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Abstract

This paper proposes a representational model for image pairs
such as consecutive video frames that are related by local
pixel displacements, in the hope that the model may shed
light on motion perception in primary visual cortex (V1). The
model couples the following two components: (1) the vector
representations of local contents of images and (2) the ma-
trix representations of local pixel displacements caused by the
relative motions between the agent and the objects in the 3D
scene. When the image frame undergoes changes due to local
pixel displacements, the vectors are multiplied by the matri-
ces that represent the local displacements. Thus the vector
representation is equivariant as it varies according to the lo-
cal displacements. Our experiments show that our model can
learn Gabor-like filter pairs of quadrature phases. The profiles
of the learned filters match those of simple cells in Macaque
V1. Moreover, we demonstrate that the model can learn to in-
fer local motions in either a supervised or unsupervised man-
ner. With such a simple model, we achieve competitive results
on optical flow estimation.

1 Introduction
Our understanding of the primary visual cortex or V1 (Hubel
and Wiesel 1959) is still very limited (Olshausen and Field
2005). In particular, mathematical and representational mod-
els for V1 are still in short supply. Two prominent exam-
ples of such models are sparse coding (Olshausen and Field
1997) and independent component analysis (ICA) (Bell and
Sejnowski 1997). Although such models may not provide
detailed explanations at the level of neuronal dynamics, they
help us understand the computational problems being solved
by V1.

In this paper, we propose a model of this sort. It is a rep-
resentational model of natural image pairs that are related
by local pixel displacements. The image pairs can be con-
secutive frames of a video sequence, where the local pixel
displacements are caused by the relative motions between
the agent and the objects in the 3D environment. Perceiving
such local motions can be crucial for inferring ego-motion,
object motions, and 3D depth information.

*The author is now a Research Scientist at Google Research,
Brain team.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Scheme of representation. The image is illustrated by
the big rectangle. A pixel is illustrated by a dot. The local image
content is illustrated by a small square around it. The displacement
of the pixel is illustrated by a short arrow, which is within the small
square. The vector representation of the local image content is rep-
resented by a long vector, which is equivariant because it rotates as
the image undergoes deformation due to the pixel displacements.
The rotation is realized by a matrix representation of the local mo-
tion. See Section 3 for the detailed notation.

As is the case with existing models, we expect our model
to explain only partial aspects of V1, including: (1) The
receptive fields of V1 simple cells resemble Gabor filters
(Daugman 1985). (2) Adjacent simple cells have quadrature
phase relationship (Pollen and Ronner 1981; Emerson and
Huang 1997). (3) The V1 cells are capable of perceiving lo-
cal motions. While existing models can all explain (1), our
model can also account for (2) and (3) naturally. Compared
to models such as sparse coding and ICA, our model has a
component that serves a direct purpose of perceiving local
motions.

Our model consists of the following two components.
(1) Vector representation of local image content. The local

content around each pixel is represented by a high dimen-
sional vector. Each unit in the vector is obtained by a linear
filter. These local filters or wavelets are assumed to form a
normalized wavelet tight frame, i.e., the image can be recon-
structed from the vectors using the linear filters as the basis
functions.

(2) Matrix representation of local displacement. The
change of the image from the current time frame to the next
time frame is caused by the displacements of the pixels.
Each possible displacement is represented by a matrix that
operates on the vector. When the image changes according

ar
X

iv
:1

90
2.

03
87

1v
5 

 [c
s.N

E]
  6

 A
pr

 2
02

2



to the displacements, the vector at each pixel is multiplied
by the matrix that represents the local displacement, in other
words, the vector at each pixel is rotated by the matrix rep-
resentation of the displacement of this pixel. Thus the vector
representation is equivariant as it varies according to the lo-
cal displacements. See Fig. 1 for an illustration.

We train the model on image pairs where in each pair, the
second image is a deformed version of the first image, and
the deformation is either known or inferred in training. We
learn the encoding matrices for vector representation and the
matrix representation of local displacements from the train-
ing data.

Experiments show that our model learns V1-like units that
can be well approximated by Gabor filters with quadrature
phase relationship. The profiles of learned units match those
of simples cells in Macaque V1. After learning the encoding
matrices for vector representation and the matrix represen-
tations of the displacements, we can infer the displacement
field using the learned model. Compared to popular optical
flow estimation methods (Dosovitskiy et al. 2015; Ilg et al.
2017), which use complex deep neural networks to predict
the optical flows, our model is much simpler and is based on
explicit vector and matrix representations. We demonstrate
comparable performance to these methods in terms of the
inference of displacement fields.

In terms of biological interpretation, the vectors can be in-
terpreted as activities of groups of neurons, and the matrices
can be interpreted as synaptic connections. See Sections 5.1
and 5.2 for details.

2 Contributions and related work
This paper proposes a simple representational model that
couples the vector representations of local image contents
and matrix representations of local pixel displacements. The
model explains certain aspects of V1 simple cells such as
Gabor-like receptive fields and quadrature phase relation-
ship, and adds to our understanding of V1 motion perception
in terms of representation learning.

The following are two themes of related work.
(1) V1 models. Most well known models for V1 are

concerned with statistical properties of natural images or
video sequences. Examples include sparse coding model
(Olshausen and Field 1997; Lewicki and Olshausen 1999;
Olshausen 2003), independent component analysis (ICA)
(Hyvärinen, Karhunen, and Oja 2004; Bell and Sejnowski
1997; van Hateren and Ruderman 1998), slowness criterion
(Hyvärinen, Hurri, and Väyrynen 2003; Wiskott and Se-
jnowski 2002), and prediction (Singer et al. 2018). While
these models are very compelling, they do not account for
perceptual inference explicitly, which is the most important
functionality of V1. On the other hand, our model is learned
for the direct purpose of perceiving local motions caused by
relative motion between the agent and the surrounding 3D
environment. In fact, our model is complementary to the ex-
isting models for V1: similar to existing models, our work
assumes a linear generative model for image frames, but our
model adds a relational component with matrix representa-
tion that relates the consecutive image frames. Our model is
also complementary to slowness criterion in that when the

vectors are rotated by matrices, the norms of the vectors re-
main constant.

(2) Matrix representation. In representation learning, it is
a common practice to encode the signals or states as vec-
tors. However, it is a much less explored theme to repre-
sent the motions, actions or relations by matrices that act
on the vectors. An early work in this theme is (Paccanaro
and Hinton 2001), which learns matrices to represent rela-
tions. More recently, (Jayaraman and Grauman 2015) learns
equivariant representation with matrix representation of ego-
motion. (Zhu et al. 2021) learns generative models of posed
images based on invariant representation of 3D scene with
matrix representation of ego-motion (Gao et al. 2019, 2021)
learn vector representation of self-position and matrix repre-
sentation of self-motion in a representational model of grid
cells. Our work constitutes a new development along this
theme.

3 Representational model
3.1 Vector representation
Let {I(x), x ∈ D} be an image observed at a certain instant,
where x = (x1, x2) ∈ D is the 2D coordinates of pixel.D is
the image domain (e.g., 128× 128). We represent the image
I by vectors {v(x), x ∈ D−}, where each v(x) is a vector
defined at pixel x, and D− may consist of a sub-sampled
set of pixels in D. V = {v(x), x ∈ D−} forms a vector
representation of the whole image.

Conventionally, we assume the vector encoding is linear
and convolutional. Specifically, let I[x] be a squared patch
(e.g., 16 × 16) of I centered at x. We can flatten I[x] into a
vector (e.g., 256 dimensional) and let

v(x) = W I[x], x ∈ D−, (1)

be the linear encoder, where W is the encoding matrix that
encodes I[x] into a vector v(x). The rows ofW are the linear
filters and can be displayed as local image patches of the
same size as the image patch I[x]. We can further write V =
WI if we treat I as a vector, and the rows of W are the
translated versions of W .

3.2 Tight frame auto-encoder
We assume that W is an auto-encoding tight frame. Specif-
ically, let W (x) denote the translation of filter W to pixel x
and zero-padding the pixels outside the filters, so that each
row ofW (x) is of the same dimension as I. We then assume

I = W>V =
∑
x∈D−

W>(x)v(x), (2)

i.e., the linear filters for bottom-up encoding also serve as
basis functions for top-down decoding. Both the encoder and
decoder can be implemented by convolutional linear neural
networks.

The tight frame assumption can be justified by the fact
that under that assumption, for two images I and J, we have
〈WI,WJ〉 = I>W>WJ = 〈I,J〉, i.e., the vector repre-
sentations preserve the inner product. As a result, we also
have ‖WI‖ = ‖I‖ and ‖WJ‖ = ‖J‖, so that the vector
representations WI and WJ preserve the angle between the



images I and J and has the isometry property. That is, when
the image I changes from It to It+1, its vector representa-
tion V changes from Vt to Vt+1, and the angle between It
and It+1 is the same as the angle between Vt and Vt+1.

In this paper, we assume a tight frame auto-encoder for
computational convenience. A more principled treatment is
to treat the decoder as a top-down generative model, and
treat the encoder as approximate inference. Sparsity con-
straint can be imposed on the top-down decoder model.

3.3 Matrix representation
Let It be the image at time frame t. Suppose the pixels of It
undergo local displacements (δ(x), ∀x), where δ(x) is the
displacement at pixel x. The image transforms from It to
It+1. We assume that δ(x) is within a squared range ∆ (e.g.,
[−6, 6] × [−6, 6] pixels) that is inside the range of the local
image patch It[x] (e.g., 16× 16 pixels). We assume that the
displacement field (δ(x), ∀x) is locally smooth, i.e., pixels
within each local image patch undergoes similar displace-
ments. Let vt(x) and vt+1(x) be the vector representations
of It[x] and It+1[x] respectively. The transformation from
It[x] to It+1[x] is illustrated by the following diagram:

vt(x)
M(δ(x))×
−−−−−→ vt+1(x)

W ↑ ↑ ↑W

It[x]
δ(x)

−−−−−→ It+1[x]

(3)

Specifically, we assume that

vt+1(x) = M(δ(x))vt(x), ∀x ∈ D−. (4)

That is, when I changes from It to It+1, v(x) undergoes a
linear transformation, driven by a matrix M(δ(x)), which
depends on the local displacement δ(x). Thus v(x) is an
equivariant representation as it varies according to δ(x).

One motivation for modeling the transformation as a ma-
trix representation operating on the vector representation
of image patch comes from Fourier analysis. Specifically,
an image patch I[x] can be expressed by the Fourier de-
composition I[x] =

∑
k cke

i〈ωk,x〉. Assuming all the pix-
els in the patch are shifted by a constant displacement
δ(x), then the shifted image patch becomes I(x − δ(x)) =∑
k cke

−i〈ωk,δ(x)〉ei〈ωk,x〉. The change from the complex
number ck to cke−i〈ωk,dx〉 corresponds to rotating a 2D vec-
tor by a 2×2 matrix. However, we emphasize that our model
does not assume Fourier basis or its localized version such
as Gabor filters. The model figures it out with generic vector
and matrix representations.

Parametrization. We consider two ways to parametrize
the matrix representation of local displacement M(δ(x)).
First, we can discretize the displacement δ(x) into a finite
set of possible values {δ}, and we learn a separate M(δ)
for each δ. Second, We can learn a parametric version of
M(δ) as the second order Taylor expansion of a matrix-
valued function of δ = (δ1, δ2),

M(δ) = I +B1δ1 +B2δ2 +B11δ
2
1 +B22δ

2
2 +B12δ1δ2. (5)

In the above expansion, I is the identity matrix, and B =
(B1, B2, B11, B22, B12) are matrices of coefficients of the
same dimensionality as M(δ).

A more careful treatment is to treat M(δ) as forming a
matrix Lie group, and write M(δ) as an exponential map
of generator matrices that span the matrix Lie algebra. By
assuming skew-symmetric generator matrices,M(δ) will be
automatically a rotation matrix. The exponential map can be
approximated by Taylor expansion similar to 5.

Local mixing. If δ(x) is large, vt+1(x) may contain in-
formation from adjacent image patches of It in addition to
It[x]. To address this problem, we can generalize the motion
model (Eq. (4)) to allow local mixing of encoded vectors.
Specifically, let S be a local support centered at 0. We as-
sume that

vt+1(x) =
∑

dx∈S
M(δ(x), dx)vt(x+ dx) (6)

In the learning algorithm, we discretize dx and learn a sepa-
rate M(δ, dx) for each dx.

3.4 Sub-vectors and disentangled rotations
The vector v(x) can be high-dimensional. For computa-
tional efficiency, we further divide v(x) into K sub-vectors,
v(x) = (v(k)(x), k = 1, ...,K). Each sub-vector is obtained
by an encoding sub-matrix W (k), i.e.,

v(k)(x) = W (k)I[x], k = 1, ...,K, (7)

where W (k) consists of the rows of W that correspond to
v(k). In practice, we find that this assumption is necessary
for the emergence of V1-like receptive field.

Correspondingly, the matrix representation

M(δ) = diag(M (k)(δ), k = 1, ...,K) (8)

is block diagonal. Each sub-vector v(k)(x) is transformed by
its own sub-matrix M (k)(δ):

v
(k)
t+1(x) = M (k)(δ)v

(k)
t (x), k = 1, ...,K. (9)

The linear transformations of the sub-vectors v(k)(x) can be
considered as rotations. v(x) is like a multi-arm clock, with
each arm v(k)(x) rotated by M (k)(δ(x)). The rotations of
v(k)(x) for different k and x are disentangled, meaning that
the rotation of a sub-vector does not depend on other sub-
vectors.

The assumption of sub-vectors and block-diagonal ma-
trices is necessary for learning Gabor-like filters. For
vt+1(x) = M(δ(x))vt(x), it is equivalent to ṽt+1(x) =

M̃(δ(x))ṽt(x) if we let ṽt(x) = Pvt(x), ṽt+1(x) =

Pvt+1(x), and M̃(δ(x)) = PM(δ(x))P−1, for an invert-
ible P . Assuming block-diagonal matrices helps eliminates
such ambiguity. More formally, a matrix representation is
irreducible if it cannot be further diagonalized into smaller
block matrices. Assuming block-diagonal matrices helps to
make the matrix representation close to irreducible.



4 Learning and inference
4.1 Supervised learning
The input data consist of the triplets (It, (δ(x), x ∈
D−), It+1), where (δ(x), x ∈ D−) is the given displace-
ment field. The unknown parameters to learn consist of ma-
trices (W,M(δ), δ ∈ ∆), where ∆ is the range of δ. In the
case of parametricM , we learn theB matrices in the second
order Taylor expansion (Eq. (5)). We assume that there are
K sub-vectors so that M or B are block-diagonal matrices.
We learn the model by optimizing a loss function defined as
a weighted sum of two loss terms, based on the linear trans-
formation model (Eq. (4)) and tight frame assumption (Eq.
(2)) respectively:
(1) Linear transformation loss

L1 =
K∑
k=1

∑
x∈D−

∥∥∥W (k)It+1[x]−M (k)(δ(x))W (k)It[x]
∥∥∥2

. (10)

For local mixing generalization, we substitute M (k)(δ(x))
by
∑

dx∈SM
(k)(δ(x), dx).

(2) Tight frame auto-encoder loss

L2 =
∑

s∈t,t+1

∥∥Is −W>WIs
∥∥2
. (11)

4.2 Inference of motion
After learning (W,M(δ), δ ∈ ∆), given a testing pair
(It, It+1), we can infer the pixel displacement field
(δ(x), x ∈ D−) by minimizing the linear transformation
loss: δ(x) = arg maxδ∈∆ L1,x(δ), where

L1,x(δ) =
∑K
k=1

∥∥W (k)It+1[x]−M (k)(δ)W (k)It[x]
∥∥2
.

(12)
This algorithm is efficient in nature as it can be parallelized
for all x ∈ D− and for all δ ∈ ∆.

If we use a parametric version of (M(δ), δ ∈ ∆) (Eq.
(5)), we can minimize

∑
x L1,x(δ) using gradient descent

with δ initialized from random small values. To encourage
the smoothness of the inferred displacement field, we add a
penalty term ‖Oδ(x)‖2 for this setting.

4.3 Unsupervised learning
We can easily adapt the learning of the model to an un-
supervised manner, without knowing the pixel displace-
ment field (δ(x), x ∈ D−). Specifically, we can iterate
the following two steps: (1) update model parameters by
loss functions defined in Section 4.1; (2) infer the dis-
placement field as described in 4.2. To eliminate the am-
biguity of M(δ) with respect to δ, we add a regulariza-
tion term ‖It+1 − warp(It, δ)‖2 in the inference step, where
warp(·, ·) is a differentiable warping function, and we use
the parametric version of (M(δ), δ ∈ ∆). To summarize, we
infer the displacement field (δ(x), x ∈ D−) by minimizing:∑

x
L1,x(δ) + ‖Oδ‖2 + ‖It+1 − warp(It, δ)‖2 . (13)

In practice, for each image pair at each iteration, we start the
inference by running gradient descent on the inferred dis-
placement field from the previous iteration.

5 Discussions about model
5.1 Biological interpretations of cells and

synaptic connections
The learned (W,M(δ)), δ) can be interpreted as synaptic
connections. Specifically, for each block k, W (k) corre-
sponds to one set of connection weights. Suppose δ ∈ ∆ is
discretized, then for each δ, M (k)(δ) corresponds to one set
of connection weights, and (M (k)(δ), δ ∈ ∆) corresponds
to multiple sets of connection weights. For motion inference
in a biological system, after computing v(k)

t,x = W (k)It[x],

M (k)(δ)v
(k)
t,x can be computed simultaneously for every δ ∈

∆. Then δ(x) is inferred by max pooling according to Eq.
(12).
v

(k)
t,x can be interpreted as activities of simple cells, and

‖v(k)
t,x ‖2 can be interpreted as activity of a complex cell. If

M (k)(δ) is close to a rotation matrix, then we have norm
stability so that ‖v(k)

t,x ‖ ≈ ‖v
(k)
t+1,x‖, which is closely related

to the slowness property (Hyvärinen, Hurri, and Väyrynen
2003; Wiskott and Sejnowski 2002).

5.2 Spatiotemporal filters and recurrent
implementation

If we enforce norm stability or the orthogonality ofM (k)(δ),
then minimizing ‖vt+1,x − M(δ)vt,x‖2 over δ ∈ ∆ is
equivalent to maximizing 〈vt+1,x,M(δ)vt,x〉, which in turn
is equivalent to maximizing ‖vt+1,x + M(δ)vt,x‖2 so that
vt+1,x and M(δ)vt,x are aligned. This alignment criterion
can be conveniently generalized to multiple consecutive
frames, so that we can estimate the velocity at x by maxi-
mizing the m-step alignment score ‖u‖2, where

u =
m∑
i=0

M(δ)m−ivt+i,x =
m∑
i=0

M(δ)m−iW It+i[x] (14)

consists of responses of spatiotemporal filters or “animated”
filters (M(δ)m−iW, i = 0, ...,m), and ‖u‖2 corresponds to
the energy of motion δ in the motion energy model (Adel-
son and Bergen 1985) for direction selective cells. Thus our
model is connected with the motion energy model. More-
over, our model enables a recurrent network for computing u
by ui = vt+i,x +M(δ)ui−1 for i = 0, ...,m, with u−1 = 0,
and u = um. This recurrent implementation is much more
efficient and biologically plausible than the plain implemen-
tation of spatiotemporal filtering which requires memoriz-
ing all the It+i for i = 0, ...,m. See (Pachitariu and Sahani
2017) for a discussion of biological plausibility of recurrent
implementation of spatiotemporal filtering in general.

The spatiotemporal filters can also serve as spatiotempo-
ral basis functions for the top-down decoder model.

6 Experiments
The code, data and more results can be found at http://www.
stat.ucla.edu/∼ruiqigao/v1/main.html

We learn our model (W,M(δ), δ ∈ ∆) from image pairs
(It, It+1) with its displacement field (δ(x)) known or un-

http://www.stat.ucla.edu/~ruiqigao/v1/main.html
http://www.stat.ucla.edu/~ruiqigao/v1/main.html


known. The number of sub-vectors K = 40, and the num-
ber of units in each sub-vector v(k)(x) is 2. We use Adam
(Kingma and Ba 2014) optimizer for updating the model.
To demonstrate the efficacy of the proposed model, we con-
duct experiments on two new synthetic datasets (V1Deform
and V1FlyingObjects) and two public datasets (MPI-Sintel
and MUG Facial Expression). The motivation to gener-
ate the synthetic datasets is that we find existing datasets
such as Flying Chairs (Dosovitskiy et al. 2015), FlyingTh-
ings3D (Mayer et al. 2016), and KITTI flow (Geiger, Lenz,
and Urtasun 2012) contain image pairs with fairly large mo-
tions, which are unlikely consecutive frames perceived by
V1. Thus we generate two synthetic datasets: V1Deform
and V1FlyingObjects, which contains image pairs with only
small local displacements and therefore better serve our pur-
pose of studying motion perception in V1. See Fig. 4 for
some examples from the synthetic datasets.

6.1 Datasets
In this subsection, we elaborate the generation process of the
two new synthetic datasets, and introduce the public datasets
we use in this work.

V1Deform. For this dataset, we consider random smooth
deformations for natural images. Specifically, We obtain the
training data by collecting static images for (It) and simu-
late the displacement field (δ(x)). The simulated displace-
ment field is then used to transform It to obtain It+1. We
retrieve natural images as It from MIT places365 dataset
(Zhou et al. 2016). The images are scaled to 128 × 128. We
sub-sample the pixels of images into a m ×m grid (m = 4
in the experiments), and randomly generate displacements
on the grid points, which serve as the control points for de-
formation. Then δ(x) for x ∈ D can be obtained by spline
interpolation of the displacements on the control points. We
get It+1 by warping It using δ(x) (Jaderberg et al. 2015).
When generating a displacement δ = (δ1, δ2), both δ1 and
δ2 are randomly sampled from a range of [−6,+6]. We syn-
thesize 20, 000 pairs for training and 3, 000 pairs for testing.

V1FlyingObjects. For this dataset, we consider separat-
ing the displacement field into motions of the background
and foreground, to jointly simulate the self-motion of the
agent and the motion of the objects in the natural 3D scenes.
To this end, we apply affine transformations to background
images collected from MIT places365 (Zhou et al. 2016) and
foreground objects from a public 2D object dataset COIL-
100 (Nene et al. 1996). The background images are scaled to
128×128, and the foreground images are randomly rescaled.
To generate motion, we randomly sample affine parameters
of translation, rotation, and scaling for both the foreground
and background images. The motions of the foreground ob-
jects are relative to the background images, which can be
explained as the relative motion between the moving ob-
ject and agent. We tune the distribution of the affine pa-
rameters to keep the range of the displacement fields within
[−6,+6], which is consistent with the V1Deform dataset.
Together with the mask of the foreground object and the
sampled transformation parameters, we render the image
pair (It, It+1) and its displacement field (δ(x)) for each pair
of the background image and foreground image.

For the foreground objects, we obtain t he estimated
masks from (tev 2006), resulting in 96 objects with 72
views per object available. We generate 14, 411 synthetic
image pairs with their corresponding displacement fields
and further split 12, 411 pairs for training and 2, 000 pairs
for testing. Compared with previous optical flow dataset
like Flying Chairs (Dosovitskiy et al. 2015) and scene flow
dataset like FlyingThings3D (Mayer et al. 2016), the pro-
posed V1FlyingObjects dataset has various foreground ob-
jects with more realistic texture and smoother displacement
fields, which simulates more realistic environments.

We shall release the two synthetic datasets, which are suit-
able for studying local motions and perceptions. Besides, we
also use two public datasets:

MPI-Sintel. MPI-Sintel (Butler et al. 2012; Wulff et al.
2012) is a public dataset designed for the evaluation of opti-
cal flow derived from rendered artificial scenes, with special
attention to realistic image properties. Since MPI-Sintel is
relatively small, which contains around a thousand image
pairs, we use it only for testing the learned models in the
inference of the displacement field. We use the final version
of MPI-Sintel and resize each frame into size 128 × 128.
We select frame pairs whose motions are within the range of
[−6,+6], resulting in 384 frame pairs in total.

MUG Facial Expression. MUG Facial Expression
dataset (Aifanti, Papachristou, and Delopoulos 2010)
records natural facial expression videos of 86 subjects sit-
ting in front of one camera. This dataset has no ground truth
of the displacement field, which we use for unsupervised
learning. 200 videos with 30 frames are randomly selected
for training, and anther 100 videos are sampled for testing.

6.2 Learned Gabor-like units with quadrature
phase relationship

In this subsection, we show and analyze the learned units.
The size of the filter is 16 × 16, with a sub-sampling rate
of 8 pixels. Fig. 2(a) displays the learned units, i.e., rows
of W , on V1Deform dataset. The units are learned with
non-parametric M(δ), i.e., we learn a separate M(δ) for
each displacement and δ(x) is discretized with an interval of
0.5. V1-like patterns emerge from the learned units. More-
over, within each sub-vector, the orientations and frequen-
cies of learned units are similar, while the phases are dif-
ferent and approximately follow a quadrature relationship,
consistent with the observation of biological V1 simple cells
(Pollen and Ronner 1981; Emerson and Huang 1997). Simi-
lar patterns can be obtained by using a parametric version of
M(δ). See Supplementary for more results of learned filters,
including filters learned with different dimensions of sub-
vectors using different datasets. It is worthwhile to mention
that the dimension of sub-vectors is not constrained to be 2.
V1-like patterns also merge when the dimension is 4 or 6.

To further analyze the spatial profiles of the learned units,
we fit every unit by a two dimensional Gabor function (Jones
and Palmer 1987): h(x′, y′) = A exp(−(x′/

√
2σx′)

2 −
(y′/
√

2σy′)) cos(2πfx′ + φ), where (x′, y′) is obtained
by translating and rotating the original coordinate system
(x0, y0): x′ = (x − x0) cos θ + (y − y0) sin θ, y′ = −(x −



(a) Learned units (b) Fitted Gabors (c) Frequency and phase

Figure 2: Learned results on V1Deform dataset. (a) Learned units. Each block shows two learned units within the same sub-vector. (b) Fitted
Gabor patterns. (c) Distributions of spatial-frequency bandwidth (in octaves) and spatial phase φ.

x0) sin θ + (y − y0) cos θ. The fitted Gabor patterns are
shown in Fig. 2(b), with the average fitting r2 equal to 0.96
(std = 0.04). The average spatial-frequency bandwidth is
1.13 octaves, with range of 0.12 to 4.67. Fig. 2(c) shows the
distribution of the spatial-frequency bandwidth, where the
majority falls within range of 0.5 to 2.5. The characteristics
are reasonably similar to those of simple-cell receptive fields
in the cat (Issa, Trepel, and Stryker 2000) (weighted mean
1.32 octaves, range of 0.5 to 2.5) and the macaque monkey
(Foster et al. 1985) (median 1.4 octaves, range of 0.4 to 2.6).
To analyze the distribution of the spatial phase φ, we follow
the method in (Ringach 2002) to transform the parameter φ
into an effective range of 0 to π/2, and plot the histogram
of the transformed φ in Fig. 2(c). The strong bimodal with
phases clustering near 0 and π/2 is consistent with those of
the macaque monkey (Ringach 2002).

In the above experiment, we fix the size of the convolu-
tional filters (16×16 pixels). A more reasonable model is to
have different sizes of convolutional filters, with small size
filters capturing high-frequency content and large size fil-
ters capturing low-frequency content. For fixed-size filters,
they should only account for the image content within a fre-
quency band. To this end, we smooth every image by two
Gaussian smoothing kernels (kernel size 8, σ = 1, 4), and
take the difference between the two smoothed images as the
input image of the model. The effect of the two smoothing
kernels is similar to a bandpass filter so that the input images
are constrained within a certain range of frequencies. The
learned filters on V1Deform dataset are shown in Fig 3(a).
We also fit every unit by a two dimensional Gabor function,
resulting in an average fitting r2 = 0.83 (std = 0.12). Fol-
lowing the analysis of (Ringach 2002; Rehn and Sommer
2007), a scatter plot of nx = σxf versus ny = σyf is con-
structed in Fig. 3(b) based on the fitted parameters, where
nx and ny represent the width and length of the Gabor en-
velopes measured in periods of the cosine waves. Compared
to the sparse coding model (a.k.a. Sparsenet) (Olshausen and
Field 1996, 1997), the units learned by our model have more

similar structure to the receptive fields of simples cells of
Macaque monkey.

We also quantitatively compare the learned units within
each sub-vector in Fig. 3(c). Within each sub-vector, the fre-
quency f and orientation θ of the paired units tend to be the
same. More importantly, most of the paired units differ in
phase φ by approximately π/2, consistent with the quadra-
ture phase relationship between adjacent simple cells (Pollen
and Ronner 1981; Emerson and Huang 1997).

6.3 Inference of displacement field
We then apply the learned representations to inferring the
displacement field (δ(x)) between pairs of frames (It, It+1).
To get valid image patches for inference, we leave out those
displacements at image border (8 pixels at each side).

We use non-parametric M(δ) and the local mixing mo-
tion model (Eq. (6)), where the local support S is in a range
of [−4,+4], and dx is taken with a sub-sampling rate of
2. After obtaining the inferred displacement field (δ(x)) by
the learned model, we also train a CNN model with ResNet
blocks (He et al. 2016) to refine the inferred displacement
field. In training this CNN, the input is the inferred dis-
placement field, and the output is the ground truth displace-
ment field, with least-squares regression loss. See Supple-
mentary for the architecture details of the CNN. For biolog-
ical interpretation, this refinement CNN is to approximate
the processing in visual areas V2-V6 that integrates and
refines the motion perception in V1 (Gazzaniga, Ivry, and
Mangun 2002; Lyon and Kaas 2002; Moran and Desimone
1985; Born and Bradley 2005; Allman and Kass 1975). We
learn the models from the training sets of V1Deform and
V1FlyingObjects datasets respectively, and test on the cor-
responding test sets. We also test the model learned from
V1FlyingObjects on MPI-Sintel Final, whose frames are re-
sized to 128× 128.

Table 1 summarizes the average endpoint error (AEE)
of the inferred results. We compare with several baseline
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Figure 3: Learned results on band-pass image pairs from V1Deform. (a) Learned units. Each block shows two learned units within the same
sub-vector. (b) Distribution of the Gabor envelope shapes in the width and length 2D-plane. (c) Difference of frequency f , orientation θ and
phase φ of paired units within each sub-vector.

methods, including FlowNet 2.0 and its variants (Dosovit-
skiy et al. 2015; Ilg et al. 2017). For baseline methods, we
test the performance using two models: one retrained on our
datasets (‘trained’) and the released model by the original
authors which are pre-trained on large-scale datasets (‘pre-
trained’). Note that for MPI-Sintel, a pre-trained baseline
model gives better performance compared to the one trained
on V1FlyingObjects, probably because these methods train
deep and complicated neural networks with large amount of
parameters to predict optical flows in supervised manners,
which may require large scale data to fit and transfer to dif-
ferent domains. On the other hand, our model can be treated
as a simple one-layer auto-encoder network, accompanied
by weight matrices representing motions. As shown in Ta-
ble 1, our model has about 88 times fewer parameters than
FlowNet 2.0 and 21 times fewer parameters than the light
FlowNet2-C model. We achieve competitive performance
compared to these baseline methods. Fig. 4 displays sev-
eral examples of the inferred displacement field. Inferred
results from the FlowNet 2.0 models are shown as a qual-
itative comparison. For each dataset, we show the result of
FlowNet 2.0 model with lower AEE between the pre-trained
and trained ones.

6.4 Unsupervised learning
We further perform unsupervised learning of the proposed
model, i.e., without knowing the displacement field of train-
ing pairs. For unsupervised learning, we scale the images
to size 64 × 64. The size of the filters is 8 × 8, with a
sub-sampling rate of 4 pixels. Displacements at the im-
age border (4 pixels at each side) are left out. We train
the model on MUG Facial Expression and V1FlyingObjects
datasets. Fig. 5 shows some examples of inferred displace-
ment fields on the testing set of MUG Facial Expression.
The inference results are reasonable, which capture the
motions around eyes, eyebrows, chin, or mouth. For the

model trained on V1FlyingObjects, we test on the testing
set of V1FlyingObjects and MPI-Sintel. Table 2 summa-
rizes the quantitative results. We include comparisons with
several baseline methods for unsupervised optical flow esti-
mation: Unsup (Jason, Harley, and Derpanis 2016) and Un-
Flow (Meister, Hur, and Roth 2018) and its variants, which
are also trained on V1FlyingObjects. The proposed model
achieves better performance compared to baseline methods.
See Supplementary for qualitative comparisons and more in-
ference results.

6.5 Multi-step frame animation
The learned model is also capable of multi-step frame
animation. Specifically, given the starting frame I0(x) and
a sequence of displacement fields {δ1(x), ..., δT (x), ∀x},
we can animate the subsequent multiple frames
{I1(x), ..., IT (x)} using the learned model. We use
the model with local mixing. We introduce a re-encoding
process when performing multi-step animation. At time t,
after we get the next animated frame It+1, we take it as the
observed frame at time t + 1, and re-encode it to obtain the
latent vector vt+1 at time t + 1. Fig. 6 displays two exam-
ples of animation for 6 steps, learned with non-parametric
version of M on V1Deform and V1FlyingObjects. The
animated frames match the ground truth frames well. See
Supplementary for more results.

6.6 Frame interpolation
Inspired by the animation and inference results, we show
that our model can also perform frame interpolation, by
combining the animation and inference together. Specifi-
cally, given a pair of starting frame I0 and end frame IT ,
we want to derive a sequence of frames (I0, I1, ..., IT−1, IT )
that changes smoothly. Let v0(x) = W I0[x] and vT (x) =
W IT [x] for each x ∈ D. At time step t + 1, like the in-
ference, we can infer displacement field δt+1(x) by steepest
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Figure 4: Examples of inferred displacement field on V1Deform, V1FlyingObjects and MPI-Sintel. For each block, from left to right are
It, It+1, ground truth displacement field and inferred displacement field by FlowNet 2.0 model and our learned model respectively. For each
dataset, we show the result of FlowNet 2.0 model with lower AEE between the pre-trained and trained ones. The displacement fields are color
coded (Liu, Yuen, and Torralba 2010). See Supplementary for the color code.

Table 1: Average endpoint error of the inferred displacement and number of parameters. Abbreviation FN2 refers to FlowNet 2.0. ‘Ours-ref’
indicates that the results are post-processed by the refinement CNN.

V1Deform V1FlyingObjects MPI-Sintel # params (M)pre-trained trained pre-trained trained pre-trained trained

FN2-C 1.324 1.130 0.852 1.034 0.363 0.524 39.18
FN2-S 1.316 0.213 0.865 0.261 0.410 0.422 38.68
FN2-CS 0.713 0.264 0.362 0.243 0.266 0.346 77.87
FN2-CSS 0.629 0.301 0.299 0.303 0.234 0.450 116.57
FN2 0.686 0.205 0.285 0.265 0.146 0.278 162.52
Ours - 0.258 - 0.442 - 0.337 1.82
Ours-ref - 0.156 - 0.202 - 0.140 1.84

descent:
v̂t+1(x, δ) =

∑
dx∈S

M(δ, dx)vt(x+ dx), (15)

δt+1(x) = arg min
δ∈∆

K∑
k=1

∥∥∥v(k)
T − v̂

(k)
t+1(x, δ)

∥∥∥2

. (16)

Like the animation, we get the animated frame It+1 by de-
coding v̂t+1(x, δt+1(x)), and then re-encode it to obtain the
latent vector vt+1(x).

The algorithm stops when It is close enough to IT (mean
pixel error < 10). Fig. 7 shows four examples, learned with
non-parametric M on V1Deform and V1FlyingObjects. For
96.0% of the testing pairs, the algorithm can accomplish the
frame interpolation within 10 steps. With this algorithm, we
are also able to infer displacements larger than the accept-
able range of δ by accumulating the displacements along the
interpolation steps. See Supplementary for more results.

6.7 Ablation study

We perform ablation studies to analyze the effect of two
components of the proposed model: (1) dimensionality of
sub-vectors and (2) sub-sampling rate. Besides comparing
the average endpoint error (AEE) of motion inference, we
also test if the learned model can make accurate multi-step
animation of image frames given the sequence of displace-
ment fields. Per pixel mean squared error (MSE) of the pre-
dicted next five image frames is reported. Table 3 summa-
rizes the results learned from V1Deform dataset. The di-
mensionality of sub-vectors controls the complexity of the
motion matrices, which is set to a minimum of 2 in the ex-
periments. As the dimensionality of sub-vectors increases,
the error rates of the two tasks decrease first and then in-
crease. On the other hand, sub-sampling rate can be changed
to make the adjacent image patches connect with each other



Figure 5: Examples of inferred displacement fields by unsupervised learning on MUG Facial Expression dataset. Within each block, the top
row shows the observed image frames, while the bottom row shows the inferred color-coded displacement fields (Liu, Yuen, and Torralba
2010). See Supplementary for the color code.

Table 2: Average endpoint error of the inferred displacement in unsupervised learning.

Unsup UnFlow-C UnFlow-CS UnFlow-CSS Ours

V1FlyingObjects (train) 0.379 0.336 0.374 0.347 0.245
V1FlyingObjects (test) 0.811 0.399 0.394 0.453 0.316
MPI-Sintel 0.440 0.198 0.248 0.202 0.101

Table 3: Ablation study measured by average endpoint error
(AEE) of motion inference and mean squared error (MSE) of multi-
step animation, learned from V1Deform dataset.

Sub-vector dimension
2 4 6 8 12

AEE 0.258 0.246 0.238 0.241 0.0.246
MSE 8.122 7.986 7.125 7. 586 8.017

Sub-sampling rate
4 8 16

AEE 0.383 0.258 0.312
MSE 11.139 8.122 10.293

gt
sy

n

Figure 6: Example of multi-step animation. For each block, the
first row shows the ground truth frame sequences, while the second
row shows the animated frame sequences.

more loosely or tightly. As shown in Table 3, a sub-sampling
rate of 8, which is half of the filter size, leads to the optimal
performance.

7 Conclusion
This paper proposes a simple representational model that
couples vector representations of local image contents and
matrix representations of local motions, so that the vec-
tor representations are equivariant. Unlike existing models
for V1 that focus on statistical properties of natural images
or videos, our model serves a direct purpose of perception
of local motions. Our model learns Gabor-like units with

Figure 7: Examples of frame interpolation, learned with non-
parametric M . For each block, the first frame and last frame are
given, while the frames between them are interpolated frames.

quadrature phases. We also give biological interpretations
of the learned model and connect it to the spatiotemporal
energy model. It is our hope that our model adds to our un-
derstanding of motion perception in V1.

Our motion model can be integrated with the sparse cod-
ing model. For sparse coding, we can keep the top-down de-
coder of the tight frame auto-encoder for each image frame,
and impose sparsity on the number of sub-vectors that are
active. For motion, we then assume that each sub-vectors is
transformed by a sub-matrix that represents the local dis-
placement.

This paper assumes linear decoder for image frames and
matrix representation of local motion. We can generalize the
linear decoder to a neural network and generalize the matrix
representation to non-linear transformation modeled by non-
linear recurrent network.

In our future work, we shall study the inference of ego-
motion, object motions and 3D depth information by gen-
eralizing our model based on equivariant vector represen-
tations and their transformations. We shall also apply our
model to stereo in binocular vision.
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