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a b s t r a c t

A new quantile regression model for survival data is proposed that permits a positive
proportion of subjects to become unsusceptible to recurrence of disease following
treatment or based on other observable characteristics. In contrast to prior proposals
for quantile regression estimation of censored survival models, we propose a new ‘‘data
augmentation’’ approach to estimation. Our approach has computational advantages over
earlier approaches proposed by Wu and Yin (2013, 2017). We compare our method with
the two estimation strategies proposed by Wu and Yin and demonstrate its advantageous
empirical performance in simulations. The methods are also illustrated with data from
a Lung Cancer survival study.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Motivated to some degree by recent progress in cancer treatment, there has been an increasing interest in survival
nalysis models that accommodate a probability of ‘‘cure’’, that is a positive treatment effect that lengthens survival
rospects to the extent that probability of recurrence or death from the original disease is reduced essentially to
ero (Othus et al., 2012). Conventional survival models assume that the survival rate decreases to zero with time going to
nfinity and cannot be directly used when there is a proportion of subjects getting cured. More flexible survival models
or modeling cure rate need to be considered and estimation of such models is obviously challenging since we must
istinguish cured subjects from those merely censored by various aspects of the study design and still susceptible to the
isease.
In econometrics and the project evaluation literature more generally there are often similar ‘‘cure’’ considerations.

or example, in the analysis of unemployment durations, there are often subjects who are never reemployed, some
f whom may be interpreted as perpetually cured of the ‘‘disease’’ of work at least in its remunerative forms. See, for
xample, Yamaguchi (1992).
Several statistical models and inference approaches for survival analysis with a cure proportion have been proposed in

he literature. There are broadly two classes of commonly used models: (i) promotion time cure models, which directly
odel the survival function similar to the Cox-PH model but with the flexibility that the survival function need not go

o zero at infinity (Yakovlev and Tsodikov, 1996; Tsodikov, 2002; Bremhorst and Lambert, 2016), and (ii) two component
ixture models, where the mixing proportion models the cure rate, and the mixing distributions model the survival

unctions for the uncured and cured subjects (Kuk and Chen, 1992; Sy and Taylor, 2000; Wu and Yin, 2017; López-Cheda
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t al., 2017). A comprehensive review of these two approaches along with some methods that unify them is provided
in Amico and Van Keilegom (2018).

While both these approaches have their own merits, we consider the mixture model framework as it separates the
covariate effects that determine the cure proportion, and the covariate effects that affect the survival time of the uncured
subjects (also called latency). The mixture model framework is also the more commonly used one in practice as it allows
flexible choices for the survival function of the uncured subjects and for the cure rate proportion. Logistic regression is
most commonly used for modeling the cure rate proportion (Kuk and Chen, 1992; Peng and Dear, 2000; Wu and Yin,
2013). There are exceptions such as Xu and Peng (2014) and López-Cheda et al. (2017) which use nonparametric models
for the cure proportion. While parametric or semi-parametric survival functions have long been used (Yamaguchi, 1992;
Sy and Taylor, 2000), nonparametric approaches have also been considered in the recent literature (López-Cheda et al.,
2017).

Quantile regression (Koenker and Bassett, 1978; Koenker, 2005) provides a more general modeling framework for
survival analysis compared to commonly used (semi-) parametric approaches such as Cox PH and AFT models. QR survival
models provide a flexible, local specification of covariate effects in the spirit of nonparametric approaches while still
maintaining the linear parametric structure familiar from regression modeling. QR survival models and their estimation
strategies are studied by Koenker and Geling (2001), Portnoy (2003), Peng and Huang (2008), Wang and Wang (2009)
and Yang et al. (2018) when there is no cure proportion. More recently, Wu and Yin (2013) proposed a cure rate survival
odel using quantile regression. Wu and Yin (2013) used a logistic model for the cure proportion and a quantile regression

based survival distribution for modeling the latency.
Wu and Yin (2013) initially proposed an estimation strategy that alternated between the estimation of the cure

proportion and the latency. However, they acknowledged that the procedure was unstable, and sometimes failed to
converge. Wu and Yin (2017) proposed an alternative approach for estimation using multiple imputation (MI). The MI
approach first estimates the logistic model using a local Nelson–Aalen type estimator (Wang and Wang, 2009), and
imputes the cured subjects followed by applying Portnoy (2003)’s method for estimating the QR model in the latency.
While the MI approach has an improved computational performance, it is still limited by the local Nelson–Aalen estimation
whose performance deteriorates rapidly as the covariate dimension increases. The linear index specification of quantile
regression specification imposes further structure, allowing us to retain the

√
n convergence rate for the parameters of

he survival function for any (fixed) dimension of the covariates, while the local kernel weighting inherits the slower rates
ssociated with nonparametric kernel regression.
We propose a new data augmentation based estimation approach for the cure rate quantile regression model. Our

pproach provides a more stable estimation algorithm, and is demonstrated through simulation experiments to be
ore efficient than existing methods especially when there are several predictors. This is to be expected given the rate

mprovement offered by the global linear index structure of the quantile regression model. Our method is motivated by
ecent work on using data augmentation for censored quantile regression (Yang et al., 2018), but significantly generalizes
his approach for dealing with cure proportion. More specifically, our method augments both the cure indicators as
ell as the censored responses and iteratively updates the quantile regression coefficients, cure rate parameters and
he augmented variables. Each step of the update only involves convex functions making it computationally efficient. A
istinct advantage of our approach compared to existing alternatives is that it can more efficiently incorporate multiple
ovariates as required in most applications.
We now provide an outline of the paper. In Section 2 we introduce the cure rate quantile regression model and

xisting methods for estimation. In Section 3, we describe our proposed estimation method. In Section 4, we discuss
n implementation of our method in R. We provide simulation results and application of our method to a lung cancer
tudy in Section 6 followed by a discussion in Section 7.

. Cure rate QR model

The most basic quantile regression survival model as introduced in Koenker and Geling (2001), assumes that the τ th
onditional quantile functions of the possibly transformed survival time T are given by,

QTi (τ |X = xi) = x⊤i β(τ ). (1)

ortnoy (2003) and Peng and Huang (2008) proposed estimation methods for this model that accounted for the almost
nevitable presence of censoring. Portnoy (2003) built upon an analogy with the well-known univariate Kaplan–Meier
stimator, while Peng and Huang (2008) built upon the martingale representation afforded by the univariate Nelson–Aalen

estimator.
An advantage of the QR survival model is that it allows the researcher to be quite flexible about how the covariates

enter into the model locally at each quantile level of the response, while maintaining the linear parametric structure
familiar from regression modeling. From an asymptotic viewpoint this is reflected in parametric rates of convergence for
the estimator of β(τ ). The downside of this in the presence of censoring is that it requires a global (linear) specification
of the covariates effects in order to justify the weighting schemes used to account for the censoring (Portnoy, 2003).
Nevertheless, the global quantile regression model, a model satisfying Eq. (1) at all quantile levels, represents a large

class of models encompassing heteroskedastic models such as location-scale models with covariate-dependent location
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nd scale. The classical survival models such as the proportional hazards (PH) model and the accelerated failure time
AFT) model are special cases of the global QR model with a transformed survival time as the response and the slope
oefficients of β(τ ) constant across τ .
When there is a cure proportion, the possibility of a cure is introduced via a latent variable, η, modeled as a binary

esponse. The probability of subject i being susceptible (not cured), denoted by πi, depends on covariates Z as mediated
y the link function, π . That is,

πi = P(ηi = 1|Z = zi) = π (z⊤i γ ), (2)

As in Wu and Yin, we use the logistic link π (u) = eu/(1 + eu), but it is possible to consider other potential choices
such as the Gosset link functions (Koenker and Yoon, 2009) or fully nonparametric link functions (Xu and Peng, 2014;
ópez-Cheda et al., 2017). When ηi = 1 we will say that subject i is susceptible to the event of interest, while if ηi = 0
hey are unsusceptible, thus,

Ỹ = ηT + (1− η)∞, (3)

ubject to the usual constraints of censoring. We observe, Yi = Ỹi ∧ Ci, where Ci denotes a random censoring time, and
i = I(Ỹi ⩽ Ci). We will assume, further, that Y and C are conditionally independent given the covariates X and Z . Under

hese conditions, our objective is to estimate the cure rate parameters γ and the QR parameters β(τ ).

.1. Existing estimation methods for cure rate QR model

For censored quantile survival model, Peng and Huang (2008) use a martingale based on the counting process Ni(t) =
iI(Yi < t) to construct an estimating equation for the quantile regression process. A comprehensive treatment of survival
nalysis from this viewpoint is available from Anderson et al. (1993). Wu and Yin (2013) generalized this approach to cure

rate quantile model. More specifically, using the cumulative hazard function,

ΛY (t|xi, zi) = − log(1− π (z⊤i γ )FT (t|xi)),

where FT (t|xi) is the conditional distribution of T given xi, we have the martingale,

Mi(t) = Ni(t)−ΛY (t|xi, zi),

with respect to the natural filtration of information up to time t . This standard counting process formulation of the Nelson–
Aalen estimator can be employed to construct an estimating equation for γ given an estimator for FT . Building on the prior
work of Beran (1981), Dabrowska (1987) and others, Wang and Wang (2009) proposed estimating censored QR models
sing a local, kernel weighted version of the Kaplan–Meier estimator for FT . Wu and Yin (2013) adopt this approach and

construct a locally weighted Nelson–Aalen estimator. For cure applications, this has the advantage that an estimating
equation for γ can be constructed that avoids any global parametric specification of the quantile specific effects. The
difficulty with their approach, of course, is that specification of the kernel and associated bandwidths becomes increasingly
problematic as the dimension of the covariate space grows. Given an estimator for γ , Wu and Yin (2013) construct another
set of estimating equations for β(τ ) in the same spirit as Peng and Huang (2008). While an iterative procedure to estimate
β(τ ) and γ alternatively is proposed by Wu and Yin (2013), they note convergence issues of this approach due to the
complexity of the iterating steps.

Wu and Yin (2017) extend their prior approach by noting that the conditional probabilities of subjects being susceptible
can be computed from the estimator of γ obtained by the local Nelson–Aalen method and used to impute η’s for the full
sample. Of course, for subjects with ∆i = 1 these probabilities are necessarily one as they correspond to susceptible
subjects. Once the η’s are imputed, the corresponding susceptible subjects are used to estimate β(τ ) similar to Wang
and Wang (2009). This imputation process is performed until some criterion of convergence is achieved. Such imputation
schemes can be expected to improve upon the earlier estimating equation method, but it still suffers from the inherent
drawbacks of the local Nelson–Aalen approach.

3. Proposed estimation method using data augmentation

We now describe our proposed approach for estimating γ and β(τ ) based on data augmentation. Our data augmen-
tation estimator generalizes the approach of Yang et al. (2018) to cure rate quantile model and shares some features
of the imputation method. In addition to augmenting the censored observations, we augment the latent indicators ηi’s
for deriving a data augmentation-like algorithm. In contrast to the existing methods which rely on local nonparametric
methods, however, our data augmentation relies only on the global parametric specification of the QR process allowing
us to more easily accommodate several covariates in X .

Our data augmentation starts with initial values for the QR process, β(τ ) on the grid τ1, . . . , τM which can be obtained
by simply computing the median regression estimator β̂(1/2), based on only the uncensored observations and imposing
the common slope assumption, so β̂(τ ) = β̂(1/2) + β̂1(τ )e1 where β̂1(τ ) denotes the ordinary sample quantiles of the
residuals from the median fit and e is the first unit basis vector of Rp. An initial estimator of γ is obtained by (naively)
1
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stimating the binary response model of δ on Z , i.e. assuming provisionally that all the censored subjects are cured.
lthough data augmentation does not demand a consistent initialization, estimators from existing methods can also
e used for initialization to achieve faster convergence. Given these initial estimators, we may begin the iteration by
erforming each of the following steps conditional on all the remaining quantities:

• Generate ηi’s,
• Reestimate γ ,
• Generate the censored yi’s,
• Reestimate β(τ ).

Accumulating the γ̂ ’s and β̂(τ )’s from this iteration, point estimates can be obtained by simply averaging over the
orresponding iterates. For both reestimation steps, there is the option to resample with replacement from the relevant full
ample as in the standard (x, y) bootstrap. We now provide a more comprehensive description of the data augmentation
pproach in the following algorithmic structure.
tep 0 (Initialization): Initialize β̂

(0)
(τk) for k = 1, . . . ,M = max{⌊

√
n⌋, 100} and γ̂ (0).

tep 1 (Data Augmentation): Given the estimates β̂
(h)
(τk) and γ̂ (h), perform the following sampling steps at iteration

(h+ 1) in the order of their appearance:

• Generate η
(h+1)
i ’s based on the conditional distribution (η | ∆, X, Z, Y ) using the current estimates β̂

(h)
and γ (h) of

the parameters. That is, generate η
(h+1)
i as Bernoulli draw with probability given by

π̂i := P[η = 1 | ∆, X, Z, Y ] = ∆+ (1−∆)
π (z⊤γ (h))(1− F̂T (Y | X))

1− π (z⊤γ (h)F̂T (Y | X))
,

where F̂T (Y | X) is the estimated CDF of T | X corresponding to the regression quantiles β̂
(h)

evaluated at the observed
Y .
• Sample γ from the bootstrap (posterior) distribution of γ given the data {η(h+1)

i , zi}, i = 1, . . . , n. For sampling
from the bootstrap distribution, obtain a resample of size (equal probability with replacement) from the data
{η

(h+1)
i , zi}, i = 1, . . . , n and set γ̂ (h+1) as the corresponding MLE.

γ̂ (h+1)(τ )← argmax
γ

L(γ | {η(h+1)
i , zi}),

where L(·) is the logistic likelihood given by

L(γ | {η(h+1)
i , zi}) ∝

n∏
i=1

exp{η(h+1)
i z⊤i γ }(

1+ exp{z⊤i γ }
) .

Alternatively, if a prior on γ is available, γ̂ (h+1) is sampled from the posterior distribution:

π

(
γ | {η

(h+1)
i , zi}

)
∝ L(γ | {η(h+1)

i , zi})× π (γ ),

where π (γ ) is the prior distribution on γ .
• Generate the censored yi’s from their conditional distribution given the estimates β̂

(h)
(τk) and η

(h+1)
i ’s. That is, if

δi = 0 and η
(h+1)
i = 0, so yi takes the value infinity as these correspond to the cured subjects. To generate yi’s when

δi = 0 and η
(h+1)
i = 1, define km to be the first index such that xTi β̂

h
(τm) ⩾ Ci (provided such an m exists). Draw a

random number τ ∗i uniformly from {τk : k = m, . . . ,M} and set y(h)i = xTi β̂
(h)
(τ ∗).

• Sample β(τ ): collect observations with η
(h+1)
i = 1, and sample β

(h+1)
i from the bootstrap (posterior) distribution

of β given the data (y(h)i , xi), i : η
(h+1)
i = 1. That is, obtain a resampled data of the same size from the uncured

observations, and estimate β̂ (h+1)(τ ) from the usual quantile regression estimator:

β̂ (h+1)(τ )← argmin
β

∑
i: η

(h+1)
i =1

ρτ (y
(h)
i − xTi β),

where ρτ (u) = τ |u| − u1{u < 0} is the check loss function. For the ease of notation, we suppressed additional notation
required to indicate the bootstrap sample is to be used in the optimization above.

Step 2 (Aggregation): Iterate Step 1 for a pre-specified number of iterations H or until a specified convergence criterion
is met. The final estimate β̃(τ ) and γ̃ are obtained by averaging the estimates from the last half of the iterations. That is,

β̃(τ )←
H∑

β̂ (h)(τ ), and γ̃ ←

H∑
γ̂ (h).
h=1 h=1

195



N. Narisetty and R. Koenker Journal of Econometrics 226 (2022) 192–203

d
a
h

{

d
I
o
w
w
i
m
a
o
q
t
p
b

We note here that the sampling of β(τ ) in Step 1 could be performed using a posterior distribution in place of bootstrap
istribution. However, this would require the use of a working likelihood as the true likelihood is difficult to deal with
long with a prior specification on all the regression quantiles β(τk) for k = 1, . . . ,M . While this is certainly possible, we
ave chosen to rely on the bootstrap sampler for its simplicity.
We now offer a heuristic, Bayesian interpretation of our final estimators β̃(τ ) and γ̃ . The distribution of Y , ∆, C given

β(τ ), τ ∈ (0, 1)}, η, X, Z , can be interpreted as a likelihood function for estimating β(τ ) and η. The obvious practical
ifficulty is that we do not have a simple closed form expression for the likelihood suitable for optimization or simulation.
nstead, we consider an augmented likelihood with η serving as the augmented data, i.e., we consider the distribution
f Y , η, ∆, C given {β(τ ), τ ∈ (0, 1)}, γ , X, Z and denote the corresponding likelihood as L(β, γ | {Y , ∆, η, C, X, Z}). If
e had prior distributions π (β) and π (γ ) on the parameters, β , and γ then the corresponding posterior distribution
ould take the form: π (β, γ | {Y , ∆, C, X, Z}) ∝ L(β, γ | {Y , ∆, η, C, X, Z})π (β)π (γ ). While this posterior distribution

s available in principle, it is still somewhat intractable. If we proceed in a Gibbs sampling like conditional sampling
ode, the conditional sampling steps for γ and η are relatively straightforward as provided in our data augmentation
lgorithm. The computationally challenging aspect is the conditional distribution of β since this is the difficult component
f the posterior distribution. To circumvent this issue, our proposed data augmentation algorithm estimates regression
uantiles on a discrete grid of quantile levels and then makes use of the bootstrap distribution as an approximation to
he intractable conditional distribution of β . The resultant data augmentation estimators can be viewed as approximate
osterior mean estimators for β and γ where the approximation is due to the quantile discretization as well as the
ootstrap approximation of the conditional distribution of β . While quantile discretization is commonly employed

in quantile regression inference (Koenker, 2005), bootstrap approximation to the conditional distribution of β̂(τ ) in
simulation settings with latent variables is more recent, notably in Yang et al. (2018) for estimation in censored quantile
regression, and Arellano et al. (2017) for dynamic panel models of income dynamics.

4. Software implementation

In this section, we will briefly describe the R implementation of the foregoing methods. We have developed an R
function that provides a unified interface to all the three estimation methods. The function is cqr(), pronounced ‘‘cure,’’
not to be confused with crq(), which is the umbrella function for censored quantile regression applications in the R
package quantreg. We expect eventually to try to fold the functionality of cqr into quantreg and perhaps even into crq,
but for the moment it seems prudent to keep them separate.

The cqr function uses the extended formula interface of the package Formula, so one writes the model as y | d ∼
X | Z where y denotes the observed response, d the censoring indicator, X the covariates of the QR model, and Z the
covariates of the binary response model. The remaining arguments are standard, with the method argument taking one
of three possible values, LNA, Imp or DA corresponding to the three methods:

• LNA: Local Nelson Aalen estimation method of Wu and Yin (2013),
• Imp: Imputation method of Wu and Yin (2017), and
• DA: Our proposed data augmentation method.

The DA method by default does not use a bootstrap resample at the sampling step of β(τ ). To implement a bootstrapped
version, the option bootstrap = TRUE can be provided which we will denote by DA.B in the remaining part of the paper.
Users have the option of specifying a vector of τ ’s of interest when evaluating β̂(τ ) as well as the grid of τ ’s used for the
intermediate computations. The latter, by default, is set to the percentiles.

The default link function for the binary response cure component of the model is logistic, but other link functions
compatible with the R glm function are easily available. These include probit and cauchit, but one could also use any of
the parametric links available from the package glmx, Zeileis et al. (2015).

5. Identifiability considerations

As noted by Patilea and van Keilegom (2017) cure rate models have delicate identifiability requirements. This should
not be surprising since we are claiming to distinguish heavy tail behavior of the survival distribution from circumstances
in which the event probability is actually zero. We address such considerations in this section. We can rewrite the data
generating process as

Ỹ = ηT + (1− η)∞, Y = η(T ∧ C)+ (1− η)C .

Now, let us suppose that the distribution of the censored time C has support on [0,M), for some 0 < M ⩽ ∞. The
following theorem shows that the model is identifiable if M = ∞ but not necessarily identifiable if M <∞. The censoring
distribution must offer some hope of observing the entire tail of the uncured survival distribution. Recall that our observed
data consists of Y = (Ỹ ∧ C) and ∆ = 1{Ỹ ⩽ C}.
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heorem 1. Suppose that
i) the parameter γ is identifiable given observable η. That is, if π (z⊤γ1) = π (z⊤γ2) for all z, then γ1 = γ2, where recall that
(z⊤γ ) = Pγ [η = 1 | Z = z]: and
ii) the regression quantiles β(τ ) are identifiable given observable T . That is, if Pβ1 [T ⩽ u | X = x] = Pβ2 [T ⩽ u | X = x] for
ll u ∈ (0,∞) and for all x implies that β1 = β2. Then:

• If M = ∞, then all the parameters of the model are identifiable.
• If M <∞, then the parameters of the model may not necessarily be identifiable.

Proof. Let us consider the conditional distribution of (T ∧ C) which is given by:

P[(T ∧ C) ⩽ u | X = x, Z = z] = 1− P[T > u | X = x]P[C > u | X = x]
= 1− (1− FT (u | x))(1− FC (u | x)).

(4)

If for two sets of parameters (γ1, β1) and (γ2, β2), the corresponding conditional distributions of Ỹ are the same, then the
distributions for P[Y | X = x, Z = z] and P[∆ = 1 | X = x, Z = z] based on the two parameter sets need to be identical.
Consider:

P[∆ = 1 | X = x, Z = z] = P[Ỹ ⩽ C | X = x, Z = z]
= P[η = 1 | Z = z]P[T ⩽ C | X = x]
= Pγ [η = 1 | z]

∫ M
0 Pβ [T ⩽ u | x]dFC (u|x),

(5)

If this distribution is the same for two different combinations of the parameters for all possible distributions of the
censoring time C , we will need that: Pγ1 [η = 1 | Z = z]Pβ1 [T ⩽ u | X = x] = Pγ2 [η = 1 | Z = z]Pβ2 [T ⩽ u | X = x], for
almost all u ∈ (0,M). If M = ∞, by letting u tend to∞, we obtain that Pγ1 [η = 1 | z] = Pγ2 [η = 1 | z]. Since this holds
or all z, assumption (i) on the identifiability of γ necessarily implies that γ1 = γ2.

Now, consider the distribution of Y | X, Z .

Pβ,γ [Y ⩽ u | X = x, Z = z] = 1− 1− Pγ [η = 1 | Z = z]Pβ [T ⩽ u | X = x](1− FC (u | x)) (6)

f the above distributions are to be the same for two sets of parameters (γ1, β1) and (γ2, β2), in the case M = ∞, we
ave γ1 = γ2 using the previous argument. Therefore, since FC does not depend on β and γ , it immediately follows that

Pβ1 [T ⩽ u | X = x] = Pβ2 [T ⩽ u | X = x] for all u ∈ (0,∞). This implies that β1 = β2 due to condition (ii) of the theorem.
Finally, consider the joint distribution of Y and ∆ when M <∞. For y ∈ (0,M), we have

P[Y ⩽ y, ∆ = 1 | X = x, Z = z] = P[(Ỹ ∧ C) ⩽ y, (Ỹ ⩽ C) | X = x, Z = z]

=
∫ M
0 P[Ỹ ⩽ y, (Ỹ ⩽ C) | X = x, Z = z]dFC (u|x)

=
∫ y
0 P[Ỹ ⩽ u | X = x, Z = z]dFC (u|x)+ P[Ỹ ⩽ y | X = x, Z = z]P[y ⩽ C | X = x]

= P[η = 1 | Z = z]
(∫ y

0 P[T ⩽ u | X = x]dFC (u|x)+ P[T ⩽ y | X = x]P[y ⩽ C | X = x]
)
.

Therefore, from the calculations in Eqs. (6), for any pair of parameter values, the joint distribution of (Y , ∆) does not
change if and only if for all u ∈ (0,M), we have

Pγ1 [η = 1 | Z = z]Pβ1 [T ⩽ u | X = x] = Pγ2 [η = 1 | Z = z]Pβ2 [T ⩽ u | X = x]. (7)

For this to be satisfied, it is not necessary that γ1 = γ2 and β1 = β2. To see this, consider an example with a single
binary covariate W so that X = Z = (1,W ). For any specific choice of Pβ1 [T ⩽ u | (W = 0)], define β2 so that

Pβ2 [T ⩽ u | (W = 0)] =
Pγ2 [η = 1 | (W = 0)]
Pγ1 [η = 1 | (W = 0)]

Pβ1 [T ⩽ u | (W = 0)], for u ∈ (0,M).

Due to the identifiability condition (i), the link function π (·) is non-constant and hence the intercepts of γ1 and γ2 can be
chosen such that

Pγ2 [η = 1 | (W = 0)]
Pγ1 [η = 1 | (W = 0)]

< 1.

With such choices for γ1 and γ2, the intercept process of β2 can be defined as

β0
2 (τ ) = β0

1

(
Pγ2 [η = 1 | (W = 0)]
Pγ1 [η = 1 | (W = 0)]

τ

)
= Φ−1(τ ).

Similarly, we can define the slope for all the parameters based on the conditional distribution at W = 1, which proves
non-identifiability of the parameters if M <∞. □

The proof indicates that identifiability of the model depends crucially on the censoring distribution which is to be
expected. In the context of clinical trials, this implies that if the duration of the study is relatively a short, one needs to
worry about identifiability considerations quite seriously. While the theorem suggests that the model is not necessarily
197
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Table 1
Different cases considered in our simulation studies.

p γ β L Censoring rate Cure rate

Case 1 1 (1,−1) (2, 1) 40 0.41 0.38
Case 2 1 (−0.5, 1) (1,−1) 4 0.56 0.50
Case 3 9 (1,−1, 1, . . . ,−1) −γ 4 0.41 0.39
Case 4 1 (0.25, 1) (2, 1) 4 0.60 0.32
Case 5 1 (0.25, 1) (2, 1) 6 0.51 0.32

Table 2
Case 1: p = 1, censoring rate = 0.41, cure rate = 0.38; Bias and mean squared error for different estimation methods
based on 1000 replications.

Bias MSE

LNA Imp DA DA.B LNA Imp DA DA.B

n = 200

γ

Intercept 0.036 0.036 0.010 0.025 0.106 0.106 0.104 0.114
Slope −0.026 −0.026 −0.015 −0.032 0.303 0.303 0.301 0.325

β(0.5)
Intercept 0.032 −0.003 −0.076 −0.075 0.076 0.073 0.077 0.077
Slope 0.044 0.010 −0.029 −0.030 0.353 0.348 0.321 0.320

β(0.7)
Intercept 0.056 0.009 −0.055 −0.055 0.088 0.081 0.080 0.080
Slope 0.033 −0.013 −0.072 −0.072 0.408 0.390 0.359 0.360

n = 500

γ

Intercept 0.022 0.022 0.007 0.012 0.041 0.041 0.040 0.041
Slope −0.017 −0.017 −0.010 −0.015 0.118 0.118 0.117 0.118

β(0.5)
Intercept 0.020 −0.003 −0.073 −0.073 0.029 0.029 0.034 0.034
Slope 0.040 0.013 −0.022 −0.022 0.141 0.141 0.135 0.135

β(0.7)
Intercept 0.030 −0.002 −0.060 −0.060 0.033 0.033 0.034 0.035
Slope 0.043 0.004 −0.041 −0.041 0.160 0.155 0.146 0.146

identifiable, it does not automatically imply non-identifiability for every design. The counter-example in the proof uses
a binary predictor, but if the design is well-chosen and the predictor space is sufficiently rich identifiability issues may
not arise. However, to characterize the identifiability explicitly for a given design is rather difficult due to the analytic
intractability of its interaction with the form of the regression quantile process. However, one might numerically check
the validity of the identifiability condition by checking whether Eq. (7) implies (γ1, β1) = (γ2, β2). Thus the proof of the
heorem also provides a broader characterization of identifiability of the cure rate quantile regression model.

. Empirical studies

.1. Simulations

We first consider the following simulation set-up of Wu and Yin (2017):

log(πi/(1− πi)) = γ0 + γ1xi,

nd the event time model,

Yi = log Ti = β0 + β1xi + (1+ xi)ui

where u ∼ N(0, 1). Censoring is determined by x and a random uniform, R ∼ U[0, L) as,

Ci = I(xi < 1/2)Ri + I(xi ⩾ 1/2)(Ri + 1).

Wu and Yin (2017) set γ = (1,−1), β = (2, 1) and L = 40. Note, however, that this L, which represents the duration of
the study in clinical trial applications corresponds to a rather unrealistic, essentially infinite value. Therefore, we expand
the simulation settings to other choices of γ , β , L, and p totaling five different cases reported in Table 1.

Case 1 is the same as the setting of Wu and Yin (2017). Cases 2–5 have much smaller value for L (either 4 or 6) so that
the study duration is more realistic. Case 2 has large censoring and cure rates. Case 3 has p = 9 covariates representing a
multiple regression scenario. Cases 4 and 5 have a high censoring rate and a moderate cure rate. In the last two cases, the
198
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Table 3
Case 2: p = 1, censoring rate = 0.56, cure rate = 0.5; Bias and mean squared error for different estimation methods
based on 1000 replications.

Bias MSE

LNA Imp DA DA.B LNA Imp DA DA.B

n = 200

γ

Intercept 0.057 0.057 −0.060 −0.065 0.116 0.116 0.109 0.116
Slope −0.036 −0.036 −0.011 0.002 0.321 0.321 0.304 0.322

β(0.5)
Intercept 0.079 0.024 −0.239 −0.237 0.138 0.127 0.144 0.143
Slope −0.013 −0.017 0.199 0.198 0.465 0.452 0.420 0.422

β(0.7)
Intercept 0.142 0.020 −0.313 −0.312 0.206 0.150 0.199 0.198
Slope −0.079 −0.048 0.165 0.164 0.608 0.495 0.399 0.399

n = 500

γ

Intercept 0.063 0.063 −0.054 −0.058 0.049 0.049 0.045 0.046
Slope −0.044 −0.044 −0.011 −0.004 0.126 0.126 0.118 0.119

β(0.5)
Intercept 0.073 0.022 −0.240 −0.239 0.062 0.055 0.093 0.093
Slope −0.012 0.004 0.225 0.226 0.192 0.192 0.208 0.208

β(0.7)
Intercept 0.112 0.017 −0.307 −0.306 0.082 0.062 0.136 0.136
Slope −0.027 0.002 0.217 0.217 0.233 0.207 0.201 0.201

Table 4
Case 3: p = 9, censoring rate = 0.41, cure rate = 0.4; Bias and mean squared error for different estimation methods
based on 1000 replications.

Bias MSE

LNA Imp DA DA.B LNA Imp DA DA.B

n = 200

γ

Intercept 0.664 0.664 −0.008 0.070 1.725 1.725 0.831 0.975
Slope −0.028 −0.028 0.005 −0.004 0.628 0.628 0.403 0.493

β(0.5)
Intercept 0.240 0.190 −0.020 −0.018 0.383 0.334 0.261 0.261
Slope 0.001 0.000 0.000 0.000 0.157 0.136 0.105 0.105

β(0.7)
Intercept 0.500 0.257 −0.053 −0.052 2.716 0.511 0.271 0.271
Slope 0.008 0.005 0.000 0.000 0.793 0.193 0.119 0.119

n = 500

γ

Intercept 0.653 0.653 0.010 0.033 0.983 0.983 0.334 0.358
Slope −0.030 −0.030 −0.001 −0.004 0.235 0.235 0.141 0.153

β(0.5)
Intercept 0.210 0.194 −0.029 −0.029 0.155 0.140 0.083 0.083
Slope 0.006 0.006 0.003 0.003 0.065 0.058 0.036 0.036

β(0.7)
Intercept 0.429 0.309 −0.051 −0.051 0.449 0.257 0.103 0.103
Slope 0.008 0.008 0.004 0.004 0.179 0.093 0.042 0.043

initial estimator for γ is heavily biased and unreliable in contrast to the first three cases. Moreover, the high censoring
ate in Case 4 makes the upper conditional quantiles of the latency unidentifiable, since subjects with extremely high
urvival times in the uncured subpopulation cannot be distinguished from the cured subjects.
We report results for the four methods mentioned in Section 4 in terms of both bias and mean squared error (MSE)

n Tables 2–6 for both sample sizes n = 200 and n = 500. The experiment is based on 1000 replications.
Our empirical findings can be briefly summarized as follows:
(i) Overall, our proposed data augmentation approaches (DA and DA.B) have lower MSE values when compared to the

xisting approaches of Wu and Yin (2013, 2017) for estimation of the logistic parameter γ and the quantile regression
arameters.
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Table 5
Case 4: p = 1, censoring rate = 0.6, cure rate = 0.32; Bias and mean squared error for different estimation methods
based on 1000 replications.

Bias MSE

LNA Imp DA DA.B LNA Imp DA DA.B

n = 200

γ

Intercept 0.144 0.144 −0.168 −0.164 0.192 0.192 0.174 0.184
Slope −1.110 −1.110 −0.982 −0.980 1.694 1.694 1.365 1.390

β(0.5)
Intercept 0.167 0.089 −0.506 −0.505 0.143 0.113 0.316 0.315
Slope −0.790 −0.821 −0.619 −0.618 1.018 1.039 0.591 0.589

β(0.7)
Intercept 0.238 0.117 −0.431 −0.432 0.191 0.127 0.260 0.260
Slope −1.190 −1.211 −1.090 −1.086 1.807 1.827 1.435 1.430

n = 500

γ

Intercept 0.142 0.142 −0.164 −0.163 0.085 0.085 0.076 0.077
Slope −1.116 −1.116 −0.987 −0.986 1.421 1.421 1.127 1.128

β(0.5)
Intercept 0.127 0.066 −0.510 −0.510 0.062 0.048 0.287 0.288
Slope −0.765 −0.797 −0.616 −0.614 0.733 0.784 0.470 0.468

β(0.7)
Intercept 0.185 0.074 −0.447 −0.447 0.087 0.053 0.232 0.232
Slope −1.146 −1.160 −1.067 −1.065 1.459 1.494 1.243 1.240

Table 6
Case 5: p = 1, censoring rate = 0.51, cure rate = 0.32; Bias and mean squared error for different estimation methods
based on 1000 replications.

Bias MSE

LNA Imp DA DA.B LNA Imp DA DA.B

n = 200

γ

Intercept 0.187 0.187 −0.062 −0.057 0.191 0.191 0.136 0.143
Slope −0.274 −0.274 −0.293 −0.282 0.614 0.614 0.533 0.553

β(0.5)
Intercept 0.155 0.094 −0.374 −0.375 0.135 0.115 0.213 0.213
Slope −0.195 −0.242 −0.314 −0.312 0.469 0.471 0.365 0.363

β(0.7)
Intercept 0.237 0.112 −0.307 −0.307 0.206 0.138 0.181 0.180
Slope −0.309 −0.342 −0.585 −0.583 0.646 0.606 0.656 0.656

n = 500

γ

Intercept 0.194 0.194 −0.048 −0.047 0.099 0.099 0.055 0.057
Slope −0.338 −0.338 −0.366 −0.358 0.316 0.316 0.306 0.308

β(0.5)
Intercept 0.136 0.079 −0.369 −0.369 0.062 0.048 0.165 0.165
Slope −0.177 −0.203 −0.323 −0.323 0.185 0.192 0.202 0.202

β(0.7)
Intercept 0.213 0.112 −0.307 −0.306 0.099 0.062 0.131 0.130
Slope −0.302 −0.325 −0.575 −0.574 0.290 0.294 0.451 0.451

Table 7
Estimates of the γ parameters for the logistic cure model, bootstrap standard errors in
parentheses.

LNA Imp DA

Intercept 1.069
(0.646)

1.069
(0.646)

0.273
(0.285)

Histology −0.506
(0.563)

−0.506
(0.563)

−0.471
(0.326)

Age 0.731
(0.312)

0.731
(0.312)

0.591
(0.187)

Sex −0.686
(0.568)

−0.686
(0.568)

−0.258
(0.376)
200
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Fig. 1. Comparison of three quantile regression estimates for the lung cancer model. The blue pointwise bands in each panel are based on 200
ootstrap replications. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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(ii) In some cases (for e.g. Cases 1 and 2), data augmentation based methods have larger bias but they still have smaller
SE indicating that their reduced variability compensates for the bias.
(iii) When there are several predictors (Case 3 with p = 9), the performance of LNA and Imp suffer much more than

A. This is expected because those approaches rely on the local Nelson–Aalen method, which is unreliable when the
imension of the covariate space is large.
(iv) The performance of all methods is poor for Case 4 due to high bias. The bias in γ suggests that many uncured

ubjects are classified as cured. This would naturally cause bias in estimation of β as well. As mentioned earlier, due to
he high censoring rate, the latency distribution is not fully observed which violates the identifiability condition discussed
n Patilea and van Keilegom (2017). This underscores the need to be cautious using cure rate models with high censoring
nvolved in latency that could result in overly optimistic assessments about cure rate proportion. Since DA uses the
nformation in the latency distribution more efficiently, we can see that the impact of this on DA is relatively less compared
o LNA and Imp.

.2. Lung cancer study

Finally, we briefly reconsider the lung cancer study considered in Wu and Yin (2017), employing the same model as
u and Yin. We report results from all three fitting methods. The data consists of 280 observations with 64% censoring.
here are three covariates: tumor histology, patient age and patient gender. All three are used in both the logistic cure
odel and the QR survival model. Although we have used the same bandwidth parameters for the local Nelson–Aalen
stimation for the ‘‘LNA’’ and ‘‘Imp’’ estimators, our estimates differ slightly from those reported in Wu and Yin (2017).
able 7 reports γ estimates for the three methods, while Fig. 1 depicts β(τ ) estimates. Standard errors and pointwise

confidence bands are based on 200 replications.
Again we see that the three methods produce similar conclusions. In our judgment, the data augmentation approach is

preferable for several reasons. It is less sensitive to the upper tail of quantile regression model, it is more easily adaptable
to several covariates, and it avoids inherently delicate bandwidth selection issues.

7. Discussion

Quantile regression methods offer an attractive approach to estimating survival models with a positive cure proportion.
Covariate effects are flexibly modeled in the upper tail where the cure effect is most salient. Here, we have adopted the
modeling strategy of Wu and Yin (2013, 2017), however their estimation methods, which are based on the local Nelson–
Aalen approach of Wang and Wang (2009) are compared with an alternative data augmentation approach proposed
recently by Yang et al. (2018). The latter approach has a number of advantages, and it is the approach we would
recommend for most applications.

While we use a logistic regression model for the cure proportion, alternative nonparametric approaches proposed in
the recent literature (Wang et al., 2012; Xu and Peng, 2014; Koenker and Yoon, 2009; López-Cheda et al., 2017) can also
be used.
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