A Scalable Parallel Algorithm for Balanced Sampling (Student Abstract)

Alexander Lee,*! Stefan Walzer-Goldfeld,”' Shukry Zablah,” Matteo Riondato'

I Box 2232, Dept. of Computer Science, Amherst College, Amherst, MA 01002, USA
2 Pallet Labs Inc.
{awlee22, swalzergoldfeld23, mriondato } @amherst.edu, shukry @pallet.xyz

Abstract

We present a novel parallel algorithm for drawing balanced
samples from large populations. When auxiliary variables
about the population units are known, balanced sampling im-
proves the quality of the estimations obtained from the sam-
ple. Available algorithms, e.g., the cube method, are inher-
ently sequential, and do not scale to large populations. Our
parallel algorithm is based on a variant of the cube method
for stratified populations. It has the same sample quality as
sequential algorithms, and almost ideal parallel speedup.

Introduction

Many approximation algorithms and heuristics for impor-
tant and diverse data analytics tasks use random sampling:
a small subset (or sample) of the data (or population), cho-
sen at random, is analyzed quickly at the price of introduc-
ing some error in the estimation of the quantities of interest.
When available, additional information about the popula-
tion units can be used to obtain a balanced sample (see Pre-
liminaries), i.e., a more representative sample, thus improv-
ing the quality of the estimation obtained from it. Balance
sampling is used in the New French Census and the French
Master Sample (Dessertaine|2006)) as well as to improve the
consumer price index in Italy (Biggeri and Falorsi|2006)).
Deville and Tillé (2004) introduced the cube method, an
algorithmic framework for drawing balanced samples with
desired inclusion probabilities, later improved by [Chauvet
and Till¢ (2006) (related work is discussed in the online sup-
plemenﬂ). The cube method is inherently sequential, thus
it becomes impractical on the humongous populations, i.e.,
datasets, that are common in modern data analytics.

Contributions We introduce a parallel algorithm for
drawing balanced samples from large populations. At the
heart of our approach is a variant of the cube method for
stratified balanced sampling (Chauvet2009): we use “fake”
strata to split the work among the different processors. Our
algorithm has the same balancing quality as the sequential
algorithm, and it exhibits an almost ideal speedup as the
number of available processors increases.

“These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.
"https://github.com/acdmammoths/parallelcubesampling.

Preliminaries
Let Y = {uy,...,un} be a population of N units. Each
unit uy, is associated to a vector ax = (a1, ..., k)" of n

known auxiliary variables, and to a variable of interest y,
whose value is unknown unless we explicitly “query” wuy,

which is assumed to be costly. We let T = ZkN:l aj be
the vector of population totals of the n auxiliary variables.
Since querying the whole population would be expensive,
we want to estimate a value 6 = 227:1 f(yg) for a given
function f from a random balanced sample of the popula-
tion, i.e., a subset of the population drawn according to a
specific probability distribution over a specific collection of
population subsets, as follows.

Any subset A of U can be represented as the binary vec-
torsa = (s1,...,sn)7 where, fork = 1,...,N, sp = 1
if u, € A, and s, = 0 otherwise. Let w = (my,...,7n)7
be a given vector of inclusion probabilities. Given A C U,
the estimate for € on A is the Horvitz-Thompson estimate
25:1 f(yx)sk /. Consider the n x N matrix W whose
(i,7) entry is a;;/m;. The Horvitz-Thompson estimate for
T on A C U is the vector T 4 = Wsy. A balanced sam-
pling design ® is a probability distribution over the support
S = {s € {0,1}"Y : Ws = T} such that the probabil-
ity that unit uy belongs to the sample is 7. Le., if we let
s = (s1,...,sn)" be a random binary vector sampled ac-
cording to ®, it holds that Pr(s; = 1) = 7. ® is balanced
because in every sample (i.e., those whose vectors are in S),
the population totals estimate matches its exact value.

Algorithm

As discussed, a balanced sample is a vector s € {0, 1}N that
satisfies the balancing equations

Ws=T. (D

Geometrically, {0,1}" is the set of vertices of the N-

dimensional hypercube C' = [0, I}N. The solution space of
the balancing equations (I), is the hyperplane Q = 7 +
ker(W). Thus, to obtain a balanced sample from S by draw-
ing from ®, one must select a vertex of C' that belongs to
K = C N Q, while respecting the inclusion probabilities
7. The cube method (Deville and Tillé€ [2004) for balanced
sampling is designed around this geometrical intuition.


https://github.com/acdmammoths/parallelcubesampling

The cube method has two phases: flight and landing. The
flight phase performs a random walk on the constraint space
K, starting from the vector of inclusion probabilities 7r, with
appropriate transition probabilities, until it reaches a vertex
s of K. s may or not be a vertex of C, i.e., some of its entries
may be nonintegral. When this issue, known as the rounding
problem, is encountered, the landing phase then moves from
stoas’ € {0, I}N close to K, i.e., s’ is approximately
balanced (Ts ~ T), and returns it.

Chauvet (2009) provides an extension of the cube method
for stratified populations, i.e., when U is partitioned in strata
Ui, ...,Uy. First, a flight phase is performed separately on
each stratum, then the resulting per-stratum sample vectors
are concatenated into a single one, and a second “global”
flight phase is performed, starting from the concatenated
vector, followed by a landing phase to solve the rounding
problem, if present.

Our parallel algorithm is based on the stratified cube
method. Let p be the number of available processors. For
ease of presentation, and w.l.o.g., assume that NV is divisible
by p. We create H = p fake strata of size N/p, by arbitrarily
assigning units to the strata. The flight phases, one per stra-
tum, can then be performed all in parallel. The algorithm
then continues as in the stratified cube method.

Experimental Evaluation

The first goal of our evaluation is to assess the balancing
quality of the samples produced by our algorithm, i.e., how
well they satisfy the balancing equations (I)). The second
goal is to evaluate how our algorithm scales as the popu-
lation size and the number of processors grow.

We implemented our parallel algorithm and the fast cube
method (Chauvet and Tillé[2006) in Python

We used artificial datasets with n = 10 and N €
{2500, 5000, 10*,10°,10%,107}. The values of auxiliary
variables were generated by randomly selecting values from
a uniform distribution over the interval [0, 1). The inclusion
probabilities 7 were also drawn uniformly at random from
[0,1). We ran the experiments on a x86—64 virtual machine
with 32 vCPUs, 128 GB of RAM, and Amazon 2 Linux.

N = 2500 N = 10000 N =107

2500-

o
3

Ideal
== Speedup
Runtime

2.5-

o
o

20- 2000-
Execution
Part

o
o

1500-

o
°
&
8 04- 15 W setp
@ . parallel
o
d
g 0.3- 1.0- 1000- o
c
S
x0.2-
0.5- 500-
0.1
0.0- 0.0- 0-

12 4 8 1632

i 2 4 8 1632
Number of processors p

12 4 8 1632

Figure 1: Parallel algorithm runtimes for different N and p.

*Implementations of all algorithms are available on our reposi-
tory: |https://github.com/acdmammoths/parallelcubesampling.

We measured the absolute relative deviation 100|W's —
T|/T (where the division is component-wise) of both our
implementations (parallel and sequential) and compared
the obtained values with the implementations of the se-
quential cube method (Chauvet and Tillé 2006) in the
cubesampling and BalancedSampling R packages.
The balancing qualities of all four algorithms were ex-
tremely similar, confirming the correctness of our parallel
approach. They all tend to slightly underestimate the pop-
ulation totals and the magnitude of the deviations is very
small (less than 0.5%) (see Fig. 2 in the supplement.)

Fig.[T] shows the results of our runtime evaluation (results
for other values of NV are in the supplement). We split the
runtime into three components: setup (creation of the fake
strata and other data preparation), parallel (first flight phase),
and end (concatenation, second flight phase, and eventual
landing phase). At large population sizes common in mod-
ern data analytics (N > 10°), our parallel algorithm shows
close to an ideal speedup. When the population is smaller,
the overhead at higher levels of parallelism becomes too
costly, resulting in an increase of the runtime as the num-
ber p of processors grows. Additionally, the runtime for the
“end” part is a larger portion of the total runtime, because
the high number of strata implies a more serious rounding
problem (more entries of the concatenated vector are non-
integral), thus the second flight phase and the landing phase
take more time. The results of this experiment confirm the
ability of our algorithm to make balanced sampling scalable
for large populations.

Conclusion

We introduced a novel parallel algorithm for balanced sam-
pling, to make this powerful statistical technique scale to
large populations. Our approach offers a near-perfect par-
allel speedup, and produces samples of the same quality as
sequential algorithms. In the future, we will develop novel
applications of balanced sampling to data analytics.

Acknowledgements
This work is funded, in part, by NSF award IIS-2006765.

References

Biggeri, L.; and Falorsi, P. 2006. A probability sample strat-
egy for improving the quality of the consumer price index
survey using the information of the business register. In Joint
ECE/ILO meeting of the of Group of Experts on Consumer
Price Indices.

Chauvet, G. 2009. Stratified balanced sampling. Survey
Methodology, 35(1): 115-119.

Chauvet, G.; and Tillé, Y. 2006. A fast algorithm for bal-
anced sampling. Computational Statistics, 21(1): 53-62.
Dessertaine, A. 2006. Sondages et séries temporelles: une
application pour la prévision de la consommation électrique.
Actes des journées frangaises de Statistique.

Deville, J.-C.; and Tillé, Y. 2004. Efficient balanced sam-
pling: the cube method. Biometrika, 91(4): 893-912.


https://github.com/acdmammoths/parallelcubesampling

	Introduction
	Preliminaries
	Algorithm
	Experimental Evaluation
	Conclusion

