
Classification of Epigenetic Biomarkers with Atomically Thin
Nanopores
Aditya Sarathy,*,†,‡ Nagendra B. Athreya,*,† Lav R. Varshney,*,†,§,‡ and Jean-Pierre Leburton*,†,‡,∥

†Beckman Institute for Advanced Science and Technology, ‡Department of Electrical and Computer Engineering, §Coordinated
Science Laboratory, ∥Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States

*S Supporting Information

ABSTRACT: We use the electronic properties of 2D solid-state nanopore materials to propose a versatile and generally
applicable biosensor technology by using a combination of molecular dynamics, nanoscale device simulations, and statistical
signal processing algorithms. As a case study, we explore the classification of three epigenetic biomarkers, the methyl-CpG
binding domain 1 (MBD-1), MeCP2, and γ-cyclodextrin, attached to double-stranded DNA to identify regions of hyper- or
hypomethylations by utilizing a matched filter. We assess the sensing ability of the nanopore device to identify the biomarkers
based on their characteristic electronic current signatures. Such a matched filter-based classifier enables real-time identification
of the biomarkers that can be easily implemented on chip. This integration of a sensor with signal processing architectures could
pave the way toward the development of a multipurpose technology for early disease detection.

The search for a low-cost, fast, and reliable method to
access, assess, and decode the human genome and

epigenome is a great technological challenge in modern
medicine,1,2 which conventional biochemical sequencing
processes3 may not be able to meet. One possible alternative
uses a very thin membrane with a nanoscale pore,4 through
which DNA molecules are threaded to identify not only the
nucleotide sequence but also traits of DNA such as
methylation.5,6 Indeed, methylation may be as crucial as the
sequence itself for the diagnosis and identification of epigenetic
diseases such as cancer,7,8 through its role in silencing key
cancer-related genes. Nowadays commercially available nano-
pore sequencers that have been used to sequence DNA9 and
RNA10 would be unable to identify epigenetic markers
attached to methylated sites owing to size discrepancy between
the DNA−marker complex and the nanopore. Therefore, solid-
state nanopores may be the only viable solution as a versatile
and general sensor technology for detecting methylation
patterns.
It is well known that the utilization of 2D materials in solid-

state nanopores offers the highest detection resolution. In this
regard, Girdhar et al. proposed the utilization of solid-state
multilayer nanopore membranes within multifunctional
electronic devices to increase their detection sensitivity.11

Qiu et al. further demonstrated that methylated cytosines
labeled by methyl−CpG binding domain proteins can be
detected with solid-state nanopores composed of 2D materials
such as graphene or molybdenum disulfide (MoS2).

12,13 This
detection was based on two simultaneous signals: ionic current
variations through the pore and electronic current changes
along the 2D membrane. The two signals together yield higher
protein identification and classification accuracy than a single
signal alone. Whereas the ionic currents provide information
regarding the size of the translocating biomarker via the
current blockade and dwell time, the electronic sheet current
variations are specifically dependent on the charge distribution
within each biomarker, thereby providing unique signatures for
each marker. It was also shown that the electronic detection of
these labeled proteins offers a higher resolution in measure-
ment as compared with ionic current-based detection.14

Indeed, the resolution of detection of these labeled sites via
electronic current is limited by the sizes of the labeled proteins
rather than by the electronic measurement quality itself. Aside
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from recent works,14,15 little attention has been paid to explore
the utility of solid-state nanopores to identify epigenetic
biomarkers along a double-stranded DNA that are indicative of
intricate mechanisms of gene regulation.16 Also, efforts to
detect, identify, and map DNA methylation patterns using
solid-state nanopores have been unsuccessful because of the
significant noise introduced in the measured signal due to the
conformational stochastic fluctuations of DNA inside the pore.
In this Letter, we propose an integrated approach that
combines electronic simulation based on device physics with
statistical signal processing techniques to characterize the
resolution limit of solid-state nanopore sensing and further to
develop algorithms for epigenetic marker classification. Our
novel sensor technology is capable of detecting and mapping
regions of hyper- and hypomethylations across the genome by
utilizing bulky biomarkers. These biomarkers are further
classified using electronic sheet currents resulting from
electrically active 2D nanopore membranes because each
marker produces a current signature unique to its structure and
spatial charge distribution.
Among bulky groups to label methylated cytosines along a

double-stranded DNA, we utilize either methyl-CpG binding
domain (MBD-1) protein or methyl CpG binding protein 2
(MeCP2) to identify regions of hypermethylation. In humans,
these two proteins bind to regions of hypermethylation along
the DNA and are thought to repress transcription from
methylated gene promoters.17 Abnormal levels of MBD
protein and their polymorphisms have been associated with
the overall risk of lung cancer.18,19 Furthermore, MeCP2
mutations are thought to be responsible for Rett syndrome, a
severe neurodevelopmental disorder. The expression of
MeCP2 in the brain is mostly in mature neurons and therefore
in the identification of neurological diseases. Analogously, to
identify regions of hypomethylation, we consider the detection
of unmethylated CpGs marked by γ-cyclodextrin (GCD). This
synthetic biomarker can be used to identify hypomethylated
sequences, similar to the approach described by Gilboa et al.15

Figure 1a illustrates the proposed model setup utilized to
obtain the electronic current signatures for epigenetic marker
proteins. The setup consists of a 2D material (graphene, MoS2,
or other transition-metal dichalcogenide membranes) con-
nected between two electrodes, that is, the source and drain to
enable the flow of current through the membrane under an
applied bias. The detection sensitivity of the membrane is
controlled via a gate electrode separated from the membrane
by a high-κ dielectric (not shown). A circularly shaped
nanopore, chosen to have a diameter of 5 nm, allows the
translocation of the biomolecule through the membrane. This
dimension is the smallest pore diameter through which the
DNA−marker complex can translocate without any hindrance.
The whole setup is immersed in water containing a 1 M
electrolyte of potassium chloride (KCl). A DNA strand,
complexed with a marker protein either at the methylated
cytosine site (for hypermethylation) or at unmethylated
adenine (for hypomethylation), is translocated through the
nanopore using an applied bias across the cis and trans
chambers (VTC). Modulation in current flowing through the
membrane (sheet current) enables calibration of the local
electrostatic potential distribution within the nanopore at a
given time instant.
For our statistical analysis, we need signal references that are

obtained from frozen DNA current signatures, where the
biomolecule is artificially translocated through the pore in the
absence of all-atom molecular dynamics (MD) simulations, as
previously performed by Girdhar et al.11 The noisy test signal
is obtained from a computation scheme involving MD
simulations coupled to semiconductor device models.14 A
detailed description of MD system setup, simulation method-
ology, and electronic transport calculations are provided in the
Supporting Information. In the noise-free reference signal, the
observed current from the DNA−marker complexes will arise
solely from the charge distribution across the proteins, which
are unique to the protein structures themselves. The set of
these noise-free signals will comprise a set of unique reference

Figure 1. (a) Schematic of a multifunctional 2D semiconductor material (usually graphene or MoS2) utilized for the detection of methylated sites
along the DNA. Distinct peaks in the transverse conductance and dips in ionic current are indicative of methylated site translocation. (b) Schematic
of a matched filter-based detection workflow whereby the type of marker protein on a DNA is concluded using correlation between the noisy input
signal (test signal) and a dictionary of precomputed reference current signatures from “noise-free” translocation of DNA−marker complexes.
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current signatures for epigenetic markers. Once this reference
set is built, it can be used to identify the type or number of
proteins by a statistical signal processing algorithm such as a
bank of matched filters, as outlined in Figure 1b. The reference
signals for each of the marker proteins are denoted as Ri(t),
where i is the marker protein. An unknown noisy signal
(denoted as U), obtained by MD simulations, where the
marker protein is unknown, is input into the filter bank that
classifies the marker-protein type depending on correlations
between the unknown current signal and reference signals.
In this context, it is well known that the optimal filter for

detecting pulses in the presence of additive white Gaussian
noise is the matched filter20−22 (a similar model describing
ionic currents in the presence of wide-band Gaussian noise was
used for translocation event detection23). It can further be
shown that the probability of detecting a weak signal in the
presence of noise is largest when the signal-to-noise ratio is
also largest.24 Because the matched filter output is just the
correlation with the reference signal, circuit implementa-
tions22,25 in nanoscale computing technologies are simple.
In the presence of additive colored noise, for example, 1/f

noise rather than white noise, one would have a whitening
prefilter followed by designing the matched filter for the
whitened reference signal. Our present noise model considers
only the low-frequency regime of detection, that is, <100 kHz.
When the sampling rate is increased toward mid- and high-
frequency regimes, different noise models need to be
considered and the corresponding matched filter implementa-
tions will be modified. Midfrequency will mainly consist of
thermal noise, whereas the high-frequency regime will be
dominated by capacitance effects. Power spectral densities for
the different frequency regions are outlined by Parkin et al.26

Using our matched filter-based detection method, we can
develop a unified framework to detect, classify, and count
multiple marker proteins along the DNA and build upon our
dictionary of reference signals. The reference signatures for
each of the biomarkers were calculated for noise-free
trajectories on graphene and MoS2 quantum point contact
nanoribbons. Additionally, another important aspect of the
respective current signature is the shape of the trace because
the magnitude depends on the stochastic fluctuation of the
complex and its spatial orientation within the pore. In this
regard, we previously showed that during the translocation of a
methylated DNA complexed with either one or two MBD-1
protein complexes, depending on the number of methylated
sites, the conductance square deviation is drastically different
due to the strong dependence of the sheet conductance on the
angular position of the marker protein within the pore.13

Once the reference current signatures are obtained, a
correlation of a current signal consisting of an unknown
marker with each of the reference signals will identify the type
of marker protein. Given a reference signal ri(t) and a signal of
an unknown marker u(t), the cross-correlation is given as

t r u t( ) ( ) ( ) di∫ρ τ τ τ= +
−∞

∞

(1)

To capture just the shape of a signal and compare signals
due to different marker proteins across various orientations, we
normalize the correlation signals to range between −1 and 1.
Given a correlation trace ρ(ti), where ti is the sampled time
instant, the normalized current trace is given by

t
t t

t t
( )

( ) ( )

max( ( )) min( ( ))i
i

norm
openρ

ρ ρ
ρ ρ

=
−

− (2)

Figure 2. Classification epigenetic biomarkers: We first extend the set of reference signals by computing the sheet current signatures corresponding
to translocations of frozen DNA−MBD, DNA−MeCP2, and DNA−GCD complex through a 5 nm MoS2 nanopore (shown in the middle panel). A
noisy current trace for the nonideal translocation of a DNA−MBD complex containing one MBD1 proteins (as shown in the leftmost panel) is
correlated with each of the entries in the dictionary. We observe a peak when correlated with the frozen signature of a DNA−MBD complex with
one protein (middle panel, rightmost column) and no discernible peaks when correlated with the other current signatures. The corresponding Q
factors calculated at ρ = 0.7 are maximum for the correlation of the unfrozen DNA−MBD complex with the current signature of the MBD protein,
indicating the presence of a MBD1 protein along the methylated DNA.
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Here max(ρ(t)) and min(ρ(t)) denote the maximum and
minimum values of the calculated trace during the trans-
location period during which the signal was acquired. This
normalization allows us to compare the different correlated
signals irrespective of their angular position during trans-
location.
Specifically, the criterion used to infer the type of marker

protein from the correlated signal is the Q factor defined as

Q
BW

1

corr
=

(3)

where BWcorr is the bandwidth of correlation between the test
and a particular dictionary signal. The value of correlation
chosen to estimate the bandwidth is a hyperparameter (i.e.,
chosen by the user, based on statistics of different calculations,
usually ranging from 0.6 to 0.8, as indicative from our
calculations). In these sets of simulations, we choose to

Figure 3. Matched filter operations to classify regions of hyper- and hypomethylation biomarkers along a DNA translocating through graphene
nanopores
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calculate the BWcorr at ρi = 0.70, where ρi denotes the
correlation between the test and reference signal of protein i
(MBD, GCD, MeCP2). These hyperparameters are non-
physical quantities that can be fine-tuned by obtaining statistics
of multiple translocations of the proteins with different
configurations and initial conditions. Essentially, once the
correlations between the test and dictionary signals have been
computed, the protein whose current signature provides the
maximum Q factor is inferred to be present along the DNA.
Figure 2 illustrates the utility of the Q factor as a metric to

infer the presence or absence of a particular protein along a
translocating DNA. In these simulations, the test signal is
obtained from translocating a 30 bp long DNA complexed with
a single MBD1 protein at a CpG site. This test signal is noisy
because it is obtained from calculating the current trace along
the MoS2 membrane from the resulting trajectory of an all-
atom MD simulation. As shown in Figure 2, the first (leftmost)
panel indicates the noisy current signature of the translocating
MBD1 protein, whereas the second panel displays the
normalized current signatures from MBD−DNA, GCD−
DNA, and MeCP2−DNA complexes, respectively. The noisy
current signal (on the leftmost panel) was obtained from a
previous work of two of the authors (A.S. and J.-P.L.).14 The
second panel consists of the calculated current traces during a
noise-free translocation of a DNA complexed with a MBD1,
GCD, and MeCP2 marker protein, respectively. The third
panel illustrates the matched filter operation between the noisy
signal and the respective reference signals normalized to the
interval [−1, 1]. The Q factor is calculated at ρ = 0.7, resulting
in a value of 0.023 for the MBD1 reference signal. For the
MeCP2 and GCD correlations, the Q factor is 0 because the
maximum value of the cross-correlation signal is <0.7. It is
therefore evident that the Q factor of the correlated outcome
between noisy DNA−MBD and that of current signature of

MBD is the highest, indicating the presence of the MBD
protein along the DNA and the corresponding absence of the
GCD or MeCP2 markers.
To illustrate the generality of this approach, we further

illustrate the classification of the marker groups with unknown
and reference signals calculated from translocations in
graphene nanopores. Figure 3a,b illustrates the normalized
correlations obtained between a noisy signal of a DNA
complexed with hypomethylated (GCD) and hypermethylated
(MeCP2) epigenetic biomarkers, respectively. The reference
transverse current signatures for MBD1, MeCP2, and GCD are
shown in the second panel, whereas the corresponding
normalized correlations between the noisy unknown signal
and the reference signals are shown in the third panel. As in the
case of hypomethylation detection, one can clearly see that the
correlation of the noisy signal corresponding to the GCD
biomarker with the GCD reference signal gives the sharpest
peak and greatest Q factor at ρ = 0.7 of ∼0.04, whereas the Q
factors corresponding to correlations with the MBD1 and
MeCP2 markers are ∼0.017 and 0, respectively. Similarly, a
noisy translocation of a DNA−MeCP2 complex yields the
maximum Q factor of ∼0.018 at ρ = 0.7 when correlated with
the reference signal of a MeCP2 biomarker, as shown in Figure
3b. Therefore, these results indicate the versatility of our
approach in developing a set of reference signals and classifying
the unknown epigenetic biomarker using the matched filter.
The approach described above illustrates the use of the

matched filter algorithm to classify particular epigenetic
markers. This matched filter can be applied in any setting,
but it can be proven to be the optimal linear detector in the
presence of additive noise. Additionally, the Q factor alone can
be used as a metric to infer the hypothesis of whether the
particular type of protein is present or absent. However, to
simultaneously detect, infer, and count the type and number of

Figure 4. Flowchart illustrating the algorithm to detect the type of marker protein and the count the number of markers in the vicinity of the
protein recursively. The hyperparameters chosen are the threshold Q factor and the threshold correlation value that decide the hypothesis of
whether a particular marker and vicinity markers are present, respectively. Furthermore, this procedure of detecting and counting the marker
proteins can be computed recursively and implemented in hardware.
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proteins, we illustrate an algorithm that is capable of
automatically deciding the validity of a marker and also
counting the number of surrounding markers in its vicinity
recursively. This unified algorithm is shown in Figure 4. In this
algorithm, we utilize two hyperparameters denoting the
threshold value (QTH) of the Q factor, indicating the validity
of the particular hypothesis, that is, to make the decision of
whether the vicinity protein is present or absent, and a
threshold correlation coefficient (ρTH), indicative of the
presence of the second protein in the vicinity.
The algorithm has two inputs: the dictionary of signals from

the various epigenetic cancer markers (in our case, MBD1,
MeCP2, and GCD) and a test signal from a DNA complex
with an unknown marker protein. Initially, the normalized
correlation and corresponding Q factors between the test and
dictionary current signatures are calculated, the maximum of
which indicates the identity of the marker protein. The second
peak in the calculated correlations is also simultaneously
monitored to infer the presence of another marker in the
vicinity. If the value of the second correlation peak (ρsecond) is
greater than ρTH, then the correlation is indicative of a second
marker protein of the same type present in the vicinity. We
next consider the normalized correlations between the frozen
single DNA-marker complex and the noisy signals from the
translocation of the DNA with a single complex (known as
reference correlation) and multiple complexes (of the same
type such as MBD/GCD). When these correlation peaks are
aligned, a difference between them will result in the presence
of a peak. From this stage onward, we recursively monitor the
value of the value of second peak while subtracting the
reference correlation at each iteration. The value of ρsecond is
used to determine the presence or absence of a marker-protein
in the vicinity depending on a hyperparameter threshold value
(ρTH). This process of detecting and determining the value of

the second peak from the subtracted signal can be performed
recursively until the hypothesis is no longer valid.
We can utilize the algorithm illustrated in Figure 4 to detect

and count multiple proteins complexed to a DNA, as shown in
Figure 5. In this simulation scenario, we consider a 60 base pair
(bp) long DNA strand that consists of two methylated CpG
sites that are separated by 10 bp’s. Each of these individual
CpG sites are complexed by MBD1 proteins. The reason that
the spacing of 10 bps chosen is due to the physical dimensions
of the label protein MBD1 being 10 bp’s wide, making 10 bp’s
the minimum possible distance that the two labeled sites can
be present without mutual steric hindrance from the labels.
This unconstrained DNA−MBD complex is translocated to
obtain the noisy signal, as shown in the leftmost column of
Figure 5. This normalized current signature of two MBD1
proteins located 10 bp’s apart was previously obtained by us.14

The plot of the correlation between the noisy two-protein
signal and the reference signals for DNA−GCD or DNA−
MeCP2 complexes does not display a discernible peak,
indicating a lack of similarity between the dictionary signal
entry and the measured noisy signal. On the contrary,
correlating the noisy two-protein signal with the frozen
single-protein signal (second panel, second row) yields two
peaks that could correspond to the similarity of features
between each of the individual protein signatures and the
single protein dictionary entry. The second peak of the
correlated signal is greater than the threshold, indicating the
possible presence of the second protein.
The validity of the presence of the second protein can also

be determined according to the recursive matched filter
algorithm shown in Figure 4. To count the number of proteins,
we utilize the correlations as shown in Figure 5, where the
normalized values of the frozen single-protein current signature
with the noisy two-protein signal (red) and the noisy single-
protein signal (blue, reference signal, i.e., second row, third

Figure 5. Detecting multiple proteins: A noisy current trace of a DNA strand containing two MBD1 proteins (as shown in the leftmost panel) is
correlated with each of the entries in the dictionary. Two peaks are observed when correlated with the frozen DNA signature of a DNA−MBD
complex with one protein (middle panel, rightmost column). The absence of such a peak from the correlation of the noisy signal with the other
frozen DNA−marker complex signals indicates the presence of an MBD protein in the measured noisy signal.
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panel of Figure 2) are plotted. As shown in the algorithm, we
monitor the value of the second peak to determine the
presence of the second protein. Because ρsecond > ρTH peaks
between the two normalized signals (correlated and reference
correlation signal) are aligned and subtracted, we can examine
the height of ρsecond in the resulting curve (green curve), as
shown in Figure 6. Because the second peak of the green curve
is less than ρTH, we conclude that only two proteins are
present. This algorithm can be performed recursively for
counting multiple proteins in the vicinity. However, the real-
time detection and classification of epigenetic biomarkers from
a time series of current data would involve a combination of
event detection similar to the approaches utilized by
nanopolish in Oxford Nanopore’s MinION basecaller,27

applied to solid-state nanopores. However, a detailed
implementation of this algorithm remains to be tackled as a
future problem. Additionally, this approach can currently count
the quantity of marker proteins in the vicinity only if they are
of the same type. We intend to generalize this algorithm in
future work to detect different marker proteins within the
resolution limit by checking if ρsecond correlates with the
dictionary signals. We would like to note here that this
approach is sensitive to the choice of hyperparameters, which
need to chosen specifically depending on the dictionary signals
obtained and can be fine-tuned depending on the set of
proteins signatures available.
In summary, considering signals from solid-state nanopore

devices, we have outlined an algorithm to determine the type
of marker proteins and simultaneously identify the possible
epigenetic markers in the vicinity. This approach has been
illustrated to detect and identify the presence of different
biomarkers corresponding to hypo- and hypermethylation
within a limited set of dictionary signals. It has not yet been
tested on experimental traces due to the technical difficulties in
the fabrication and electric measurements in the nanopore
devices.28 However, we strongly believe that it is general
enough to be expanded to include an exhaustive set of current
signatures for various epigenetic markers calculated from
different sensing materials. This approach can also be
generalized to incorporate signals from different noise models
in the matched filter algorithm. In fact, our algorithm of using
matched filter banks can be efficiently implemented in
hardware,24,25 which can enable the development of a DNA

sensor chip consisting of a highly dense array of nanopores29

with sensing and inference logic realized on the same wafer.
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