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ABSTRACT
The pursuit of algorithmic fairness requires that we think differ-
ently about the idea of the “user” in personalized systems, such
as recommender systems. The conventional definition of the user
in such systems focuses on the receiver of recommendations, the
individual to whom a particular personalization output is directed.
Fairness, especially provider-side fairness, requires that we consider
a broader array of system users and stakeholders, whose needs,
interests and preferences may need to be modeled. In this paper, we
describe a framework in which the interests of providers and other
stakeholders are represented as agents. These agents participate
in the production of recommendations through a two-stage social
choice mechanism. This approach has the benefit of being able
to represent a wide variety of fairness concepts and to extend to
multiple fairness concerns.

CCS CONCEPTS
• Information systems→ Recommender systems; • Comput-
ing methodologies → Multi-agent systems; • Social and pro-
fessional topics → User characteristics.
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1 INTRODUCTION
Recommender systems are personalized machine learning systems
that support users’ access to information in applications as disparate
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as rental housing, job seeking, social media feeds and online dating.
The challenges of ensuring fair outcomes in such systems have
been addressed in a growing body of research literature surveyed
in [15].

The emergence of fairness as a consideration in personalized
systems, including recommender systems, poses a challenge for the
conception of the “user” in user modeing research. Conventionally,
the user of a recommender system is understood to be the individ-
ual to whom recommendations are delivered and for whom they
are personalized. However, as noted in [4, 10], some applications
require that we expand our notion of who should be considered a
user – an approach termed “post-userism”. Consider the example of
a recommender system embedded in a music streaming app. There
are artists whose music appears on the platform and which may
or may not be recommended to a listener. Artists have interfaces
to the system as well, allowing them to upload new music, curate
playlists, send posts to their fans, and see statistics about how often
their music has been heard: the individuals might be considered as
much users of the platform as their listeners. Except for some recent
work [16, 17], there has been very little examination of creators’
perspectives in personalized sytems.

In this work, we explore a type of post-userist user model in
service of recommendation fairness. We seek to model the concerns
around fairness that a variety of system stakeholders might have.
We introduce an architecture for implementing multistakeholder
fairness in recommender systems, in which fairness concerns are
represented as agents participating in a dynamic social choice en-
vironment. We start from the assumption that multiple fairness
concerns will be active at any one time, and that these fairness
concerns can be relatively unrestricted in form. Secondly, we build
the framework to be dynamic in that decisions are always made in
the context of historical choices and results.

Our research in fairness examines concepts inspired by the
application context of Kiva Microloans, which offers a platform
(Kiva.org) for crowd-sourcing the funding of microloans, mostly in
the developing world. Kiva’s users (lenders) choose among the loan
opportunities offered on the platform; microloans from multiple
lenders that are aggregated and distributed through third party non-
governmental organizations around the world. Kiva Microloans’
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mission specifically includes considerations of “global financial in-
clusion”; as such, incorporating fairness in its recommendation of
loans to potential users (lenders) is a key goal. We will use Kiva’s
platform as an example throughout this paper, but our analytic
findings are not specific to this setting.

2 RELATED WORK
Our work addresses two key limitations in existing work on recom-
mendation fairness and extending initial work found in [37]. The
first limitation we see in current work is that researchers have gen-
erally assumed that the problem of group fairness can be reduced to
the problem of ensuring equality of outcomes between a protected
and unprotected group, or in the case of individual fairness, that
there is a single metric of fairness to be addressed for all individuals.

We believe that the single-group limitation is severe and not rep-
resentative of realistic recommendation tasks in which fairness is
sought. US anti-discrimination law, for example, identifies multiple
protected categories relevant to settings such as housing, education
and employment including gender, religion, race, age, and others
[3]. But even in the absence of such external criteria, it seems likely
that any setting in which fairness is a consideration will need to
incorporate the viewpoints of multiple groups.

Where fairness for multiple groups has been considered (e.g.,
[21, 38, 45]), it is defined in the same way for all groups. Seeking to
avoid the “abstraction trap” noted in [35], we think it is essential to
allow fairness to mean different things for different groups. Con-
sider, for example, a system recommending news articles. Fairness
might require that, over time, readers see articles that are geograph-
ically representative of their region: rural and urban or uptown
vs downtown, for example. But fairness in presenting viewpoints
might also require that any given day’s set of headlines represent
a range of perspectives. These are two different views of what
fairness means, entailing different measurements and potentially
different types of algorithmic interventions.

The second limitation that we see in current work is that fairness-
aware interventions in recommender systems as well as many other
machine learning contexts, have a static quality. In many appli-
cations, a system is optimized for some criterion and when the
optimization is complete, it produces decisions or recommenda-
tions based on that learned state [31]. Similar to Freeman et al. [18],
we think of fairness as a dynamic state, especially when what is
of primary concern are fair outcomes. A recommender system’s
ability to produce outcomes that meet some fairness objective may
be greatly influenced by context: what items are in inventory, what
types of users arrive, how fair the most recent set of recommenda-
tions has been, and many others. A static policy that is not sensitive
to context runs the risk of failing to capitalize on opportunities to
pursue fairness when they arise and/or trying to impose fairness
when its cost is high.

Freeman et al. [18] investigate what they call dynamic social
choice functions in settings where a fixed set of agents select a
single item to share over a series of time steps. The work focuses on
overall utility to the agents instead of considering the multiple sides
of the recommendation interaction. Their problem is fundamentally
a voting problem since all agents share the result, whereas we are
focused on personalized recommendation.

There have been a number of efforts that explicitly consider the
multisided nature of fairness in recommendation and matching
platforms. Patro et al. [33] investigate fairness in two-sided match-
ing platforms where there are both producers and consumers. They
note, as we do, that optimizing fairness for only one side of the
market can lead to very unfair outcomes to the other side of the
market. Patro et al. [33] also appeal to the literature on the fair
allocation of indivisible goods from the social choice literature [41].
They devise an algorithm that guarantees Max-min share fairness
of exposure to the producer side of the market and envy-free up to
one item to the consumer side of the market. Their work is closest
to the allocation phase of our algorithm. However, in contrast to
our work they only use exposure on the producer side and rele-
vance on the consumer side as fairness metrics, whereas our work
aims to capture additional definitions. Also, we note that envy-
freeness is only applicable when valuations are shared: a condition
not guaranteed in a personalized system. It is possible for a user
with unique tastes to receive low utility recommendations and still
not prefer another user’s recommendation lists. Also, our fairness
formulation extends beyond the users receiving recommendations
to providers of recommended items and envy-freeness provides no
way to compare users who are getting different types of benefits
from a system. In addition our fairness definitions are dynamic, a
case not considered by [33].

Like Patro et al. [33], the work of Sühr et al. [40] investigates
fairness in two-sided platforms, specifically those like Uber or Lyft
where income opportunities are allocated to drivers. However, un-
like our work and the work of Patro et al. [33], Sühr et al. [40] take
proportionality as their definition of fairness, specifically propor-
tionality with respect to time in a dynamic setting, and ensure that
there is a fair distribution of income to the provider side of the
platform.

The architecture presented here advances and generalizes the
approach found in [37]. Like that architecture, fairness concerns are
represented as agents and interact through social choice. However,
in [37], the allocation mechanism selects only a single agent at each
time step and the choice mechanism has a fixed, additive, form. We
allow for a wider variety of allocation and choice mechanisms, and
therefore present a more general solution.

Ge et al. [20] investigate the problem of long term dynamic
fairness in recommendation systems. They, like our work, highlight
the need to ensure that fairness is ensured as a temporal concept
and not see recommendation as a static, one off, decision. To this
end they propose a framework to ensure fairness of exposure to the
producers of items by casting the problem as a constrained Markov
Decision Process where the actions are recommendations and the
reward function takes into account both utility and exposure. Ge
et al. [20] propose a novel actor-critic deep reinforcement learning
framework to accomplish this task at the scale of large recommender
systems with very large user and item sets. Again, this work fixes
definitions of fairness a priori, although their learning methodology
may serve as inspiration to our allocation stage problems in the
future.

Morik et al. [27] investigate the problem of learning to rank over
large item sets while ensuring fairness of merit based guarantees to
groups of item producers. Specifically, they adapt existing methods
to ensure that the exposure is unbiased, e.g., that it is not subject
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to rich-get-richer dynamics, and fairness defined as exposure be-
ing proportional to merit. Both of these goals are built into the
regularization of the learner. In essence the goal is to learn user
preferences while ensuring the above two desiderata. In contrast,
our work factors out the recommendation methodology and we en-
capsulate the desired fairness definitions as separate agents rather
than embedded in the learning algorithm.

3 FORMALIZING FAIRNESS CONCERNS
A central tenet of our work is that fairness is a contested concept
[29]. From an application point of view, this means that ideas about
fairness will be grounded in specific contexts and specific stakehold-
ers, and that these ideas will be multiple and possibly in tension
with each other. From a technical point of view, this means that
any fairness-aware recommender system should be capable of inte-
grating multiple fairness concepts, arising as they may from this
contested terrain.

A central concept in this work is the idea of a fairness concern.
We define a fairness concern as a specific type of fairness being
sought, relative to a particular aspect of recommendation outcomes,
evaluated in a particular way. We believe it is important to reify this
concept, since the objective of algorithmic fairness is often assumed
to be obvious and conforming to one of a handful of standard def-
initions [35]. A fairness concern models specific preferences that
a particular stakeholder may have concerning the outcomes the
system produces. For example, a possible fairness concern in the
microlending context might be group fairness relative to different
geographical regions considered in light of the exposure of loans
from these regions in recommendation lists.1 Such a concern might
arise from organizational stakeholders seeking to operationalize
Kiva’s organizational mission around global financial inclusion.
The concern identifies a particular aspect of the recommendation
outcomes (in this case, their geographical distribution), the par-
ticular fairness logic and approach (more about this below), and
the metric by which fair or unfair outcomes are determined. We
can think of the fairness concern as a type of model of stakeholder
groups or individuals for the purposes of controlling recommenda-
tion generation.

The first consideration in building a fairness-aware recommender
system is the question of what fairness concerns surround the use
of the recommender system itself. Many such concerns may arise
and like any system-building enterprise, there are inevitably trade-
offs involved in their formulation. An initial step in fairness-aware
recommendation is for an organization to consult its institutional
mission and its internal and external stakeholders with the goal
of eliciting and prioritizing fairness concerns. An example of this
kind of consultation can be seen in the WeBuildAI project [23] and
its participatory design framework for AI.

In addition to addressing different aspects of system outcomes,
fairness concerns may invoke different logics of fairness. Welfare
economists have identified a number of such logics and we follow
Moulin [28] who identifies four:

1We are currently conducting research to characterize fairness concerns appropriate
to Kiva’s recommendation applications. At this stage, we can only speculate about
the fairness concerns that might arise in that work. None of the discussion here is
intended to represent design decisions or commitments to particular concerns and/or
their formulation.

Exogenous Right: A fairness concern is motivated by exoge-
neous right if it follows from some external constraint on
the system. For example, the need to comply with fair lend-
ing regulations may mean that male and female borrowers
should be presented proportionately to their numbers in the
overall loan inventory.

Compensation: A fairness concern that is a form of compen-
sation arises in response to observed harm or extra costs
incurred by one group versus others. For example, loans
with longer repayment periods are often not favored by Kiva
users because their money is tied up for longer periods. To
compensate for this tendency, these loans may need to be
recommended more often.

Reward: The logic of reward is operational when we consider
that resources may be allocated as a reward for performance.
For example, if we know that loans to large cooperative
groups are highly effective in economic development, we
may want to promote such loans as recommendations so that
they are more likely to be funded and realize their promise.

Fitness: Fairness as fitness is based on the notion of efficiency.
A resource should go to those best able to use it. In a recom-
mendation context, it may mean matching items closely with
user preferences. For example, when loans have different
degrees of repayment risk, it may make sense to match the
loan to the risk tolerance of the lender.

It is clear that fairness logics do not always pull in the same
direction. The invocation of different logics are often at the root of
political disagreements: for example, controversies over the criteria
for college admissions sometimes pit ideas of reward for achieve-
ment against ideas of compensation for disadvantage.

Recommender systems often operate as two-sided platforms,
where one set of individuals are receiving recommendations and
possibly acting on them (consumers), and another set of individuals
is creating or providing items that may be recommended (providers)
[9]. Consumers and providers are considered, along with the plat-
form operator, to be the direct stakeholders in any discussion of
recommender system objectives. Fairness concerns may derive from
any stakeholder, and may need to be balanced against each other.

It is also worth noting that the platform may be interested in en-
forcing fairness, even when other stakeholders are not. For example,
the average recommendation consumer might only be interested in
the best results for themselves, regardless of the impact on others.
Fairness concerns can also arise on behalf of other, indirect, stake-
holders who are impacted by recommendations but not a party
to them. An important example is representational fairness, which
directs attention to the way the outputs of a recommender system
operate to represent the world and classes of individuals within
it: for example, the way the selection of news articles might end
up representing groups of people unfairly [30]. (See [15] for addi-
tional discussion). As a practical matter, representational fairness
concerns can be handled in the same way as provider-side fairness
for our purposes here.

Finally, we have the consideration of group versus individual fair-
ness. This dichotomy is well understood as a key difference across
types of fairness concerns, defining both the target of measurement
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of fairness and the underlying principle being upheld. Group fair-
ness requires that we seek fairness across the outcomes relative to
predefined protected groups. Individual fairness asks whether each
individual user has an appropriate outcome and assumes that users
with similar profiles should be treated the same. Just as there are
tensions between consumer and provider sides in fairness, there
are fundamental incompatibilities between group and individual
fairness. Treating all of the outcomes for a group in aggregate is
inherently different than maintaining fair treatment across individ-
uals considered separately. Friedler et al. offer a thorough discussion
of this topic [19].

It is important to note that our goal in this work is not necessar-
ily fair recommendation in the sense of a perfect score on every
agent’s fairness metric, but rather fairness-enhanced recommen-
dation. Given the constraints of recommendation applications, in
particular the need for personalization, it may not be possible to
provide a successful recommendation experience at the same time
as achieving fairness as defined by each operative concern. The
goal is to enhance fairness relative to each concern, improving on
what the base recommendation algorithm would deliver unassisted.

3.1 Fairness Agents
Our architecture SCRUF-D (Social Choice for Recommendation
Under Fairness – Dynamic) builds on the SCRUF architecture intro-
duced in [11, 37]. It is designed to allow multiple fairness concerns
to operate simultaneously in a recommendation context. Fairness
concerns, derived from stakeholder consultation, model these stake-
holder preferences through form of fairness agents, each having
three capabilities:

Evaluation: A fairness agent can evaluate whether the cur-
rent historical state is fair, relative to its particular concern.
Without loss of generality, we assume that this capability
is represented by a functionmi for each agent i that takes
as input a history of the system’s actions and returns an
number in the range [0, 1] where 1 is maximally fair and 0 is
totally unfair, relative to the particular concern.

Compatibility: A fairness agent can evaluate whether a given
recommendation context represents a good opportunity for
its associated items to be promoted. We assume that each
agent i is equipped with a function ci that can evaluate a
user profile ω and associated information and return a value
in the range [0, 1] where 1 indicates the most compatible
user and context and 0, the least.

Preference: An agent can compute a preference for a given
item whose presence on a recommendation list would con-
tribute (or not) to its particular fairness concern. Again, with-
out loss of generality, we assume this preference can be real-
ized by a function that accepts an item as input and returns
a preference score in R+ where a larger value indicates that
an item is more preferred.

Putting all of these dimensions together gives us a three-dimensional
ontology of fairness concerns in recommendation: fairness logic,
consumer- vs provider-side, and group vs individual target.

3.2 Recommendation Process
We assume a recommendation generation process that happens over
a number of time steps t as individual users arrive and recommen-
dations are generated on demand. Users arrive at the system one at
a time, receive recommendations, act on them (or not), and then
depart. When a user arrives, a recommendation process produces
a recommendation list ℓs that represents the system’s best repre-
sentation of the items of interest to that user, generated through
whatever recommendation mechanism is available. We do not make
any assumptions about this process, except that it is focused on
the user and represents their preferences. A wide variety of recom-
mendation techniques are well studied in the literature, including
matrix factorization, neural embeddings, graph-based techniques,
and others.

The first step to incorporating fairness into the recommendation
process is to determine which fairness concerns / agents will be
active in responding to a given recommendation opportunity. This
is the allocation phase of the process, the output of which is a vector
of non-negative weights ®β , summing to one, over the set of fairness
agents, indicating to what extent each fairness agent is considered
to be allocated to the current opportunity.

Once the set of fairness agents have been allocated, they have
the opportunity to participate in the next phase of the process,
which is the choice phase. In this phase, all of the active (non-zero
weighted) agents and their weights participate in producing a final
list of recommendations for the user. We view the recommendation
algorithm itself as being an agent that participates in this phase.

4 THE SCRUF-D ARCHITECTURE
The two phases of the SCRUF-D architecture are detailed in Fig-
ures 1 and 2. The original SCRUF framework [37] concentrated
on the representation of user preferences, as computed by the rec-
ommender system, and fairness concerns, as derived from stake-
holder consultation as discussed in Section 3.1, and their integra-
tion. SCRUF-D incorporates the history of system decisions and
the fairness achieved over time to control the allocation of fairness
concerns. We will first provide a high level overview of the system
and describe each figure in detail with formal notation.

4.1 Overview
We can think of a recommender system as a two-sided market in
which the recommendation opportunities that arise from the arrival
of a user u ∈ U to the system, and each are allocated to a set of
items v ∈ V from the system’s catalog. This market has some
similarities to various forms of online matching markets including
food banks [1], kidney allocation [2, 25], and ride sharing [13], in
that users have preferences over the items; however, in our case this
preference is known only indirectly and with uncertainty through
either the prior interaction history or a recommendation function.
Additionally, the items are not necessarily consumable or rivalrous.
For example, a loan can be recommended to any number of users –
it is not “used up” in the recommendation interaction.2 Even when

2Loans on Kiva’s platform may be exhausted eventually through being funded, but
recommending a loan is neither a necessary nor a sufficient condition for a user to
decide to fund it. Many other objects of recommendation such as streaming media
assets, news articles, or social media posts are effectively infinitely available.
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an item has limited availability (such as a job posting where only
a single person will be hired), it is still the case that the limit on
recommendation delivery of such items is not a hard constraint,
as it is in a matching market, but rather a soft constraint. If it is
desirable that an item in limited supply not be recommended to too
many users, what counts as “too many” is a function of how likely
users are to select that item from among the recommendations they
see.

This problem has some similarities with those found in compu-
tational advertising, where messages are matched with users in a
personalized way [42, 43]. Because advertising is a paid service,
these problems are typically addressed through mechanisms of
monetary exchange, such as auctions. There is no counterpart to
budgets or bids in our context, which means that solutions in this
space do not readily translate to fair recommendation [14, 44, 46].

Once we have a collection of fairness agents we must solve two
interrelated problems: (1) what agents are allocated to a particular
recommendation opportunity and (2) how do we balance between
the allocated agents and the user’s individual preferences? Figure
1 shows the first phase of this process, allocation [7], in which
we decide which fairness concerns / agents should be allocated to
a particular fairness opportunity. This is an online and dynamic
allocation problem where we must consider many factors including
the history of agent allocations so far, the generated lists from past
interactions with users, and how fair the set of agents believes this
history to be. As described in Section 3.1, agents take these histories
and information about the current user profile and calculate two
values:m, a measure of fairness relative to their agent-specific con-
cern, and c , a measure of compatibility between the current context
and the agent’s fairness concern. The allocation mechanism takes
these metrics into account producing a probability distribution over
the fairness agents that we call the agent allocation, which can be
interpreted as weights in the choice stage or be used to select a
single agent via a lottery, e.g., a randomized allocation scheme [8].

In the second phase, shown in Figure 2, the recommender sys-
tem generates a list of options, considered to represent the user’s
preferences. The fairness concerns generate their own preferences
as well: lists of items and scores. The choice mechanism combines
these preferences of both the user and fairness agents, along with
the allocation weights of the fairness agents, to arrive at a final
recommendation list to be delivered to the user. The list itself, and
possibly interactions the user has with it, become a new addition
to the choice history and the process continues for the next user.

4.2 Formal Description
In our formalization of a recommendation system setting we have a
set of users U = {u1, . . .un } and a set of items V = {v1, . . . ,vm }.
For each item vi ∈ V we have a k-dimensional feature vector
ϕ = ⟨ϕ1, . . .ϕk ⟩ over a set of categorical features ϕ, each with finite
domain. Some of these features may be sensitive, e.g., they are
associated with one or more fairness agent concerns, we denote this
set as ϕs . Without loss of generality, we assume that all elements
in V share the same set of features ϕ. Finally, we assume that each
user is associated with a profile of attributes ω = ⟨ω1, . . .ωj ⟩, of
which some also may be sensitive ωs ⊆ ω, e.g., they are associated
with one or more fairness agents.

As in a standard recommendation system we assume that we
have a recommendation mechanism that takea a user profile ω and
items v and produces a predicted rating r̂ ∈ R+. We will often
refer to a recommendation list, ℓ = ⟨{v1, r̂1}, . . . {vi , r̂i }⟩, which is
generated for useru by sorting according to r̂ , i.e., sort(Ri (u,V)) →

ℓ. Note that this produces a permutation (ranking) over the set of
items for that user, i.e. a recommendation. As a practical matter, the
recommendation results will almost always contain a subset of the
total set of items, typically the head (prefix) of the permutation up to
some cutoff number of items or score value. For ease of exposition
we assume we are able to score all items in the database.

In the SCRUF-D architecture, fairness concerns map directly
onto agents F = { f1, . . . , fi }. In order for the agents to be able to
evaluate their particular concerns, they take account of the cur-
rent state of the system and voice their evaluation of how fairly
the overall system is currently operating, their compatibility for
the current recommendation opportunity, and their preference for
how to make the outcomes more fair. Hence, each fairness agent
i is described as a set, fi = {mi , ci ,Ri } consisting of a fairness
metric, mi (®L, ®H ) → [0, 1], that takes a choice history ®L and allo-
cation history ®H and produces a value in [0, 1] according to the
agent’s evaluation of how fair recommendations so far have been;
a compatibility metric, ci (ω) → [0, 1], that takes a particular user
profile u and produces a value in [0, 1] for how compatible fair-
ness agent i believes they are for user u; and a ranking function,
Ri (u,v) → {v, r̂ }, that gives the fairness agent preferences.

In the allocation phase (Figure 1), we must allocate a set of fair-
ness agents to a recommendation opportunity. Formally, this is an
allocation function, A(F ,mF(

®L, ®H ), cF(u)) → β ∈ R
|F |
+ that takes

a set of fairness agents F , the agents’ fairness metric evaluations
mF(

®L, ®H ), and the agents’ compatibility metric evaluations cF(ω)
and maps to an agent allocation ®β , where ®β is a probability distribu-
tion over the agents F . The allocation function itself is allocating
fairness agents to recommendation opportunities by considering
both the fairness metric for each agent as well as each fairness
agent’s estimation of their compatibility.

The allocation function can take many forms, e.g., it could be a
simple function of which ever agent voices the most unfairness in
the recent history [37], or it could be a more complex function from
social choice theory such as the probabilistic serial mechanism [6]
or other fair division or allocation mechanisms. Note here that the
allocation mechanism is directly comparing the agent valuations
of both the current system fairness and compatibility. Hence, we
are implicitly assuming that the agent fairness evaluations are
comparable. While this is a somewhat strong assumption, it is less
strong than assuming that fairness and other metrics, e.g., utility
or revenue, are comparable as is common in the literature [47].
So, although we are assuming different evaluation of fairness are
comparable, we are only assuming that fairness is comparable with
fairness, and not other aspects of the system. We plan to explore
options for the allocation function in our empirical experiments.
We track the outputs of this function as the allocation history,
®H = ⟨ ®β1, . . . , ®βt ⟩, an ordered list of agent allocations ®β at each
time.

In the second phase of the system (Figure 2), we must take
the set of allocated agents and combine their preferences (and
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Figure 1: Allocation Phase: Recommendation opportunities are allocated to fairness concerns based on the context.

Figure 2: Choice Phase: The preferences from the recommender system and the fairness agents are integrated by the choice
mechanism.

weights) with those of the current user u. To do this we define
a choice function, C(ℓ, β , ℓF) → ℓC , as a function from a recom-
mendation list ℓ, agent allocation ®β , and fairness agent recom-
mendation list(s) ℓF to a combined list ℓC . Each of the fairness
agents is able to express their preferences over the set of items
for a particular user, Ri (u,v) → {v, r̂ }, and we take this set of

lists,ℓF = {R1(u,V), . . . ,Ri (u,V)}, as input to the choice func-
tion that generates a final recommendation that is shown to the
user, ℓC .

We again leave this choice function unspecified as this formu-
lation provides a large design space: we could use a simple voting
rule, a simple additive utility function or something much more
complicated like rankings over the set of all rankings [7]. Note that
the choice function can use the agent allocation β as either a lottery
to, e.g., select one agent to voice their fairness concerns, or as a
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weighting scheme. We will investigate a range of choice functions
in further research. In order for the fairness agents to be able to
evaluate the status of the system we also track the choice history,
®L = ⟨ℓt , ℓt

F
, ℓtC ⟩, as an ordered list of user recommendation list ℓ,

agent recommendation list(s) ℓF , and choice function output list
ℓC , indexed by time step t .

5 EXAMPLE
In this section, we work through a detailed example demonstrating
the function of the architecture through several iterations of user
arrivals. Consider the following set of fairness agents and their asso-
ciated evaluations and preferences. We assume in this example that
in all cases the agents’ compatibility functions follow the pattern
described in [38] where the entropy of the user profile relative to
the sensitive feature is calculated and users with high entropy are
determined to be good targets for fairness-enhancing interventions:

fH : Health This agent is concerned with promoting loans to
the health sector. Its evaluation function compares the pro-
portion of loans in the database in the health sector against
the proportion of health recommendations in the recommen-
dation list history. Its preference function is binary: if the
loan is in the health sector, the score is 1; otherwise, zero.

fA: Africa This agent is concerned with promoting loans to
Africa. Its evaluation function, however, is list-wise. It counts
lists in the recommendation if they have a least one loan
recommendation to a country in Africa, and consider a fair
outcome one in which every list has at least one such loan.
Its preference function will be similarly binary as the fH
agent.

fG : Gender Parity This agent is concerned with promoting
gender parity within the recommendation history. If, across
the previously generated recommendation lists, the number
of men and women presented is proportional to their preva-
lence in the database, its evaluation will return 1. However,
it is preference function is more complex than those above. If
the women are underrepresented in the history, it will prefer
loans to female borrowers, and conversely for men.3

fL : Large This agent is concerned with promoting loans with
larger total amounts: over $5,000. Research has shown that
such loans are often very productive because they go to co-
operatives and have a larger local impact. However, internal
research has shown that Kiva users are less likely to support
them because each contribution has a smaller relative impact.
This agent is similar to the fA agent above in that it seeks to
make sure each list has one of these larger loans.

Consider the contents of Table 1. For the sake of example, we will
assume these loans, characterized by the Region, Gender, Section
and Amount, constitute the set of loans available for recommenda-
tion.

For the sake of exposition, we posit two very simple mecha-
nisms for allocation and choice. We will assume that our allocation
mechanism is a single outcome lottery, e.g., a randomized alloca-
tion mechanism [8]. One agent will be chosen to participate in
the choice mechanism, based on a random draw with probabilities

3Note: Kiva’s borrower database currently recognizes only binary gender categories.

ϕs1 : Region ϕs2 : Gender ϕs3 : Sector ϕs4 : Amount
v1 Africa Male Agriculture $5,000-$10,000
v2 Africa Female Health $500-$1,000
v3 Middle-East Female Clothing $0-$500
v4 Central America Female Clothing $5,000-$10,000
v5 Central America Female Health $0-$500
v6 Middle-East Female Clothing $0-$500

Table 1: Set of Potential Loans.

based on the historic unfairness and user compatibility as measured
by each agent. There are many more sophisticated algorithms for
allocation and choice, which we will explore in future work.

We assume that the recommendation lists are of size 3 and the
choice mechanism uses a weighted voting / score-based mechanism
[7] using a weighted sum of 0.75 on the personalized results for
the recommender system and 0.25 on the output of the allocated
fairness agent.

5.1 Users
At time t1, User u1 arrives at the system and the recommendation
process is triggered. The user has previously supported small loans
only in Central America and Middle East, but has lent to a wide
variety of sectors and genders.

For the sake of example, we will assume that the agents measure
their prior history relative to their objectives as equally unfair at
0.5, except the Gender Parity agent, which starts out at parity and
therefore returns a value of 1. However, the compatibility functions
for fA and fL returns lower scores because of the user’s historical
pattern of lending. This yields a lottery in which fG has probability
zero, fA has a low probability, and fH a higher one. The allocation
mechanism chooses randomly, and we will assume that fH , the
health-focused agent, is picked.

The recommender returns the following list of items and pre-
dicted ratings [{v6, 0.6}, {v4, 0.5}, {v5, 0.3}, {v3, 0.3}, {v1, 0.0}, {v2, 0.0}].
The fH agent gives a score of 1 to the health-related loans v2 and
v5 and 0 to all others.

The choice mechanism combines these scores as described above
and returns the final recommendation list [{v5, 0.475}, {v6, 0.45},
{v4, 0.375}]. Note that the Health agent has successfully promoted
its preferred item to the first position in the list. For the sake of
example, we assume that the agents’ evaluation functions are very
sensitive. Therefore, when User u2 arrives, the results of the pre-
vious recommendations have caused the evaluations to shift such
that the Health fH and Large fL agents are now satisfied (note that
v4 is included in u1’s list and it was a large loan), the Gender parity
agent fG is now at 0.9 (note that there is only one male loan in
the database) but the Africa agent fA, which got nothing in u1’s
list is now at 0.25. We assume that u2 is similar to u1 in profile and
therefore compatibility, but fA has a much worse fairness score
than fG , and therefore a high allocation probability. We will assume
fA is chosen.

Because this user has similar preferences tou1, they get the same
recommendations: [{v6, 0.6}, {v4, 0.5}, {v5, 0.3}, {v3, 0.3}], {v1, 0.0},
{v2, 0.0}]. The fA agents scores the two loans from Africa (v1 and
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v2) at 1 and the others at 0. So, after randomly breaking the tie be-
tweenv1 andv2, the final recommendation list is [{v6, 0.45}, {v4, 0.375},
{v1, 0.25}].

In this iteration, all four agents find themselves scoring fairness
at 1 over the evaluationwindow and so no agents are allocatedwhen
User u3 arrives. The results from the recommendation algorithm
pass through the choice mechanism unchanged.

6 DESIGN CONSIDERATIONS
Within this framework there are a number of important design
considerations to take into account for any particular instantiation
of the SCRUF-D architecture. We have left many of the particular
design choices open for future investigation. We allow for any type
of recommendation algorithm; fairness agents representing users’
concerns may incorporate any type of compatibility function or
fairness evaluation function. Similarly, we do not constrain the
allocation or choice mechanisms. With SCRUF-D, we are able to
explore many definitions of fairness and recommendation together
in a principled uniform way. In this section, we discuss a few of the
parameters that may be explored in future work.

6.1 Agent Design
As noted above, agents may have preferences over disjoint sets of
items or they may be constrained only to have preferences over
the items produced by the recommender system for the given user.
This second option corresponds to a commonly-used re-ranking
approach, where the personalization aspect of the system controls
what items can be considered for recommendation and fairness
considerations re-order the list [15]. If an agent can introduce any
item into its preferences, then we may have the challenge of inte-
grating items that are ranked by some agents but not others. Some
practical work-arounds might include a constraint on the recom-
mender system to always return a minimum number of items of
interest to the allocated agents or a default score to assign to items
not otherwise ranked.

Despite our terminology, it is clear that our architecture as de-
scribed is sufficiently general that an agent could be designed that
pushes the system to act in harmful and unfair ways rather than
beneficial and fairness-enhancing ones. Thus, the importance of the
initial step of stakeholder consultation and the careful crafting of
fairness concerns. Because fairness concerns are developed within
a single organization and with beneficence in mind, we assume that
we do not need to protect against adversarial behavior, such as col-
lusion among agents or strategic manipulation of preferences. The
fact that the agents are all “on the same team” allows us to avoid
constraints and complexities that otherwise arise in multi-agent
decision contexts.

6.2 Agent Efficacy
The ability of an agent to address its associated fairness concern is
non-deterministic. It is possible that the agent may be allocated to
a particular user interaction, but its associated fairness metric may
still fail to improve. One likely reason for this is the primacy of
the personalization objective. Generally, we expect that the user’s
interests will have the greatest weight in the final recommendations

delivered. Otherwise, the system might have unacceptably low ac-
curacy, and fail in its primary objective of personalized information
access.

One design decision therefore is whether (and how) to track
agent efficacy as part of the system history. If the agent’s efficacy
is generally low, then opportunities to which it is suited become
particularly valuable. Another aspect of efficacy is that relationships
among item characteristics may mean that a given agent, while
targeted to a specific fairness concern, might have the effect of
enhancing multiple dimensions of fairness at once. Promoting an
under-served region might also promote an under-served economic
sector. Thus, the empirically-observed multidimensional impact of
a fairness concern will need to be tracked to represent its efficacy.
Efficacy may also be a function of internal parameters of the agent
itself. A separate learning mechanism could then be deployed to
optimize these parameters on the basis of allocation, choice and
user interaction outcomes.

6.3 Mechanism Inputs
Different SCRUF implementations may differ in what aspects of
the context are known to the allocation and/or choice mechanisms.
Our hope is that we can leverage social choice functions in order
to limit the complexity of the information that must be shared.
However, if a sophisticated and dynamic representation of agent
efficacy is required, it may be necessary to implement a bandit-
type mechanism to explore the space of allocation probabilities
and/or agent parameters as discussed above. Recent research on
multidimensional bandit learning suggests possible approaches
[26].

6.4 Agent Priority
As we have shown, agent priority in the allocation phase may be a
function of user interests, considering different users as different
opportunities to pursue fairness goals. It may also be a function
of the history of prior allocations, or the state of the fairness con-
cerns relative to some fairness metric we are trying to optimize.
As the efficacy consideration would indicate, merely tracking al-
location frequency is probably insufficient and it is necessary to
tie agent priority to the state of fairness. Allocation priority is also
tied to efficacy as noted above. It may be necessary to compute
expected fairness impact across all dimensions in order to optimize
the allocation.

We plan to leverage aspects of social choice theory to help ame-
liorate some of these issues. There is a significant body of research
on allocation mechanisms that provide desirable normative proper-
ties including envy-freeness [12], e.g., the guarantee that one agent
will not desire another’s allocation (although see discussion above
regarding envy-freeness) and Pareto optimality [6]. An important
and exciting direction for research is understanding what allocation
properties can be guaranteed for the SCRUF-D architecture overall
depending on the allocation mechanism selected [7].

We note that in most practical settings the personalization goal
of the system will be most important and therefore the preference
of this agent will have topmost priority. It is always allocated and
is not part of the allocation mechanism. Thus, we cannot assume
that the preference lists of the agents that are input to the choice
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system are anonymous, a common assumption in the social choice
literature on voting [7].

6.5 Bossiness
Depending on how the concept of agent / user compatibility is
implemented, it may provide benefits to bossy users, those with
very narrow majoritarian interests that do not allow for the support
of the system’s fairness concerns. Those users get results that are
maximally personalized and do not share in any of the potential
accuracy losses associated with satisfying the system’s fairness
objectives. Other, more tolerant users, bear these costs. A system
may wish to ensure that all users contribute, at some minimal level,
to the fairness goals. In social choice theory, a mechanism is said
to be non-bossy if an agent cannot change their preferences so that
they get the same allocation but some other agent gets a different
(possibly worse) allocation [32]. Hence, as a design goal we want
to think of mechanisms for both allocation and choice that are
non-bossy over the dynamic settings we consider.

6.6 Fairness Types
We concentrate in this paper and our work with Kiva generally on
provider-side group fairness, that is characteristics of loans where
protected groups can be distinguished. However, it is also possible to
use the framework for other fairness requirements. On the provider
side, an individual fairness concern is one that tracks individual
item exposure as opposed to the group as a whole. It would have
a more complex means of assessing preference over items and of
assessing fairness state, but still fits within the framework.

Consumer-side fairness can also be implemented through use of
the compatibility function associated with each agent. For example,
the example of assigning risk appropriately based on user risk
tolerance becomes a matter of having a risk reduction agent that
reports higher compatibility for users with lower risk tolerance.

7 CONCLUSION AND FUTURE WORK
We have introduced the SCRUF-D architecture for modeling the
fairness concerns of a wide range of recommender system stake-
holders. We integrate fairness into recommendation generation
leveraging social choice. The design is general and allows for many
different types of fairness concerns—involving multiple fairness
logics and encompassing both provider and consumer aspects of
the recommendation platform. The architecture is also general in
that it makes few assumptions about the nature of the allocation
and choice mechanisms by which fairness is maintained, allowing
for a large design space. Future work will proceed in multiple re-
search arcs. One arc of future work is to apply the architecture in
more realistic settings, particularly with Kiva. We are working with
Kiva stakeholders and beginning the process of identifying fairness
concerns. In the meantime, we also plan to conduct experiments
with a variety of data sets, exploring a range of different fairness
concern formalizations and social choice options.

We have made the mechanisms and the agents fairly simple
by design. Further experimentation will show how effective this
structure is for maintaining fairness over time and allowing a wide
variety of fairness concerns to be expressed. However, there are
some areas of exploration that we can anticipate.

A key feature of the recommendation context is that the deci-
sions of the recommender system only influence the exposure of
protected items. There is no guarantee that a given user will show
any interest in an item just because it is presented. In some settings
and for some fairness concerns, exposure might be enough. But in
cases where utility derives from usage rather than exposure, there
would be some value in having the system learn about the relation-
ship between exposure and a given agent’s fairness objective. This
setting has the attributes of a multi-objective bandit learning prob-
lem [26], where the fairness concerns represent different classes of
rewards.

Evenwhenwe consider exposure as ourmain outcome of interest,
it is still the case that the allocation of different agents may result in
differential improvements in fairness, as noted in Section 6.2 above.
The current architecture does not make any assumptions about
the distribution of user characteristics. That is, suppose fairness
concern fi is “difficult” to achieve in that users with an interest in
related items appear rarely. In that case, we should probably allo-
cate fi whenever a compatible user arrives, regardless of the state
of the fairness metrics. This example suggests that the allocation
mechanism could be adapted to look forward (to the distribution
of future opportunities) as well as backwards (over fairness results
achieved). This would require a model of opportunities similar to
[34], and others studied in computational advertising settings.

The current architecture envisions fairness primarily in the con-
text of group fairness expressed over recommendation outcomes.
We believe that the architecture will support other types of fair-
ness with additional enhancements. For example, a representational
fairness concern would be incompatible with the assumption that
fairness can be aggregated over multiple recommendation lists.
It would not be acceptable for a recommender system to deliver
highly non-representative results at times, even if those results
were balanced out in some overall average across users. Represen-
tational fairness therefore imposes a stricter constraint than those
considered here, effectively requiring allocation for the associated
concern, and possibly overriding personalization altogether.

The model expressed here assumes that fairness agents have pref-
erences only over items. But it is also possible to represent agents
as having preferences over recommendation lists. This would allow
agents to express preferences for combinations of items, which can-
not be expressed simply in terms of scores associated with items.
Agents would have to become more complex in their ability to rea-
son about and generate such preferences, and the choice mechanism
would become more like a combinatorial optimization problem. It
is possible that we can characterize useful subclasses of the permu-
tation space and avoid the full complexity of arbitrary preferences
over subsets.

Another interesting direction for research is more theoretical
in nature. Much of the research in social choice focuses on pro-
viding guaranteed normative properties of mechanisms. However,
the models used in traditional social choice theory do not take
into consideration dynamics as most mechanisms are designed to
work in one-off scenarios. It will be important to understand the
properties of existing mechanisms for allocation and choice when
deployed in these dynamic contexts and to develop new methods
with good properties.
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Finally, we note that there is very little user-centered research on
algorithmic fairness. (See [5, 22, 24, 36, 39] for some recent work.)
There are many unresolved questions including how to provide ex-
planations and other transparency mechanisms for fairness-aware
algorithms. Research around appropriate modeling of non-end-user
stakeholders in personalized systems is still in its infancy.
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