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Abstract—Group testing has been successful in minimizing the
cost of testing a large batch of samples by pooling them together.
In this work, we study the setting where samples arrive over time.
Since not all samples are available at the same time, we incur
a waiting cost in letting many samples accumulate. However,
testing too soon leads to a large testing cost by missing the
benefits of pooling a larger number of samples. We consider the
problem of minimizing the combined objective of average wait
time plus testing cost, and develop online algorithms that are
provably competitive for a broad range of testing-cost functions.
We also give a lower bound on the competitive ratio that no
online algorithm can beat.

Index Terms—Online algorithm, competitive ratio, scheduling

I. INTRODUCTION

Group testing [1] is a means to test a large number of
samples for their infection status by pooling the samples
intelligently to reduce the number of tests required: if a pool
tests negative, then every sample included in the pool is
negative, and if the pool tests positive, at least one sample
in the pool is positive. Group testing can lead to dramatic
reductions in the number of tests required compared to naively
testing every sample for the infection [2]–[4], and information-
theoretically optimal algorithms for group testing have been
developed for multiple regimes of infection prevalence [5]–
[8]. Please see [9] for a comprehensive survey. More recently,
there has also been work on modeling connections between
individuals (and thus the samples provided by the individuals)
with graphical structures and using this information to further
reduce the number of tests required [10]–[13].

Much of this prior theoretical work focuses on proving
the optimality of various group-testing algorithms in the
asymptotic sense as the number of available samples goes
to infinity. However, not all samples might be available at
the same time, and waiting for more samples to accumu-
late increases the turnaround time for samples that arrived
earlier. Further, since pandemic-control measures typically
involve quarantining individuals suspected of being infected,
waiting too long before testing also imposes societal costs
in terms of unnecessarily quarantining uninfected individuals.
The tradeoff between quarantining and testing costs has been
empirically investigated in [14] for a fixed set of individuals
with a community structure. To the best of our knowledge,
there has been no work on provably competitive algorithms
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that inform when to perform the tests as new samples arrive
over time.

To tackle this problem, we frame it as a minimization of the
average wait time of the samples plus the average testing cost.
We assume we have no information about samples that may
arrive in the future, and hence the proposed algorithm must
be online (see Sec. II) and continuously update the known
information as new samples arrive. The specific (adaptive
or non-adaptive) group-testing approach within the algorithm
being used can depend on various factors such as the current
infection prevalence, testing capacity, and tolerance for errors.
Further, even for the same group-testing scheme, the cost
of testing might be different depending on local conditions
governing the costs of chemical reagents, maintaining a lab,
and desired accuracy for the performed tests. In order to not
restrict ourselves to any particular deployment, we consider a
very broad class of testing-cost functions, including those that
correspond to group tests with various kinds of noise.

As a performance metric for online algorithms, we consider
the competitive ratio, which is the worst-case ratio between
the cost of running the online algorithm and the cost of the
optimal testing schedule. So if an online algorithm (i.e., an
algorithm which uses no information about the arrival of
future samples in determining which samples to test at a
certain time) has a certain competitive ratio, then the cost
of running the algorithm is never worse than this ratio times
the optimal cost (computed in hindsight with full information
about the arrival times of all samples). This also means that
our performance guarantee holds regardless of the potentially
time-varying statistics of the sample-arrival process, and our
algorithm makes no assumptions on these statistics. Moreover,
our guarantee does not depend on the total number of samples
in the system and holds for every possible instance of the
problem.

A related line of work is on batch-service queuing [15]–
[20], where a (typically Poisson) distribution is assumed for
the sample-arrival process with the testing done in groups once
a large enough number of samples have accumulated. Much
work has focused on finding the optimal batch size, or the
number of accumulated samples, to be tested. In contrast, our
model and algorithm make no assumptions on the statistics
of the sample-arrival process. Our performance guarantee in
terms of the competitive ratio with respect to the offline
optimal solution holds for any (static or time-varying) sample-
arrival process. Another related line of work is on accurately
estimating the state of an ongoing epidemic in a Susceptible-
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Infected-Recovered (SIR) model using group testing to inform
quarantining measures and keep the total number of infections
at manageable levels [21], [22].

Our problem also bears similarity to job scheduling on
processors [23], [24], where the objective is to minimize the
weighted sum of the completion times of the jobs. More
specifically, “speed scaling,” where the objective is to min-
imize the average wait time until completion plus the energy
consumed [25]–[27] is quite similar to our formulation of
wait time plus testing cost. However, group testing suggests
a concave testing cost (see Claim 2), which is incurred at
discrete instants of time when the tests happen. This makes
the convex (or linear) programs and primal-dual analysis such
as used in [24], [27] inapplicable for our case. It is not even
clear if we can write an integer program here which could be
relaxed into a continuous concave optimization program.

The remainder of this paper is organized as follows. Sec. II
describes the system model, objective, and assumptions on
the testing-cost function. Sec. III then presents our online
algorithm which balances the waiting and testing costs to
achieve the performance guarantee (Theorem 1) in terms of
its competitive ratio. Sec. IV gives a lower bound on the
competitive ratio that any online algorithm might achieve
(Theorem 2), and Sec. V concludes the paper with a discussion
on directions for future work.

II. MODEL

Let the arrival times of the samples to be tested be denoted
by a1, a2, . . . , an, subject to a1 ≤ a2 ≤ · · · ≤ an. Using
an algorithm ALG, the samples are tested in mALG batches
BALG

1 ,BALG
2 , . . . ,BALG

mALG at times sALG
1 , sALG

2 , . . . , sALG
mALG , where

BALG
j is the set of samples tested together at time sALG

j , with
BALG
i ∩ BALG

j = ∅ for i 6= j. For each sample i, define dALG
i

as the time when it gets tested: dALG
i = sALG

j for i ∈ BALG
j .

Note that we need dALG
i ≥ ai for all 1 ≤ i ≤ n for ALG

to be valid. Let the function f : N ∪ {0} 7→ R+ ∪ {0}
be such that f(x) denotes the cost incurred when we test x
samples together. Further, based on the nature of all standard
group tests (noisy/noiseless, adaptive/non-adaptive), we make
the following assumptions on f(·):
(i) f(0) = 0;

(ii) f(·) is a non-decreasing function, i.e., f(x) ≥ f(y) if
x ≥ y;

(iii) the increase in the testing cost per sample decreases with
the number of samples: f(x+1)−f(x) ≤ f(x)−f(x−1)
for all x ∈ N.

We define the cost of the algorithm ALG, JALG, on this
instance as the per-sample average of the total time the
samples are kept waiting1 plus the testing cost:

JALG =
1

n

 n∑
i=1

(di − ai) +

mALG∑
j=1

f
(
|BALG
j |

) . (1)

1Note that we only consider the time the sample is kept waiting until the
testing process starts. Any “waiting time” during the testing process can be
included in the testing-cost function f(·).

Let OPT denote the algorithm that selects the batches B to
minimize the value of J : JOPT = minALG J

ALG.
An algorithm ALG is online if in determining to test the

batch BALG
j at time sALG

j , ALG makes no use of information
about any sample in {i : ai > sALG

j }. An online algorithm
ALG is said to be ρ-competitive for ρ ≥ 1 if the supremum of
JALG

JOPT over all possible problem instances {a1, a2, . . . .an} for
all n is less than or equal to ρ, and ρ is a competitive ratio
for ALG. Our objective in this paper is twofold: design online
algorithms for this problem that admit a low (and constant)
competitive ratio; and establish lower bounds on the value of
ρ that online algorithms can achieve.

III. 4-COMPETITIVE ALGORITHM

In this section, we present our algorithm for the queued
group-testing problem from Sec. II and prove it is 4-
competitive. Let us first introduce some useful notation. For
a given problem instance, let W ALG denote the average wait
time and F ALG denote the average testing cost:

W ALG =
1

n

n∑
i=1

(dALG
i − ai) and F ALG =

1

n

mALG∑
j=1

f
(
|BALG
j |

)
;

JALG = W ALG + F ALG.

For an algorithm ALG, let uALG
t denote the number of samples

that have arrived by time t but not yet been tested by time t:
uALG
t = |{i : ai ≤ t < dALG

i }|. Observe that the average wait
time can be written as

W ALG =
1

n

∫ ∞
0

uALG
τ dτ. (2)

The main tradeoff in this problem is the following. If we
wait for a long time before testing, we accumulate a lot of
samples, thus decreasing the per-sample testing cost (via group
testing), but increase the waiting time. However, if we test too
aggressively soon after a few samples have arrived, we might
lose out on accumulating enough samples before testing, and
thus incur a high per-sample testing cost even though the
waiting time would be lower.

Algorithm 1 WAITTILLEQUAL (WTE)
Initialize: bprev ← 0

1: At each time t:
2: if

∫ t
bprev
uτdτ = f(|{i : ai ∈ [0, t] and di /∈ [0, t)}|) then2

3: Test all the available samples together at time t
4: bprev ← t
5: end if

We propose the WAITTILLEQUAL (WTE) algorithm which
balances these two components. We first compute the cumu-
lative waiting time of arrived samples that are yet to be tested
and compare this with the cost of testing them all together.
Initially, the cumulative wait time would be small, but as
time progresses, it would start getting larger. Once its value

2For bprev 6= 0, the right side can be written as f (|{i : ai ∈ (bprev, t]}|).
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equals the cost of testing all these samples together, we test
them. We state this formally as Alg. 1, and the 4-competitive
performance guarantee as Theorem 1.

Theorem 1. The online algorithm WAITTILLEQUAL (Alg. 1)
admits a competitive ratio of 4, i.e., JWTE ≤ 4JOPT for any
problem instance.

It is straightforward to see that WTE is online since
computing the set ut only requires us to know the samples
that have already arrived, but have not yet been tested. Before
proving Theorem 1, we first state a key result as Claim 1.

Claim 1. The following is true for the WTE algorithm:3

1

n

∫ ∞
0

(
uWTE
τ − uOPT

τ

)+
dτ ≤ 2F OPT,

where (x)+ = max{0, x}.

While we defer the proof of Claim 1 to Sec. III-A, let us
now see how this claim gives us Theorem 1.

Proof of Theorem 1: Observe that for any algorithm
ALG, we can write

uALG
τ ≤ uOPT

τ + (uALG
τ − uOPT

τ )
+ for all τ ≥ 0.

Writing this for WTE and integrating over time gives us∫ ∞
0

uWTE
τ dτ ≤

∫ ∞
0

uOPT
τ dτ +

∫ ∞
0

(
uWTE
τ − uOPT

τ

)+
dτ.

Using (2) and Claim 1, we get

WWTE ≤W OPT + 2F OPT = JOPT + F OPT ≤ 2JOPT. (3)

Since WTE tests samples at the time instant when their
testing cost is equal to their cumulative wait time, we have

WWTE = FWTE,

which gives JWTE = 2WWTE. Since WWTE ≤ 2JOPT from
(3), this gives us JWTE = 2WWTE ≤ 4JOPT, which concludes
the proof.

A. Proof of Claim 1

Let us first make some useful observations about the cost
function f(·), which we state as Claim 2.

Claim 2. Under the assumptions on f(·) in Sec. II, the
following are true:
(i) f(x+ y) ≤ f(x) + f(y) for all x, y ∈ N;

(ii) θf(x)+(1−θ)f(y) ≤ f (dθx+ (1− θ)ye) for θ ∈ [0, 1],
where d·e denotes the integer ceiling function.

Proof: For proving part (i), we use induction on y. Using
assumptions on f(·), we get

f(x+ 1)− f(x) ≤ f(x)− f(x− 1)

≤ f(x− 1)− f(x− 2)

≤ · · · ≤ f(1)− f(0) = f(1).

3Note that if there are multiple optimal testing schedules, all of them should
have the same JOPT , but they might have different values for W OPT and F OPT .
For the purpose of proving Theorem 1, it is sufficient if Claim 1 holds for
any one possible optimal schedule.

This gives us f(x+ 1) ≤ f(x) + f(1), which is the base case
for y = 1. Now assume that part (i) of Claim 2 is true for
y = k − 1, and consider

f(x+ k)− f(x+ k − 1) ≤ f(x+ k − 1)− f(x+ k − 2)

≤ f(x+ k − 2)− f(x+ k − 3)

≤ · · · ≤ f(k)− f(k − 1).

This gives us f(x + k) ≤ f(x + k − 1) + f(k) − f(k − 1),
but since part (i) is true for y = k− 1, using f(x+ k− 1) ≤
f(x) + f(k − 1), we get

f(x+ k) ≤ f(x) + f(k).

This completes the induction and so the assertion holds for
all y ∈ N. Since we have made no assumptions on x, the
statement is thus true for all x, y ∈ N.

For proving part (ii) of Claim 2, it will be helpful to define
a real extension of f(·) using linear interpolation. Let f̃ :
R+ ∪ {0} 7→ R+ ∪ {0} be defined as follows:

f̃(x) =

{
f(x), if x ∈ N ∪ {0},

(x− bxc) f (dxe) + (dxe − x) f (bxc) , else,

where d·e and b·c are the integer ceiling and floor functions
respectively. It follows directly that f̃ is continuous and non-
decreasing. Further, since the slope at x /∈ N∪{0} is f (dxe)−
f (bxc) which can only decrease with x from our assumptions
on f(·), f̃(·) is a concave function in its domain. This gives
us

θf(x) + (1− θ)f(y) = θf̃(x) + (1− θ)f̃(y)

≤ f̃(θx+ (1− θ)y)

≤ f̃ (dθx+ (1− θ)ye)
= f (dθx+ (1− θ)ye) ,

which completes the proof of part (ii) of Claim 2.
Let us now state a useful property of the optimal schedule

OPT as Claim 3.

Claim 3. There is an optimal testing schedule such that if a
test is performed at t = sOPT

j for some j, then all the available
untested samples at t are tested together, i.e., uOPT

t = 0.

Proof: We prove this claim by showing that any (optimal)
schedule can be converted, without increasing the cost, into
one where the following property is true: if there is a test at
some t = sOPT

j , then uOPT
t = 0.

In an optimal schedule OPT, assume only n1 samples are
tested at some time t, while n2 samples, already available at
t, are tested in a different batch along with nnew samples (all
released at times after t) at some time t+ ∆t. We prove this
claim by showing that at least one of the following does not
increase the cost:
(i) test the n1 + n2 samples together at time t, or

(ii) test all the n1+n2+nnew samples together at time t+∆t.
Let us assume the contrary (which will lead us to a contradic-
tion): both the options above strictly increase the cost. Note
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that the waiting time of the nnew samples is the same in all
cases. Further, the waiting time and testing costs of samples
that are not in these n1 +n2 +nnew samples is the same in all
the cases. Considering only the terms that are different, the
above two cases imply

f(n1) + f(n2 + nnew) + n2∆t < f(n1 + n2) + f(nnew) and
f(n1) + f(n2 + nnew) + n2∆t < f(n1 + n2 + nnew)

+ (n1 + n2)∆t.

These inequalities give us

∆t <
f(n1 + n2) + f(nnew)− f(n1)− f(n2 + nnew)

n2
,

∆t >
f(n1) + f(n2 + nnew)− f(n1 + n2 + nnew)

n1
.

Putting the two together, we get

f(n1) + f(n2 + nnew)− f(n1 + n2 + nnew)

n1

<
f(n1 + n2) + f(nnew)− f(n1)− f(n2 + nnew)

n2
.

Rearranging the terms gives us

f(n1) + f(n2 + nnew) < n1

n1+n2
f(n1 + n2)

+ n1

n1+n2
f(nnew) + n2

n1+n2
f(n1 + n2 + nnew). (4)

Using Claim 2(ii) with θ = n1

n1+n1
, x = n1 + n2, and y = 0

gives
n1

n1 + n2
f(n1 + n2) ≤ f(dn1e) = f(n1). (5)

With θ = n1

n1+n2
, x = nnew, and y = n1 + n2 + nnew we get

n1

n1 + n2
f(nnew) +

n2

n1 + n2
f(n1 + n2 + nnew)

≤ f(dn2 + nnewe) = f(n2 + nnew). (6)

Substituting (5) and (6) into (4) gives

f(n1) + f(n2 + nnew) < f(n1) + f(n2 + nnew)

which is a contradiction.
We are now ready to prove Claim 1.

Proof of Claim 1: Let OPT be a schedule with optimal
cost that satisfies Claim 3. For proving Claim 1, we divide
the integral

∫∞
0

(uWTE
τ − uOPT

τ )+dτ into segments:∫ ∞
0

(uWTE
τ − uOPT

τ )+dτ =

mWTE∑
j=1

∫ sWTE
j

sWTE
j−1

(uWTE
τ − uOPT

τ )+dτ,

(7)

where we have defined sWTE
0 as 0. Note that for τ > sWTE

mWTE ,
the integrand is 0 since all the samples have been tested by
WTE, and so uWTE

τ = 0.
The set of testing batches in OPT can be partitioned into

sets Sj based on the [sWTE
j−1 , s

WTE
j ) segment in which OPT tests

them:

Sj =
{
k : sOPT

k ∈ [sWTE
j−1 , s

WTE
j )

}
for j ∈ {1, 2, . . . ,mWTE},

and let L denote the leftover samples that OPT might test at
a time t ≥ sWTE

mWTE .
Observe that at τ = sWTE

j−1 for all j, uWTE
τ = 0 since WTE

tests all the samples available at τ . So (uWTE
τ − uOPT

τ )+ = 0
at τ = sWTE

j−1 . Further, if Sj = ∅, then OPT does not test any
samples before WTE tests all the available samples again, and
so (uWTE

τ − uOPT
τ )+ = 0 for all τ ∈ [sWTE

j−1 , s
WTE
j ). This gives∫ sWTE

j

sWTE
j−1

(
uWTE
τ − uOPT

τ

)+
dτ = 0 if Sj = ∅. (8)

For each j ∈ {1, 2, . . . ,max{j : Sj 6= ∅} − 1}, define KNE
j

to be the first non-empty Sk after j:

KNE
j = Smin{k : k>j and Sk 6=∅}.

If Sj 6= ∅, we have4∫ sWTE
j

sWTE
j−1

(
uWTE
τ − uOPT

τ

)+
dτ ≤

∫ sWTE
j

sWTE
j−1

uWTE
τ dτ

= f
(
|{i : sWTE

j−1 < ai ≤ sWTE
j }|

)
,

(9)

where the equality follows directly from the definition of the
WTE algorithm. For all but the last non-empty set Sj , the
set
{
i : sWTE

j−1 < ai ≤ sWTE
j

}
is a subset of the union of all

the samples that OPT tests in this interval and the next non-
empty interval. This is because any additional samples in{
i : sWTE

j−1 < ai ≤ sWTE
j

}
not tested by OPT in this interval

have to be tested in the next testing batch from Claim 3. This
gives us {

i : sWTE
j−1 < ai ≤ sWTE

j

}
⊆

⋃
k∈Sj∪KNE

j

BOPT
k

for j ≤ max{k : Sk 6= ∅} − 1. Using Claim 2(i) and (9), we
get ∫ sWTE

j

sWTE
j−1

(
uWTE
τ − uOPT

τ

)+
dτ ≤

∑
k∈Sj∪KNE

j

f (|BOPT
k |) . (10)

Similarly, for j = max{k : Sk 6= ∅}, we get∫ sWTE
j

sWTE
j−1

(
uWTE
τ − uOPT

τ

)+
dτ ≤

∑
k∈Sj

f (BOPT
k ) + f (|L|) .

Since KNE
j is also one of {Sk} and unique for all j, adding

these inequalities together with (8) gives us

mWTE∑
j=1

∫ sWTE
j

sWTE
j−1

(
uWTE
τ − uOPT

τ

)+
dτ ≤ 2

mWTE∑
j=1

∑
k∈Sj

f (|BOPT
k |) + f (|L|) .

However, using Claim 2(i), OPT cannot test the leftover L
samples using a testing cost lower than f (|L|). This gives us

mWTE∑
j=1

∫ sWTE
j

sWTE
j−1

(
uWTE
τ − uOPT

τ

)+
dτ ≤ 2nF OPT.

4Note that for j = 1, we have sWTE
j−1 = 0, and for this case, the appropriate

set is {sWTE
j−1 ≤ ai ≤ sWTE

j }.
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Together with (7), this concludes the proof of Claim 1.

Remark 1. We can view (10) as a variant of the amortized
local-competitiveness argument [28], [29]. If the summation
on the right side was only over Sj (with an additional factor
of 2), it would be local competitiveness. However, we amortize
it over Sj and the next non-empty Sk, KNE

j .

IV. LOWER BOUND

Here we give a lower bound on the competitive ratio that
any online algorithm can achieve, formalized as Theorem 2.

Theorem 2. Let ALG be an online algorithm and f(·) be
the testing-cost function for the queued group-testing problem
that achieves a competitive ratio of ρ. Then,

ρ ≥ 1 +
1

2

(√
Γ2 − 4Γ + 8− Γ

)
,

where Γ = minx∈N
f(2x)
f(x) .

Proof: Consider a problem instance where n samples
arrive at time t = 0. Assume the algorithm ALG tests them
at some time t = ∆t (testing them together is better from
Claim 3, so if ALG tests them separately, the competitive ratio
will only be worse). From this, the competitive ratio is lower-
bounded by

ρ ≥ f(n) + n∆t

f(n)
, (11)

since the optimal is to test them all at t = 0.
If an additional n samples arrive at time t = ∆t + ε for

some ε > 0, ALG would still test the first n samples at t = ∆t
because ALG is online and the known information in both
cases (when the additional samples do and do not arrive) is
identical until time t = ∆t. Since ALG tests n of them at ∆t,
its total cost can be no better than 2f(n) + n∆t.5 However,
in this case, it is better to wait for all samples to arrive and
test them all together at time t = ∆t + ε. Since the optimal
algorithm can only do better, the competitive ratio is lower
bounded by

ρ ≥ 2f(n) + n∆t

f(2n) + n(∆t+ ε)
. (12)

Since ε can be arbitrarily small, using ε→ 0, (11) and (12)
give us

ρ ≥ max

{
f(n) + n∆t

f(n)
,

2f(n) + n∆t

f(2n) + n∆t

}
= 1 + max

{
n∆t

f(n)
,

2f(n)− f(2n)

f(2n) + n∆t

}
.

Since this is true for any ∆t that an online algorithm might
use, any online algorithm must satisfy

ρ ≥ 1 + min
∆t

max

{
n∆t

f(n)
,

2f(n)− f(2n)

f(2n) + n∆t

}
.

5This is assuming ALG tests the second batch of n samples as soon as
they arrive at ∆t. However, if an online algorithm waits for ∆t time before
testing the first batch, it will probably wait for ∆t before testing the second
batch as well, unless some form of arrival statistics are being used. In any
case, we have JALG ≥ 2f(n) + ∆t.

Observe that at ∆t = 0, the second term in the above equation
is greater. As ∆t increases, the second term gets increasingly
smaller and the first term (starting from n∆t

f(n) = 0 at ∆t = 0),
get increasingly larger. So the minima over ∆t would occur
when the two terms are equal, or when

n∆t

f(n)
=

2f(n)− f(2n)

f(2n) + n∆t
.

This is a quadratic equation in ∆t with only one positive root,
solving which gives us

ρ ≥ 1 +
1

2

(
−f(2n)

f(n)
+

√
f2(2n)

f2(n)
− 4

f(2n)

f(n)
+ 8

)
. (13)

This expression holds for all n, and so we choose the n
which gives the largest expression to get the tightest lower
bound. Claim 2(i) gives us f(2n) ≤ 2f(n), and in the range
[1, 2], (13) is strictly decreasing in f(2n)

f(n) , which gives us

ρ ≥ 1 +
1

2

(√
Γ2 − 4Γ + 8− Γ

)
,

where Γ = minx∈N
f(2x)
f(x) .

V. CONCLUSION & FUTURE STEPS

In this work, we give a competitive algorithm for group
testing of samples that arrive over time. We consider the
average wait time of the samples plus the average per-sample
testing cost as the objective to minimize. We also give a lower
bound on the competitive ratio that no online algorithm can
beat.

However, there is a gap between the competitive ratio we
guarantee for our algorithm and the lower bound. One avenue
for future research is to close this gap: we could either (i)
show that WTE has a better competitive ratio using more
precise analysis; (ii) improve the lower bound by showing it
is impossible for an online algorithm to achieve even some
competitive ratios higher than guaranteed by Theorem 2; or
(iii) develop new algorithms better than WTE and show an
improved competitive ratio. Developing random algorithms
that achieve a lower competitive ratio in expectation than the
lower bound of Theorem 2 might also be pursued. We believe
all these have much potential for future research.

Another direction is to study the offline problem: at time
t = 0, assume we know when samples would arrive in the
future. It is not implausible that the testing center might know
when the samples might arrive if people have booked testing
slots in advance, etc. While we can find the optimal schedule
in this case using brute force by just computing every possible
schedule and its corresponding cost, it remains to be seen if
we can do this using a time complexity that is polynomial
in the number of samples. If the problem indeed turns out
to be NP-hard, it is of interest to know if we can develop
approximation algorithms that are close to the optimal. While
WTE can certainly be implemented in polynomial time in
the offline scenario, it is to be seen if the knowledge of when
future samples arrive can be used for developing algorithms
with an even better approximation ratio than WTE.
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