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Abstract

1. Species distribution models (SDM) are widely used in diverse research areas be-
cause of their simple data requirements and application versatility. However,
SDM outcomes are sensitive to data input and methodological choices. Such
sensitivity and diverse applications mean that flexibility is necessary to create
SDMs with tailored protocols for a given set of data and model use.

2. We introduce the r package FLexsbm for supporting flexible species distribution
modelling workflows. FLexspm functions and their arguments serve as building
blocks to construct a specific modelling protocol for user's needs. The main
FLExsbM features are modelling flexibility, integration with other modelling tools,
simplicity of the objects returned and function speed. As anillustration, we used
FLExsbM to define a complete workflow for California red fir Abies magnifica.

3. This package provides modelling flexibility by incorporating comprehensive
tools structured in three steps: (a) The Pre-modelling functions that prepare
input, for example, sampling bias correction, sampling pseudo-absences and
background points, data partitioning, and reducing collinearity in predictors.
(b) The Modelling functions allow fitting and evaluating different modelling
approaches, including individual algorithms, tuned models, ensembles of small
models and ensemble models. (c) The Post-modelling functions include tools re-
lated to models' predictions, interpolation and overprediction correction.

4. Because FLExsDM comprises a large part of the SDM process, from outlier detec-
tion to overprediction correction, FLExsDM users can delineate partial or com-
plete workflows based on the combination functions to meet specific modelling

needs.
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1 | INTRODUCTION

Species distribution modelling (SDM) is a modelling technique that
predicts species distribution range combining, in its simplest form,
species occurrences and spatial environmental data (Franklin, 2010;
Peterson et al., 2011). SDMs are capable of predicting different distri-
bution types (potential vs. realized distribution Peterson et al., 2011),
for different regions or periods (past or future), being combined with
other biodiversity data (e.g. functional and phylogenetic diversity),
or coupled with other modelling approaches (e.g. metapopulation or
individual-based models). This simplicity in data needed and applica-
tion versatility has led SDM to become a popular tool in research areas
such as ecology, conservation, biogeography, palaeobiogeography and
epidemiology (Franklin, 2013; Peterson et al., 2011).

SDM outcomes are sensitive to data input and methodological
choices. For instance, suitability predicted by SDM can be affected
by the area used for model calibration, type of data partitioning for
calibration and validation, number and type of algorithms and their
parametrization, or the number, quality, and spatial configuration
of species records and absences, pseudo-absence, or background
points. Such sensitivity and multiplicity of uses mean that flexibility
is needed to create SDMs with tailored protocols for a given set of
data and specific model use.

Here we present FLExsDM, a new R package created to provide
SDM workflow flexibility by incorporating comprehensive tools
for data preparation, model fitting, prediction and evaluation
(Franklin, 2010). FLExsbm consists of >40 functions that can be used
independently or combined with other modelling tools (Figure 1).
One of the most exciting features of FLeExsbM is its broad parametriza-
tion capacity using a wide variety of functions and arguments. This

allows users to define their complete or partial modelling procedure.

2 | PACKAGE OVERVIEW

The main features of FLExspm are as follows:

1. Modelling flexibility: One of the most important goals of this
R package is to offer a flexible modelling procedure by com-
bining many independent functions with multiple arguments
that serve as building blocks to construct a specific modelling
protocol for user's needs. Furthermore, dividing the modelling
process into individual functions allows control and inspection
of the output of each step (from filtering occurrence data to
correcting overprediction).

2. Integration with other modelling tools: This modelling procedure
is based on modular functions and allows users to use a required
function without depending on this package to complete the
modelling process. For instance, the outputs of the functions for
defining calibration area, data partitions or a pseudo-absence
sample can be saved and used with other modelling tools.
Furthermore, data generated outside FLexsom can be used with
FLExsDM functions and workflows, such as a sampling bias layer for

sampling background points or correcting the overprediction of
models fitted using other software.

3. Simplicity of the object(s) returned by function output: FLEXsDM
functions return a single or combination of four common R ob-
jects: (a) tibble tables from the prLyr package, (b) SpatialVect vector
spatial data and (c) SpatRaster raster spatial data, the last two from
TERRA package, these three objects can be combined in a (iv) list
class object. Additionally, Modelling functions return algorithm-
specific objects (see Table 1). This feature facilitates a posteriori
inspection, manipulation and exportation of function outputs, re-
ducing memory requirements.

4. Function speed: Because FLExsbM uses the recently developed TErrA
package as a dependency, spatial data manipulation is faster and re-
quires less computer memory than was used by the rasTer package.
Additionally, FLexspm uses the ForeacH and poParaLLEL packages, al-

lowing parallel data processing and speeding up function execution.

In the FLExsDM package, functions are grouped into three modelling
steps. Pre-modelling includes functions that prepare input data (e.g.
species occurrences thinning, sample pseudo-absences or background
points, delimiting calibration area, reducing collinearity in predictors).
The Modelling step includes functions related to model construction
and validation. Post-modelling includes tools for geographical predic-
tions, model evaluation and overprediction correction (Figure 1).

3 | PRE-MODELLING FUNCTIONS

3.1 | Delimitating a calibration area calib_area

Delimiting a calibration area (a.k.a. species' accessible area) is not a
trivial decision because it interacts with other modelling steps, such as
sampling pseudo-absences and background points, and affects perfor-
mance metrics and predicted suitability patterns (Barve et al., 2011;
Giovanelli et al., 2010; VanDerWal et al., 2009). The calib area
function delimits the calibration areas based on the following meth-
ods: ‘buffer’ defines a calibration area using a buffer around pres-
ences; ‘mcp’ uses a minimum convex polygon constructed on species
presences; ‘bmcp’ uses a minimum convex polygon and adds a buffer
around it; and ‘mask’ delimits the calibration area based on the pol-
ygons intersected by presences. The polygons used in the ‘mask’
method could be based on boundaries of ecological regions, veg-
etation types, hydrological basins or any other data that ecologically
defines a species' accessible area. The package allows any externally
defined calibration area to be named in the ‘calibarea’ argument found

in sample backgroundand sample pseudoabs function.

3.2 |
family

Filtering occurrences—occfilt_function

FLExsbM provides functions for thinning species occurrences

in geographical or environmental space implemented in the
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FIGURE 1 Functions of FLExsoM
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TABLE 1 Algorithms implemented in
FLEXsDM, the function family where were
implemented, function suffix and package
dependency

ensembled models
fit_ensemble()

Modeling

Create directory
structure
sdm_directory()

Sample background and
pseudo-absence
sample_background()

sample_pseudoabs ()

Q(z 0\\(\0"

O
6\ Data partitioning
part_random()
part_sblock()
part_sband()
part_senv()

Collinearity reduction
correct_colinvar()

Calibration area Predict models Interpolate
delimitation . suitability values
calib_area() sdm_predict() interp()

Extract
environmental data
sdm_extract()

Occurrence

data filtering
occfilt_env()

occfilt_geo()

Overprediction
correction
msdm_priori()

msdm_posteriori()

Summarize models
outputs

sdm_summarize()

Algorithm name

Generalized Additive Models

Gaussian Process models
Generalized Boosted Regression
Generalized Linear Models
Maximum Entropy

Artificial Neural Networks
Random Forest

Support Vector Machine

Function family Suffix Package
fit ,tune_ ,esm_ gam MGCv

fit ,esm gau GRAF

fit ,tune_ ,esm_ gbm GBM

fit ,esm glm STATS

fit ,tune_ ,esm_ max MAXNET

fit ,tune ,esm_ net NNET

fit_, tune_ raf RANDOMFOREST
fit ,tune ,esm_ svm KERNLAB

occfilt geo and occfilt env functions. occfilt geo
uses the same process implemented in the r package spTHIN to
geographically filter occurrence points is based on a minimum
nearest-neighbour distance (Aiello-Lammens et al., 2015). Three
methods can be used to define minimum distance: ‘moran’ deter-
mines the threshold as the minimum distance which minimizes the
spatial autocorrelation in occurrence data, following a Moran's

semi-variogram; ‘cellsize’ filters occurrences based on the spatial

resolution of predictors, and in addition that minimum distance can
be adjusted to represent a larger grid cell size that are multiples of
the original predictors; finally, ‘determined’ requires a user-defined
minimum distance in kilometres. The environmental thinning func-
tion is based on Varela et al. (2014). However, occfilt env has
the advantage of running filtering procedure quickly, working with
the original variables without performing a PCA beforehand, using
any number of variables and multidimensional grid size. As far as
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we know, this procedure with such improvements is not available

in another r package.

3.3 | Pseudo-absence and background point
sampling—sample function family

FLexsbM allows users to sample background points and pseudo-
absences with the sample background and sample pseudoabs
functions. We implemented three background allocation methods:
‘random’ randomly samples background points in a given study area;
‘thickening’ is a new method proposed by Vollering et al. (2019) that
selects background points that are geographically biased towards
species presences based on the superposition of buffers around
presences; and ‘biased’ samples background points using a ras-
ter layer representing sampling effort of occurrences throughout
the study area approach (e.g. presence kernel density, Fourcade
et al., 2014; Phillips et al., 2009) without biasing towards presences
as in ‘thickening’. These methods allow modellers to generate back-
ground samples for specific situations (e.g. rare species or biased
samples; Elith et al., 2010; Vollering et al., 2019).

Pseudo-absences sample size and allocation method affect SDM
outcomes (Liu et al., 2019). The sample pseudoabs function im-
plements five allocation approaches: ‘random’ randomly allocates
pseudo-absences throughout the area used for model fitting. ‘env_
const’ environmentally constrains pseudo-absences to regions with
lower suitability values predicted by a Bioclim model (Busby, 1991).
With ‘geo_const’ pseudo-absences are sampled a given distance
away from presences. ‘geo_env_const’ combines ‘env_const’ and
‘geo_const’. ‘geo_env_km_const’ constrains sampling using a three-
level procedure, similar to geo_env_const with an additional step
that distributes the pseudo-absences in environmental space using a
K-means cluster analysis.

Both functions can sample data within a calibration area or re-
gions with given values (e.g. groups delimited by geographical block
or band partition). Spatial constraint types are relevant because they
control how much data will be allocated in a defined region (see ex-

ample, below).

3.4 | Data partitioning—part_ function family

We implemented a broad range of data partition methods suit-
able for different modelling conditions, such as the amount of
data, modelling approach or use of models. part random per-
forms partitioning based on the random selection of training and
testing groups, such as k-fold, repeated k-fold, leave-one-out
cross-validation (a.k.a. Jackknife) and bootstrapping (Fielding
& Bell, 1997). The other part_ functions are geographically or
environmentally structured. Structured partition methods are
required to evaluate model transferability, relevant when using
SDMs to project models onto different periods or regions (Roberts
et al., 2017; Santini et al., 2021).

The part sband and part_sblock functions allow testing
with different numbers of partitions using latitudinal or longitudi-
nal bands, or square blocks, respectively. Both functions explore
a range of band or block sizes and automatically select the best
size for a given presence, presence-absence or presence-pseudo-
absence dataset. Size selection uses an optimization procedure
that explores partition size in three dimensions determined by
spatial autocorrelation (measured by Moran's [), environmental
similarity (Euclidean distance) and differences in the amount of
data among partition groups (Standard Deviation—SD; Velazco
et al., 2019). This procedure will iteratively select those partitions
with autocorrelation values less than the first quartile of Moran's
I, then those with environmental similarity values greater than the
third quartile of the Euclidean distances, and finally, those with
a difference in the amount of data less than the first quartile of
SD. This selection is repeated until only one partition is retained
(Velazco et al., 2019). The optimization procedure uses quartiles
because it pragmatically selects the best subset for each parame-
ter, quartiles being more restrictive than just using the mean. This
partition selection method: (a) is not subjective, (b) balances the
environmental similarity and spatial autocorrelation between par-
titions, and (c) controls the selection of partitions with few data
that may be problematic for model fitting.

part senv partitions data based on its environmental con-
dition. This function explores a broad range of partition numbers
(i.e. groups in environmental space) based on K-mean clustering
and returns the number best suited for a given presence, presence-
absence or presence-pseudo-absence database. part senv selects
the best partition number using the same optimization procedure
used inpart sbandand part sblock.

All part _functions will add columns to an occurrence data-
set with partition groups (using column names that start with
‘part’). Because partitions are stored in columns, it is possible to
use partition groups defined outside of the package, for instance,
partitioning using temporal bins or native vs. invaded localities.
Because these partition groups are stored as numeric or text
(using the words ‘train’ and ‘test’) and with column names that
start with .part, the Modelling functions will interpret them as

partition information.

3.5 | Collinearity correction of predictors variable
correct_colinvar

Predictor collinearity is a common issue for species distribution
models, leading to model overfitting and unstable parameters esti-
mation, which affect model projections (Brun et al., 2020; De Marco
& Nobrega, 2018). correct colinvar has four methods to deal
with collinearity: ‘pearson’ detects pair of predictors with a Pearson
correlation index higher than a determined threshold; ‘vif’ is based
on the variance inflation factor (VIF) and removes those predictors
with a higher VIF than the chosen threshold; ‘fa’ performs a facto-
rial analysis to reduce dimensionality and selects the predictor with
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the highest correlation to each axis; finally, ‘pca’ performs a principal
components analysis in the predictors and returns the axes that ac-

count for 95% of the total variance in the system as predictors.

3.6 | Additional pre-modelling functions

The sdm_directory function assists in organizing inputs (e.g. oc-
currences, predictors) and outputs by creating folders (directories)
based on user specifications, such as choice of algorithms, ensemble
methods and model projections to new geographical regions or peri-
ods. To implement SDMs in FLExsDM, users first need a database with
spatial coordinates of species occurrences, absences/background
points/pseudo-absences and environmental data extracted at each
point location. The sdm_extract function returns the original da-
tabase and additional columns of the environmental values stored in
the raster object.

4 | MODELLING FUNCTIONS

Because the choice of modelling algorithm is one of the main sources
of model uncertainty (Watling et al., 2015) and there is no single
modelling method that can perform well in all modelling situations
(Qiao et al., 2015), rLexspm allows construction of models based on
different algorithms and approaches (Table 1). Thus, we developed
the following function families: (a) £it : creates models based on
default hyperparameter values or with user-specified values; (b)
tune : creates models by hyperparameter tuning, (c) esm : uses
the ensembles of small models approach (Breiner et al., 2015) and
(d) fit _ensemble: create ensemble models. All these functions
work with continuous and categorical predictors and allow para-
metrization with user-specified formulas. For fit , tune and
esm_ function families, an algorithm name is specified with the last
three letters of the functions (Table 1). All Modelling functions cre-
ate and validate models with any combination of outputs from the

Pre-modelling functions.

41 | £it_family functions
This family of functions fits and validates eight algorithms with de-
fault hyperparameters values. However, hyperparameters are pro-

vided as arguments so that the user can specify other values.

4.2 | tune_ family functions

Models' hyperparameter values affect the degree of model com-
plexity and the predicted species' geographical range; therefore, se-
lecting the best hyperparameter values for a given dataset could be
preferred over default ones (Fourcade, 2021; Morales et al., 2017).
The tune family functions allow tuning of eight algorithms based on

a grid search approach, that is, ‘brute-forcing’ all possible combina-
tions of hyperparameter values. One of the most important features
of tuning in FLExsbM is that it can be based on any partition methods,
thresholds and performance metrics. For instance, it is possible to
tune a Maximum Entropy model based on spatial block partitioning,
the Boyce metric and one or more thresholds. We recommend tun-
ing models whenever possible because the best values of hyperpa-
rameters are specific to a modelling condition (e.g. partition method,
number of records, predictors variables). However, the time for run-
ning tuned models can be considerably higher than those using de-
fault hyperparameters.

4.3 | esm_family functions

Ensembles of small models is an approach for modelling rare or
poorly sampled species (Breiner et al., 2015). This method creates
bivariate (two predictors) models with all the pairwise combinations
of available predictors and performs an ensemble based on the av-
erage of suitability weighted by Somers' D metric (an example for
modelling a rare species is available at https://sjevelazco.github.io/

flexsdm/articles/vO5_Rare_species_example.html

44 | fit ensemble function

An ensemble approach in SDM is used to reduce model uncertainty
or get a consensus prediction (Aratjo & New, 2007). The function
fit ensemble allows users to perform and validate an ensemble
based on different modelling methods. The ability to validate an
ensemble model is a notable attribute of our package. The follow-
ing ensemble methods are available: (a) average of different models'
suitability; (b) weighted average based on model performance; (c)
average of the best models, the set of algorithms with a higher-than-
average performance among the algorithms (for this and previous
methods, it is possible to use any performance metric); (d) averaging
performed only on cells with suitability values above the selected

threshold; and (e) median of models' suitability.

4.5 | Model performance metrics and
thresholds—sdm_eval

FLEXSDM supports model evaluation based on several performance
metrics and threshold types (Freeman & Moisen, 2008; Leroy
et al., 2018) using the sdm_eval function, which interacts with all
previous modelling functions. The range of performance metrics is
important because some will be more appropriate than others de-
pending on, for example, the quality of species occurrence data or
data type used for modelling (Table 2; Leroy et al., 2018). Threshold
criteria are used to divide SDM-generated probability values into a
binary (present, absent) prediction, either for evaluation (Table 2) or
for application of the SDM. The threshold criteria (Liu et al., 2005)
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Performance metric

True-Positive Rate or Sensitivity (TPR) Yes
True-Negative Rate or Specificity (TNR) Yes
Sorensen Yes
Jaccard Yes
F-measure on presence-background (FPB) Yes
Omission Rate (OR) Yes
True Skill Statistic (TSS) Yes
Kappa Yes
Area Under Curve (AUC) No
Continuous Boyce index (BOYCE) No
Inverse Mean Absolute Error (IMAE)? No

Dependent of threshold

TABLE 2 Performance metric
implemented in FLExsDM, their dependency
0-1 of threshold and range

0-1
0-1
0-1
0-2
0-1
-1-1
0-1
0-1
=il=dl
0-1

Range

2IMAE is calculated as 1 - (Mean Absolute Error) to be consistent with the other metrics where the
higher the value of a given performance metric, the greater the model's accuracy.

available are those at which: (a) there is no omission, (b) the sensi-
tivity and specificity are equal, (c) the threshold that maximizes the
TSS), (d) Jaccard is the highest, (e) Sorensen is highest, (f) FPB is high-

est, or (g) based on a specified sensitivity value.

5 | POST-MODELLING FUNCTIONS

5.1 | Method for correcting model overprediction

Sometimes, models are needed that estimate ranges close to realized
distributions (Peterson & Soberdn, 2012). Models that overpredict this
range can produce misleading results and misguide conservation assess-
ments (Velazco et al., 2020). FLexsbM provides nine constraining methods
adapted from the code of the mspm package (Mendes et al., 2020). These
constraining methods can be grouped into those that generate predictor
variables that are used in modelling fitting (msdm priori) and those
where constraints are based on the interaction of observed species
presences and suitability patterns (msdm posteriori). Some of these
methods can increase the error of omission; consequently, they must be
used carefully with species with low detectability (Mendes et al., 2020).
We advise using these approaches to create models used only for cur-

rent conditions and not for different time periods (past or future).

5.2 | Additional post-modelling functions
sdm_summarize merges model performance tables from different
modelling functions. sdm predict performs spatial predictions for
individual or ensemble models, producing maps of continuous suit-
ability, binary predictions based on one or more specified thresholds
or continuous suitability above a given threshold. Interp makes an-
nual maps of suitability by interpolating between suitability maps
for two time periods; interpolation could be useful when SDMs are
coupled to, for example, spatially explicit population or metapopula-
tion models.

5.3 | rLexspM and other SDM packages for r

Over the last decade, several r packages have been published offer-
ing complete or partial SDM workflows. We found that, on average,
24% of rLExsDM features are shared with other r packages (Tables S1
and S2). The most similar packages were enmtML (64%), BIOMOD2
(37%) and sspm (32%). Features that distinguish FLexspm from most
other packages (i.e. are unique to rLexsbm or are shared with only a
few other packages) are related to occurrences filtering, geographi-
cal and environmental partitioning, algorithm tuning based on any
partition methods, some threshold types and performance metrics,
ensembles of small models, and overprediction correction (Table S2).
Although rLexsom shares several features with ENMTML (and not
with other packages), the main difference is that rLexsom allows these
features to be used independently of each other.

SDM is still a developing field in which new and improved meth-
ods are constantly being proposed. Consequently, it is difficult for a
package to offer all modelling possibilities and always be up to date.
FLExsoM encompasses a broad range of the SDM workflow; however,
other packages provide alternative methods and complementary
tools. It is necessary to integrate different packages to implement
state-of-the-art SDM. rLexspm supports such integration because
modelling procedures are constructed with individual functions
and simple and easily handled objects are returned. For instance,
the pre-modelling functions can be used in combination with pack-
ages that lack pre-modelling functionality such as biomod2, ecospat,
ENMeval, kuenm, sdm or SDMtune. Additionally, the overprediction
correction and interpolation functions can be used with predicted

distributions of any other package (Table S2).

6 | EXAMPLE

We illustrate the use of FLExspm to model the distribution of California
red fir Abies magnifica (https://sjevelazco.github.io/flexsdm/articles/
v04_Red_fir_example.html). Red fir is a high-elevation conifer tree
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FIGURE 2 FrLexspm outputs for (a) (b)
the example modelling workflow for 42°N
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sampling bias of presences was corrected 40°N 12 °
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sampled within each partition block, both 38°N
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each partition. (c) Suitability predicted
by an ensemble model. (d) Suitability 36°N
overprediction was corrected by
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species whose geographical range extends through the Sierra Nevada
in California into the Cascade Ranges of Oregon, USA. We used species
occurrence data compiled from several sources (Hannah et al., 2008;
calflora.org; wildlife.ca.gov/Data/BIOS) with the following predictors:
climatic water deficit, summer precipitation, winter precipitation, and
minimum temperature of the coldest month sourced from the Basin
Characterization Model (http://climate.calcommons.org/bcm).

A calibration area was delimited by a 100-km buffer around
presences using calib area; then, species presences were envi-
ronmentally filtered using occ£ilt env with eight bins (Figure 2a).
With part sblock, the presence data were spatially partitioned
into four groups, after testing 30 grid-sizes. The get block func-
tion was used to produce a map layer with partition information
using the resolution and extent of the environmental variables.
Then we used this layer for allocating a stratified sample of pseudo-
absences and background points with sample background and
sample pseudoabs, respectively. The number of pseudo-absences
and background points were set equal to 10 times the number of

presences found in each partition, respectively (Figure 2b). We used
the modelling algorithms Maxent, Gaussian Process and Generalized
Linear Model, which were fitted and validated by tune max, fit
gauand fit glm. The final model consisted of a weighted mean en-
semble fitted and validated with fit ensemble and predicted with
sdm_predict (Figure 2c). Finally, we used the occurrences-based
restriction method (Mendes et al., 2020) in the msdm_posteriori

to correct model overprediction (Figure 2d).

7 | CONCLUSIONS

FLEXSDM is a new R package that offers comprehensive and flexible
tools for species distribution modelling, ranging from outlier detec-
tion to overprediction correction. FLExsDM users can delineate partial
or complete modelling workflows based on the combination of >40
functions to meet specific modelling needs. The main FLexsbMm fea-

tures are its modelling flexibility, integration with other modelling
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tools, simplicity of the objects returned, and function speed. Novel
innovations in this sbm package include model tuning functions
based on any partition methods, thresholds, and performance met-
rics, ensemble model validation, flexible data partitioning, environ-
mental occurrence filtering, and overprediction correction.
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