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Abstract—We model an epidemic where the per-person
infectiousness in a network of geographic localities changes with
the total number of active cases. This would happen as people
adopt more stringent non-pharmaceutical precautions when the
population has a larger number of active cases. We show that
there exists a sharp threshold such that when the curing rate for
the infection is above this threshold, the expected time for the
epidemic to die out is logarithmic in the initial infection size,
whereas when the curing rate is below this threshold, the expected
time for epidemic extinction is infinite. We also show that when
the per-person infectiousness goes to zero asymptotically as a
function of the number of active cases, the expected extinction
times all have the same asymptote independent of network
structure. We make no mean-field assumption while deriving
these results. Simulations on real-world network topologies bear
out these results, while also demonstrating that if the per-person
infectiousness is large when the epidemic size is small (i.e., the
precautions are lax when the epidemic is small and only get
stringent after the epidemic has become large), it might take a
very long time for the epidemic to die out. We also provide some
analytical insight into these observations.

Index Terms—Epidemic modeling, network analysis.

I. INTRODUCTION

NEWLY emerging infectious diseases that quickly spread

across population centers in an increasingly interconnected

world form a large portion of human infections [1]. These epi-

demics spread over contact networks and the characteristics of

this spread have been widely studied [2]–[8]. In this work, we

develop a state-dependent infectiousness model for the spread

of epidemics over a network of population centers and analyti-

cally prove that the epidemic dynamics follow certain proper-

ties. Specifically, we characterize the expected time of epidemic

extinction and show that it exhibits a threshold behavior where it

is either logarithmic in the initial infection size or infinite

depending on whether the curing rate is higher or lower than a

threshold. We make no mean-field assumption while deriving

this threshold.We believe our model captures important features

of epidemic spreading not captured in prior literature, and our

results advance the understanding of epidemic spread.

We model the epidemic as a Markov spreading process over

a network whose nodes represent population centers such as

cities or large communities, and the connections between

them indicate the amount of contact between the population

centers. New infections could either be due to interactions

with people from neighboring population centers, or due to

community spread within the population center. We model

these two components of epidemic spread separately.

In a typical epidemic, especially in the early stages of newly

emerging infections, vaccines and other pharmaceutical means

to combat the disease are unlikely to be available. Further, in

the early stages of the epidemic, the number of susceptible

people in a typical population center is very large, and effec-

tively infinite, until a large majority of the population has

developed herd immunity. We capture these properties in a

model where the number of infections in each population cen-

ter can potentially grow without bound.

In cases where the infected population is a significant frac-

tion of the total population, the epidemic would spread more

slowly than what is predicted by our model. This is because

for a given number of infected individuals, our model assumes

that the susceptible population is larger than it actually is. So

our model would over-estimate the effective rate at which the

contagion spreads, and the number of (new) infections in our

model stochastically dominates the actual number of infec-

tions. Thus, in those settings, the threshold obtained from our

model would still hold for the quick-extinction case.

Whereas models at the person level [9]–[13] capture inter-

actions between individual people and might help us predict

the probability of a particular person getting infected, it is pro-

hibitively expensive to collect information about all individu-

als in a city and compute over a network that treats each

person as a distinct node. Population center-level models

allow us to predict the epidemic trajectory over a much larger

number of people at the level of countries or even the world.

Related work on metapopulation [14]–[17] also develops

population center-level models, but uses a mean field-type

approximation, which assumes the existence of a (sharp)

threshold and finds it. In contrast, sharp thresholds emerge in

our work. Like [9], [10], we directly characterize the time it
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takes for epidemic extinction. But unlike [9], [10], where there

is a gap between the conditions for a short- and long-lasting

epidemic, we prove there is a sharp threshold for the curing

rate which separates the conditions for short- and long-lasting

epidemics.1 Note that our model is at the population center-

level (compared to the person-level model in [9], [10]).

Besides the work on metapopulation, other prior work which

claim a sharp threshold between the two regimes [11]–[13],

[18] have assumed it and employed a mean field-type approxi-

mation. Our analysis is significantly different from the analy-

sis of the extinction time of the mean-field dynamics. The

advantage of this stochastic-analysis framework is that it

allows the possibility of obtaining tail bounds for the extinc-

tion time, whereas the existing mean-field models, in their cur-

rent form, do not offer that scope. While we do not present tail

bounds on extinction time in this work, in Sec. VI, we plot the

confidence bounds on the extinction times obtained from sim-

ulations of the stochastic dynamics.

Another key aspect of our model is that the per-person infec-

tiousness of the epidemic is a function of the number of active

cases in the system. State-dependent infectiousness influences

the epidemic trajectory as people tend to take more precau-

tions [19]–[21] and governments tend to impose more restric-

tions on travel, gatherings, etc. [19], [22] as the number of

active cases increases. Moreover, these changes in contact can

be well-described using changes in the parameters of standard

epidemiological compartment models [23]; models that incor-

porate these considerations may yield predictions that are sig-

nificantly different from models that do not [24]. As explained

in [25], modeling the effects of human behavior on epidemic

spread is necessary for realistic models. Although time-depen-

dent infectiousness has been studied empirically in [26], we

analytically model infectiousness as a function of the number

of active cases in the system, which provides a (tractable) theo-

retical basis to time-varying infectiousness. A person-level

model for state-dependent infectiousness has been developed

in [10], but as explained earlier, modeling the epidemic at the

population center-level allows us to predict the epidemic trajec-

tory over a much larger number of people. We prove the

population center-level model has a sharp epidemic threshold

for the extinction times, in contrast to the gap between the con-

ditions for short- and long-lasting epidemics in [10]. Related to

this are [12] and [13], which develop person-level models

where individual people get alerted in the presence of infected

neighbors and take more precautions or change their contacts.

Other related work on epidemic extinction time include [27]

which estimates extinction time in SIR networks using simula-

tions; [28] which calculates the extinction-time distribution in

an aggregate non-network model; [29] which computes the

mean extinction times for all possible configurations of small

networks; [30], [31] which use the Wentzel-Kramers-Brillouin

approximation; and [32] which characterizes the epidemic

extinction times over a “mean” network formed from a given

degree distribution.

To summarize, our main contribution is a sharp, analytical,

and direct (not mean-field) characterization of the extinction

time in a population center-level model with state-dependent

infectiousness. This, to the best of our knowledge, is new.

The remainder of this paper is organized as follows. Sec. II

describes our model. Under this model, Sec. III proves the

existence of a sharp threshold: if the curing rate d is greater

than this threshold, the mean time for epidemic die-out start-

ing from a state with a cumulative of n infections is of order

lnn, and if the curing rate is below this threshold, the mean

die-out time is infinite. Sec. IV generalizes the results to set-

tings with asymmetric and weighted graphs. Then Sec. V

proves that the asymptotic mean extinction time is (exactly)

equal to lnn
d

independent of graph structure if the per-person

infectiousness functions go to zero asymptotically. This would

happen if the level of precautions people take to combat the

epidemic keep getting more stringent with increasing numbers

of active cases. Sec. VI provides simulation and computation

results, and Sec. VII concludes.

II. MODEL

Let there be a set of localities2 L, and at each locality u 2
L, the number of infected people at time t is given by XuðtÞ.
We assume each locality has a large enough population that

for our purposes, for all u, the range of XuðtÞ is the set of all

non-negative integers. There is a graph G across the localities,

and ðu; vÞ 2 G when the localities u and v are connected. The

adjacency matrix G of G is the matrix having Guv ¼ 1 if

ðu; vÞ 2 G and Guv ¼ 0 otherwise. For ease of presentation,

we first assume that the graph is symmetric: ðu; vÞ 2 G implies

ðv; uÞ 2 G. We relax this assumption in Sec. IV. A connection

between two localities means that infected people in one local-

ity can infect susceptible people in the other locality. Further,

we assume the graph G is connected, i.e., for every u; v 2 L,
there exists a path between u and v in G.

Let the total number of people infected at time t be XðtÞ,
i.e.,

P
u2L XuðtÞ ¼ XðtÞ. The rate of growth of the infection

at locality u at time t consists of two components:

1) the intra-locality growth rate due to interactions within

the locality given by bintðXðtÞÞXuðtÞ, and
2) the between-locality growth rate, where the rate of

growth due to v for each ðu; vÞ 2 G is given by

bðXðtÞÞXvðtÞ.
Here, bð�Þ and bintð�Þ are positive real-valued functions of
the total number of infections in the system, which give the
rate of growth of the infection per infecting agent. We
assume that these per-person infectiousness functions are
bounded. Let their suprema be given by supn2NbðnÞ ¼
bmax and supn2Nb

intðnÞ ¼ bint
max. We also assume that the

asymptotic limits for these functions exist as the total num-
ber of infections grows without bound: limn!1 bðnÞ ¼ b1
and limn!1 bintðnÞ ¼ bint

1 . Let the curing rate for every

1Note that the “mean field” described in [10] is over the network, not the
infection probabilities.

2Note that “localities” can refer to population centers at various levels of
demographic aggregation. They could represent countries, states, cities, or
even neighborhoods within a city. Indeed, there can be marked differences in
how people react to a contagion even within a single large urban area [33].
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infected agent be d. This is independent of the graph G, the
level of precautions taken (b and bint), or the number of
infections at any node fXuðtÞg, and just depends on
the nature of the infection. We show the model pictorially
in Fig. 1.

For each u 2 L, the above discussion implies the following

rates for the infection:

XuðtÞ ! XuðtÞ þ 1

at rate
X

v:ðu;vÞ2G
bðXðtÞÞXvðtÞ þ bintðXðtÞÞXuðtÞ;

XuðtÞ ! XuðtÞ � 1 at rate dXuðtÞ: (1Þ

Let us use the vector XðtÞ to denote the state of the system at

time t. The uth element of XðtÞ is XuðtÞ, the number of infec-

tions at node u at time t. Let TX denote the time it takes to go

from a state X to the all-zero state 0. Once the epidemic

reaches the all-zero state, it is extinct, since one can only con-

tract the infection from someone else,3 and if there are no

infected individuals, the epidemic can never rebound later.

The mean extinction time (also called the mean hitting time)

starting from the state X is given by E½TX�.

III. SHARP THRESHOLD

In this section, we state our main result as Theorem 1.

Theorem 1: Let limn!1 bðnÞ ¼ b1 and limn!1 bintðnÞ ¼
bint
1 . Let �r denote the spectral radius of the adjacency matrix

of the (symmetric) undirected graph G. Let the system start in

some state X that has n infections cumulatively, i.e., 1>X ¼
n. If the graph G is connected, then the following hold.

(i) If b1�r þ bint
1 < d, then E½TX� � C lnn for some

constant C > 0.
(ii) If b1�r þ bint

1 > d, then E½TX� ¼ 1.

Before we prove Theorem 1, let us first observe a property

of the spectral radius, �r, of G. Since we have assumed that G
is connected, the Perron-Frobenius theorem (see [34]) implies

that every element of the eigenvector q corresponding to �r is

strictly positive, i.e., q � 0.

We prove Theorem 1 in two parts: (i) b1�r þ bint
1 < d,

and (ii) b1�r þ bint
1 > d.

A. Curing Rate Above the Threshold

For proving part (i) of Theorem 1, the following claim,

which follows from analyzing the time evolution of X along

the eigen-direction of G, is useful.

Claim 1: When bðnÞ and bintðnÞ are constant, i.e., bðnÞ ¼
b and bintðnÞ ¼ bint for all n, and b�r þ bint < d, then

E½TX� � C lnn for some C > 0 where 1>X ¼ n.
Proof: Please see Appendix A. &

We are now ready to prove part (i) of Theorem 1.

Proof of part (i) of Theorem 1: Since we have

limn!1 bðnÞ¼ b1, limn!1 bintðnÞ ¼ bint
1 , and b1�r þ

bint
1 < d, it follows from the definition of limit [35] that there

is anm such that

bðnÞ�r þ bintðnÞ < d; for all n � m: (2)

When the system starts in any state with a cumulative number

of infections n, which is greater than m, it must go through a

state where the cumulative number of infections is m to reach

the all-zero state. However, if the system starts in a state that

has less than m infections in total, then it may or may not

reach a state withm infections. This gives us

E TX½ � � E TX;m

� �þ max
Y:1>Y¼m

E TY½ �;

where TX;m is the amount of time it takes to reach a state with

a total ofm infections starting from state X.
Using (2), we make the following observations.

a) Between X and any state with a total of m infections,

every state satisfies bð�Þ�r þ bintð�Þ < d, and thus a

system with a constant infectiousness equal to

maxn�mðbðnÞ�r þ bintðnÞÞ satisfies Claim 1.

b) Since our system has an infectiousness less than the sys-

tem with constant infectiousness in point (a) for every

state with n � m, using a stochastic-dominance argu-

ment, the time it takes for epidemic extinction in the

constant-infectiousness system should be greater (in

expectation) than the time our system takes to go from

X to a state withm infections.

Using these observations and Claim 1, it follows that

E½TX;m� � C lnn whenever n � m. Since maxY:1>Y¼mE½TY�
is a constant independent of n, we have

E TX½ � � C0 lnn;

when 1>X ¼ n and n � m. For n < m, E½TX� is less than the

constant maxY:1>Y¼mE½TY�, and hence E½TX� � C0 lnn follows

directly. &

B. Curing Rate Below the Threshold

We now move to the case where b1�r þ bint
1 > d. For this

case, we use the discrete-time Markov chain (DTMC) embed-

ded in the continuous-time Markov chain (CTMC) XðtÞ. Let
X0 ¼ Xð0Þ, and let Xk be the state of our system after k

Fig. 1. The epidemic model, where nodes represent population centers,
edges represent the connections between the centers, bð�Þ and bintð�Þ are the
between-locality and intra-locality infectiousness functions, and d is the curing
rate.

3Note that this is true for many viral infections since the only host for these
viruses are humans. However, this may not be the case for other infections.
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transitions. Then X0;X1; . . . form a DTMC. However, the

number of transitions in the CTMC must be countable for

every sample path of the CTMC if the embedded DTMC is to

include every transition in the CTMC. If the transitions in the

CTMC are otherwise uncountably infinite, we cannot map all

the transitions in the CTMC to transitions in the DTMC.

If the CTMC’s transitions are countable, and if the embed-

ded DTMC is transient, there is a nonzero probability that the

sequence X0;X1;X2; . . . does not contain the all-zero state 0,
with zero infections at all nodes. This in turn implies there is a

nonzero probability that our system does not reach the zero

state starting from n infections initially (because the transi-

tions are countable). This gives us an infinite mean hitting

time E½TX0
�.

We first state as Claim 2 that our system has a countable

number of transitions. We use this together with a theorem

from [36] (stated as Theorem 2 here) to prove the transience

of our system when b1�r þ bint
1 > d.

Claim 2: Let T be the set of all transition times for the con-

tinuous-time Markov chain given by (1). There exists an injec-

tion from T to N with probability 1, i.e., the set T is countable.

Proof: Please see Appendix B for the proof. Claim 2 is sim-

ilar to the results in [37, Section 5.1]. &

To show that the embedded discrete-time Markov chain is

transient, the following theorem from [36] (paraphrased in our

notation) is useful.

Theorem 2 (from [36]): Let the state space of the Markov

chain X0;X1; . . . be given by S. If there exists a function V :
S 7!Rþ [ f0g that satisfies the following properties:

a) for some d > 0, PðjV ðXkþ1Þ � V ðXkÞj > dÞ ¼ 0 for
all Xk and Xkþ1,

b) for some � > 0, and c > 0, E½V ðXkþ1Þ � V ðXkÞ
jXk ¼ X� > � for all X 2 fY jV ðYÞ � cg, then the

Markov chain X0;X1; . . . is transient.
Note that the conditions for transience in Theorem 2 are

similar to Foster’s well-known work [38]. While the condi-

tions for positive recurrence from [38] are still widely used,

the conditions for transience require the potential function V
to be bounded. The conditions for transience given in Theo-

rem 2 from [36] are easier to use. See [39] for other variants.

Proof of part (ii) of Theorem 1: We first prove that the

DTMC embedded in our CTMC satisfies the conditions of

Theorem 2, which implies that the embedded DTMC is tran-

sient. Claim 2 then ensures that the transience of the embed-

ded DTMC implies transience of the CTMC.

For the embedded DTMC, let us define the potential

function

V ðXÞ ¼ q>X:

Recall that q is the Perron-Frobenius eigenvector of G,

which ensures that q � 0 and so V ðXÞ is a valid potential

function. This gives us V ðXkþ1Þ � V ðXkÞ ¼ q>ðXkþ1 � XkÞ.
Condition (a) of Theorem 2 is straightforward to verify since

Xkþ1 � Xk ¼ �ei for some i, where ei is the vector whose ith
element is 1 and the rest are 0. So PðjV ðXkþ1Þ � V ðXkÞj >
dÞ ¼ 0 for all d > qmax, where qmax is the maximum

element of q.

We now define c, and thus the set fY jV ðYÞ � cg in

condition (b) of Theorem 2. We set c ¼ qmaxm, wherem shall

be determined later. This means that a sufficient condition for

the transience of the embedded DTMC is that condition (b) of

Theorem 2 should hold in the set U ¼ fY jV ðYÞ � qmaxmg.
Note that since we have defined V ðYÞ ¼ q>Y, V ðYÞ � qmaxm
implies 1>Y � m.

Let Xk ¼ X 2 U, and let the sum of all rates in (1) when the

system is in this state be R. Let 1>X ¼ n. Using (1), we get

E½V ðXkþ1Þ�V ðXkÞ jXk ¼ X�
¼ q>E Xkþ1 � Xk jXk ¼ X½ �
¼ q> 	 1

R
bðnÞGXþ bintðnÞX� dXð Þ

¼ 1

R
ðbðnÞ�r þ bintðnÞ � dÞq>X:

Observe that

R ¼ 1> bðnÞGXþ bintðnÞXþ dXð Þ
� ðbðnÞdmax þ bintðnÞ þ dÞ1>X; (3Þ

where dmax is the maximum degree in the graph.

Since q>X � qmin1
>X, where qmin is the minimum element

of q, we get

E½V ðXkþ1Þ � V ðXkÞ jXk ¼ X�

� ðbðnÞ�r þ bintðnÞ � dÞqmin

bðnÞdmax þ bintðnÞ þ d

for all X 2 U. Since bðnÞ ! b1 and bintðnÞ ! bint
1 , the defi-

nition of limit ensures that for a sufficiently large m,
ðbðnÞ�rþbintðnÞ�dÞqmin
bðnÞdmaxþbintðnÞþd

is arbitrarily close to
ðb1�rþbint1 �dÞqmin
b1dmaxþbint1 þd

for

all n � m. Since
ðb1�rþbint1 �dÞqmin
b1dmaxþbint1 þd

> 0, we have

E½V ðXkþ1Þ � V ðXkÞ jXk ¼ X� � � > 0

for all X 2 U for a sufficiently large m. (Recall that U ¼
fY jV ðYÞ � qmaxmg which implies 1>X � m for all X 2 U.)
This proves the transience of the embedded DTMC.

Transience of the embedded DTMC means that starting in

state X0 ¼ X ð6¼ 0Þ, there is a nonzero probability that the

sequence of states X1;X2;X3; . . . does not contain the all-zero

state 0 with nonzero probability (directly from the definition

of transience used in [36] in their proof of Theorem 2). Using

Claim 2, this means that the CTMC defined in (1) has a non-

zero probability of never reaching the all-zero state. Hence the

average hitting time is infinite. &

IV. EXTENSION TO GENERAL NETWORKS

So far, we have assumed that the connection graph among

the population centers is symmetric (Guv ¼ Gvu) and

unweighted (Guv 2 f0; 1g). However, this is not true for many

real-world networks: the rate of infection spread between any
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two connected centers need not be identical, and the rate of

infection spread from u to v need not be equal to the rate of

infection spread from v to u for a connected pair ðu; vÞ. Thus,
it is important to study the behavior of the epidemic under a

general connection network given by a general asymmetric,

(nonnegative) real-valued adjacency matrix G.4 However, it is

still reasonable to assume that the graph is strongly connected,

i.e., there exists a path with nonzero edges from any center u
to any other center v. This is because it is rarely the case that

there exist no paths from one population center to another.

Further, the intra-locality growth rate of infections need not

be identical for all the population centers, as this rate typically

depends on local factors like population density [40] and

social capital [41]. Let us use the parameter Du > 0 to modu-

late the growth rate of the infection at location u. Let D be a

diagonal matrix withDu as the uth element of its diagonal.

These considerations give us the following expressions for

the rates of epidemic spread.

XðtÞ ! XðtÞ þ eu

at rate bðXðtÞÞGþ bintðXðtÞÞDð ÞXðtÞ½ �u;
XðtÞ ! XðtÞ � eu at rate d XðtÞ½ �u; (4Þ

for all u 2 L, where ½��u indicates the uth element of a vector.

Let rð�Þ denote the spectral radius of a matrix. We general-

ize Theorem 1 as Theorem 3.

Theorem 3: Let the system start in some state X that has n
infections cumulatively, i.e., 1>X ¼ n. For the epidemic

described by (4), the following hold.

(i) If rðb1Gþ bint
1 DÞ < d, then E½TX� � C lnn for some

constant C > 0.
(ii) If rðb1Gþ bint

1 DÞ > d, then E½TX� ¼ 1.

Proof: Note that the Perron-Frobenius theorem holds for

the matrix b1Gþ bint
1 D, and we can find a strictly positive

eigenvector q0 � 0 of b1Gþ bint
1 D, which has the (positive,

real) eigenvalue rðb1Gþ bint
1 DÞ (see [34]). The proof

follows directly by replacing the q used in Claim 1 and

Theorem 1 with the Perron-Frobenius eigenvector of

b1Gþ bint
1 D. &

While Theorem 3 provides a sharp threshold in terms of

rðb1Gþ bint
1 DÞ, it is difficult to separate the contributions of

the between-locality spreading term b1G and the intra-local-

ity spreading term bint
1 D. It would be nice to have sufficient

conditions for fast die-out and long-lasting epidemic in terms

of expressions where these two contributions are decoupled.

Towards this end, we provide two corollaries.

Corollary 1: Let the system start in some state X that has n
infections cumulatively, i.e., 1>X ¼ n. If D is a scalar matrix

hI, i.e., if the intra-locality rate-modulating factor Du ¼ h for

every locality u, then the following hold.
(i) If b1rðGÞ þ bint

1 h < d, then E½TX� � C lnn for some

constant C > 0.
(ii) If b1rðGÞ þ bint

1 h > d, then E½TX� ¼ 1.

Proof: Please see Appendix C. &

For the next corollary, we need a theorem from [42] which

relates the spectral radius of nonnegative asymmetric matrices

to the spectral radius of certain symmetric matrices. We state

this as Claim 3 (in a form useful for us).

Claim 3 (from [42]): For any nonnegative (square)

matrix A,

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
 A>

p� �
� rðAÞ � r

Aþ A>

2

� �
;

where 
 is the element-wise product of matrices and
ffiffi�p
is the

element-wise square root.

Note that the ijth element of
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
 A>p

is
ffiffiffiffiffiffiffiffiffiffiffiffiffi
AijAji

p
and the

ijth element of AþA>
2 is

AijþAji

2 . Both
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A
 A>p

and AþA>
2 are

symmetric matrices. This reduction to symmetric matrices

allows us to apply Weyl’s inequalities on the conditions in

Theorem 3. We state this formally as Corollary 2. See the text-

book [43] for the details regarding Weyl’s inequalities. We

also provide short proofs of the inequalities used here in

Appendix D.

Corollary 2: Let the system start in some state X that has n
infections cumulatively, i.e., 1>X ¼ n. Then the following

hold.

(i) If b1rðGþG>
2 Þ þ bint

1 maxuDu < d, then E½TX� �
C lnn for some constant C > 0.

(ii) If b1rð ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
G>p Þ þ bint

1 minuDu > d, then E½TX� ¼
1.

Proof: Applying the upper bound in Claim 3 to the spec-

tral-radius expression in part (i) of Theorem 3, we get

r b1Gþ bint
1 D

	 
 � r b1
GþG>

2
þ bint

1 D

� �
:

Since b1 GþG>
2 and bint

1 D are both symmetric matrices, we

can apply one of Weyl’s inequalities (see [43] or Appendix D)

to get

r b1Gþ bint
1 D

	 
 � b1r
GþG>

2

� �
þ bint

1 max
u

Du: (5)

Equation (5) ensures that whenever the condition in part (i) of

Corollary 2 is satisfied, the condition in part (i) of Theorem 3

is satisfied as well. This proves part (i) of Corollary 2.

For part (ii) of Corollary 2, observe that

ðb1Gþ bint
1 DÞ 
 ðb1Gþ bint

1 DÞ>

¼ b2
1 G
G> þ ðbint

1 Þ2D
D:

This is because there is no position ij that has a nonzero ele-

ment in both the matrices G and D. Further, the matrix D is

diagonal (and hence symmetric), and so we haveffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðb1Gþ bint

1 DÞ 
 ðb1Gþ bint
1 DÞ>

q
¼ b1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
G>

p
þ bint

1 D:
4Rather than defining the graph G as a set fðu; vÞg of node pairs, we now

define it as a set of triples fðu; v; euvÞg, where euv is the weight of the edge
from u to v. The adjacency matrix G concisely captures all this information.
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Using the lower bound in Claim 3, we get

r b1Gþ bint
1 D

	 
 � r b1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
G>

p
þ bint

1 D
� �

:

Since b1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
G>p

and bint
1 D are both symmetric matrices,

we can apply another one of Weyl’s inequalities (see [43] or

Appendix D) to get

r b1Gþ bint
1 D

	 
 � b1r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G
G>

p� �
þ bint

1 min
u

Du:

Thus, whenever the condition in part (ii) of Corollary 2 is true,

the condition in part (ii) of Theorem 3 is true as well. This

concludes the proof of part (ii) of Corollary 2. &

Unlike Theorem 1, Theorem 3, and Corollary 1 where the

thresholds are sharp, there is a gap between the thresholds for

a quick die-out and long-lasting epidemic in Corollary 2.

However, Corollary 2 decouples the contributions of the graph

structure G and the variation in intra-locality spreading D in

the thresholds.

V. VANISHING INFECTIOUSNESS

In this section, we consider the special case where the per-

person infectiousness functions decrease to zero as the number

of active cases in the system increases: b1 ¼ bint
1 ¼ 0. For

this, we define upper-bound and lower-bound Markov chains

using the maximum and minimum node degrees. We then

show that both these Markov chains have the same asymptotic

mean hitting times if the per-person infectiousness functions

go to zero asymptotically.

Let the maximum node in-degree in G be dmax and the

minimum node in-degree be dmin.
5 Adding up (1) over all

the localities u 2 L gives us the following upper- and lower-

bound Markov chains for the system-wide epidemic.

Upper � bound Markov chain :

XðtÞ ! XðtÞ þ 1 at rate dmaxb XðtÞð Þ þ bint XðtÞð Þð ÞXðtÞ;
XðtÞ ! XðtÞ � 1 at rate dXðtÞ; (6Þ

and

lower � bound Markov chain :

XðtÞ ! XðtÞ þ 1 at rate dminb XðtÞð Þ þ bint XðtÞð Þð ÞXðtÞ;
XðtÞ ! XðtÞ � 1 at rate dXðtÞ: (7Þ

The mean hitting times of these upper- and lower-bound Mar-

kov chains are, respectively, higher and lower than the mean

hitting times of the original epidemic. Proofs that they are in

fact bounds are straightforward.

We can see that the form of both (6) for the upper-bound

Markov chain and (7) for the lower-bound Markov chain can

be captured using a rate coefficient gð�Þ as follows.

XðtÞ ! XðtÞ þ 1 at rate gðXðtÞÞXðtÞ;
XðtÞ ! XðtÞ � 1 at rate dXðtÞ: (8Þ

Any results we derive for a general gð�Þ apply for both the

upper-bound and lower-bound Markov chains. So we now

derive bounds for the hitting times of a general Markov chain

satisfying (8).

Let Tn be the time it takes for the infection to go to 0 infec-

tions starting from n infections. Starting from n infections, the

probability that the system given by (8) goes to nþ 1 infec-

tions next (instead of n� 1 infections) is given by gðnÞ
gðnÞþd

. Sim-

ilarly, the probability that the system goes to n� 1 infections

next after n infections is given by d
gðnÞþd

. This gives us

E½Tn� ¼ E½Tnþ1� gðnÞ
gðnÞ þ d

þ E½Tn�1� d

gðnÞ þ d
þ E½tn�;

where tn is the time it takes to make the next transition from n
infections. Using E½tn� ¼ 1

nðgðnÞþdÞ , rearranging the terms, and

replacing n with n� 1 throughout, we get

E½Tn� ¼ E½Tn�1� gðn� 1Þ þ d

gðn� 1Þ � E½Tn�2� d

gðn� 1Þ
� 1

ðn� 1Þgðn� 1Þ

for n � 2. Defining Sn ¼ E½Tn� � E½Tn�1� yields

Snþ1gðnÞ � Snd ¼ � 1

n
(9)

for n � 1 with S1 ¼ E½T1�.
So if we can find E½T1�, we will be able to compute all the

mean hitting times (not necessarily in closed form). To com-

pute E½T1�, we compute the steady-state probability in state 0

of the transformed Markov chain in Fig. 2, whose hitting times

are the same as the required Markov chain in (8). The modifi-

cation we have done to the Markov chain in (8) is the addition

of the extra transition out of the zero state with a rate u. This

does not change the hitting time from any nonzero state since

the time it takes to reach the zero state for the first time is inde-

pendent of the rate of transition out of the zero state. However,

the transformation gives us a positive-recurrent Markov chain,

for which the steady-state probabilities are well-defined and

non-trivial. Further, the mean hitting times are independent of

the birth rate from 0, u.
Let pn be the steady-state probability of finding the chain in

node n. Local balance between node n� 1 and node n gives

pn�1ðn� 1Þgðn� 1Þ ¼ pnnd;

which on expanding out yields

pn ¼ up0
gð1Þgð2Þ � � � gðn� 1Þ

ndn
;5For weighted graphs, use the definitions dmax ¼ maxu

P
v Guv and

dmin ¼ minu
P

v Guv.
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for n � 1. Using
P1

n¼0 pn ¼ 1, we get

p0 1þ u
1

d
þ gð1Þ

2d2
þ gð1Þgð2Þ

3d3
þ � � �

� �� �
¼ 1: (10)

From renewal theory (see [44, Chapter 7]), we have

p0 ¼ E½t0�
E½t0� þ E½T1� :

Since the rate of transition out of the zero state (in the modi-

fied Markov chain) is u, E½t0� ¼ 1
u
, and this gives

E½T1� ¼ 1

u

1

p0
� 1

� �
:

Substituting the expression for p0 from (10) implies the fol-

lowing claim.

Claim 4: The mean hitting time from one infected agent to

zero infected agents is given by

E½T1� ¼ 1

d

X1
i¼1

1

i

Qi�1
j¼1 gðjÞ
di�1

whenever the Markov chain in Fig. 2 is positive recurrent.

Our goal in this section has been to compute the asymp-

totic mean hitting times when b1 and bint
1 are 0. These

conditions translate to limn!1 gðnÞ ¼ 0 for both the

upper-bound Markov chain (6) and the lower-bound Mar-

kov chain (7). We get there by first computing the (asymp-

totic) mean hitting times when gðnÞ ¼ a, which we do in

the next subsection.

A. Hitting Time Bounds When gð�Þ is a Constant
Substituting gðnÞ ¼ a in the expression for E½T1� in

Claim 4, we get

E½T1� ¼ 1

d

X1
i¼1

1

i

a

d

� �i�1

(11)

and expanding out (9) for gðnÞ ¼ a gives us

Sn ¼ Sn�1
d

a
� 1

aðn� 1Þ

¼ d2

a2
Sn�2 � d

a2ðn� 2Þ �
1

aðn� 1Þ
..
.

¼ dn�1

an�1
S1 � 1

d

Xn�1

i¼1

1

i

a

d

� �i�1
 !

Since S1 ¼ E½T1� by definition, substituting the expression

from (11) gives us

Sn ¼ dn�1

an�1
� 1
d

X1
i¼n

1

i

a

d

� �i�1

¼ 1

dn

X1
i¼0

n

nþ i

a

d

� �i
;

and since n
nþr < 1 for all positive integers r, we get

1

dn
� Sn � 1

ðd� aÞn ;

using the geometric series 1þ a
d
þ a2

d2
þ � � � ¼ d

d�a
, which

implies

1

d

Xn
i¼1

1

i
� E½Tn� � 1

d� a

Xn
i¼1

1

i
:

This directly leads us to the following claim.

Claim 5: When the per-person infectiousness is given by

gðnÞ ¼ a for all n for some a 2 ð0; dÞ, the mean hitting time

to go to zero infections starting from n infections satisfies

lnðnþ 1Þ
d

� E½Tn� � 1þ lnn

d� a
:

B. When limn!1 gðnÞ ¼ 0

When the infectiousness functions bð�Þ and bintð�Þ go to

zero, i.e., b1 ¼ 0 and bint
1 ¼ 0, the gð�Þ for both the upper-

bound Markov chain in (6) and the lower-bound Markov chain

in (7) go to zero. Hence, if we can derive the asymptotic mean

hitting time for limn!1 gðnÞ ¼ 0, it will give us matching

asymptotes for the upper and lower bounds, which means we

have the exact asymptote.

Fig. 2. Modified Markov chain with same mean hitting times as the Markov chain in (8). Adding u does not change the hitting times, but makes the chain posi-
tive-recurrent.
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We will show that for any arbitrarily small a, we can use

Claim 5 to show that the asymptote for E½Tn� is arbitrarily

close to lnn
d
. We state this formally as Theorem 4.

Theorem 4: If limn!1 gðnÞ ¼ 0, then the mean hitting

times of the Markov chain in Fig. 2 satisfy

lim
n!1

dE½Tn�
lnn

¼ 1:

Before proving Theorem 4, let us first state a claim which

will be useful.

Claim 6: If limn!1 gðnÞ ¼ 0, then for any � > 0, the Mar-

kov chain in Fig. 2 satisfies

lnðnþ 1Þ
d

� E½Tn� � lnn

d� �
þ hð�Þ for all n;

for some function hð�Þ that is independent of n.
Proof: Please see Appendix E. &

We are now ready to prove Theorem 4.

Proof of Theorem 4: Proving limn!1
dE½Tn�
lnn ¼ 1 is equiva-

lent to proving that for any � > 0, we can find an n� such that

j dE½Tn�lnn � 1j < � for all n > n� (from the definition of

limit [35]).

For any �, substitute minð�d4 ; d2Þ for � in Claim 6. This gives

us

dE½Tn�
lnn

� 1 � �

2
þ dmax h �d

4

	 

; h d

2

	 
	 

lnn

:

For sufficiently large n, we get

dE½Tn�
lnn

� 1 < �:

Further, from the lower bound in Claim 6, we get

dE½Tn�
lnn

� 1 � lnðnþ 1Þ
lnn

� 1:

For a sufficiently large n, lnðnþ1Þ
lnn � 1 can be made arbitrarily

close to 0. Thus we get

dE½Tn�
lnn

� 1

����
���� < �

for all sufficiently large n, which concludes the proof. &

C. Putting it Together for the Original Epidemic on G
For both the upper-bound Markov chain in (6) and the

lower-bound Markov chain in (7), the infectiousness per per-

son goes to zero if both bð�Þ and bintð�Þ go to zero as n ! 1.

Since Theorem 4 applies for any chain with limn!1 gðnÞ ¼
0, both these upper- and lower-bound Markov chains satisfy

Theorem 4. Since both these chains have the same asymptote,

by sandwiching, even the original epidemic on G must have

the same asymptote. This gives us the following corollary.

Corollary 3: If limn!1 bðnÞ ¼ 0 and limn!1 bintðnÞ ¼ 0,
then for any locality graph G, we have

lim
n!1

dE½Tn�
lnn

¼ 1;

where Tn is the time taken by the epidemic to go from a cumu-

lative of n infections in the system to 0.
Corollary 3 implies that if the per-person infectiousness

functions go to zero asymptotically, i.e., if the (non-pharma-

ceutical) precautions get arbitrarily more stringent as the num-

ber of cases increases, then the mean hitting times have the

asymptote lnn
d
independent of the locality graph.

VI. SIMULATIONS & NUMERICAL COMPUTATIONS

In this section, we present some simulations and numerical

computations to demonstrate the theoretical results of the pre-

ceding sections.

A. Network-Wide Simulations

For simulations, we use the network from [15] which is a

graph where the nodes represent the top 500 US airports and

the edge weights are the number of seats scheduled on flights

between the airports in the year 2002. We consider the top

100 of these 500 nodes and normalize the adjacency matrix

with the mean column weight (this normalization just scales

the values of bð�Þ). We simulate the model described in Sec. II

using Gillespie’s algorithm [45].

First, in Fig. 3, we simulate using constant values for bð�Þ
and bintð�Þ. Specifically, we set bðnÞ ¼ b ¼ 2 and bintðnÞ ¼
bint ¼ 2 for all n, and choose d to get the value of d

b�rþbint

shown on the plot. For both the values of d, we simulate the

system 1000 times and show the trajectories of XðtÞ over time

in the plot, and the interval that contains 95% of the simulated

states at each time instant. We obtain this 95% interval by

finding the maximum and minimum state values after ignoring

the top and bottom 2:5% of the simulations. We also show the

plot of E½XðtÞ� computed theoretically by solving the differ-

ential equation for
dE½XðtÞ�

dt (see Appendix A). As we can see in

Fig. 3(a), when b�r þ bint > d, most of the simulated trajec-

tories of the system show an epidemic that is not dying out.

Even though more than 2:5% of the simulations die out (as the

95% interval shows), since most of the simulations show an

epidemic that becomes increasingly larger with time, the

expected extinction time would be infinite, in line with what

we have theoretically proven in Theorem 1. On the other

hand, in Fig. 3(b), when b�r þ bint < d, all the trajectories of

the system result in the epidemic dying out relatively quickly.

Further, in this case, the confidence bounds on the extinction

time are meaningfully defined, and we show the 95% confi-

dence interval of the extinction time TX in Fig. 3(b). This

interval is calculated in the same way as the 95% interval for

the state trajectory. For all the simulations, we start with an

initial epidemic size of 100, placed uniformly at random at

one of the nodes.

When the values of bðnÞ and bintðnÞ change with n, if
bðnÞ�r þ bintðnÞ < d or bðnÞ�r þ bintðnÞ > d for all n,
then the results are very similar to the ones in Fig. 3, and hence

we omit these plots. In Fig. 4, we show the results of

BHIMARAJU et al.: EXPECTED EXTINCTION TIMES OF EPIDEMICS WITH STATE-DEPENDENT INFECTIOUSNESS 1111



simulations where bðnÞ�r þ bintðnÞ starts from a value

greater than d for small n, but eventually falls to a value

smaller than d for larger n. The value of n where this transition

happens is shown on the plots in Fig. 4. We can see in Fig. 4

that there seems to be a “metastable” state at the point where

the infectiousness is equal to the curing rate. Note that since

the value of bðnÞ�r þ bintðnÞ eventually falls below d for

large enough n, the condition in part (i) of Theorem 1 is true,

and so the mean hitting time should be logarithmic in the ini-

tial infection size. However, these simulations suggest that the

epidemic takes a very long time to die out in this case. It seems

that the die-out times are in fact exponential in the infection

size where the infectiousness and curing rate are equal. Please

see Appendix F for some insight into this behavior. This

means that even though Theorem 1 guarantees that the mean

die-out time would be logarithmic in the initial infection size

if the asymptotic rate of infectiousness is less than the curing

rate, it is still very important that measures such as lockdowns

and other non-pharmaceutical precautions are implemented in

the early stages of an epidemic.

B. Numerical Computations for Vanishing gð�Þ
Here, we provide some numerical computations to support

Theorem 4. Note that in contrast to the network-wide simula-

tions in Fig. 3 and 4 where we have used the infectiousness

functions bð�Þ and bintð�Þ, we use gð�Þ here which captures the

infectiousness for both the upper- and lower-bound Markov

chains together in a single expression using (8). We consider

three different gð�Þ functions and plot the values of E½Tn� com-

puted using the recursion from (9) (with the base case from

Claim 4). We plot this in Fig. 5.

Fig. 5 shows that even small changes in gð�Þ can cause large

changes in the values ofE½Tn�. Further, Fig. 5 may seem to indi-

cate that even these small changes cause the mean hitting times

to not converge to the same asymptote. This would be contrary to

what we expect from Theorem 4. However, the reason we do not

see all the three curves in Fig. 5 converge to the same asymptote

is that the convergence happens extremely slowly. This is not

very surprising, given that the asymptote is the function lnn
d
.

Since the logarithmic function increases very slowly, differences

Fig. 4. Epidemic trajectories when bðnÞ and bintðnÞ change with n.
Fig. 3. Epidemic trajectories using constant values for bð�Þ and bintð�Þ.
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between E½Tn� for different gð�Þ functions at small values of n
take a very long time to become insignificant, and the E½Tn� val-
ues become close to each other only at very large values ofn.

To demonstrate this, consider gðnÞ ¼ k
n . We choose this

function because it leads to easier analysis. Similar arguments

hold for any other function as well. Substituting this into

Claim 4 gives us

E½T1� ¼ 1

d
þ k

1 � 2 � d2 þ
k2

1 � 2 � 3 � d3 þ � � �

¼ 1

k

k

d
þ k2

2!d2
þ k3

3!d3
þ � � �

� �

¼ ek=d � 1

k
: (12Þ

Equation (12) is quite sensitive to the value of k. For example,

with d ¼ 1, we get a derivative of 4e5þ1
25 � 23:79 at k ¼ 5.

Small changes in the value of k can significantly change the

value of E½T1�. We can use the recursion from (9) to analyti-

cally find the value of E½T2� to find that E½T2� is even more

sensitive to the value of k. Since E½Tn� is of the form E½T2� þPn
i¼3 Si, and Sn asymptotically reaches 1

n , these differences in

E½T2� become negligible only for a very large value of n.
We can verify this using Fig. 6 where we plot the values of

Sn for different gð�Þ functions. We see that all of them eventu-

ally reach the asymptote 1
n . This means that for large enough

n, the mean hitting times will all be indistinguishable from

lnn. However, we need an extremely large value of n for the

differences to become negligible.

VII. CONCLUSION

We have developed a model for epidemic spread within and

across population centers with state-dependent infectiousness.

In this model, we directly prove (without mean-field assump-

tions) that there exists a sharp threshold for the curing rate d

such that when d is more than a threshold, the epidemic dies

out quickly (the mean lifetime is of logarithmic order in the

initial infection size), and when d is less than the threshold,

the mean lifetime of the epidemic is infinite. Although d is not

typically something we can control, especially in the initial

stages of a pandemic without vaccines or other medication, it

is possible to lower the threshold by following more stringent

precautions. While we do not provide prescriptive solutions

for managing pandemics, we hope that this work would offer

useful insights to policymakers.

While our model makes no mean-field assumptions to char-

acterize the extinction time, we provide theoretical results

only on its expected value. It is of interest to establish high-

probability bounds on extinction time and characterize how

strongly extinction time concentrates. Combining techniques

in Claim 2 with literature on (discrete-time) Markov concen-

tration [47], [48] might be pursued.

There is also scope for developing broader and more realis-

tic models of state-dependent infectiousness. Empirical work

suggests that people take precautions against contagions not

only in response to the actual number of infections, but also to

other factors like the media attention on infection preva-

lence [20], [21]. These models should capture infectiousness

as a function of both the actual infection prevalence and the

spread of awareness through (social) media.

Finally, it is important to accurately infer parameters of our

model using historical and current epidemiological data so as

to inform practical applications.

APPENDIX A

PROOF OF CLAIM 1

The following proof that we provide here closely resembles

the proof of [9, Theorem 3.1]. However, since we are not

interested in the exact constant C like [9], we avoid the use of

matrix exponentials seen there. The rates of (1) (with constant

bð�Þ and bintð�Þ) give us the following differential equation:

dE XðtÞ½ �
dt

¼ bGþ bintI � dIð ÞE XðtÞ½ �;

where I is the identity matrix (of correct size). Multiply each

side of the equation with q> (q is the eigenvector of G

Fig. 6. Sn for large n. Note that for these large values of n, gðnÞ is too small
for accurately computing the recursion in (9) using even 128-bit floating point
arithmetic. To compute Sn, we need to divide a very small value, Sn�1d�
1

n�1 , by another very small value, gðn� 1Þ. Insufficient numerical precision
can lead to garbage values for Sn. Arbitrary-precision arithmetic (such as the
one provided by mpmath [46]) is needed.

Fig. 5. E½Tn� for slightly different gð�Þ functions.
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corresponding to �r). This gives us

dE q>XðtÞ½ �
dt

¼ q> bGþ bintI � dIð ÞE½XðtÞ�: (13)

Since q is an eigenvector of G with eigenvalue �r, and an

eigenvector of I with eigenvalue 1 (every vector is an eigen-

vector of I with eigenvalue 1), (13) gives us

dE q>XðtÞ½ �
dt

¼ b�r þ bint � dð ÞE q>XðtÞ� �
:

This is a differential equation in terms of E½q>XðtÞ�, and solv-

ing it gives us

E q>XðtÞ� � ¼ et b�rþbint�dð Þq>Xð0Þ:

Let qmax and qmin denote the maximum and minimum ele-

ments of q, i.e., qmax ¼ maxiqi and qmin ¼ miniqi. Since q �
0, qmin is strictly positive. This gives us

E½XðtÞ� ¼ E 1>XðtÞ� � � et b�rþbint�dð Þ qmaxn

qmin
: (14)

The mean hitting time can be written as

E TXð0Þ
� � ¼ Z 1

0

PðXðtÞ > 1Þdt

¼
Z t

0

PðXðtÞ > 1Þdtþ
Z 1

t

PðXðtÞ > 1Þdt

� t þ
Z 1

t

E½XðtÞ�dt

for any t > 0. The last inequality follows from the fact that

PðXðtÞ > 1Þ � 1 since it is a probability (which gives the

first term), and the Markov inequality which gives us

PðXðtÞ > 1Þ � E½XðtÞ� (for the second term).

Using (14), we get

E½TXð0Þ� � t þ kne�tD for all t > 0;

where k ¼ qmax
qminðd�b�r�bintÞ > 0 and D ¼ d� b�r � bint > 0.

Setting t ¼ lnn
D gives us E½TXð0Þ� � C lnn.

APPENDIX B

PROOF OF CLAIM 2

Divide the time axis into intervals of unit length. Given any

(finite) t 2 T, if the number of transitions in all intervals pre-

ceding and including t is finite, then the cardinality of the set

fs j s 2 T and s < tg is finite. Further, this cardinality is

unique for each t, allowing us to map t to this unique natural

number plus one. Thus we get an injective mapping (if the

number of transitions in each interval is finite).

At the start of the interval, assume that the Markov chain

starts in state X with 1>X ¼ n. The probability that there are

at least k transitions in the interval satisfies

Pðat least k transitions in intervalÞ � P
Xk�1

j¼0

Xj � 1

 !
;

(15)

where fXjg are the amounts of time it takes to transition out

of the first k states starting from X at the beginning of the

interval.

Since the total rate of transition rate out of X is given by

1>ðbðnÞGþ bintðnÞIþ dIÞX, the total transition rate out of

any state with at most n infections is less than or equal to

ðbmaxdmax þ bint
max þ dÞn. Recall that bmax ¼ supi2NbðiÞ,

bint
max ¼ supi2Nb

intðiÞ, and dmax is the maximum degree

among nodes of G. Define t ¼ bmaxdmax þ bint
max þ d.

So in the worst case, which gives the greatest probability on

the right side of (15), we haveXj � expðtðnþ jÞÞ. This gives
us

P
Xk�1

j¼0

Xj � 1

 !
� P e

�
Pk�1

j¼0
Xj � e�1

� �

� e
Yk�1

j¼0

E e�Xj
� �

¼ e
Yk�1

j¼0

tnþ tj

1þ tnþ tj

¼ eQk�1
j¼0 1þ 1

tnþtj

� � :
If
Qk�1

j¼0 ð1þ 1
tnþtjÞ ! 1 as k ! 1, then the probability that

there are infinite transitions in the interval goes to 0. But this
is equivalent to

Pk�1
j¼0 lnð1þ 1

tnþtjÞ ! 1 as k ! 1.

This gives us

Xk�1

j¼0

ln 1þ 1

tnþ tj

� �
¼
Xk�1

j¼0

ln 1þ 1
tnþtj

� �
1

tnþtj

1

tnþ tj
:

For a large enough j, we can make
lnð1þ 1

tnþtjÞ
1

tnþtj

arbitrarily close

to 1. This implies

Xk�1

j¼0

ln 1þ 1
tnþtj

� �
1

tnþtj

1

tnþ tj
> 1� �ð Þ

Xk�1

j¼l

1

tnþ tj
! 1;

where l is chosen to be large enough so that
lnð1þ 1

tnþtjÞ
1

tnþtj
is at

most � away from 1 for all j � l. The sum goes to infinity

because the sum of the harmonic series goes to infinity. Since

this ensures that the Markov chain only has a finite number of

transitions in any interval, it concludes the proof.

APPENDIX C

PROOF OF COROLLARY 1

We need to show that

r b1Gþ bint
1 hI

	 
 ¼ b1rðGÞ þ bint
1 h:
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Recall that the spectral radius of a matrix is defined as the

maximum absolute value of the eigenvalues of the matrix. Let

� be an eigenvalue of b1Gþ bint
1 hI. This yields

detðb1Gþ bint
1 hI � �IÞ ¼ 0;

or

detðb1G� ð�� bint
1 hÞIÞ ¼ 0:

This implies �� bint
1 h is an eigenvalue of b1G for every

eigenvalue � of b1Gþ bint
1 hI. The Perron-Frobenius theo-

rem (see [34]) guarantees that there exists a positive eigen-

value of b1G which has the maximum absolute value. Thus

the maximum absolute value of � is b1rðGÞ þ bint
1 h.

APPENDIX D

SPECTRAL RADIUS OF SUM OF SYMMETRIC AND DIAGONAL

MATRICES

In this appendix, we prove a special case of Weyl’s inequal-

ity which suffices for the purposes of this paper. We state this

formally in Claim 7.

Claim 7: Let P be any nonnegative symmetric matrix and

Q be any nonnegative diagonal matrix. Then

rðP Þ þmin
i

Qii � rðP þQÞ � rðP Þ þmax
i

Qii;

where rð�Þ denotes the spectral radius.
Proof: Recall that the spectral radius of a matrix is the

maximum absolute value of the eigenvalues of the matrix. For

symmetric matrices, the eigenvalues are all real, and since P
and Q are nonnegative, the Perron-Frobenius theorem ensures

that there is a positive eigenvalue which has the maximum

absolute value. Thus we have

rðP þQÞ ¼ max
kxk¼1

x>ðP þQÞx ¼ max
kxk¼1

x>Pxþ x>Qx
	 


:

Let ~x be the unit vector x which maximizes x>Px, i.e.,

rðP Þ ¼ maxkxk¼1x
>Px ¼ ~x>P~x. This gives

max
kxk¼1

x>Pxþ x>Qx
	 
 � ~x>P~xþ ~x>Q~x

� rðP Þ þmin
i

Qii;

where the second inequality follows since miniQii is the least

value of x>Qx subject to kxk ¼ 1 since Q is a diagonal

matrix. This proves the lower bound of Claim 7.

For the upper bound, we have

max
kxk¼1

x>Pxþ x>Qx
	 
 � max

kxk¼1
x>Pxþ max

kxk¼1
x>Qx

� rðP Þ þmax
i

Qii;

which concludes the proof. &

APPENDIX E

PROOF OF CLAIM 6

Since limn!1 gðnÞ ¼ 0, for any � > 0, we can find an m�

such that for all n > m�, gðnÞ < �. Let Ti;j denote the time it

takes to go from i infections to j infections (for the first time).

Then we have

E½Tn� ¼ E½Tn;m� � þ E½Tm� �:
But the birth rate of the Markov chain between n and m� is

less than � (from the definition of m�). So E½Tn;m� � should be

less than the expected time to go from n to 0 in a Markov

chain where all the birth rates are �. This gives us (using

Claim 5):

E½Tn� � lnn

d� �
þ E½Tm� � þ

1

d� �
:

Since E½Tm� � depends only on � given a gð�Þ, this concludes
the proof for the second inequality.

The first inequality is relatively straightforward since
lnðnþ1Þ

d

is the lower bound in Claim 5 if the birth rate was 0
throughout.

APPENDIX F

EXTINCTION TIME EXPONENTIAL IN EQUILIBRIUM POINT

For simplicity, we just consider the upper- and lower-bound

Markov chains using the rates from (8) defined using the gð�Þ
function here. We expect similar arguments to hold for the

network-wide epidemic as well. Let gðnÞ ¼ dþ � for all n �
N and gðnÞ ¼ 0 for all n > N . Since this satisfies the condi-

tion of Theorem 4, we are guaranteed that the mean epidemic

extinction time is logarithmic in the initial infection size.

However, the mean extinction time also turns out to be expo-

nential in N , the “equilibrium point,” or the size of the epi-

demic where the rate of infectiousness gð�Þ goes below the

curing rate d.

To see this, substitute these values into the expression for

E½T1� from Claim 4. We get

E½T1� ¼ 1

d

XNþ1

i¼1

1

i

dþ �

d

� �i�1

� 1

ðN þ 1Þd
XNþ1

i¼1

1þ �

d

� �i�1

¼ 1þ �
d

	 
Nþ1�1

ðN þ 1Þ� :

IfN or � are large enough, E½T1� is greater than an exponential
of the form aN for some a > 1. This implies that the mean

die-out time is exponential in the equilibrium point N .
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