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Intermediate-scale quantum technologies provide new opportunities for scientific discovery, yet they
also pose the challenge of identifying suitable problems that can take advantage of such devices in spite of
their present-day limitations. In solid-state materials, fractional quantum Hall phases continue to attract
attention as hosts of emergent geometrical excitations analogous to gravitons, resulting from the
nonperturbative interactions between the electrons. However, the direct observation of such excitations
remains a challenge. Here, we identify a quasi-one-dimensional model that captures the geometric
properties and graviton dynamics of fractional quantum Hall states. We then simulate geometric quench
and the subsequent graviton dynamics on the IBM quantum computer using an optimally compiled Trotter
circuit with bespoke error mitigation. Moreover, we develop an efficient, optimal-control-based variational
quantum algorithm that can efficiently simulate graviton dynamics in larger systems. Our results open a
new avenue for studying the emergence of gravitons in a new class of tractable models on the existing

quantum hardware.
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Introduction.—While a universal fault-tolerant quantum
computer with thousands of qubits remains elusive, noisy
intermediate-scale quantum (NISQ) devices with a few
qubits are already operational [1-3], albeit with limitations
due to a lack of reliable error correction [4]. This progress
has stirred a flurry of research activity to identify problems
that can take advantage of this recently developed quantum
technology [5]. Utilizing NISQ systems as digitized syn-
thetic platforms to study physics phenomena challenging to
investigate otherwise has emerged as a critical frontier [6].

In strongly correlated electron materials, fractional
quantum Hall (FQH) states are widely studied for their
exotic topological properties, such as excitations with
fractional charge [7,8] and fractional statistics [9,10].
Recently, FQH states have come into focus due to their
universal geometric features such as Hall viscosity [11-13]
and the Girvin-MacDonald-Platzman magnetoroton collec-
tive mode [14,15]. In the long-wavelength limit kK — 0, the
magnetoroton forms a quadrupole degree of freedom that
carries angular momentum L = 2 and can be represented
by a quantum metric § [16]. For this reason, the k — 0
limit of the magnetoroton has been referred to as “FQH
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graviton” [17,18], due to its formal similarity with the
fluctuating space-time metric in a theory of quantum
gravity [19,20].

The experimental detection of the FQH graviton for
v = 1/3 Laughlin state remains an outstanding challenge.
While at large momenta, k ~ £3', with 3 = \/h/eB being
the magnetic length, the magnetoroton mode may be
probed via inelastic light scattering [21-24], the magnet-
roroton enters the continuum near k — O for the v = 1/3
Laughlin state (in contrast to the mode for v =7/3
[25,26]). Haldane proposed that quantum-metric fluctua-
tions can be exposed by breaking rotational symmetry [16].
Following up on this idea, recent theoretical works [27,28]
have probed the FQH graviton by quenching the metric of
“space,” i.e., by suddenly making the FQH state anisotropic
(see also alternative proposals [29-31]). It was found that
such geometric quenches induce coherent dynamics of the
FQH graviton [27], even though the graviton mode resides
at finite energy densities above the FQH ground state. In
contrast, near the FQH liquid-nematic phase transition
[32,33], the graviton is expected to emerge as a gapless
excitation [34-36].
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In this Letter, we realize the FQH graviton in a synthetic
NISQ system—the IBM open-access digitized quantum
processor—and simulate its out-of-equilibrium dynamics.
We first map the problem onto a one-dimensional quantum
spin chain, corresponding to the FQH state on a thin
cylinder (TC). While topological properties of FQH states
have been extensively studied in this regime [37-44], we
show that this limit remarkably captures some geometric
properties of FQH systems, in particular, their quench
dynamics. As a second step, we implement the quench
dynamics on the IBM NISQ device, using two comple-
mentary approaches. On the one hand, we used an
optimally compiled, noise-aware Trotterization circuit with
error mitigation methods [45-47]. This allowed us to
successfully simulate quench dynamics on the IBM device,
overcoming the problem of the large circuit depth. On the
other hand, we devised an efficient optimal-control-based
[48-50] variational quantum algorithm [51-54], analogous
to the quantum approximate optimization algorithm
[55-59] that creates the postquench state using a hybrid
classical-quantum approach [60,61]. We demonstrate that
this method scales favorably with system size, with a
linear-depth circuit depth and only two variational para-
meters. Some details are presented in the Supplemental
Material [62].

Anisotropic Laughlin state near the thin-cylinder limit.—
We focus on the v = 1/3 Laughlin FQH state [7] whose
Hamiltonian near the TC limit is given by [42]

H= E Vioijijy + Vooljijio + Vioitjit
J
+ Vel ¢t eiac; +He (1)
21€j11€j42Cj3¢; + Hee

Here the operators c;, c; (n; = c;cj) destroy or create
an electron in a Landau level orbital localized around
27jt%/L,. We assume the system is defined on a cylinder
of size L; x L, containing N electrons, such that the
filling factor v=N/N,=1/3, with magnetic flux
Ny = (L,Ly)/(2x¢%). The near-TC limit corresponds to
Ly > L, with the area (N,) fixed, which allows us to
neglect longer-range interaction terms beyond those in
Eq. (1). Importantly, the Hamiltonian above describes a 2D
system with strong spatial anisotropy, as opposed to a
strictly 1D limit L, — 0, thus allowing the emergence of
the graviton mode. The interaction matrix elements are
given by

Vi, = (k2 _ mz)e—zﬂz(k2+m2—2ikmg]2)/L§g11 , (2)

which we have generalized to the case of an arbitrary
electron mass tensor g,,, a, b =1, 2. The mass tensor
must be symmetric and unimodular (detg = 1) [16]; hence

we can generally write it as g = exp(Q), where O =
0(2d,d, — 5,,) is a Landau—de Gennes order parameter
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FIG. 1. (a) Geometric quench probes the fluctuations of the
quantum metric § [16]. (b) Entanglement entropy S, for
the v = 1/3 Laughlin state on a cylinder as a function of the
circumference L,. Entropy obeys the area law for sufficiently
large circumferences L, = 5¢p, with a subleading correction
close to the expected value —In(3)/2 (blue star). Data are
obtained using the matrix product method [70,71] with entan-
glement truncation P, = 18. Near the thin-cylinder limit
(shaded), long-range electron hopping becomes strongly sup-
pressed, as shown in the inset.

and d = [cos(¢/2),sin(¢p/2)] is a unit vector [69].
Parameters Q and ¢ intuitively represent the stretch and
rotation of the metric, respectively. The FQH state is
invariant under area-preserving deformations of g, illus-
trated in Fig. 1(a).

Since the Hamiltonian in Eq. (1) is positive semidefinite,
it has a unique (unnormalized) ground state with zero
energy [42],

Vio > A
lwo) = H (1 - V?szet(Snzt’g/Lg)(g]z/gn)Sj> |...100100...),
i \V Vi

(3)

where S i= c; Hc; 12Cj43C; 1s an operator that “squeezes”
two neighboring electrons while preserving their center-of-
mass position [72]. The ground state in the limit L, — 0 is
the product state |...100100...). The off-diagonal squeez-
ing operator is essential for the 1/3 Laughlin state [37].

In previous works [37,42—-44], the ground state of the
model in Eq. (1) and its neutral excitations were studied on
isotropic cylinders, g;; = g, = 1, g1» = 0. In particular, it
was found that the state in Eq. (3) has ~98% overlap
with the ground state of the full Hamiltonian in the range
of circumferences 55 <L, S76p, where V,,/Vio=x
0.2-0.3, justifying the use of the truncated model
Eq. (1) in this regime [42]. We have confirmed that the
same conclusions continue to hold in the presence of mass
anisotropy [62].

As a further justification of the model in Eq. (1), we plot
the entanglement entropy S, of the Laughlin state in a
large system of 100 electrons as a function of the circum-
ference L, in Fig. 1(b). We see that it is possible to reduce
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L, to approximately 5/, where the “area law” for
entanglement entropy [73,74] still holds, but long-range
electron hopping is strongly suppressed. Below, we focus
on this regime, where the key aspects of 2D physics are
preserved, but the system can be mapped to a 1D spin chain
model and thus efficiently simulated on quantum hardware.

Geometric quench.—We now show that, in addition to
the ground state, the effective model in Eq. (1) captures
the high-energy excitations that govern the graviton
dynamics in the FQH phase. We initially prepare the
system in the ground state |yg) in Eq. (3) with isotropic
metric (g1 = g = 1, g1 = 0). At time ¢ = 0, we instan-
taneously introduce diagonal anisotropy, ¢}, = 1/d5, > 1,
and let the system evolve unitarily, under the dynamics
generated by the postquench anisotropic Hamiltonian. We
are interested in the dynamical fluctuations of its quantum
metric § as the system is taken out of equilibrium.

Note that even though g and § are related to one another,
g is an emergent property of a many-body state and not
necessarily equal to g¢. Nevertheless, we can formally
parametrize § using the parameters Q and ¢, representing
the stretch and rotation of the emergent metric. In order to
determine the equations of motion for Q and (}5 we
maximize the overlap between |y (7)) and the family of
trial states in Eq. (3) [75]. When this overlap is close to
unity, we can be confident that we found the optimal metric
parameters O and ¢ describing the state |y(t)).

In Fig. 2, we summarize the results of the graviton
dynamics in the model in Eq. (1) when anisotropy is
suddenly changed from Q = 0 to Q ~ 0.18 while keeping
¢ = 0. Figure 2(a) shows the dynamics of Q and ¢ for
different system sizes N. The dynamics is in excellent
agreement with the bimetric theory in the linear regime [76],

~ n Egt

- . Egt
Q(r) = +2Asin 5 P(t) = :I:2 5 (4)
where E is the energy of the graviton mode in units of V.
As can be seen in Fig. 2(a), the numerical data can be
accurately fitted using Eqgs. (4). The fit yields the oscillation
frequency E, = 1.29. Note that this energy is much higher
than the first excited energy of the quench Hamiltonian. We
identify this energy with the graviton state as evidenced by
the sharp peak in the quadrupole (L = 2) spectral function
I, (w) [77]. The later spectral function is designed to detect
the characteristic d-wave symmetry of the graviton.
Analogous to an oscillating space-time metric induced by
a gravitational wave, I ,(w) is the associated transition rate
due to the dynamics of the oscillating mass tensor [77].
Thus, the model in Eq. (1) reproduces the graviton oscil-
lation as described by the bimetric theory.

Spin-chain mapping.—We use the reduced registers
scheme introduced in Ref. [41] to map the model (1) to
a spin chain; see also Ref. [62] for further details. The
reduced register is a block of three consecutive orbitals that
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FIG. 2. (a) Dynamics of Q and ¢ following the geometric
quench in the TC limit, with L, = 5.477¢p and postquench
anisotropy Q ~ 0.18. Data are for system sizes N =7, 9, 15
electrons. (b) Quadrupole spectral function /;, shows a sharp
peak at the graviton energy E, ~ 1.29, which agrees well with the
frequency of the oscillations in (a).

encodes whether or not the block is squeezed with respect
to the root state | 100, 100, ...). For each block of three sites,
the state of the reduced register is 1 if it is squeezed (i.e.,
011) or O if not (i.e., either 000 or 100). In the root state,
none of the blocks are squeezed and it maps to |0, 0,0, ...).
If we apply the squeezing operator to one block of the root
state, we obtain, e.g., |100,011, 000, ...) — |0,1,0,...). In
terms of reduced registers, squeezing acts as flip of 0 to 1,
so it can be viewed as the Pauli X matrix. However, there is
an important difference in that the Hilbert space is not a
tensor product of reduced registers, since the squeezing can
never generate two neighboring ...17... configurations of
the reduced registers [63,78]. This type of constrained
Hilbert space arises, e.g., in the Fibonacci anyon chain [79].
The inverse mapping is constructed as follows: for any 1
we make a 011 block. A O that follows a 1 (0) gives a
000 (100) block. With this mapping of states, we can show
that the Hamiltonian (1) maps to a local spin-chain
Hamiltonian,

A= Z{(VI,O —=3V30)Ny+VioN Ny
z

F(1 =Ny [Re(Vo )X, =Im(V, )Y (1= Npiy)},
(5)
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FIG. 3. Circuit implementation of the Trotterized unitary U, in
the bulk of the spin chain.

where we omitted the boundary terms for simplicity and
introduced the occupation number N = |1)(1|, Pauli
X =10)(1| 4+ |1){(0|, and Pauli Y = —i|0)(1|+ i|1)(0]
operators.

Quantum simulation.—The standard procedure for sim-
ulating the time evolution e~"#! is to use Trotter decom-
position. Here H is given in Eq. (5) with real V, | and it has
the form H = >, H,. We decompose the evolution oper-

ator into k Trotter steps as e~" ~ [[], U,(t/k)]*, where
&t = t/k and the approximation improves for larger k [80].
In Ref. [62], we derive the circuit which implements a
Trotterized time evolution of our Hamiltonian, and the
subcircuit for the bulk U,(6t) is shown in Fig. 3. Below, we
demonstrate that this circuit yields good results on current
IBM devices with 5 qubits after using noise-aware error
mitigation methods and optimized compilations [45-47].

While the Trotterization algorithm emulates the actual
quantum evolution resulting from FQH quenched
Hamiltonian, it has a relatively large number of entangling
gates. We can access large systems by a hybrid classical-
quantum method that requires classical optimization, using
the following variational ansatz for the final postquench

state |y (1)):

Wl f)) = [[eVeem0-Ne0¥e(000...). (6)
4

where on each reduced register £ we apply alternating gates
N, and [1 = N,_1)X, (on the very first site, due to open
boundary condition, we use X, instead of (1 — N ,_)X,
for £ =1].

The optimal parameters a, f*€[0,27) are
determined at each time step ¢ using classical optimization
by the dual annealing algorithm to maximize the overlap
|(wolUT (1) |wyar(a, B))| with the exact state. Naively, it
appears that the classical optimization needs to be per-
formed for each ¢ and system size. Importantly, however,
we find the optimal parameters a*, #* to exhibit a simple
oscillatory behavior as a function of time, as well as weak
dependence on the system size as shown in Figs. 4(a)
and 4(b). The data for system sizes N =7, ..., 13 almost
collapse, allowing a smooth extrapolation to the thermo-
dynamic limit (N — o0), shown as the solid black line.

a
= 0.06 Ansatz
N
=
. 0.04
o
=
= oo02f
S
=
T or 1 1 L
0 5 10 15 20
t
FIG. 4. (a), (b) Optimal variational parameters a* and f* for

N = 7-13 particles and their extrapolation to N — oo (solid
black line). Optimal parameters vary smoothly with time and
exhibit weak finite-size effects. (¢) Comparison of the variational
ansatz against TEBD simulation for N = 60 for the overlap of the
time-evolved state with the root state. The parameters of the
variational ansatz are extrapolated to the same system size,
N = 60. The ansatz with extrapolated parameters exhibits ex-
cellent agreement with the TEBD results. TEBD simulations
were performed using a bond dimension 20 with a time step
At = 0.01, resulting in truncation error 1075.

In Fig. 4(c), we have checked using time-evolved block
decimation (TEBD) [81] that the extrapolated parameters
produce excellent agreement with direct TEBD calculation
of |w(t)) for larger systems. Thus, the weak system-size
dependence of the variational parameters eliminates the
need to directly perform the classical optimization for the
actual size of the system, providing access to system sizes
for which the classical optimization is infeasible.

Our variational algorithm’s circuit depth scales as the
number of qubits N independent of the evolution time 7. As
for Trotterization, since we have a local lattice model in one
dimension with no explicit Hamiltonian time dependence,
the total circuit depth is expected to scale as Nt for a fixed
error tolerance [82,83]. Despite higher complexity,
Trotterization corresponds to the actual unitary operator
describing the quantum evolution and does not need any
classical optimization or variational ansatz. Both algo-
rithms have good scalability potential to more qubits.

Results on the IBM quantum processor.—In Fig. 5, we
present our measurements of the root state fidelity
[{(w(2))|100100...... )|?, the local density (n;) and the
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FIG. 5. N =35 quench results for the time dependence of

fidelity, density, and correlation function. Comparison between
exact diagonalization results, k = 15 depth Trotterization circuit
on the IBM simulator, gate optimized unitary output from
IBM-Perth, and variational ansatz results from IBM-Santiago.
The dynamics were simulated on IBM-Perth on January 7, 2022
and on IBM-Santiago on June 12, 2021.

equal-time density-density correlation function C; ;(t) =
—(n;(t)n;(t)) 4 (n;(1))(n;(¢)). While these quantities are
in terms of the original fermionic basis, they are easily
extracted from measurements in the reduced basis using the
rules discussed above Eq. (5). As shown in Fig. 5, the
variational results are in excellent agreement with the
simulations. Similarly, the error-mitigated Trotter algorithm
faithfully generates oscillations with the expected graviton
frequency despite deeper circuits and higher execution-time
error rates than the variational algorithm, which only
induce quantitative shifts.

We note that the noise levels of the IBM devices vary
widely. Using Qiskit library, we executed error-mitigated
circuit for the Trottrization algorithm on ibmgq_perth
processor [84] with readout error, CNOT noise, and T2
dephasing time of roughly 1.4%, 1.7%, and 109 us,
respectively. The variational ansatz was executed on
IBM’s ibmq_santiago processor [84] with averaged readout
error, CNOT noise, and T2 dephasing time of roughly 1.5%,
0.6%, and 120 us, respectively. We also performed simu-
lations of our circuits in Qiskit for comparison. Using
postselection methods, we improve the measurements by
discarding states that lie outside the physical Hilbert space.

Conclusions.—We showed that quantum-geometrical
features of FQH states can be realized in an effective 1D
model that has an efficient quantum-circuit representation.
Our 1D model makes efficient use of resources, as each

qubit corresponds to three Landau orbitals, reminiscent of
holographic quantum simulation [85]. As a proof of
principle, utilizing the quantum-circuit mapping, we devel-
oped efficient quantum algorithms that allowed us to
simulate graviton dynamics on IBM quantum processors.
We used state-of-the-art error mitigation to successfully run
the deep Trotterization circuit, which does not require any
classical optimization. We also developed a variational
algorithm with a linear circuit depth (independent of the
evolution time), which makes use of classical optimization
but can be scaled to the thermodynamic limit, similar to
approaches based on infinite matrix-product states [§6—89].
We expect these results will motivate further analytical
investigations into tractable models of graviton dynamics in
condensed matter systems, as well as their realizations on
NISQ devices.

In compliance with EPSRC policy framework on
research data, this publication is theoretical work that does
not require supporting research data.
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