max synchrony values between SARS-CoV-2
wastewater loading and new daily cases and the treatment plants’
location in East Austin, we cannot rule out the possibility that proximity
to treatment plants had something to do with the ZIP codes that had the
highest correspondence between cases and wastewater loading. Once
SARS-CoV-2 enters the sewer system, it begins to degrade (Li et al.,
2021); more work is required to understand the effect of signal decay
and distance to a treatment plant.
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Appendix

SARS-CoV-2 Loading in Wastewater
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Appendix A: Measured SARS-CoV-2 wastewater loading values overtime for each sewershed treatment plant.

B: Correlation coefficients between for each lag period when comparing the aggregate new daily reported cases and SARS-CoV2 wastewater
loading.

SAR WC
Lag Pearson Coefficient Pearson Coefficient
0 0.6481** 0.6972%*
1 0.8424** 0.6817**
2 0.4129* 0.6988**
3 0.5790%* 0.5359**
4 0.5528** 0.3965**
5 0.6966** 0.3513**
6 0.6139%* 0.4594**
7 0.7741** 0.5402%*
8 0.7636** 0.5049**
9 0.6580** 0.4975%*
10 0.5968** 0.4622%*

Significance (p-value):*<0.05, **<0.01
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