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ABSTRACT
In this paper, we propose a Flexible processing-in-DRAM frame-
work named FlexiDRAM that supports the efficient implementation
of complex bulk bitwise operations. This framework is developed
on top of a new reconfigurable in-DRAM accelerator that leverages
the analog operation of DRAM sub-arrays and elevates it to im-
plement XOR2-MAJ3 operations between operands stored in the
same bit-line. FlexiDRAM first generates an efficient XOR-MAJ
representation of the desired logic and then appropriately allocates
DRAM rows to the operands to execute any in-DRAM computa-
tion. We develop ISA and software support required to compute
in-DRAM operation. FlexiDRAM transforms current memory ar-
chitecture to a massively parallel computational unit and can be
leveraged to significantly reduce the latency and energy consump-
tion of complex workloads. Our extensive circuit-to-architecture
simulation results show that averaged across two well-known deep
learning workloads, FlexiDRAM achieves ∼15× energy-saving and
13× speedup over the GPU outperforming recent processing-in-
DRAM platforms.

CCS CONCEPTS
• Hardware→ Dynamic memory; • Computer systems orga-
nization → Reconfigurable computing.
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1 INTRODUCTION
Take the sight of the modern applications, the geometric growth
of data imposes high energy consumption and high latency in the
traditional von-Neumann computer architecture constrained by
transferring a vast amount of data between separate memory and
processing blocks [18]. To overcome these issues, Processing-in-
Memory (PIM) mechanism has been widely exploited [2, 4, 12] to
incorporate logic units within memory to process data internally
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without high-frequency access and long-distance transmission. PIM
in the context of main memory (DRAM- [4, 12, 18]) has drawn
much more attention in recent years mainly due to larger memory
capacities and off-chip data transfer. Such processing-in-DRAM
platforms show significantly high throughputs leveraging multi-
row activation methods to perform bulk bit-wise operations by
either modifying the DRAM cell and/or sense amplifier.

Ambit [18] presents a Triple-Row Activation (TRA) technique
to carry out a majority gate (MAJ)-based AND/OR logic with neg-
ligible modification to SA, excelling NVIDIA GeForce GPU, and
even HMC [16], respectively by 32.0×, and 2.4×. However, Ambit’s
throughput is limited when it comes to complex XOR-based logic
implementations. For accelerating Convolutional Neural Networks
(CNN), DRISA [12] presents two alternative 3T1C- and 1T1C-based
PIM techniques and improves speedup and energy-efficiency by
7.7× and 15× against GPUs. The 3T1C-based computing performs
intrinsic in-memory NOR logic by adding two more transistors
to every cell. The 1T1C-based design does not modify the DRAM
cell structure; however, it performs multi-cycle AND/OR logic by
adding extra logic circuitry and latch after the sense amplifier. Some
prior works have proposed PIM designs with five-row activation
mechanisms that support more complex operations [2, 4] such as ad-
dition. Alternatively, pLUTo [9] presents DRAM lookup table-based
operations supporting simultaneous querying and LUT operations.
While there are many proposals to design processing-in-DRAM
platforms, two major shortcomings avoid their further applicability.
(1) They do not offer logic flexibility at the circuit-level and only
support basic Boolean operations. This limits their performance for
many applications requiring more complex logic to potentially ben-
efit from PIM. (2) Most platforms do not provide ISA and software
support to process the user-defined operations. Inspired by Ambit,
a framework, SIMDRAM [10], has been designed to address the sec-
ond challenge by providing the programming interface and parallel
SIMD substrate that converts the operation to MAJ3-NOT trees.
However, the framework’s performance is limited by the Ambit’s
intrinsic constraints in performing logic operations.

In this work, we propose FlexiDRAM as a Flexible processing-in-
DRAM framework for general-purpose computation to potentially
address the aforementioned challenges. Our main contributions are
as follows. (1) We design a high-throughput and energy-efficient
XOR-MAJ Graph (XMG)-friendly processing-in-DRAM architecture
based on a set of novel microarchitectural and circuit-level schemes
to realize a data-parallel computational unit for various applications;
(2) We exploit and modify effective methods to (i) generate an
efficient XMG-based representation of the desired logic and (ii)
appropriately allocate DRAM rows to the operands of the operation
to execute any complex computation; (3) We develop ISA, software
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Figure 1: (a) DRAM sub-array organization, (b) Ambit’s
TRA [18], (c) DRISA’s 3T1C [12], (d) DRISA’s 1T1C [12], (e)
GraphiDe’s QRA [4], (f) QRA [2], (g) ReDRAM’s DRA [5].

support, and the interface required to compute any user-defined in-
DRAM operation; (4) We evaluate the performance of FlexiDRAM
on data-intensive deep learning applications and compare our work
with the GPU and the state-of-the-art in-DRAM computing designs.

2 BACKGROUND
At the architecture-level, the DRAM memory chip is spilt into sev-
eral memory banks. Each bank comprises 2D sub-arrays of memory
bit-cells that are virtually ordered in memory matrices (mats). As
depicted in Fig. 1(a), the memory sub-array consists of (i) memory
rows (normally 29 or 210) connected to DRAM cells, (ii) a Sense
Amplifier (SA) row, and (iii) a memory row decoder connected to
rows. A DRAM cell is composed of two modules, a storage module
(capacitor) and an access module (Access Transistor-AT), as shown
in Fig. 1(a). The gate and drain of DRAM’s AT are connected to the
Word-line (WL) and Bit-line (BL), respectively. DRAM cell stores
the binary data by the charge of the capacitor. It encodes a fully-
charged (Vdd ) capacitor as logic ‘1’ and no-charge capacitor as logic
‘0’. To realize DRAM read and write, both BL and BL are initially
pulled to Vdd

2 . Accessing data from a DRAM’s sub-array after the
initial state is accomplished with three commands [18] issued by
the memory controller: 1) With the ACTIVATE command, a target
row is activated, and row data is transferred to the SA row. The cell
shares its charge value (0/Vdd ) with the BL which slightly changes
the initial BL ’s voltage (Vdd2 ±δ ). Then, the memory controller acti-
vates the enable signal that makes the SA amplify the δ towards the
original value of the data through voltage amplification leveraging
the switching threshold of SA’s inverter [18]. 2) By a WRITE/READ
command, the data can be then moved to/from SA from/to DRAM
bus. 3) With a PRECHARGE command, both BL and BL precharge to
the initial state.

RowClone-Fast Parallel Mode (FPM) [17] presents a very fast
in-memory copy operation (<100ns) by issuing two back-to-back
ACTIVATE commands (without PRECHARGE command in between) to
the source and destination rows. Ambit [18] extends the RowClone
idea to realize three-input majority gate-based operations (MAJ3)

in DRAM sub-arrays through simultaneously issuing the ACTIVATE
command to three rows with a PRECHARGE command afterwards
(Fig. 1(b)).With one row as the control (Dk ) row, initialized by ‘0’/‘1’,
this method implements in-memory AND2/OR2 based on TRA
mechanism via charge sharing among connected DRAM cells (Dk ,
Di and D j ) and writes the result back on Dr cell. Moreover, Ambit
leverages dual-contact cells to execute in-memory NOT operation
and complementary operations. The DRISA-3T1C [12] (Fig. 1(c))
leverages the 3-transistor DRAM design [19]. Such cell consists
of two separated write/read ATs, and one additional transistor for
decoupling the capacitor from the read BL (rBL) that links the two
input DRAM cells in a NOR style on the rBL to perform the Boolean-
complete NOR2 function. DRISA-1T1C (Fig. 1(d)) incurs a large area
overhead to perform in-memory operations via an upgraded SA
consisting of a CMOS logic gate and a latch in multiple cycles.
GraphiDe [4] and the design in [2] (Fig. 1(e-f)) extend Ambit’s
idea to realize a Quintuple-Row Activation (QRA) mechanism and
leverage it alongwith TRA to accelerate addition-based applications.
However, activatingmore than three DRAM rows adversely impacts
the reliability of the operation [18]. ReDRAM [5] (Fig. 1(g)) explores
a Dual-Row Activation (DRA) mechanism to implement a set of
functions by adding ∼14% overhead to DRAM chip area.

3 FLEXIDRAM
3.1 Circuit-level Exploration
We propose FlexiDRAM to realize the TRA mechanism with a
new reconfigurable SA, as shown in Fig. 2(a), on top of existing
DRAM circuitry. It consists of a regular inverter-based DRAM SA
equipped with add-on circuits, including two inverters, a pair of
NMOS and PMOS transistors, and one 2:1MUX, controlledwith four
enable signals (Cnor ,Cm/min ,Cnand ,Cmux ). This design leverages
the charge-sharing feature of DRAM cell and elevates it to imple-
ment MAJ3 and XOR2 logic between selected rows through static
capacitive-NAND/NOR functions in a single cycle. To implement
capacitor-based logics, we use two different inverters with shifted
Voltage Transfer Characteristics (VTC), as shown in Fig. 2(b). In
this way, a NAND/NOR logic can be readily carried out based on

add-on
 circuit 
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Figure 2: (a) The FlexiDRAM’s sense amplifier supporting
in-memory XOR and MAJ, (b) VTC of skewed inverters.



Table 1: FlexiDRAM’s configuration bits.

Ops. Activation Cm/min Cnor Cnand Cmux
Read SRA* 1 0 0 0
MAJ3 TRA 1 0 0 0
XOR2 TRA 1 1 1 1

*Single Row Activation

high switching voltage (Vs )/low-Vs inverters with standard high-
Vth /low-Vth NMOS and low-Vth /high-Vth PMOS transistors. It is
worth mentioning that utilizing low/high-threshold voltage transis-
tors alongwith normal-threshold transistors has been accomplished
in the low-power application, and many circuits have enjoyed this
technique in low-power design [3, 11, 14, 15]. Besides, the Minor-
ity3 function can be accomplished with a standard inverter based
on the TRA mechanism. By slightly modifying the memory row
decoder and activating three rows at the same time (WLb1,WLb2,
and WLb3 in Fig. 2(a)), NOR3, Minority3, and NAND3 functions
can be then realized through charge sharing between BL and cells’
data. We then reformulated the Boolean function of XNOR3 to im-
plement it in a single cycle. We observed that when the minority
function of three inputs is ‘1’, XNOR3 can be implemented by the
NOR3 function, and when minority function is ‘0’, XNOR3 can be
achieved through the NAND3 function. This can be implemented
by a multiplexer circuit as shown in Fig. 2(a). In this way, MAJ3
and XOR are readily computed after write-back inverter, and the
result will drive the BL based on the configuration bits in Table 1.

XNOR3 = MIN (Di , D j , Dk ).NOR(Di , D j , Dk )+

MAJ (Di , D j , Dk ).NAND(Di , D j , Dk )
(1)

3.2 Architecture-level Exploration
FlexiDRAM framework is developed on top of the proposed XOR-
MAJ-friendly processing-in-DRAM platform. It offers flexibility
in bulk bit-wise operations in DRAM and flexibly supports user-
defined operations by getting exposed to programmers and system-
level libraries.

3.2.1 Sub-array Organization. Figure 3 gives an overview of the
sub-array organization. FlexiDRAM divides DRAM’s row space into
three sub-groups: (1) The D-group containing 1018 original data
rows, (2) The C-group (or C-row) initialized by all-‘0’ values, and (3)
B-group containing five rows as the computation zone. Addresses of
the D-group and C-group are decoded via a regular row decoder and

Regular row 
decoder

D-group 
1018 rows

C-row

B-group
(5 rows)
T0~T4 B-group row 

decoder

 

Reconfigurable Sense Amplifier

   Subarray Subarray

bitlines

Row Buffer Row Buffer

Control Unit

Figure 3: FlexiDRAM sub-array organization.

Table 2: B-group address mapping to corresponding WL(s).
µReg. WL(s) µReg. WL(s) µReg. WL(s)
B0 T0 addr B5 T0,T1,T2 addr B10 T0,T2,T4 addr
B1 T1 addr B6 T0,T1,T3 addr B11 T0,T3,T4 addr
B2 T2 addr B7 T0,T2,T3 addr B12 T1,T2,T4 addr
B3 T3 addr B8 T1,T2,T3 addr B13 T1,T3,T4 addr
B4 T4 addr B9 T0,T1,T4 addr B14 T2,T3,T4 addr

activated once at a time. Both C-Group and D-Group are dedicated
to providing operands for subsequent operations in Group B to
avoid data-overwritten. We reserve 15 registers as listed in Table 2
to store addresses used for computation in B-group, i.e., B0 - B14.
These registers are split into three parts for the supported functions:
(1) B0-B4 are dedicated single rows to data computation, (2) B5-B8
are rows for MAJ implementation, and (3) B9-B14 are rows for both
MAJ and XOR implementations. Here, T4 is the specific row storing
the value copying from C-row to realize the XOR2 function. This is
because, in practice, FlexiDRAM activates three rows to generate
XOR logic. We slightly modified the B-group’s row decoder such
that every input address can activate up to three output addresses,
simultaneously.

3.2.2 XMG Implementation. FlexiDRAM implements bulk bit-wise
operations based on XMG that requires fewer cycles to perform
a given operation compared to state-of-the-art logic graphs. The
framework then leverages ACTIVATE-PRECHARGE command sequence
(a.k.a., AP primitives) to translate the XMG at install time to the
µProgram and hardware instruction set. The XMG implementation
process is divided into two steps. In the first step, FlexiDRAM frame-
work rewrites the original input circuit to the And-Or-Inverter
Graph (AOIG) representation as shown in Fig. 4. AOIG represents
the logic circuit with a tree graph, where each node represents an
AND/OR gate, and the tree branch represents the dependency of the
nodes. Each incoming node can be either regular or complemented,
depending on whether it is connected to an inverter.

Input circuit AOIG

Step 1: AOIG Conversion

MAJ

XOR

MAJ

XOR

Step 2:convert AIG to XMG

 AAP  B0,B5
 AAP  B1,B6
 AP     B16
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 DONE
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MIG XMG
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Figure 4: Overview of XMG implementation.

The second step takes AOIG as input and drives its optimized
Majority-Inverter Graph (MIG) to minimize the complexity. Since
the depth of the given MIG circuit naively represents the PIM com-
putation cycles, we first apply logic optimization to minimize the
number of logic primitives. The rewriting algorithm consists of two
steps: (1) Replacing all the nodes with 3-input MAJs to optimize
the graph, and (2) Using a greedy algorithm for multiple transfor-
mations and optimizing the graph by transformation rules. In this
way, the AOIG turns into MIG with minimum MAJ primitives. In
MIG, although the circuit depth of the meta-logic circuit is reduced
[10, 20], FlexiDRAM can further optimize it by transforming MIG
into XMG representation. MAJ distributes over XOR, which means
we can combine MAJ and XOR operations, denoted as XOR-MAJ,
and use XOR’s Boolean algebra to identify a new distribution rule
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[13]. In traditional synthesis, the XOR gate is not the best choice;
however, in our design, it can be efficiently implemented in-memory
by activating two operand rows and one row of constant ‘0’ simul-
taneously. Since FlexiDRAM operates based on TRA, but the XOR
has only two inputs, one input is set by a constant ‘0’ during the
synthesis. In addition, the use of XOR will effectively reduce the
depth of the inverter. To detect XOR operations in MIG, we fol-
lowed the following two principles: (i) if one node a is shared by
two lower-level nodes b and c , as shown in step 2 in Fig. 4, x feeds
the nodes b and c with the same polarity, while complimentary
polarity feeds the node a, (ii) y and z feed the nodes b and c with
complemented polarities. With this rule, FlexiDRAM can efficiently
replace the MAJ with an XOR structure and further reduce the
depth.

3.2.3 µProgramDesign. Every FlexiDRAM instruction is composed
of a series of AAPs/APs, stored in memory. As shown in Fig. 4, after
optimizing the XMG, FlexiDRAM uses it to generate the relevant
µprograms. We considered two main aspects in generating a pro-
gram: (i) rows allocation to the data to be calculated next and (ii)
collecting the address of the row to be activated and allocating
the corresponding register. The µprograms include a sequence of
µOperations (µOps) that need to be decoded and executed in the
memory control unit to sequence instructions. Figure 5 shows Flex-
iDRAM’s µOp groups and instruction types. The length of each µOp
is 16 bits with different organizations. FlexiDRAM supports four
basic µOp types, (1) Row Copy based on RowClone [17], (2) Logic
Ops (XOR2 and MAJ3), (3) Arithmetic Ops, and (4) Control. As de-
picted in Fig. 5, when opcode is 000, µOp performs row copy. Copy
instruction AAP(src., des.) (i) ACTIVATEs a source address (src.),
(ii) ACTIVATEs a destination address (des.), and (iii) PRECHARGEs
to prepare the array for the next access. When the opcode is 001,
µOp performs a 3-input operation. We reserve four bits correspond-
ing to SA’s configuration bits shown in Table 1 corresponding
to Cnor ,Cm/min ,Cnand , and Cmux . Logic instruction AP(addr.,
config.) (i) ACTIVATEs three DRAM rows for in-DRAM compu-
tation according to config. bits, and (ii) PRECHARGEs to prepare
the array for the next access. Opcodes 010-101 respectively repre-
sent simple arithmetic operations: ADDi, SUBi, comp, and module
to manage the computation address in DRAM. Lastly, we reserve
two opcodes for loops and termination in the FlexiDRAM control
flow (bnez, done).

3.2.4 µProgram Generation. As shown in Fig. 6, FlexiDRAM takes
four steps to generate µprograms, i.e., rewrite, allocation, genera-
tion, and triggering. Every row in FlexiDRAM has an address stored
in a set of registers located in the control unit. Thus to activate
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Figure 6: µProgram generation/execution steps in Flex-
iDRAM.
the row, the control unit specifies the address. One µOp executes
only a 1-bit operation, so for n-bit operation, the framework needs
to repeat this operation n times. For example, in CNN, the size of
the filter is not constant. Therefore, FlexiDRAM cannot do opera-
tions on all columns directly. Therefore, n depends on the length of
input data, and that is why the loop and termination opcodes are
considered in µops.

Rewrite. FlexiDRAM generates the optimal XMG node consist-
ing of MAJ3 and XOR2 with one constraint, i.e., using one specific
logic µOp (MAJ3 or XOR2) in every logic level. This considerably
increases the parallelism and significantly reduces the number of
intermediate write-back operations. In Fig. 6 ❶, we observe that
XMG reduces the redundant use of inputs by rewriting into XOR.
Level 0 only contains XOR3, and level 1 consists of MAJ.

Allocation. This step aims to allocate address lines sequentially
and optimize the command order to minimize execution time and
complexity. All the computations are executed in B-group, which
means FlexiDRAM has to copy the data enrolled for computation
to B-group. The primary function of DRAM is to store data. If
many rows are allocated for calculation, the loss will outweigh the
gain. Therefore, we design an allocation algorithm to minimize the
number of rows required for the B-group. Another essential factor
is that we use TRA in operation, which will overwrite the three
data lines involved in the process with output data. Referring to the
dependencies between nodes in XMG, we can reuse some output
rows directly as input to reduce row allocation operations while
avoiding overwriting valid data as depicted in Fig. 6 ❷.

Generation. After allocating the rows for computation, Flex-
iDRAMutilizes the addresses to generate µops. As shown in Fig. 6❸,
µops are generated sequentially. First, finding the original inputs
and node, the framework allocates the inputs and generates row
copy operations. Then it looks down for the dependent node of the
output. If there is, it will reserve the output row and allocate the
new inputs. If the remaining unallocated rows are enough, they
will continue to allocate by address. Otherwise, the new inputs will
overwrite the previous rows. In FlexiDRAM, we save the small-
est address in our design and put it into the next operation. Then,
FlexiDRAM goes to the next node and generates the µops till the
end of the XMG tree. Once going through all the inputs and the
generation of µOp is complete, we need to put it into the loop to
repeat n times. Here the FlexiDRAM generates the arithmetic and
control µops. Arithmetic µops are for calculating the cycles in n-bit



Table 3: Performance comparison of processing-in-DRAM platforms (No. of gates after rewrite step/ in-DRAM cycles).

Benchmarks ISCAS’85 EPFL ITC’99
DRAM Platform base function c17 c880 c2670 c3540 log2 mult sqrt square ITC_b01 ITC_b05 ITC_b20
FlexiDRAM XOR2-MAJ3 7/3 272/27 396/26 857/38 22107/321 16015/139 17368/7064 12804/156 15/5 548/46 9383/72
Ambit [18]/

SIMDRAM [10] MAJ3-NOT 6/6 325/40 717/34 1038/67 32060/791 27062/534 24618/9155 18484/497 25/9 793/93 12186/124

DRISA-3T1C [12] NOR2 7/4 320/38 697/34 1057/67 32156/824 27122/577 24695/9195 18516/518 25/9 688/84 12232/148
DRISA-1T1C [12] NAND2 7/8 320/70 697/68 1057/145 32156/1648 27122/1154 24695/18,390 18516/1036 25/18 688/168 12232/296

[2]/
GraphiDe [4] MAJ5-MAJ3 6/6 295/29 710/30 1038/67 31055/712 26813/490 24002/8934 18156/458 25/9 781/90 11957/98

computation. Finally, after generating the set of µops, FlexiDRAM
packs them into a µprogram and stores it into memory and each
µprogram can be triggered by ISA to implement the operations.

Triggering. Figure 6 ❹ shows that the memory can store mul-
tiple µprograms, and FlexiDRAM executes them by activating the
B-group rows according to the decoded address to perform the cor-
responding operation. Here, the control unit plays a compiler’s role,
translating the programs to let the machine understand them. Mean-
while, the control unit is transparent to users. For example, when
the user writes a program at a high level, the computer compiles
it and sends the operations to the control unit. Then the control
unit will access the register when receiving the location message
and load a µprogram when receiving a request message. Users can
make a try to optimize the run-time with their algorithms.

3.2.5 Programming Interface. When the µprograms are stored in
the memory, the CPU will load and execute them. However, only
one µprogram can be loaded at once, and it will cause significant
latency if the control unit cannot load the correct µprogram. There-
fore, we propose to extend the ISA to improve the performance.
The primary purpose is to give the most efficient sequence to load
the µprograms. There are three considerations for the CPU’s ISA
extension. (c1) Locate the following program. When a program is
executing, the controller unit needs to predict the destination ad-
dress and locate it. (c2) Determining when to load the next program.
When the loop in the previous program terminates, the control unit
needs to load the next program immediately. (c3) Determining the
weight of the programs. If two programs can be loaded simultane-
ously, which one can be executed first is determined by the control
unit. Designing a set for bulk bitwise operations (bbops) to interact
with the framework is left for future work.

4 EXPERIMENTAL RESULTS
We demonstrate the advantages of the FlexiDRAM through a cross-
layer evaluation framework as shown in Fig. 7. We first developed
FlexiDRAM’s sub-array with new peripherals in Cadence Spectre
with 45nm NCSU PDK library [1] to verify the functionality and
achieve the performance parameters. The memory controller cir-
cuits are designed and synthesized by Design Compiler with a 45nm
library. To efficiently realize the MIG and XMG representations, we
extensively modified ABC Berkeley [7], Advanced Logic Synthesis
and Optimization tool (ALSO) [8], and CirKit [13] to rewrite the
logic circuits and extracted the logic net-lists. We implemented
FlexiDRAM using gem5 [6] and exported the memory stats and
performance into an in-house optimizer, taking the circuit-level
parameters as the input. We ran CNN workloads and compared
it with existing processing-in-DRAM platforms including Ambit

[18], DRISA [12], GraphiDe [4], and ReDRAM [5]. To have a fair
comparison, we followed the system configuration in SIMDRAM
[10] for all PIM platforms as follows: 1-core/ out-of-order/ 4GHz;
L1 Cache: 32kB 8-way with 64B line; L2 Cache: 256kB 4-way with
64B line; Memory Controller: 8kB row size, DDR4-2400, 1 channel,
1 rank, 16 banks. The baseline von-Neumann computing platform
is the NVIDIA GTX 1080Ti Pascal GPU with 3584 CUDA cores
running at 1.5GHz (11TFLOPs peak performance).
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XMG Conversion

Application Level

ISAGEM5
Simulator

Performance Memory Stats
(Read,Write,μOps)

In-house Optimizer

Architecture Level

Total Energy, Latency

Performance Param.
(Latency, Energy)

Design & Verification of 
FlexiDRAM

(Cadence Spectre)
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Figure 7: Evaluation framework.

Functionality Analysis: The transient simulation result of
FlexiDRAM to implement single-cycle in-memory X(N)OR2 and
MAJ3/MIN3 operations is depicted in Fig. 8. After setting the con-
figuration bits, if two operands are stored in WLb1 and WLb2
at the B-group and the WLb3’s capacitor (Dk ) is initialized by
‘0’ (discharged), the BL voltage will be discharged to GND when
DiD j=00/11 or charged to Vdd when DiD j=01/10 during sense am-
plification state to realize XOR2.
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Figure 8: Transient simulation waveforms.

Memory Cycle Reduction:We compare the circuit complexity
and performance of FlexiDRAM with other PIM designs by rewrit-
ing 11 various-size benchmarks extracted from ISCAS85, EPFL,
and ITC99. For this experiment, we first configured the total ca-
pacity of DRAM as 16 MB with 1024 rows, 256 columns, and 64
sub-arrays. Table 3 reports the total number of the gates (i.e., base
function) and the depth required to map each benchmark. For exam-
ple, FlexiDRAM requires 7 XOR2/MAJ3 organized in 3 logical levels
(3 compute. cycles) to implement c17. While FlexiDRAM’s XMG
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Figure 9: (a) Normalized energy saving and (b) Speedup over
GPU running AlexNet kernels.

does not give a competitive performance in small-scale benchmarks
such as c17 or c880, it will significantly outperform all counterpart
designs when the size of the benchmark increases. For EPFL’s log2,
our platform can reduce the number gates and in-DRAM compu-
tation cycles by ∼28.8% and ∼55%, respectively, when compared
to the fastest designs, i.e., QRA-based GraphiDe [4] and [2]. It is
noteworthy that by simultaneously activating more than three cells,
the deviation on the BL will be smaller. This not only lengthens the
logic computation but also reduces the reliability of the operation.
Thus, we limited the CNNs’ performance and energy evaluations
to the SRA to TRA.

Performance and Energy: Figure 9(a) and Fig. 10(a) report the
energy saving of FlexiDRAM and various processing-in-DRAM
platforms normalized to that of the GPU running two well-known
binarized CNNs, i.e., AlexNET and GoogleNet, respectively. We ob-
serve the FlexiDRAM notably reduces the energy consumption for
running X(N)OR-based operations compared with GPU and other
PIM platforms. The GPU’s energy consumption was measured with
NVIDIA’s systemmanagement interface and scaled-down by 50% to
exclude cooling energy [12], etc. On average, FlexiDRAM achieves
15× energy saving over the GPU, while the most efficient design,
i.e., ReDRAM, offers 11.2× energy reduction. Our experiment shows
that FlexiDRAM consumes 0.9 nJ/KB to perform XOR2 operation,
however, Ambit requires 5.5 nJ/KB.
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Figure 10: (a) Normalized energy saving and (b) Speedup over
GPU running GoogleNet kernels.

Figure 9(b) and Fig. 10(b) show the performance of various
processing-in-DRAM platforms, normalized to that of the GPU.
We observe that FlexiDRAM outperforms the GPU, on average giv-
ing ∼13× the performance of the GPU on both CNNs. Besides, it can
be seen that FlexiDRAM outperforms counterpart PIM platforms,
e.g., it achieves ∼4.3× speedup when compared to Ambit [18] de-
sign. This mainly comes from 1) reduced-cycle and intrinsic XOR2
operation and 2) optimized address allocation in the framework.

5 CONCLUSION
In this paper, we presented the FlexiDRAM framework to support
the efficient implementation of complex bulk bitwise operations
in DRAM. FlexiDRAM generates an XOR-MAJ representation of
the desired logic and appropriately allocates DRAM rows to the
operands to execute any in-DRAM computation. The framework is
supported by ISA and the interface required to compute in-DRAM
operation. Our results demonstrate that averaged across two deep
learning workloads, FlexiDRAM achieves ∼15× energy-saving and
13× over the GPU, outperforming recent in-DRAM accelerators.
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