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Expected Extinction Times of Epidemics With
State-Dependent Infectiousness

Akhil Bhimaraju™, Avhishek Chatterjee

Abstract—We model an epidemic where the per-person
infectiousness in a network of geographic localities changes with
the total number of active cases. This would happen as people
adopt more stringent non-pharmaceutical precautions when the
population has a larger number of active cases. We show that
there exists a sharp threshold such that when the curing rate for
the infection is above this threshold, the expected time for the
epidemic to die out is logarithmic in the initial infection size,
whereas when the curing rate is below this threshold, the expected
time for epidemic extinction is infinite. We also show that when
the per-person infectiousness goes to zero asymptotically as a
function of the number of active cases, the expected extinction
times all have the same asymptote independent of network
structure. We make no mean-field assumption while deriving
these results. Simulations on real-world network topologies bear
out these results, while also demonstrating that if the per-person
infectiousness is large when the epidemic size is small (i.e., the
precautions are lax when the epidemic is small and only get
stringent after the epidemic has become large), it might take a
very long time for the epidemic to die out. We also provide some
analytical insight into these observations.

Index Terms—Epidemic modeling, network analysis.

I. INTRODUCTION

EWLY emerging infectious diseases that quickly spread

across population centers in an increasingly interconnected
world form a large portion of human infections [1]. These epi-
demics spread over contact networks and the characteristics of
this spread have been widely studied [2]-[8]. In this work, we
develop a state-dependent infectiousness model for the spread
of epidemics over a network of population centers and analyti-
cally prove that the epidemic dynamics follow certain proper-
ties. Specifically, we characterize the expected time of epidemic
extinction and show that it exhibits a threshold behavior where it
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is either logarithmic in the initial infection size or infinite
depending on whether the curing rate is higher or lower than a
threshold. We make no mean-field assumption while deriving
this threshold. We believe our model captures important features
of epidemic spreading not captured in prior literature, and our
results advance the understanding of epidemic spread.

We model the epidemic as a Markov spreading process over
a network whose nodes represent population centers such as
cities or large communities, and the connections between
them indicate the amount of contact between the population
centers. New infections could either be due to interactions
with people from neighboring population centers, or due to
community spread within the population center. We model
these two components of epidemic spread separately.

In a typical epidemic, especially in the early stages of newly
emerging infections, vaccines and other pharmaceutical means
to combat the disease are unlikely to be available. Further, in
the early stages of the epidemic, the number of susceptible
people in a typical population center is very large, and effec-
tively infinite, until a large majority of the population has
developed herd immunity. We capture these properties in a
model where the number of infections in each population cen-
ter can potentially grow without bound.

In cases where the infected population is a significant frac-
tion of the total population, the epidemic would spread more
slowly than what is predicted by our model. This is because
for a given number of infected individuals, our model assumes
that the susceptible population is larger than it actually is. So
our model would over-estimate the effective rate at which the
contagion spreads, and the number of (new) infections in our
model stochastically dominates the actual number of infec-
tions. Thus, in those settings, the threshold obtained from our
model would still hold for the quick-extinction case.

Whereas models at the person level [9]-[13] capture inter-
actions between individual people and might help us predict
the probability of a particular person getting infected, it is pro-
hibitively expensive to collect information about all individu-
als in a city and compute over a network that treats each
person as a distinct node. Population center-level models
allow us to predict the epidemic trajectory over a much larger
number of people at the level of countries or even the world.

Related work on metapopulation [14]-[17] also develops
population center-level models, but uses a mean field-type
approximation, which assumes the existence of a (sharp)
threshold and finds it. In contrast, sharp thresholds emerge in
our work. Like [9], [10], we directly characterize the time it
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takes for epidemic extinction. But unlike [9], [10], where there
is a gap between the conditions for a short- and long-lasting
epidemic, we prove there is a sharp threshold for the curing
rate which separates the conditions for short- and long-lasting
epidemics.! Note that our model is at the population center-
level (compared to the person-level model in [9], [10]).
Besides the work on metapopulation, other prior work which
claim a sharp threshold between the two regimes [11]-[13],
[18] have assumed it and employed a mean field-type approxi-
mation. Our analysis is significantly different from the analy-
sis of the extinction time of the mean-field dynamics. The
advantage of this stochastic-analysis framework is that it
allows the possibility of obtaining tail bounds for the extinc-
tion time, whereas the existing mean-field models, in their cur-
rent form, do not offer that scope. While we do not present tail
bounds on extinction time in this work, in Sec. VI, we plot the
confidence bounds on the extinction times obtained from sim-
ulations of the stochastic dynamics.

Another key aspect of our model is that the per-person infec-
tiousness of the epidemic is a function of the number of active
cases in the system. State-dependent infectiousness influences
the epidemic trajectory as people tend to take more precau-
tions [19]-[21] and governments tend to impose more restric-
tions on travel, gatherings, etc. [19], [22] as the number of
active cases increases. Moreover, these changes in contact can
be well-described using changes in the parameters of standard
epidemiological compartment models [23]; models that incor-
porate these considerations may yield predictions that are sig-
nificantly different from models that do not [24]. As explained
in [25], modeling the effects of human behavior on epidemic
spread is necessary for realistic models. Although time-depen-
dent infectiousness has been studied empirically in [26], we
analytically model infectiousness as a function of the number
of active cases in the system, which provides a (tractable) theo-
retical basis to time-varying infectiousness. A person-level
model for state-dependent infectiousness has been developed
in [10], but as explained earlier, modeling the epidemic at the
population center-level allows us to predict the epidemic trajec-
tory over a much larger number of people. We prove the
population center-level model has a sharp epidemic threshold
for the extinction times, in contrast to the gap between the con-
ditions for short- and long-lasting epidemics in [10]. Related to
this are [12] and [13], which develop person-level models
where individual people get alerted in the presence of infected
neighbors and take more precautions or change their contacts.

Other related work on epidemic extinction time include [27]
which estimates extinction time in SIR networks using simula-
tions; [28] which calculates the extinction-time distribution in
an aggregate non-network model; [29] which computes the
mean extinction times for all possible configurations of small
networks; [30], [31] which use the Wentzel-Kramers-Brillouin
approximation; and [32] which characterizes the epidemic
extinction times over a “mean” network formed from a given
degree distribution.

"Note that the “mean field” described in [10] is over the network, not the
infection probabilities.
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To summarize, our main contribution is a sharp, analytical,
and direct (not mean-field) characterization of the extinction
time in a population center-level model with state-dependent
infectiousness. This, to the best of our knowledge, is new.

The remainder of this paper is organized as follows. Sec. II
describes our model. Under this model, Sec. III proves the
existence of a sharp threshold: if the curing rate § is greater
than this threshold, the mean time for epidemic die-out start-
ing from a state with a cumulative of n infections is of order
Inn, and if the curing rate is below this threshold, the mean
die-out time is infinite. Sec. IV generalizes the results to set-
tings with asymmetric and weighted graphs. Then Sec. V
proves that the asymptotic mean extinction time is (exactly)
equal to 1%3” independent of graph structure if the per-person
infectiousness functions go to zero asymptotically. This would
happen if the level of precautions people take to combat the
epidemic keep getting more stringent with increasing numbers
of active cases. Sec. VI provides simulation and computation
results, and Sec. VII concludes.

II. MODEL

Let there be a set of localities® L, and at each locality u €
L, the number of infected people at time ¢ is given by X, ().
We assume each locality has a large enough population that
for our purposes, for all u, the range of X, () is the set of all
non-negative integers. There is a graph G across the localities,
and (u,v) € G when the localities w and v are connected. The
adjacency matrix G of G is the matrix having G,, =1 if
(u,v) € G and G,, = 0 otherwise. For ease of presentation,
we first assume that the graph is symmetric: (u,v) € G implies
(v,u) € G. We relax this assumption in Sec. IV. A connection
between two localities means that infected people in one local-
ity can infect susceptible people in the other locality. Further,
we assume the graph G is connected, i.e., for every u,v € L,
there exists a path between v and v in G.

Let the total number of people infected at time ¢ be X (¢),
ie., Y ,er Xu(t) = X(t). The rate of growth of the infection
at locality w at time ¢ consists of two components:

1) the intra-locality growth rate due to interactions within

the locality given by ™" (X (t)) X, (t), and

2) the between-locality growth rate, where the rate of

growth due to v for each (u,v) € G is given by

BX ()X, ().
Here, B(-) and g™'(+) are positive real-valued functions of
the total number of infections in the system, which give the
rate of growth of the infection per infecting agent. We
assume that these per-person infectiousness functions are
bounded. Let their suprema be given by sup,.yB(n) =
Buax and sup,cn BN (n) = B We also assume that the
asymptotic limits for these functions exist as the total num-
ber of infections grows without bound: lim, ., B(n) = B
and lim, ., ™" (n) = BT

0 *

oo
Let the curing rate for every

“Note that “localities” can refer to population centers at various levels of
demographic aggregation. They could represent countries, states, cities, or
even neighborhoods within a city. Indeed, there can be marked differences in
how people react to a contagion even within a single large urban area [33].
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BNT(X (1))

Fig. 1. The epidemic model, where nodes represent population centers,
edges represent the connections between the centers, B(-) and g™ (-) are the
between-locality and intra-locality infectiousness functions, and § is the curing
rate.

infected agent be 8. This is independent of the graph G, the
level of precautions taken (8 and B™"), or the number of
infections at any node {X,(¢)}, and just depends on
the nature of the infection. We show the model pictorially
in Fig. 1.

For each u € L, the above discussion implies the following
rates for the infection:

Xu(t) = X, (t)+1

at rate Z BX(1))X,(t) + BN (X (1)) Xu(t),
v:(u,w)eg

X, (t) = X, (t) — 1 at rate §X,(t). (1)

Let us use the vector X(t) to denote the state of the system at
time ¢. The uth element of X(¢) is X, (¢), the number of infec-
tions at node w at time t. Let Tx denote the time it takes to go
from a state X to the all-zero state 0. Once the epidemic
reaches the all-zero state, it is extinct, since one can only con-
tract the infection from someone else,3 and if there are no
infected individuals, the epidemic can never rebound later.
The mean extinction time (also called the mean hitting time)
starting from the state X is given by E[T].

III. SHARP THRESHOLD

In this section, we state our main result as Theorem 1.

Theorem 1: Letlim, . B(n) = B, and lim, . B~ (n) =
BT, Let A, denote the spectral radius of the adjacency matrix
of the (symmetric) undirected graph G. Let the system start in
some state X that has n infections cumulatively, i.e., 1"X =
n. If the graph G is connected, then the following hold.

1) If B\ + BT < 6, then E[Tx] < C'lnn for some

constant C' > 0.

() If B A + BN > 6, then E[Tx] = oo.

Before we prove Theorem 1, let us first observe a property
of the spectral radius, A\, of GG. Since we have assumed that G
is connected, the Perron-Frobenius theorem (see [34]) implies
that every element of the eigenvector q corresponding to A, is
strictly positive, i.e., q > 0.

3Note that this is true for many viral infections since the only host for these
viruses are humans. However, this may not be the case for other infections.
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We prove Theorem 1 in two parts: (i) B A + BN < 6,
and (i) B A + BT > 8.

A. Curing Rate Above the Threshold

For proving part (i) of Theorem 1, the following claim,
which follows from analyzing the time evolution of X along
the eigen-direction of G, is useful.

Claim 1: When B(n) and ™" (n) are constant, i.e., B(n) =
B and BN"(n) = B™" for all n, and BA,. + ™" < 8, then
E[Tx] < C'lnn for some C' > 0 where 1'X = n.

Proof: Please see Appendix A. |

We are now ready to prove part (i) of Theorem 1.

Proof of part (1) of Theorem 1: Since we have
lim,, ﬂ(n): ﬂoo, limy, o lglNT(n) = ,3101?, and ﬂooAr =+
BT < 4, it follows from the definition of limit [35] that there
is an m such that

Bn)A. + BN (n) < 8, for all n > m. )

When the system starts in any state with a cumulative number
of infections n, which is greater than m, it must go through a
state where the cumulative number of infections is m to reach
the all-zero state. However, if the system starts in a state that
has less than m infections in total, then it may or may not
reach a state with m infections. This gives us

E[Tx] S E[Tx’m] + max E[Ty],
Y:1Y=m
where T, is the amount of time it takes to reach a state with
a total of m infections starting from state X.

Using (2), we make the following observations.

a) Between X and any state with a total of m infections,
every state satisfies B(-)\, + B™"(-) < 8, and thus a
system with a constant infectiousness equal to
max, >, (B(n)A\, + B~ (n)) satisfies Claim 1.

b) Since our system has an infectiousness less than the sys-
tem with constant infectiousness in point (a) for every
state with n > m, using a stochastic-dominance argu-
ment, the time it takes for epidemic extinction in the
constant-infectiousness system should be greater (in
expectation) than the time our system takes to go from
X to a state with m infections.

Using these observations and Claim 1, it follows that

E[Txm] < C'lnn whenever n > m. Since maxy.jry_,,E[TY]
is a constant independent of n, we have

E[Tx] < C'lnn,

when1'X =nand n > m. Forn < m, E[Tx] is less than the
constant maxy qry_,, E[Ty], and hence E[Tx]| < C’Inn follows
directly. u

B. Curing Rate Below the Threshold

We now move to the case where S, A, + ' > 8. For this
case, we use the discrete-time Markov chain (DTMC) embed-
ded in the continuous-time Markov chain (CTMC) X(¢). Let
Xo = X(0), and let X; be the state of our system after k
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transitions. Then Xy, Xj,... form a DTMC. However, the
number of transitions in the CTMC must be countable for
every sample path of the CTMC if the embedded DTMC is to
include every transition in the CTMC. If the transitions in the
CTMC are otherwise uncountably infinite, we cannot map all
the transitions in the CTMC to transitions in the DTMC.

If the CTMC’s transitions are countable, and if the embed-
ded DTMC is transient, there is a nonzero probability that the
sequence Xg, X1, Xs, ... does not contain the all-zero state 0,
with zero infections at all nodes. This in turn implies there is a
nonzero probability that our system does not reach the zero
state starting from n infections initially (because the transi-
tions are countable). This gives us an infinite mean hitting
time B[T,].

We first state as Claim 2 that our system has a countable
number of transitions. We use this together with a theorem
from [36] (stated as Theorem 2 here) to prove the transience
of our system when B\, + " > 6.

Claim 2: Let T be the set of all transition times for the con-
tinuous-time Markov chain given by (1). There exists an injec-
tion from T to N with probability 1, i.e., the set T is countable.

Proof: Please see Appendix B for the proof. Claim 2 is sim-
ilar to the results in [37, Section 5.1]. |

To show that the embedded discrete-time Markov chain is
transient, the following theorem from [36] (paraphrased in our
notation) is useful.

Theorem 2 (from [36]): Let the state space of the Markov
chain Xy, Xy, ... be given by S. If there exists a function V' :
S+— R, U {0} that satisfies the following properties:

a) for some d > 0, P(|V(Xj11) — V(Xp)| > d) =0 for

all X and Xj4q,

b) for some € > 0, and ¢ > 0, E[V(Xp1) — V(Xi)

[ X =X] > eforall X € {Y|V(Y) >c}, then the
Markov chain Xg, Xy, . .. is transient.

Note that the conditions for transience in Theorem 2 are
similar to Foster’s well-known work [38]. While the condi-
tions for positive recurrence from [38] are still widely used,
the conditions for transience require the potential function V'
to be bounded. The conditions for transience given in Theo-
rem 2 from [36] are easier to use. See [39] for other variants.

Proof of part (ii) of Theorem 1: We first prove that the
DTMC embedded in our CTMC satisfies the conditions of
Theorem 2, which implies that the embedded DTMC is tran-
sient. Claim 2 then ensures that the transience of the embed-
ded DTMC implies transience of the CTMC.

For the embedded DTMC, let us define the potential
function

V(X)=q'X.

Recall that q is the Perron-Frobenius eigenvector of G,
which ensures that q > 0 and so V(X) is a valid potential
function. This gives us V(Xi11) — V(X)) = q" (Xep1 — X)-
Condition (a) of Theorem 2 is straightforward to verify since
Xy+1 — X = *e; for some ¢, where e; is the vector whose ith
element is 1 and the rest are 0. So P(|V(Xi+1) — V(Xi)| >
d) =0 for all d > @uax, Where @u.y is the maximum
element of q.
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We now define ¢, and thus the set {Y|V(Y)>c} in
condition (b) of Theorem 2. We set ¢ = qaxm, Where m shall
be determined later. This means that a sufficient condition for
the transience of the embedded DTMC is that condition (b) of
Theorem 2 should hold in the set & = {Y |V (Y) > Gmaxm}.
Note that since we have defined V(Y) = q 'Y, V(Y) > guaxm
implies 17Y > m.

Let X;; = X € U, and let the sum of all rates in (1) when the
system is in this state be R. Let 1"X = n. Using (1), we get

E[V(Xi1) =V (Xi) [ Xi = X]
= qTE[Xk+1 — Xk | Xk = X]

= a7 % (BmGX + B ()X~ 8X)

= L n + g ()

—8)q'X.
7 )q

Observe that

R =1"(B(n)GX 4 ™" (n)X + 6X)
< (B(n)dmax + BN (n) + 8)17X, 3)

where d.y is the maximum degree in the graph.
Since qTX > qmianX, where ¢, 1S the minimum element
of q, we get

E[V(Xis1) = V(Xe) [ X = X]
(lg(n)/\7 + IBINT(n) — S)Qmin

B(n)diax + B~ (n) + 8
for all X € Y. Since B(n) — B, and N (n) — BT, the defi-

nition of limit ensures that for a sufficiently large m,

(ﬂ(n)/\ +/31NT<”>75>41 in 3 1 3 (/Soc)‘r“"ﬁg‘gf‘s)qmm
ﬂ(n)(;nmx AN s 1S arbitrarily close to R L for

. (,Boo)\r"!‘ﬁg\(l;vr_a)‘lnlin
all n > m. Since R — > 0, we have

>

E[V(Xk+1) — V(Xk) |Xk = X] >e>0

for all X € U for a sufficiently large m. (Recall that U =
{Y|V(Y) > Guaxm} which implies 17X > m for all X € U.)

This proves the transience of the embedded DTMC.
Transience of the embedded DTMC means that starting in
state Xo = X (#£ 0), there is a nonzero probability that the
sequence of states Xi, X, X3, ... does not contain the all-zero
state 0 with nonzero probability (directly from the definition
of transience used in [36] in their proof of Theorem 2). Using
Claim 2, this means that the CTMC defined in (1) has a non-
zero probability of never reaching the all-zero state. Hence the
average hitting time is infinite. u

IV. EXTENSION TO GENERAL NETWORKS

So far, we have assumed that the connection graph among
the population centers is symmetric (G, = G,,) and
unweighted (G, € {0, 1}). However, this is not true for many
real-world networks: the rate of infection spread between any
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two connected centers need not be identical, and the rate of
infection spread from w to v need not be equal to the rate of
infection spread from v to u for a connected pair (u,v). Thus,
it is important to study the behavior of the epidemic under a
general connection network given by a general asymmetric,
(nonnegative) real-valued adjacency matrix G.* However, it is
still reasonable to assume that the graph is strongly connected,
i.e., there exists a path with nonzero edges from any center «
to any other center v. This is because it is rarely the case that
there exist no paths from one population center to another.

Further, the intra-locality growth rate of infections need not
be identical for all the population centers, as this rate typically
depends on local factors like population density [40] and
social capital [41]. Let us use the parameter D,, > 0 to modu-
late the growth rate of the infection at location w. Let D be a
diagonal matrix with D, as the uth element of its diagonal.

These considerations give us the following expressions for
the rates of epidemic spread.

at rate [(B(X(1))G + BN'(X(t))D)X(t)],,
X(t) — X(t) — e, at rate §[X(t)],, “)

for all u € £, where [-], indicates the uth element of a vector.

Let p(-) denote the spectral radius of a matrix. We general-
ize Theorem 1 as Theorem 3.

Theorem 3: Let the system start in some state X that has n
infections cumulatively, i.e., 1"X = n. For the epidemic
described by (4), the following hold.

(i) If p(B,,G+ BX'D) < 6, then E[Tx] < C'lnn for some

constant C' > 0.

(i) If p(B G+ BR'D) > 6, then E[Tx]| = oc.

Proof: Note that the Perron-Frobenius theorem holds for
the matrix 8,,G + B’ D, and we can find a strictly positive
eigenvector q' > 0 of B, G + BX'D, which has the (positive,
real) eigenvalue p(B, G+ Bn'D) (see [34]). The proof
follows directly by replacing the q used in Claim 1 and
Theorem 1 with the Perron-Frobenius eigenvector of
B..G + BYD. o

While Theorem 3 provides a sharp threshold in terms of
P(B G + BR'D), it is difficult to separate the contributions of
the between-locality spreading term B, G and the intra-local-
ity spreading term 5" D. It would be nice to have sufficient
conditions for fast die-out and long-lasting epidemic in terms
of expressions where these two contributions are decoupled.
Towards this end, we provide two corollaries.

Corollary 1: Let the system start in some state X that has n
infections cumulatively, i.e., 1"X = n. If D is a scalar matrix
nl, i.e., if the intra-locality rate-modulating factor D, = n for
every locality u, then the following hold.

(i) If Bop(G) + B'n < 6, then E[Tx] < C'lnn for some

constant C' > 0.
(i) If Bop(G)+ BTy > 4, then E[Tx] = occ.

“Rather than defining the graph G as a set {(u,v)} of node pairs, we now
define it as a set of triples {(u,v, e,,)}, where e,, is the weight of the edge
from u to v. The adjacency matrix G concisely captures all this information.
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Proof: Please see Appendix C. |

For the next corollary, we need a theorem from [42] which
relates the spectral radius of nonnegative asymmetric matrices
to the spectral radius of certain symmetric matrices. We state
this as Claim 3 (in a form useful for us).

Claim 3 (from [42]): For any nonnegative (square)
matrix A,

p(\/A ® AT) <p(4) < p<A J;AT),

where @ is the element-wise product of matrices and /- is the
element-wise square root.
Note that the ijth element of VA® AT is \/ A;;jAj; and the

. T Ay T
ijth element of 44T is ZU 2 Both /A ® AT and 4£A are

symmetric matrices. This reduction to symmetric matrices
allows us to apply Weyl’s inequalities on the conditions in
Theorem 3. We state this formally as Corollary 2. See the text-
book [43] for the details regarding Weyl’s inequalities. We
also provide short proofs of the inequalities used here in
Appendix D.

Corollary 2: Let the system start in some state X that has n
infections cumulatively, i.e., 1"X = n. Then the following
hold.

() It Boop(CEE0) + BN max, D, < 8, then E[Ty] <

C'Inn for some constant C' > 0.
(i) If Bop(VG©GT)+ B'min,D, > &, then E[Tx] =
00.

Proof: Applying the upper bound in Claim 3 to the spec-

tral-radius expression in part (i) of Theorem 3, we get

G+GT
2

(5.6 +50) < o5 S5 4 D).

Since B, GBGT and BTD are both symmetric matrices, we
can apply one of Weyl’s inequalities (see [43] or Appendix D)
to get

G+GT
2

p(BG + BR'D) < ﬁocp( ) + Bxmax D,. (5)
Equation (5) ensures that whenever the condition in part (i) of
Corollary 2 is satisfied, the condition in part (i) of Theorem 3
is satisfied as well. This proves part (i) of Corollary 2.

For part (ii) of Corollary 2, observe that

(BG + BYN'D) © (B, G + BNID) "
=B, GOG +(B)’DeD.

This is because there is no position 7j that has a nonzero ele-
ment in both the matrices G and D. Further, the matrix D is
diagonal (and hence symmetric), and so we have

V(BG + YD) © (B,G + B3 D)

=B . VGOGT +pI'D.
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Using the lower bound in Claim 3, we get

p(BG + B21D) = p(pV/G O GT + D).

Since B, VG © GT and BX'D are both symmetric matrices,
we can apply another one of Weyl’s inequalities (see [43] or
Appendix D) to get

p(BG + BXD) = Brop(VG © GT) + B2 min D,

Thus, whenever the condition in part (ii) of Corollary 2 is true,
the condition in part (ii) of Theorem 3 is true as well. This
concludes the proof of part (ii) of Corollary 2. |

Unlike Theorem 1, Theorem 3, and Corollary 1 where the
thresholds are sharp, there is a gap between the thresholds for
a quick die-out and long-lasting epidemic in Corollary 2.
However, Corollary 2 decouples the contributions of the graph
structure G and the variation in intra-locality spreading D in
the thresholds.

V. VANISHING INFECTIOUSNESS

In this section, we consider the special case where the per-
person infectiousness functions decrease to zero as the number
of active cases in the system increases: 8., = f' = 0. For
this, we define upper-bound and lower-bound Markov chains
using the maximum and minimum node degrees. We then
show that both these Markov chains have the same asymptotic
mean hitting times if the per-person infectiousness functions
go to zero asymptotically.

Let the maximum node in-degree in G be d,.. and the
minimum node in-degree be drpin.> Adding up (1) over all
the localities u € £ gives us the following upper- and lower-
bound Markov chains for the system-wide epidemic.

Upper — bound Markov chain :
X(t) — X(t) + 1 at rate (dunaxB(X(1)) + BN (X (1)) X (1),
X(t) — X(t) — 1 at rate §X(¢), (6)

and

lower — bound Markov chain :
X(t) — X(t) + 1 at rate (dunB(X(t)) + ™" (X (1)) X (1),
X(t) — X(t) — 1 at rate §X(¢). (7)

The mean hitting times of these upper- and lower-bound Mar-
kov chains are, respectively, higher and lower than the mean
hitting times of the original epidemic. Proofs that they are in
fact bounds are straightforward.

We can see that the form of both (6) for the upper-bound
Markov chain and (7) for the lower-bound Markov chain can
be captured using a rate coefficient y(-) as follows.

SFor weighted graphs, use the definitions dy. = max, » , Gy and
din = min, Ev (€
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X(t) — X(t) + 1 at rate y(X(¢))X(t),
— X(t) — 1 at rate §X(¢). (8)

Any results we derive for a general y(-) apply for both the
upper-bound and lower-bound Markov chains. So we now
derive bounds for the hitting times of a general Markov chain
satisfying (8).

Let T, be the time it takes for the infection to go to 0 infec-
tions starting from n infections. Starting from n infections, the
probability that the system given by (8) goes to n + 1 infec-

y(n)
y(n)+8°
ilarly, the probability that the system goes to n — 1 infections

next after n infections is given by —2— . This gives us

y(n)+48°

Sim-

tions next (instead of n — 1 infections) is given by

+ E|T,

[T-1] m + Elz,),

EMFEmmﬁgg

where 1, is the time it takes to make the next transition from n
. . . _ 1 .
infections. Using E[z,,] = “0nTs) » Fearranging the terms, and
replacing n with n — 1 throughout, we get

B yln—1)+6 )
A =Bl G T Bl
1
RCEEE

for n > 2. Defining S,, = E[T,,] — E[T,,_1] yields

SnJer(n) - Sna = - (9)

1
n
forn > 1 with S; = E[T].

So if we can find E[T}], we will be able to compute all the
mean hitting times (not necessarily in closed form). To com-
pute E[T}], we compute the steady-state probability in state 0
of the transformed Markov chain in Fig. 2, whose hitting times
are the same as the required Markov chain in (8). The modifi-
cation we have done to the Markov chain in (8) is the addition
of the extra transition out of the zero state with a rate 6. This
does not change the hitting time from any nonzero state since
the time it takes to reach the zero state for the first time is inde-
pendent of the rate of transition out of the zero state. However,
the transformation gives us a positive-recurrent Markov chain,
for which the steady-state probabilities are well-defined and
non-trivial. Further, the mean hitting times are independent of
the birth rate from 0, 6.

Let 7, be the steady-state probability of finding the chain in
node n. Local balance between node n — 1 and node n gives

Ty-1(n — 1)y(n — 1) = m,nd,
which on expanding out yields

y(Wy(2)--y(n—1)
né" ’

T, = 0
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(1) 27(2)

(n=1)y(n—1)

O“

no

Fig. 2. Modified Markov chain with same mean hitting times as the Markov chain in (8). Adding 6 does not change the hitting times, but makes the chain posi-

tive-recurrent.

forn > 1. Using Y~ 7, = 1, we get

(1+9<8+%+M+~->> =1 (10

383
From renewal theory (see [44, Chapter 7]), we have

E[to]

To + E[Tl] '

" Bt

Since the rate of transition out of the zero state (in the modi-
fied Markov chain) is 6, E[ty] = %, and this gives

E[Th] =

Substituting the expression for 7y from (10) implies the fol-
lowing claim.

Claim 4: The mean hitting time from one infected agent to
zero infected agents is given by

]-Hj ly()
EML] = 52 st

whenever the Markov chain in Fig. 2 is positive recurrent.

Our goal in this section has been to compute the asymp-
totic mean hitting times when S, and S are 0. These
conditions translate to lim, .. y(n) =0 for both the
upper-bound Markov chain (6) and the lower-bound Mar-
kov chain (7). We get there by first computing the (asymp-
totic) mean hitting times when y(n) = «, which we do in
the next subsection.

A. Hitting Time Bounds When y(-) is a Constant

Substituting y(n) =« in the expression for E[T}] in

Claim 4, we get

(1)

and expanding out (9) for y(n) = « gives us

8 1
Sn = Sn*l& Ca(n—1)
8 8 1
= 7S7L—2 - -
o? @’(n—2) a(n-1)

st 1821 jay i1
- s-1E
@l ( ! 8;i 5 >
Since S; = E[T;] by definition, substituting the expression
from (11) gives us

D iy 7
S77 IS - (7>
' an—l (SZZ )

i=n
1 i n (a)i
~on =n+i\s/)’
and since ! < 1 for all positive integers r, we get

1 1
— <8 < —,
sn =" T (—a)n

using the geometric series 1+%+ 2‘—5 + which

implies
1 1

This directly leads us to the following claim.

Claim 5: When the per-person infectiousness is given by
y(n) = « for all n for some « € (0,§), the mean hitting time
to go to zero infections starting from n infections satisfies

o’

1+Inn
§—a

In(n+ 1)

5 < E[T,]

B. When lim,,_., y(n) =0

When the infectiousness functions B(-) and B™"(-) go to
zero, i.e., B, =0 and X" =0, the y(-) for both the upper-
bound Markov chain in (6) and the lower-bound Markov chain
in (7) go to zero. Hence, if we can derive the asymptotic mean
hitting time for lim,,_,« y(n) = 0, it will give us matching
asymptotes for the upper and lower bounds, which means we
have the exact asymptote.



BHIMARAIJU et al.: EXPECTED EXTINCTION TIMES OF EPIDEMICS WITH STATE-DEPENDENT INFECTIOUSNESS

We will show that for any arbitrarily small «, we can use
Claim 5 to show that the asymptote for E[T},] is arbitrarily
close to h‘T” We state this formally as Theorem 4.

Theorem 4: 1If lim, . y(n) =0, then the mean hitting
times of the Markov chain in Fig. 2 satisfy

SE|T;,
lim —[T ) =
n—oo Inn

Before proving Theorem 4, let us first state a claim which
will be useful.

Claim 6: If lim,,_., y(n) = 0, then for any ¢ > 0, the Mar-
kov chain in Fig. 2 satisfies

1 1 1
In(n+1) <E[T,] < AL h(e) for all n,
) d—€
for some function h(e) that is independent of n.
Proof: Please see Appendix E. u
We are now ready to prove Theorem 4.

Proof of Theorem 4: Proving lim,, Sﬂff] =1 is equiva-
len} tc]> proving that for any e > 0, we can find an n. such that
SE[T),

e —1] < e for all n > n. (from the definition of

limit [35]).
For any ¢, substitute min(
us

@ 8

?,5) for € in Claim 6. This gives

L) omax(h(4).h()

Inn 2 Inn
For sufficiently large n, we get
SE[T,
SEIL] _ 1 <e
Inn

Further, from the lower bound in Claim 6, we get

SE[T,] < In(n+1) 1
Inn Inn

For a sufficiently large n, % — 1 can be made arbitrarily
close to 0. Thus we get

SE[T,] ’

—— 1| <e

Inn

for all sufficiently large n, which concludes the proof. |

C. Putting it Together for the Original Epidemic on G

For both the upper-bound Markov chain in (6) and the
lower-bound Markov chain in (7), the infectiousness per per-
son goes to zero if both B(-) and ™ (+) go to zero as n — 0.
Since Theorem 4 applies for any chain with lim,, . y(n) =
0, both these upper- and lower-bound Markov chains satisfy
Theorem 4. Since both these chains have the same asymptote,
by sandwiching, even the original epidemic on G must have
the same asymptote. This gives us the following corollary.

Corollary 3: If lim,, ., B(n) = 0 and lim,,_, 8" (n) = 0,
then for any locality graph G, we have

1111

SE(T,
lim —[ J =

b
n—oo Inn

where T}, is the time taken by the epidemic to go from a cumu-
lative of n infections in the system to 0.

Corollary 3 implies that if the per-person infectiousness
functions go to zero asymptotically, i.e., if the (non-pharma-
ceutical) precautions get arbitrarily more stringent as the num-
ber of cases increases, then the mean hitting times have the
asymptote an independent of the locality graph.

VI. SIMULATIONS & NUMERICAL COMPUTATIONS

In this section, we present some simulations and numerical
computations to demonstrate the theoretical results of the pre-
ceding sections.

A. Network-Wide Simulations

For simulations, we use the network from [15] which is a
graph where the nodes represent the top 500 US airports and
the edge weights are the number of seats scheduled on flights
between the airports in the year 2002. We consider the top
100 of these 500 nodes and normalize the adjacency matrix
with the mean column weight (this normalization just scales
the values of B(-)). We simulate the model described in Sec. II
using Gillespie’s algorithm [45].

First, in Fig. 3, we simulate using constant values for §(-)
and B™7(-). Specifically, we set f(n) = =2 and ™" (n) =
B~ = 2 for all n, and choose § to get the value of W
shown on the plot. For both the values of §, we simulate the
system 1000 times and show the trajectories of X (¢) over time
in the plot, and the interval that contains 95% of the simulated
states at each time instant. We obtain this 95% interval by
finding the maximum and minimum state values after ignoring
the top and bottom 2.5% of the simulations. We also show the
plot of E[X(¢)] computed theoretically by solving the differ-

% (see Appendix A). As we can see in

ential equation for dE

Fig. 3(a), when BA, + ™" > §, most of the simulated trajec-
tories of the system show an epidemic that is not dying out.
Even though more than 2.5% of the simulations die out (as the
95% interval shows), since most of the simulations show an
epidemic that becomes increasingly larger with time, the
expected extinction time would be infinite, in line with what
we have theoretically proven in Theorem 1. On the other
hand, in Fig. 3(b), when B\, + ™" < 4, all the trajectories of
the system result in the epidemic dying out relatively quickly.
Further, in this case, the confidence bounds on the extinction
time are meaningfully defined, and we show the 95% confi-
dence interval of the extinction time 7x in Fig. 3(b). This
interval is calculated in the same way as the 95% interval for
the state trajectory. For all the simulations, we start with an
initial epidemic size of 100, placed uniformly at random at
one of the nodes.

When the values of B(n) and f™"(n) change with n, if
B(m)A. + BT (n) < & or B(n)A. + B~ (n) > § for all n,
then the results are very similar to the ones in Fig. 3, and hence
we omit these plots. In Fig. 4, we show the results of
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5/ (BscAr + BE") = 0.90
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(a) Curing rate below the threshold.
0/(Boc + BET) = 1.10
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=
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50 1
0
t
(b) Curing rate above the threshold.
Fig. 3. Epidemic trajectories using constant values for B(-) and ™" (-).

simulations where B(n)A, + ™" (n) starts from a value
greater than § for small n, but eventually falls to a value
smaller than § for larger n. The value of n where this transition
happens is shown on the plots in Fig. 4. We can see in Fig. 4
that there seems to be a “metastable” state at the point where
the infectiousness is equal to the curing rate. Note that since
the value of B(n)A. + ™" (n) eventually falls below & for
large enough n, the condition in part (i) of Theorem 1 is true,
and so the mean hitting time should be logarithmic in the ini-
tial infection size. However, these simulations suggest that the
epidemic takes a very long time to die out in this case. It seems
that the die-out times are in fact exponential in the infection
size where the infectiousness and curing rate are equal. Please
see Appendix F for some insight into this behavior. This
means that even though Theorem 1 guarantees that the mean
die-out time would be logarithmic in the initial infection size
if the asymptotic rate of infectiousness is less than the curing
rate, it is still very important that measures such as lockdowns
and other non-pharmaceutical precautions are implemented in
the early stages of an epidemic.
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B(z) A\, + BT (x) drops below 0 at z = 100
\ T T T T

I"I ——— Simulations

40

(a) Curing rate is greater than threshold when epidemic is small.
B(x) A, + 8™ (x) drops below § at & = 1000

1000 .#1 J..

" Fedl [ /7
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95% of state trajectories
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0] ]
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(b) Curing rate is greater than threshold only after epidemic gets very large.

Fig. 4. Epidemic trajectories when B(n) and ™" (n) change with n.

B. Numerical Computations for Vanishing y(-)

Here, we provide some numerical computations to support
Theorem 4. Note that in contrast to the network-wide simula-
tions in Fig. 3 and 4 where we have used the infectiousness
functions B(-) and ™"(+), we use y(-) here which captures the
infectiousness for both the upper- and lower-bound Markov
chains together in a single expression using (8). We consider
three different y(-) functions and plot the values of E[T,,] com-
puted using the recursion from (9) (with the base case from
Claim 4). We plot this in Fig. 5.

Fig. 5 shows that even small changes in y(-) can cause large
changes in the values of E[T},]. Further, Fig. 5 may seem to indi-
cate that even these small changes cause the mean hitting times
to not converge to the same asymptote. This would be contrary to
what we expect from Theorem 4. However, the reason we do not
see all the three curves in Fig. 5 converge to the same asymptote
is that the convergence happens extremely slowly. This is not
very surprising, given that the asymptote is the function %
Since the logarithmic function increases very slowly, differences
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y(n) = f x 2.0e7%9%4™M and § = 1.0
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Fig.5. [E[T,] for slightly different y(-) functions.

between E[T,,] for different y(-) functions at small values of n
take a very long time to become insignificant, and the E[T;,] val-
ues become close to each other only at very large values of n.

To demonstrate this, consider y(n) =%£. We choose this
function because it leads to easier analysis. Similar arguments
hold for any other function as well. Substituting this into

Claim 4 gives us

+ i + G +
1-2-8% 1-2.3.8
- ,Z{J+ ]{32 N ]{13 N
Ck\S 2187 3188

et — 1
=

1
E[Ti] = 3
1

(12)

Equation (12) is quite sensitive to the value of k. For example,
with § =1, we get a derivative of %5*1 ~ 23.79 at k= 5.
Small changes in the value of k can significantly change the
value of E[T}]. We can use the recursion from (9) to analyti-
cally find the value of E[T3] to find that E[T5] is even more
sensitive to the value of k. Since E[T},] is of the form E[T5] +
> 4 Si, and S, asymptotically reaches L, these differences in
E[T3] become negligible only for a very large value of n.

We can verify this using Fig. 6 where we plot the values of
S, for different y(-) functions. We see that all of them eventu-
ally reach the asymptote % This means that for large enough
n, the mean hitting times will all be indistinguishable from
Inn. However, we need an extremely large value of n for the
differences to become negligible.

VII. CONCLUSION

We have developed a model for epidemic spread within and
across population centers with state-dependent infectiousness.
In this model, we directly prove (without mean-field assump-
tions) that there exists a sharp threshold for the curing rate §
such that when ¢ is more than a threshold, the epidemic dies
out quickly (the mean lifetime is of logarithmic order in the
initial infection size), and when & is less than the threshold,
the mean lifetime of the epidemic is infinite. Although § is not
typically something we can control, especially in the initial
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Sy, for different ~(-) functions (6 = 1.0)
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10' 4
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n

Fig. 6. S, forlarge n. Note that for these large values of n, y(n) is too small
for accurately computing the recursion in (9) using even 128-bit floating point
arithmetic. To compute S,,, we need to divide a very small value, S,,_18 —
n%], by another very small value, y(n — 1). Insufficient numerical precision
can lead to garbage values for S,,. Arbitrary-precision arithmetic (such as the
one provided by mpmath [46]) is needed.

stages of a pandemic without vaccines or other medication, it
is possible to lower the threshold by following more stringent
precautions. While we do not provide prescriptive solutions
for managing pandemics, we hope that this work would offer
useful insights to policymakers.

While our model makes no mean-field assumptions to char-
acterize the extinction time, we provide theoretical results
only on its expected value. It is of interest to establish high-
probability bounds on extinction time and characterize how
strongly extinction time concentrates. Combining techniques
in Claim 2 with literature on (discrete-time) Markov concen-
tration [47], [48] might be pursued.

There is also scope for developing broader and more realis-
tic models of state-dependent infectiousness. Empirical work
suggests that people take precautions against contagions not
only in response to the actual number of infections, but also to
other factors like the media attention on infection preva-
lence [20], [21]. These models should capture infectiousness
as a function of both the actual infection prevalence and the
spread of awareness through (social) media.

Finally, it is important to accurately infer parameters of our
model using historical and current epidemiological data so as
to inform practical applications.

APPENDIX A
PROOF OF CLAIM 1

The following proof that we provide here closely resembles
the proof of [9, Theorem 3.1]. However, since we are not
interested in the exact constant C' like [9], we avoid the use of
matrix exponentials seen there. The rates of (1) (with constant
B(-) and B™'(+)) give us the following differential equation:

dE[X(t)]

S = (BG4 T - SDEX(),

where [ is the identity matrix (of correct size). Multiply each
side of the equation with q' (q is the eigenvector of G
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corresponding to ;). This gives us

dE[q " X(t)]

13
7 13)

=q' (BG + ™I — SDE[X(1)).
Since q is an eigenvector of G with eigenvalue )\, and an
eigenvector of [ with eigenvalue 1 (every vector is an eigen-
vector of I with eigenvalue 1), (13) gives us

dE[q " X(t)]

LS = (B 4 B -

S)E[q"X(1)].
This is a differential equation in terms of E[q " X(t)], and solv-
ing it gives us

E[qTx(t)] _ et(ﬁ)\r-',-ﬁ[Nv‘._é)qTX(O).
Let ¢max and g, denote the maximum and minimum ele-
ments of q, i.e., ¢max = Max;q; and gnin, = min,g,. Since q >
0, @min 18 strictly positive. This gives us

_B[ITX(0)] < P o

Gmin

E[X(?)] (14)

The mean hitting time can be written as

E [Tx(0)] /UOO P(X(t) > 1)dt
_ / BOX() > 1)dt+ / TRX() > 1)dt
0 T
< r—|—/ E[X(1)]dt

for any © > 0. The last inequality follows from the fact that
P(X(t) > 1) <1 since it is a probability (which gives the
first term), and the Markov inequality which gives us
P(X(t) > 1) < E[X(t)] (for the second term).

Using (14), we get

E[Tx) < v+ kne™™ forall © > 0,

where k =

W>OandA:5_ﬁ/\r_ﬁmT >0

Setting T = 5" gives us E[Tx()] < C'lnn.

APPENDIX B
PROOF OF CLAIM 2

Divide the time axis into intervals of unit length. Given any
(finite) ¢ € T, if the number of transitions in all intervals pre-
ceding and including ¢ is finite, then the cardinality of the set
{s|s €T and s < t} is finite. Further, this cardinality is
unique for each ¢, allowing us to map ¢ to this unique natural
number plus one. Thus we get an injective mapping (if the
number of transitions in each interval is finite).

At the start of the interval, assume that the Markov chain
starts in state X with 1" X = n. The probability that there are
at least £ transitions in the interval satisfies
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k
P(at least k transitions in interval) (Z )

15)
where { X} are the amounts of time it takes to transition out
of the first k states starting from X at the beginning of the
interval.

Since the total rate of transition rate out of X is given by
1" (B(n)G + B~"(n)I + 81)X, the total transition rate out of
any state with at most n infections is less than or equal to
(ﬂmaxdlna.x + ﬂg;x =+ 8)7’7, Recall that IBmax = SupiEN:B(i)?
Bt = sup;enBT(7), and dyax is the maximum degree
among nodes of G. Define T = B, dmax + By + 8.

So in the worst case, which gives the greatest probability on
the right side of (15), we have X; ~ exp(t(n + j)). This gives
us

T~
|
LT
N><<
v
o
N

k—1
]P(Z X; < 1) <P(e
=0

™m+ 1)
ottt
e

k-1 1 ’
Hj:O (1 + rn+rj)

If Hj o1+ rn+rj) — 00 as k — 00, then the probability thgt
there are infinite transmons in the interval goes to 0. But this
is equivalent to Z 5 In(1+ 00 as k — oo.

This gives us

rn+1’])

> k=1 1n ( ‘L'n+1'j> 1

m+ty

1+

=0

™+ T j=0 rn+r]

n(1+o4)
For a large enough j, we can make ﬂ

to 1. This implies

k=l 111(1 + r77+t])

1
j=0 ™m+1j

arbitrarily close

‘m+r7

-
Zl:rn—i-r] o

1
( +m+rj)
1

m—&-rj

where [ is chosen to be large enough so that is at

Tt
most ¢ away from 1 for all j > [. The sum goes to infinity
because the sum of the harmonic series goes to infinity. Since
this ensures that the Markov chain only has a finite number of
transitions in any interval, it concludes the proof.

APPENDIX C
PROOF OF COROLLARY 1

We need to show that

p(BG + BnI) = Boop(G) + Bxn.
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Recall that the spectral radius of a matrix is defined as the
maximum absolute value of the eigenvalues of the matrix. Let
A be an eigenvalue of B G + B.'nl. This yields

det(B,,G + Bo'nl — AI) =0,

or

det(Bo,G — (A — BXn)I) = .

This implies A — 'y is an eigenvalue of B, G for every
eigenvalue A of B, G + Bx'nl. The Perron-Frobenius theo-
rem (see [34]) guarantees that there exists a positive eigen-
value of B, G which has the maximum absolute value. Thus
the maximum absolute value of \ is B, p(G) + Bx'n.

APPENDIX D
SPECTRAL RADIUS OF SUM OF SYMMETRIC AND DIAGONAL
MATRICES

In this appendix, we prove a special case of Weyl’s inequal-
ity which suffices for the purposes of this paper. We state this
formally in Claim 7.

Claim 7: Let P be any nonnegative symmetric matrix and
@ be any nonnegative diagonal matrix. Then

p(P) + min Qi < p(P+ Q) < p(P) + max Qii,

where p(-) denotes the spectral radius.

Proof: Recall that the spectral radius of a matrix is the
maximum absolute value of the eigenvalues of the matrix. For
symmetric matrices, the eigenvalues are all real, and since P
and () are nonnegative, the Perron-Frobenius theorem ensures
that there is a positive eigenvalue which has the maximum
absolute value. Thus we have

p(P+Q) = ‘l‘m‘% x'(P+Q)x = ﬁn”ai)i (x" Px+x"Qx).

Let x be the unit vector x which maximizes x' Px, i.e.,
p(P) = maxy_1x' Px = X' Px. This gives

mmax (x"Px+x"Qx) > x"Px+x"Qx
x|[=1

where the second inequality follows since min;(@);; is the least
value of x"@Qx subject to [|x|| =1 since @ is a diagonal
matrix. This proves the lower bound of Claim 7.

For the upper bound, we have

max (x' Px +x' Qx) < maxx' Px + maxx' Qx
[Ixl|=1 lIxll=1 [Ixll=1

< p(P) + max Qy,
1

which concludes the proof.
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APPENDIX E
PROOF OF CLAIM 6

Since lim,,_,« y(n) = 0, for any € > 0, we can find an m,
such that for all n > m,, y(n) < e Let T;; denote the time it
takes to go from ¢ infections to j infections (for the first time).
Then we have

E[T;L] = E[Tm’rrz,e] + E[Tm,g]-

But the birth rate of the Markov chain between n and m, is
less than ¢ (from the definition of m,). So E[T}, ,, | should be
less than the expected time to go from n to 0 in a Markov
chain where all the birth rates are e. This gives us (using
Claim 5):

Inn

<
E[T) T 5—c¢

+E[Tn] +5—.
Since E[T,, ] depends only on € given a y(-), this concludes
the proof for the second inequality.

The first inequality is relatively straightforward since ln<”6+1>
is the lower bound in Claim 5 if the birth rate was 0
throughout.

APPENDIX F
EXTINCTION TIME EXPONENTIAL IN EQUILIBRIUM POINT

For simplicity, we just consider the upper- and lower-bound
Markov chains using the rates from (8) defined using the y(-)
function here. We expect similar arguments to hold for the
network-wide epidemic as well. Let y(n) = § + € for all n <
N and y(n) =0 for all n > N. Since this satisfies the condi-
tion of Theorem 4, we are guaranteed that the mean epidemic
extinction time is logarithmic in the initial infection size.
However, the mean extinction time also turns out to be expo-
nential in N, the “equilibrium point,” or the size of the epi-
demic where the rate of infectiousness () goes below the
curing rate §.

To see this, substitute these values into the expression for
E[T}] from Claim 4. We get

1V 516\t
sini =33 1 ()
=1
1 N+1

Zm;(l +§)i71

(B
(N +1)e

If N or e are large enough, E[7}] is greater than an exponential
of the form a” for some @ > 1. This implies that the mean
die-out time is exponential in the equilibrium point V.
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