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ABSTRACT  

Three-dimensional digital image correlation (3D-DIC) has become a strong alternative to traditional contact-based 
techniques for structural health monitoring. 3D-DIC can extract the full-field displacement of a structure from a set of 
synchronized stereo images. Before performing 3D-DIC, a complex calibration process must be completed to obtain the 
stereovision system’s extrinsic parameters (i.e., cameras’ distance and orientation). The time required for the calibration 
depends on the dimensions of the targeted structure. For example, for large-scale structures, the calibration may take 
several hours. Furthermore, every time the cameras’ position changes, a new calibration is required to recalculate the 
extrinsic parameters. The approach proposed in this research allows determining the 3D-DIC extrinsic parameters using 
the data measured with commercially available sensors. The system utilizes three Inertial Measurement Units with a laser 
distance meter to compute the relative orientation and distance between the cameras. In this paper, an evaluation of the 
sensitivity of the newly developed sensor suite is provided by assessing the errors in the measurement of the extrinsic 
parameters. Analytical simulations performed on a 7.5 x 5.7 m field of view using the data retrieved from the sensors show 
that the proposed approach provides an accuracy of ~10-6 m and a promising way to reduce the complexity of 3D-DIC 
calibration. 
 
Keywords: Camera Calibration, Digital Image Correlation, Inertial Measurement Unit, Laser Measurement, 
Photogrammetry, Structural Health Monitoring. 
 

1. INTRODUCTION  
Computer vision (CV) and photogrammetry methods have become viable alternatives to traditional structural health 
monitoring (SHM) sensing approaches as they overcome some of the disadvantages of contact-based measurements 1, 2. 
Among the available photogrammetry methods, three-dimensional digital image correlation (3D-DIC) has been widely 
used by the SHM community for extracting displacement, strain, and geometry profiles from images acquired using a pair 
of synchronized cameras 3, 4. 3D-DIC has been used to perform measurements in a variety of engineering domains 5-9, 
scales 10 and from both fixed and unmanned platforms 11, 12. 

3D-DIC can identify and track a physical point P on the surface of a target object by triangulating its position on the retinal 
plane of the stereo cameras from a set of pictures taken at different times. However, the triangulation is possible only if 
the relative position and orientation of the cameras and the camera’s internal parameters are known beforehand. The 
cameras’ pose and position are obtained through a process known as stereo calibration 13. Calibration for a field of view 
(FOV) up to ~2 meters is performed by taking several pictures of traceable calibration objects containing optical targets 
whose positions are previously well-known. From the sequence of pictures of the calibration object, the cameras’ intrinsic 
and extrinsic parameters are obtained 14. Once a stereovision system is calibrated, the relative position of the cameras must 
not be altered to prevent measurement errors. Therefore, the cameras are rigidly mounted to a stiff bar or fixed on stable 
tripods. 

As the size of the target object increases, a more complex calibration procedure known as large-area calibration must be 
performed 9. This operation is arduous, requires custom calibration targets, bars to ensure that cameras do not move, and 
multiple man-hours of work. All those constraints limit the applicability of 3D-DIC for SHM of large-scale systems. For 
these reasons, multiple approaches are available in the literature and proposed as an alternative to traditional calibration. 



 
 

 
 

Because a stereo vision system’s intrinsic and extrinsic parameters can be fully decoupled, research has advanced to find 
alternative ways to estimate the extrinsic parameters accurately. Examples include taking a single picture of multiplanar 
or cylinder-shaped calibration objects 15, 16, taking multiple pictures of scale bars 17, using active phase targets 18, 19, and 
relying on detecting a single feature point 20. While all those procedures manage to calibrate a stereovision system, they 
still have the same disadvantages as traditional calibration. That is the impossibility of moving the cameras after the 
calibration without losing information about the extrinsic parameters of the stereovision system. 

To reduce the complexity of calibration and make it more flexible, the use of sensors has been proposed. However, those 
approaches used the data from the sensors to complement the traditional procedure; thus, they still require pictures of a 
calibration object 21. Then a novel method to estimate the extrinsic parameters using data retrieved from sensors only, 
without any images of a calibration object, has been proposed 22, 23. By using three Inertial Measurement Units (IMUs) and 
a laser module, the extrinsic parameters of a stereovision system can be extracted with accuracy comparable to traditional 
methods. This paper describes the experiments performed to evaluate the IMUs and laser’s noise floors. The results of the 
sensors’ characterization tests are then used to validate the accuracy of the proposed sensor-based calibration method 
analytically and compare it with the theoretical accuracy of 3D-DIC for a given FOV. 

 

2. PROPOSED CALIBRATION METHOD AND MATHEMATICAL FRAMEWORK 
The proposed method uses three IMUs and a laser module to estimate the seven degrees-of-freedom (DOFs) needed to 
identify the cameras’ extrinsic parameters through their rotation matrices Ri and translation vector T. The seven DOFs 
include (1) the distance between the cameras expressed as a Cartesian vector ; (2, 3, 4) roll α1, pitch β1, and yaw γ1 of 
camera #1, and (5, 6, 7) roll α2, pitch β2, and yaw γ2 of camera #2. A schematic of the proposed sensors system, integrated 
on two single-board computers (SBCs), is shown in Figure 1. 

 
Figure 1. Schematic of the proposed sensor system with details about the outputs of each component for their use in the 
calculation of a stereovision system’s extrinsic parameters. 

 

IMU #1 and IMU #2 are connected to the cameras and used to measure the roll αi, pitch βi, and yaw γi of the i-th camera 
to determine its Ri. The generic rotation matrix in the global frame of reference W, can be calculated using the following 
equation:  
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where the subscript i identifies the camera’s number (i.e., 1 or 2 in the proposed approach). The IMU #3 is mounted to the 
laser and it is used to compute TW = [ρ, α3, γ3]T in spherical coordinates. For use in the proposed approach, TW can be 
converted into Cartesian coordinates using: 

𝑻𝑻𝑾𝑾 = �
ρ sin(𝛾𝛾3) cos(𝛼𝛼3)
ρ sin(𝛾𝛾3)cos (𝛼𝛼3)
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where ρ is the relative distance between the cameras and α3 and γ3 the roll and yaw of the laser. Because the three IMUs 
compute the angles relative to the global frame of reference, RW, 1, RW, 2, and TW must be expressed into Camera 1’s frame 
of reference to be used as extrinsic parameters for the stereovision system. This transformation is achieved using: 

�
𝑹𝑹𝟏𝟏𝟏𝟏 = 𝑹𝑹𝑾𝑾,𝟏𝟏
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where subscripts 1 and 2 identify the camera’s number, W the global frame of reference, and R12 the rotation matrix of 
Camera #2 in the frame of reference of Camera #1. Once the seven DOFs that define the pose and position of the two 
cameras are determined from the IMUs and the laser, they can be used in (3) to determine the extrinsic parameters of the 
stereovision system. 

 

3. EXPERIMENTAL CHARACTERIZATION OF THE SENSORS 
The sensor-based calibration method is based on the accuracy of the IMUs to measure the orientation of the cameras and 
the accuracy of the laser to determine their relative position. For this reason, the noise floor (NF) of the two sensors is 
evaluated with two laboratory experiments. The first experiment was a back-to-back comparison between an Ultra-Low 
Noise 9-Axis LPMS-IG1 IMU manufactured by LP-Research 24 and a 6-Axis ADIS16470 IMU produced by Analog 
Devices 25. The LPMS-IG1 IMU embeds a three-axis accelerometer, a three-axis gyroscope, and a three-axis 
magnetometer, while the ADIS IMU includes a three-axis accelerometer and gyroscope only. The second set of 
experiments was the NF assessment and calibration of an M88B laser module produced by JRT Meter Technology 26. 

3.1 Characterization of the IMU  

The NF of the LPMS-IG1 and ADIS16470 IMUs was assessed by performing static tests with different settings of the two 
devices. The LPMS-IG1 IMU offers the possibility to select different configurations such as the use of an Extended 
Kalman Filter (EKF) or a Madgwick Filter (MF), the possibility to include or exclude the magnetometer, and the possibility 
to enable or disable an automatic gyroscope calibration subroutine to reduce the drift of the yaw angle. The only 
configuration available for the ADIS16470 IMU includes a modified MF. As such, multiple experiments were performed 
to test all possible combinations of configurations for the LPMS-IG1 IMU against the single possible configuration for the 
ADIS16470 sensor. Figure 2 shows the experimental setup with the two IMUs were rigidly mounted onto a concrete block 
to reduce the effect of ambient vibration and unwanted inertial motion while tests were ran.  

 
Figure 2. Experimental setup used for characterizing the IMUs’ noise floor. 

 

During the tests, the two IMUs collected data for five minutes at a sampling rate of 100 Hz to evaluate the NF and the 
presence of drift. The results for the different configurations tested are summarized in Table 1. It should be noticed that 
for the ADIS16470 IMU, the drift is eliminated in post-processing before computing the yaw’s NF. In contrast, for the 
LPMS-IG1 IMU, the drift is eliminated in post-processing when the gyroscope auto-calibration is turned off. 

 



 
 

 
 

Table 1. Results of all the noise floor tests run to characterize the IMUs.  

CONF. # SETTINGS LPMS-IG1 ADIS16470 

(-) Active sensors Filter type Auto-calibration α (10-2°) β (10-2°) γ (10-2°) α (10-2°) β (10-2°) γ (10-2°) 

1 Gyro; Acc; Mag EKF Off 0.33 0.35 1.56    

2 Gyro; Acc; Mag  EKF On 0.34 0.33 1.57    

3 Gyro; Acc; Mag MF Off 0.59 0.74 1.61    

4 Gyro; Acc; Mag MF On 0.53 0.74 1.48    

5 Gyro; Acc EKF Off 0.32 0.34 1.59    

6 Gyro; Acc EKF On 0.36 0.37 0.11    

7 Gyro; Acc MF Off 0.41 0.38 2.14 8.44 7.95 5.30 

8 Gyro; Acc MF On 0.43 0.38 0.08    

 

From Table 1, it can be seen how the LPMS-IG1 IMU generally performs better than the ADIS16470 IMU in all tested 
configurations, given the quality of the sensor and the only sensor fusion configuration available. Overall, the best 
configuration is Conf. #8 in which the LPMS-IG1’s magnetometer is disabled (i.e., only the gyroscope and the 
accelerometers are used), the gyroscope auto-calibration is enabled, and the MF mode is active. The auto-calibration 
improves the yaw angle accuracy compared to when the drift is removed in post-processing (see Conf. #8 vs. Conf. #7 and 
Conf. #6 vs. Conf. #5). The time histories of the signals measured with the LPMS16470 and the ADIS-IG1 in Conf. #8 
are plotted in Figure 3. 

 
Figure 3. Detail of the time histories collected using the ADIS16470 and the LPMS-IG1 in Conf. #8 (Gyro; Acc; MF; Auto-
calibration on) showing the noise floor of the two IMUs. ADIS16470: a) roll; b) pitch; and c) yaw. LPMS-IG1: d) roll; e) pitch; 
and f) yaw. 

 
The NF values, expressed in terms of signal standard deviation, σ extracted for the two IMUs are then used as input 
parameters to evaluate the accuracy of a stereovision system’s extrinsic parameter when the Euler angles αi, βi, and γi of 
the rotational matrix RW, i  are affected by noise equal to σ.  



 
 

 
 

3.2 Characterization of the laser 

The selected M88B laser device was compared and calibrated with the ground truth provided by a conventional measuring 
tape with nominal resolution equal to 10-3 m and a Bosch GLM400C laser with nominal resolution equal to 10-4 m. To 
perform the test and evaluate the NF of the M88B laser, the three devices were mounted on a slider rail pointed 
perpendicular towards a reflective aluminum target mounted on the same rail (see Figure 4a). During the tests, the three 
devices were moved away from the target object at ~0.5 m increments in the 0.5 - 3.5 m range for a total of seven 
measurement points. Twenty-five measures were taken with the sensors for each distance to allow data averaging and 
statistical parameters determination. The data collected using the Bosh GLM400C and the measuring tape were averaged 
together and used as ground truth. The results measured with the M88B laser for each distance were averaged and used in 
a linear regression to quantify the accuracy of this sensor. A plot of the regression results is shown in Figure 4b, where the 
distance measured with the laser are compared to the reference values. 

 
Figure 4.  Laser characterization tests: a) experimental setup; b) calibration curve for the laser and error from reference distances. 

 
The standard deviations obtained for each of the seven measurement points were averaged together to obtain an average 
NF for the M88B laser, σlaser equal to 4.6 x10-4 m. The extracted value is then added as noise to equation (2) to quantify 
its effect on the accuracy of vector TW. 

 

4. EVALUATION OF THE SENSOR-BASED CALIBRATION ACCURACY 
The calculated NF values for the IMUs and laser were used to quantify the robustness of the proposed sensor-based 
calibration approach. The values of the parameters in equations (1) and (2) are randomly varied within the range of the 
NFs calculated in Section 3 using a Monte Carlo simulation (MCS). The values output of the MCS were then used to 
simulate a 3D-DIC measurement on a ~7 x 5 m planar object. The outcomes of measurements performed when the 
calibration is completed using three ADIS16470 IMUs and the laser (i.e., Scenario A) and three LPMS-IG1 IMUs and the 
laser (i.e., Scenario B) were compared with the theoretical accuracy of a stereo vision system with well-known cameras 
position and specifications. The reprojection and reconstruction errors calculated for the two scenarios can be used to 
assess the accuracy of the stereovision system as a function of the calculated extrinsic parameters. 

For this study, a stereovision system with two 12 MP (4096 x 3000 pixel) cameras with 3.45 x 3.45 μm/pixels sensor size, 
fitting a 12.5 mm focal length lens, was simulated. As shown in Figure 5, the system is set up to have the left camera (i.e., 
Camera #1) in the origin of the global frame of reference W and rotated 10° clockwise around the global Z-axis. The right 
camera (i.e., Camera #2) is placed 3 m on the right from Camera 1 and rotated 15° counterclockwise around the global Z-
axis. This setup results in a separation angle of 25°, a base distance of 3 m, and a working distance of 7 m from the planar 
object. As such, the reference stereovision system’s intrinsic and extrinsic parameters are fully known. An MCS simulates 
100 acquisitions from the IMUs and ten acquisitions from the laser, all affected by the NFs calculated in Section 3, to 
determine the extrinsic parameters of Camera #1 and Camera #2. The positions and orientations of both cameras are then 
computed with equations (1) – (3) and used to reconstruct the surface of the planar object to evaluate the reprojection and 
reconstruction errors. This procedure is repeated 100 times to simulate Scenario A (i.e., three ADIS16470 IMUs and the 



 
 

 
 

laser) and all results are averaged at the end for consistency. Finally, the entire procedure is repeated to simulate Scenario 
B (i.e., three LPMS-IG1 IMUs and the laser). 

 
Figure 5. Representation of the stereovision system and the planar object position with respect to the cameras. 

 
Figure 6 and Figure 7 show the reprojection error, εREP, for all the points of the FOV that can be visualized by both cameras 
simultaneously. Table 2 summarizes the reconstruction error, εREC computed for both scenarios. 

 
Figure 6. Map of the reprojection error for the planar object obtained for Scenario A (i.e., three ADIS16470 IMUs and a laser 
sensor): a) Camera #1, b) Camera #2. 

 

 
Figure 7. Map of the reprojection error for the planar object obtained for Scenario B (i.e., three LPMS-IG1 IMUs and a laser 
sensor): a) Camera #1, b) Camera #2. 



 
 

 
 

Table 2. Reprojection and reconstruction errors obtained for the two simulated scenarios.  

Scenario Mean εREP  Absolute mean εREC 

(-) (pixel) X-coordinate (μm) Z-coordinate (μm)  Y-coordinate (μm) 

A 0.278 63.63 74.49 118.2 

B 0.016 2.88 2.59 18.13 

 

For a stereovision system, εREP must be below 0.04 pixel, while the theoretical εREC is less than 1/300 pixel and 1/30 pixel 
for in-plane and out-of-plane coordinates, respectively. Given the characteristics of the stereovision system described in 
Section 4, εREC should be smaller than 6 μm in the in-plane direction and 60 μm in the out-of-plane direction. From the 
data reported in Figures 6 and 7 and Table 2, it is visible how only Scenario B (i.e., three LPMS-IG1 IMUs and the laser) 
produces values below the threshold acceptable for 3D-DIC. However, when the higher-accuracy IMU is used with a FOV 
of ~7 x 5 m, the proposed sensor-based calibration approach yield a reprojection error below 0.02 pixel, in-plane accuracy 
of ~3 μm, and out-of-plane accuracy of ~18 μm; thus, providing the necessary accuracy for 3D-DIC. 

 

5. CONCLUSIONS 
This research proposes a novel approach to measure the extrinsic parameters of a stereovision system for three-dimensional 
digital image correlation (3D-DIC). The technique uses the Euler angles measured by three inertial measurement units 
(IMUs) and one laser sensor to compute the full set of extrinsic parameters needed to calibrate a stereovision system. 
Experimental tests have been performed to compare the accuracy of two candidate IMUs and characterize the accuracy of 
a laser. The extracted sensors’ noise floors were used in a Monte Carlo simulation to generate random noise affecting the 
extrinsic parameters and validate the accuracy of the proposed technique analytically. When a stereovision system is used 
to measure a ~7 x 5 m planar object, an angular accuracy of the rotational matrix on the order of ~1/100 degrees yields a 
reprojection error below 0.02 pixel. The results also prove that the accuracy obtained when the extrinsic parameter are 
retrieved using three IMUs and the laser sensor results in an in-plane and out-of-plane reconstruction errors below 6 and 
60 μm, respectively. This research validates how the proposed technique has the potential to extend the range of 
applicability of 3D-DIC; thereby opening the door for using this technique for long-term monitoring and measurement of 
large-scale structures.  
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