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ABSTRACT
Discovering and clustering similar trajectories is a cornerstone
task for movement pattern analysis and location prediction in ap-
plications like ride-sharing, supply-chain, maps and autonomous
driving. However, the existing distance computation is compu-
tationally expensive and is hard to parallelize, which makes the
large-scale computation prohibitive. We propose TrajDistLearn, a
uni�ed learning-based approach for trajectory distance computa-
tion, in which the traditional point-based trajectories are converted
into rasterized images, and the distance function is learned via
Siamese Networks in an end-to-end way. The framework accu-
rately learns various distance metrics for the trajectory similarity
computation, including the widely used Fréchet distance, which is
a computationally expensive distance metric. The e�ciency gain
with neural network approximation is signi�cant. Our approach
achieves at least a 3000x speed-up on GPU and a 40x speed-up on
CPU in comparison with naive Fréchet distance computation. In
addition, our approach’s computational overhead is independent
of the sampling rate of the trajectories. Extensive experiments on
real-world trajectory datasets demonstrate the e�ectiveness and
e�ciency of TrajDistLearn.
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1 INTRODUCTION
Due to the enormous amount of spatial trajectory data collected
from GPS-equipped devices and location-based services, e�cient
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Figure 1: The two images represent two di�erent location
trajectories plotted on OpenStreetMap. We validate that our
approach generalizes to multiple distance metrics and vari-
ous real-world datasets. For Fréchet distance computation,
our approach is independent of the number of segments in
a trajectory, unlike other Fréchet distance approximation
methods. TrajDistLearn approximates the Fréchet distance
for the given trajectory pair as 4429.66 units, and the actual
distance is 4409.09 units. Therefore, the relative distance is
0.004, and we observe atleast a 3000x speed-up on GPU and
atleast a 40x speed-up on CPU compared to Naive Fréchet
distance method. [4].

matching and querying for trajectories has become an important
practical and research topic. The most widely used application
is that of a ride-sharing service, where it is required to compute
the distance between pairs of trajectories and answering similar-
path queries in real-time to optimize carpooling. Additionally,
shape matching between geometric objects also involves polygonal
curve similarity computation [8]. There are various geometric
de�nitions to measure trajectory similarity [9, 10, 24, 27]. One
of the prevalent distance metrics has been Fréchet distance [4]
due to its parameterized nature of the trajectory representation.
It measures two curves’ similarity considering the distances of all
discrete points on the two curves and their paths. Note that these
are di�erent distances used in road networks e.g. [34–36] or medial
axis transforms e.g. [32, 33].

Although Fréchet distance [24] has shown extensive usage across
multiple applications, its computational complexity remains a bot-
tleneck. Additionally, current algorithms for approximating Fréchet
distance like the Discrete Fréchet distance [21] depend on the num-
ber of segments in a trajectory. Hence, the best possible complexity
is proportional to the number of points on each of the curves. These
pointwise matching techniques for distance computation su�er in
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scenarios with a non-uniform trajectory sampling rate. There have
been recent advances in solving the trajectory similarity compu-
tation problem using Recurrent Neural Networks. However, these
methods generally modify the trajectory’s sampling rate, involve
many hyperparameters, whichmakes training non-trivial and, more
importantly, do not solve the distance computation problem [43].
We argue that with the rapid development of alternate sources of
mobile power and with the enormous amount of location infor-
mation for trajectories - a good trajectory distance computation
technique should be accurate, scalable to larger datasets and generic
for various distance metrics.

It is important to note that the complexity in tasks like trajectory
similarity computation or trajectory clustering lies in the trajectory
distance computation [4, 21, 26]. We approach this problem by
breaking it down into two subproblems: (1) Trajectory representa-
tion (2) Trajectory distance computation. To avoid losing trajectory
sampling information and creating a robust trajectory represen-
tation, we propose to use rasterized images where pixels depict
the location, i.e. latitude and longitude, on a spatial grid. Such a
trajectory representation enables us to design an agnostic approach
to the length of the trajectory and not lose the trajectory sampling
information. As for trajectory distance computation, we use a very
lightweight neural network with just three convolutional layers
and utilize the Siamese networks to map similar trajectories closer
in the embedding space.

To summarize, the paper makes the following contributions:

• We propose TrajDistLearn, an end-to-end learning based
framework for trajectory distance computation. The dis-
tance function between two trajectories is learned and ap-
proximated by neural networks rather than hand-designed
algorithms. To the best of our knowledge, it is the �rst deep
learning based framework for trajectory distance compu-
tation.

• We represent the trajectories as rasterized images, which
are robust to the trajectory sampling rate. Using rasterized
images for trajectory representation enables our approach
to be robust and lead to better speed for distance approx-
imation. For computationally complex distance metrics
like Fréchet distance, TrajDistLearn is the �rst Fréchet
distance approximation method independent of the tra-
jectories’ sampling rate. TrajDistLearn achieves at least
a 3000x speed-up speed-up on GPU and 40x speed-up on
CPU compared to naive Fréchet distance computation or
other approximation techniques.

• Our framework can generalize to di�erent distance metrics
across di�erent types of real-world datasets. By using
cosine similarity as a similarity measure, we validate that
the features produced by TrajDistLearn can be e�ectively
used for applications like trajectory similarity computation.

2 RELATEDWORK
Trajectory Distance Metrics. There has been substantial work on
measuring the similarity among trajectories. For example, the Haus-
dor� distance [26] emphasizes the distances between vertices of
trajectories by measuring how far two subsets of a metric space are

from each other. Traditional approaches to computing the Haus-
dor� distance between two trajectories perform a linear scan over
one trajectory. A spatial index like RTree [25] is often utilized to
help compute the nearest neighbour in the other trajectory for each
vertex in the former trajectory. The best of these measures for
trajectory distance computation and similarity is based on dynamic
programming techniques to identify the optimal alignment, lead-
ing to $ (=2) computation complexity. Therefore, these techniques
prove ine�cient as similarity measures for clustering in a large
database of trajectories. Distance computation remains to be the
computational bottleneck for all the di�erent similarity measures.
Among these distance de�nitions, the Fréchet distance is exciting
due to its parameterized trajectory representation. Although the
Fréchet distance �nds use in many applications, such as map match-
ing [3, 11, 39], its computation remains a challenge. The traditional
solution for computing the Fréchet distance for a pair of trajec-
tories % and & with ? and @ segments has a time complexity of
$ (?@log(?@)) [4].

Traditional Fréchet distance methods. Direct computation of
this distance metric between polygonal trajectories is very time-
consuming [4, 12]. Some work focuses on solving variants of the
problem [14, 16–18]. For example, Cook et al. [23] describe a
polynomial-time algorithm to compute the geodesic frechet dis-
tance between two polygonal curves in a simple polygon. Cham-
bers et al. [17] describe a polynomial-time algorithm to compute
the homotopic Fréchet distance between polygonal curves in the
Euclidean plane with obstacles. If we relax the requirement of
continuously sweeping every point on the given curves by only ex-
amining the vertex positions of polygonal curves, we have Discrete
Fréchet distance. Eiter et al. [21] present a polynomial-time solution
using dynamic programming for computing the Discrete Fréchet
distance. Discrete Fréchet distance is dynamic programming with
a $ (?@) time complexity. Hence, even this approximation depends
on the number of segments forming the trajectory. By using the
problem’s geometry to encode legal positions of the moving targets
on the trajectories as states of �nite automation, Agarwal et al. [1]
�rst present an algorithm that runs in subquadratic time in the
standard RAM model. Similarly, [6] provides a near-linear time
approximation algorithm for the Discrete Fréchet distance by using
curve simpli�cation to speedup the algorithm [2].

There has been recent work in optimizing Fréchet distance com-
putation by [7, 13, 20] and has demonstrated substantial improve-
ment in runtime. The common theme for all the algorithms remains
to be hand-designed algorithms speci�cally for Fréchet distance
computation. All of these approaches downsample or limit the num-
ber of locations while creating the trajectories, are not generic for
other distance metrics, and, most importantly, are not data-driven,
limiting practical applications.

Neural Networks based Trajectory Representation. With the advent
of deep learning, there has been recent work in representation
learning for trajectories. The work done by Yao et al. [41] is one of
the earliest attempts to represent trajectories as recurrent networks.
It is used to detect space and time-invariant trajectory clusters
by employing a sliding-window-based approach to extract robust
movement features and learn �xed-length representations for the
trajectories. Li et al. [30] also utilizes a sequence to sequence model
along with spatial proximity aware loss function. Recent work by
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Figure 2: Overview of the framework. The �gure explains the various steps of pre-processing raw trajectory location data
to create rasterized images for trajectory representation. The trajectories are represented as raw rasterized images or map
images used to train the neural network to learn and output distance among the trajectory pairs.

Zhang et al. [43] also use recurrent neural networks for trajectory
representation, along with a non-trivial cost-function for trajectory
similarity computation. This work does not solve the distance
computation problem, uses a lot of heuristics and hyperparameters,
which makes training non-trivial and most importantly, uses a
�xed-length trajectory representation by modifying the sampling
rate of the trajectory.

Trajectory Similarity using Neural Networks. There has also been
some recent work in using Hausdor� distance for object detection
without bounding boxes [31]. Additionally, [42] computes Dis-
crete Fréchet distance by replacing dynamic programming with
interactions among adjacent cells in convolutions. The proposed
model is hard to interpret in terms of their representation of the
Discrete Fréchet distance, depends on the number of segments in
the trajectory and does not solve the computationally expensive
continuous Fréchet distance. The work done by [37] discusses
how they use the euclidean distance between features generated
by using representations for time series data. Nevertheless, they
do not solve the Fréchet distance computation problem, which is a
regression problem to learn, and not a classi�cation problem and
thereby remains a computational challenge.

However, all of the aforementioned approaches to trajectory
representation or distance calculation have multiple shortcomings.
The traditional methods for distance calculation are hand-designed
and, thereby, lack robustness. The neural network based trajec-
tory representations downsample the trajectories and are harder to
train. Therefore, all of the existing approaches are computationally
intensive and do not solve the distance computation problem.

3 OUR APPROACH
For practical reasons, trajectories are usually represented as a se-
quence of time-stamped spatial locations

) = [(?1, C1), (?2, C2), ..., (?<, C<)] (1)

where ?8 and C8 represent the spatial location represented as latitude
and longitude (or x and y coordinates) at a given time 8 . The assump-
tion is that the linear interpolation between subsequent samples is
a su�ciently accurate reconstruction of the movement of the object
between two consecutive location samples. In the language of GIS,
therefore, a trajectory is represented as a LINESTRING feature. For
our approach, we propose to learn the distance function ⇡ ()1,)2),
where )1 and )2 are the two trajectories among which we need to
compute distance.

For TrajDistLearn, trajectories are represented using rasterized
images where each pixel represents a location (latitude and longi-
tude) within spatial bounds. This sort of a trajectory representation
enables us to learn complex distance functions like the Fréchet
distance, which is represented as:

3� ()1,)2) = inf
U,V

sup
C 2 [0,1]

| |)1 (U (C)) �)2 (V (C)) | | (2)

The Fréchet metric takes into account the �ow of the two curves
because the pairs of pointswhose distance contributes to the Fréchet
distance sweep continuously along their respective curves. For the
same reason, Fréchet distance is better for measures like similarity
as compared to its counterparts like Hausdor� distance. Further,
we represent the trajectories by plotting them on a map and a white
background. We thereby view distance measurement among trajec-
tory pairs as computing the di�erence(or similarity) among images.
The goal remains to utilize a network architecture that can map
similar trajectories closer in the embedding space than dissimilar
trajectories. Siamese networks were introduced initially by [15] to
solve signature veri�cation as an image matching problem. Weight
sharing in Siamese Networks guarantees that two similar images
could not be mapped to very di�erent locations by their respective
networks.

3.1 Preprocessing
From a formal point of view, trajectories can be represented as a con-
tinuous map ) (sequence of time-stamped locations) from the unit
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(a) Map image (b) Raw rasterized image

Figure 3: Examples of trajectory representation for a trajec-
tory from the GISCUP dataset. We extract the trajectory rep-
resentation (b) from the trajectory representation (a). In our
pre-processing step, we do notmake any changes to the sam-
pling rate or representation of the trajectory.

interval [0, 1] to space. In this setting, the unit interval represents
the time along the trajectory, so given a trajectory ) : [0, 1] ! '2,
the time 0 is mapped to the �rst point C (0) of the trajectory and
C (1) points to the last point. We propose TrajDistLearn, the �rst
trajectory distance computation method that uses rasterized im-
ages for trajectory representation for distance computation. We
create two di�erent types of rasterized images for the trajectories
under consideration: (1) Raw Rasterized Images (2) Map Images for
the GISCUP Dataset1. Examples of both the types of images for
a given trajectory are shown in Figure 3. We �nd the raw raster-
ized images’ dataset’s maximum spatial bounds and plot the raw
location on an image. For Map Images we project the location data
from the 4?B6 : 3857 to 4?B6 : 4326 coordinate system and plot the
corresponding location trajectories on OpenStreet Map2.

3.2 Architecture
We propose using a very lightweight network architecture con-
sisting of two convolutional layers (64 and 128 output channels).
Each of these layers is followed by ReLU activations and batch
normalization [28]. Followed by the convolutional layers is a fully
connected layer for each of the siamese twins, the features from
which are fused using a bilinear layer. This resultant feature is fur-
ther passed through a fully connected result to produce a 1D result.
This layer’s result is compared against the actual distance [4, 21, 26]
using the MSE loss function. Therefore, TrajDistLearn solves the
trajectory distance computation problem as a regression problem.
Convolutional layers for this task enable us to learn the appropriate
subsequences from the input. Using this architecture with a max-
pooling layer makes the network translation invariant and robust
to noise in the input data. This network proves to be very robust,
quick to train and intuitive to understand to the extent where we
can use the same network for both datasets and all distance met-
rics despite of the signi�cant di�erence in the sparseness of the
underlying data for the two datasets.

1https://github.com/TWTDIG/GISCUP17TUE
2https://www.openstreetmap.org/about

As discussed earlier, we incorporate the actual distance [4, 21, 26]
between the trajectory pairs in the loss function to guide similar tra-
jectories closer in the embedding space. It is important to note that
the trajectories are purely represented as rasterized images (raw
and map images) and do not include direction as a meta-feature
for the trajectories in our task, as distance computation between
trajectory pairs does not fundamentally require the direction. It is
also important to note that the current representation does not ex-
plicitly encapsulate the temporal nature of the trajectory. Therefore,
with the L2 loss function encapsulating the actual distance, TrajDis-
tLearn can generate an approximation for the distance metric for a
given pair of input trajectories.

3.3 Learning trajectory similarity
As shown in Figure 2, the features generated by each of the siamese
twins being trained with shared weights would represent the sim-
ilarity relationships among the trajectories. We thereby propose
using the most intuitive Cosine Similarity as a metric for similarity
for the trajectory features. So, higher cosine similarity would im-
ply a lesser distance between the trajectories and, thereby, higher
similarity. We validate with experiments with multiple distance
metrics and datasets - that TrajDistLearn is not only useful for
distance computation, but it also solves the trajectory similarity
computation problem.

4 EXPERIMENT
4.1 Experimental Setup

Datasets. We use two datasets based on the variance in the
dataset and the diversity of the type of underlying trajectory data
for evaluating our framework. First is the Character Trajectory
Dataset [19], which is used to generate 50,000 unique training tra-
jectory pairs and 5000 unique testing trajectory pairs. Second, is
the GISCUP dataset3[40], which is used to generate around 19,000
unique training trajectory pairs and around 5000 unique testing
trajectory pairs. The dataset information is in Table 1. Samples of
rasterized trajectory images are represented in Figure 3. Addition-
ally, Table 2 represents how despite of the signi�cant di�erence in
the variance of the underlying raw trajectory location data as shown
in Table 1, the variance in the rasterized image is not signi�cantly
di�erent.

Dataset Min Max Mean Std. Dev Variance
Character 60 182 119.83 20.99 440.90
GISCUP 10 768 247.89 154.07 23738.30

Table 1: Statistics about the length of trajectories for both
the Character Trajectory and GISCUP dataset.

Dataset Variance
Character 1742.46
GISCUP 1107.12

Table 2: Variance in the rasterized image representation for
all the trajectories for both the datasets.

3https://github.com/TWTDIG/GISCUP17TUE

https://github.com/TWTDIG/GISCUP17TUE
https://www.openstreetmap.org/about
https://github.com/TWTDIG/GISCUP17TUE
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Evaluation Criterion. Following quantitative criteria are employed
to evaluate the experiments:

• Accuracy Measurement. Computing distance between tra-
jectories serves multiple downstream applications. The na-
ture of the trajectories and also the domain of application
determines the accuracy of distance computation required.
We report accuracy by calculating how far the network
computed value is from the actual distance, which is calcu-
lated using the pure traditional distance functions [4, 21,
26]. Therefore, to evaluate our accuracy, we introduce the
metric of relative distance, which is de�ned as follows:

relative distance =
|⇡̂ � ⇡⌧) |

⇡⌧)
(3)

where ⇡̂ is the distance computed by our network and⇡⌧)
is the ground-truth i.e. distance value computed using the
distance functions [4, 21, 26] for a given pair of trajectory.
We normalize with ⇡⌧) to ensure we capture the variation
in the distance among all trajectory pairs, and also provide
a uni�ed evaluation metric.

• Speed. As a special case for Fréchet distance, which is
di�cult to compute both from a computational complex-
ity perspective as well as from an implementation point
of view in that it is not easy to get all details right and
e�cient on real computers, we measure the time complex-
ity (or computational performance) for Fréchet distance
computation. We measure the time complexity or speed
and performance by looking at the following two further
sub-metrics: (1) Dependence of time complexity on the
number of segments(or length) of the trajectory (2) Aver-
age performance, in terms of speed on a shu�ed dataset.
Less dependence on the length of the trajectory and higher
speed on a shu�ed dataset would mean more robustness
and reliability for the method.

Training Settings. Even with the signi�cant di�erence in the raw
trajectory location data for the two datasets, we are able to use the
same hyper-parameters for all distance metrics for both datasets
for a similar trajectory representation i.e. raw rasterized images
and map images. As an overview, the optimizer used is the Adam
Optimizer [29] with learning rate of 1e-8 for raw rasterized images
and 0.0001 for map images, and learning schedule being a multi-
step learning rate change at 5C⌘ , 10C⌘ , 15C⌘ and 20C⌘ epochs and
W=0.01 for both datasets and all distance metrics.

Baseline Methods. We use the traditional pure distance computa-
tion methods for our experiments for Fréchet , Discrete Fréchet ,
and Hausdor� distance computation [4, 21, 26] for accuracy evalu-
ation. We use the distance value obtained from these methods to
obtain the relative distance. Additionally, for the speed and perfor-
mance evaluation, we also compare TrajDistLearn against other
Fréchet distance approximation techniques that are widely used
or recently been developed, such as Eiter et al. [21] and Dutsch et
al. [20]. This is done to compare our neural network based distance
learning and approximation approach against the hand-designed
algorithms for Fréchet distance computation and approximation.

4.2 Results
Accuracy. We evaluate our approach for the widely used distance

metrics, namely Fréchet , Discrete Fréchet and Hausdor� distance
for both the datasets. Table 3 articulates the accuracy(relative
distance) for both datasets and all distance metrics. It demonstrates
that TrajDistLearn has a A4;0C8E4 38BC0=24  0.5D=8C for an average
of 97.81% across all distance metrics for the Character Trajectory
dataset, and an average of 100% across all distance metrics for
the GISCUP dataset. Relative Distance serves as a stable metric of
accuracy evaluation because it takes into consideration the actual
distance which is important to capture variance of computation at
test time. Table 4 and Table 5 compare TrajDistLearn against [13]
and [20], and demonstrate that TrajDistLearn has 0.11% and 23.3%
more accuracy for the Character Trajectory dataset, and 1.99% and
1.97%more accuracy for the GISCUP dataset with Relative Distance
 0.5 D=8C .

Speed. For two polygonal trajectories % and & with ? and @
segments, respectively, the approach by Alt and Godau et al. [4],
which is the traditional and naive method for computing Fréchet
distance has a time complexity of $ (?@log(?@)) [4]. Therefore, it
is dependent on the length of the trajectory in terms of the number
of locations or segments that form the trajectory. Similar is true
for other Fréchet distance approximation techniques like Eiter et
al. [21] or Dutsch et al. [20]. Experiments validate that time for
rasterization is trivial, and therefore, our results for this evaluation
can further be split into two major categories:

• Independent of the length of the trajectory. We eval-
uate our approach using trajectories with varying sizes
(number of locations) for both datasets. As expected [4]
shows an increase in the compute time, with an increase
in number of locations. We also evaluate TrajDistLearn
against other Fréchet distance approximation techniques
like Dutsch et al. [20] and Eiter et al. [21]. Wemeasure CPU
Time for our approach on Intel(R) Xeon(R) E5-2683 and the
GPU time on NVIDIA GEFORCE GTX 1080 Ti. As shown
in Figure 4, our proposed approach has near-constant time
performance irrespective of the size of the trajectory when
compared to the other optimal Fréchet distance approxima-
tion techniques. TrajDistLearn rasterizes all trajectories,
and thereby compute time is solely dependent on the im-
age resolution. Image representation is downsampling in
one form, but not explicit downsampling of trajectory data,
unlike all the other approaches.

• Be�er overall speed for distance calculation. We per-
form experiments with TrajDistLearn on both datasets and
multiple system con�gurations. Table 6, compares the
mean and standard deviation of compute time of TrajDis-
tLearn against all the other Fréchet distance calculation
and approximation techniques [4, 21, 26]. Our experiments
prove that TrajDistLearn shows atleast a 3000x speed-up
on GPU architectures and at least 40x speed-up on CPU ar-
chitectures for Fréchet distance computation compared to
the traditional pure distance computation method [4]. We
also validate that TrajDistLearn can easily be parallelized
and run on GPU architectures, and it shows a substantial
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Relative Distance
Distance Metric  0.1  0.25  0.50

Dataset Character GISCUP Character GISCUP Character GISCUP
Frechet 65.84% 61.60% 94.74% 87.12% 98.76% 100.00%

Discrete Frechet 61.14% 60.80% 91.96% 86.82% 97.24% 100.00%
Hausdor� 52.30% 61.32% 89.36% 84.50% 97.44% 100.00%

Table 3: Relative distance values for Character Trajectory and GISCUP dataset for Fréchet , Discrete Fréchet and Hausdor�
distance computation using TrajDistLearn.

(a) Character Trajectory dataset (b) GISCUP dataset

Figure 4: Impact of length of trajectory on the compute time for each of the Fréchet distance computation and approximation
methods. The two Y-Axis represent the compute time for the two baseline methods and how they increase with the trajectory
length. This plot shows how the compute time for TrajDistLearn remains nearly unchanged, even with a signi�cant increase
in the trajectory length, unlike the other methods.

Dataset Relative Distance �%0.50
 0.1  0.25  0.50

Character 93.20% 98.30% 98.65% -0.11% #
GISCUP 97.10% 97.49% 98.01% -1.99% #

Table 4: Relative distance values for Character Trajectory
and GISCUP dataset for Fréchet distance computation using
Bringman et al [13].The last column shows that [13] is less
accurate as compared to TrajDistLearn.

speed-up compared to other Fréchet distance approxima-
tion techniques.

Trajectory Similarity. There has not been too much work using
neural networks for solving the problem of trajectory similarity
computation [22, 30, 43]. Experiments validate that apart from the
harder problem of trajectory distance computation, TrajDistLearn
can also solve this prevalent trajectory similarity computation ap-
plication. Figure 5 proves the correlation of cosine similarity for
trajectory features generated by our network and the actual dis-
tance calculated between those trajectory pairs using [4, 21, 26].

Dataset Relative Distance �%0.50
 0.1  0.25  0.50

Character 35.74% 54.99% 75.46% -23.3% #
GISCUP 97.09% 97.52% 98.03% -1.97% #

Table 5: Relative distance values for Character Trajectory
and GISCUP dataset for Fréchet distance computation using
Dutsch et al [20].The last column shows that [20] is less ac-
curate as compared to TrajDistLearn.

Hence, these experiments prove that cosine similarity among tra-
jectory features can be e�ectively used as a metric to measure
similarity among trajectories with TrajDistLearn.

5 ABLATION STUDY
5.1 Rasterization
Now we discuss the impact of rasterization density on relative dis-
tance. As an illustration, we use Fréchet distance for both datasets.
For all our experiments, we use a rasterization density of ' = 6
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Dataset Naive Fréchet Method [4] Discrete Fréchet [21] TrajDistLearn
(CPU)

TrajDistLearn
(GPU)

Mean Std.Dev Mean Std.Dev Mean Std.Dev Mean Std.Dev
Character 6.60 0.78 0.015 0.0008 0.15 0.001 0.0020 3.28e-05
GISCUP 25.67 19.58 0.017 0.015 0.21 0.008 0.0027 9.46e-05

Table 6: The compute time mean and standard deviation for Fréchet distance computation shows that TrajDistLearn outper-
forms traditional pure distance computationmethod [4] on both CPU and GPU. Also, TrajDistLearn is the only approach that
can be trivially parallelized and run on GPU.

(a) Fréchet (b) Discrete Fréchet (c) Hausdor�

(d) Fréchet (e) Discrete Fréchet (f) Hausdor�

Figure 5: The �gures represent the relation of cosine-similarity as a trajectory similarity measure and the distance among
the trajectory pairs. (a-c) Character Trajectory dataset. (d-f) GISCUP dataset. The plots prove how using the features from
TrajDistLearn and cosine-similarity among those features can e�ectively compute trajectory similarity.

?8G4;B/18C . Figure 6 illustrates the impact of substantial variation
in rasterization density on relative distance for Fréchet distance
computation for both datasets. We validate that the accuracy of our
approach remains nearly unchanged, even with a major change in
rasterization density while changing it from '/2 uptil 8'.

5.2 Training Data Size
We evaluated the e�ect of training data size on relative distance.
As an illustration, we evaluate the e�ect of training split sizes on
Fréchet distance computation for both datasets and show in Table 7.
We observe that even with a minimal training data size, our network
can learn the distance function really well and lead to very high
accuracy.

Relative Distance  0.5
Training Split Character GISCUP

10% 95.46% 100.00%
70% 97.46% 100.00%
90% 98.76% 100.00%

Table 7: E�ect of training data size on relative distance for
Fréchet distance computation for both datasets. We observe
little or no change in the accuracy based on the training data
size.

5.3 Depth of Network
Experiments validate that with increasing depth of the neural net-
work for the siamese twins, we do not observe a change in distance
measurement accuracy. As an illustration, we measure the impact
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(a) Character Trajectory dataset

(b) GISCUP dataset

Figure 6: Impact of rasterization on relative distance for
Fréchet distance computation. The plot validates that
TrajDistLearn is not sensitive to the rasterization density
used for trajectory representation, as the accuracy remains
nearly unchanged.

of network depth on relative distance for Fréchet distance com-
putation for the GISCUP dataset. The results of the experiment
are shown in Table 8. We observe that the accuracy for distance
approximation remains nearly unchanged, or slightly drops with
an increasing depth of the neural network. Our explanation for a
deeper network not impacting accuracy is the low dimensionality
of the underlying location data and its representation as rasterized
images.

Network Relative Distance  0.5
TrajDistLearn 100.00%

TrajDistLearn + Conv 95.96%
TrajDistLearn + 2xConv 95.72%

Table 8: Impact of the neural network’s depth for each of
the siamese twins on relative distance for Fréchet distance
computation for GISCUP dataset.

Dataset

Distance Metric
Frechet Dis Frechet Hausdor�

Batch Size Batch Size Batch Size
8 32 8 32 8 32

Character 98.76% 97.42% 97.24% 95.86% 97.44% 96.32%
GISCUP 100.00% 100.00% 99.94% 100.00% 99.96% 100.00%

Table 9: E�ect of changing batch size while training on accu-
racy with Relative Distance  0.5. The accuracy for distance
computation does not change signi�cantly with a change in
the batch size.

5.4 Batch Size
We evaluated our approach by experimenting with di�erent batch
sizes for training and their overall impact on the performance, i.e.
training time and relative distance values. We look at the percentage
of trajectory pairs with Relative Distance  0.5 for both datasets
and all distance metrics for ease of understanding.

As represented in Table 9 we generally observed that increasing
the batch size while training did not lead to a signi�cant change in
the accuracy and also led to an increase in the per epoch training
time and, thereby, an increased overall training time.

6 CONCLUSION
In this paper, we address the computationally complex problem
of trajectory distance computation. TrajDistLearn is the �rst deep
learning-based trajectory distance computation framework for all
distance metrics that introduces a unique approach for representing
trajectories as rasterized images (raw rasterized images and map
images) also shows the ability to solve the task of trajectory simi-
larity computation. The essential characteristics of TrajDistLearn
lie in the fact that it is a very intuitive, robust, easy to train and
easy to scale neural network architecture, such that we can use
the same network parameters for all the distance metrics and all
datasets. This work sheds light on several research directions: 1)
Enhanced feature representation to capture various attributes of a
trajectory like direction, time, intensity(or speed), and other possi-
ble physical attributes which would enable better feature learning.
2) E�cient trajectory space partitioning for improved performance
on the convolution operation. 3) Using indexing techniques like
Locality-Sensitive Hashing [5] to pre-process the trajectories. 4)
Using spatial embeddings from this approach for other downstream
applications like [38]. 5) Extending the proposed approach to local-
ized trajectory search based on a set of meta-information.
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