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Abstract
1.	 Species distribution models (SDM) are widely used in diverse research areas be-

cause of their simple data requirements and application versatility. However, 
SDM outcomes are sensitive to data input and methodological choices. Such 
sensitivity and diverse applications mean that flexibility is necessary to create 
SDMs with tailored protocols for a given set of data and model use.

2.	 We introduce the r package flexsdm for supporting flexible species distribution 
modelling workflows. flexsdm functions and their arguments serve as building 
blocks to construct a specific modelling protocol for user's needs. The main 
flexsdm features are modelling flexibility, integration with other modelling tools, 
simplicity of the objects returned and function speed. As an illustration, we used 
flexsdm to define a complete workflow for California red fir Abies magnifica.

3.	 This package provides modelling flexibility by incorporating comprehensive 
tools structured in three steps: (a) The Pre-modelling functions that prepare 
input, for example, sampling bias correction, sampling pseudo-absences and 
background points, data partitioning, and reducing collinearity in predictors. 
(b) The Modelling functions allow fitting and evaluating different modelling 
approaches, including individual algorithms, tuned models, ensembles of small 
models and ensemble models. (c) The Post-modelling functions include tools re-
lated to models' predictions, interpolation and overprediction correction.

4.	 Because flexsdm comprises a large part of the SDM process, from outlier detec-
tion to overprediction correction, flexsdm users can delineate partial or com-
plete workflows based on the combination functions to meet specific modelling 
needs.
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1  |  INTRODUC TION

Species distribution modelling (SDM) is a modelling technique that 
predicts species distribution range combining, in its simplest form, 
species occurrences and spatial environmental data (Franklin, 2010; 
Peterson et al., 2011). SDMs are capable of predicting different distri-
bution types (potential vs. realized distribution Peterson et al., 2011), 
for different regions or periods (past or future), being combined with 
other biodiversity data (e.g. functional and phylogenetic diversity), 
or coupled with other modelling approaches (e.g. metapopulation or 
individual-based models). This simplicity in data needed and applica-
tion versatility has led SDM to become a popular tool in research areas 
such as ecology, conservation, biogeography, palaeobiogeography and 
epidemiology (Franklin, 2013; Peterson et al., 2011).

SDM outcomes are sensitive to data input and methodological 
choices. For instance, suitability predicted by SDM can be affected 
by the area used for model calibration, type of data partitioning for 
calibration and validation, number and type of algorithms and their 
parametrization, or the number, quality, and spatial configuration 
of species records and absences, pseudo-absence, or background 
points. Such sensitivity and multiplicity of uses mean that flexibility 
is needed to create SDMs with tailored protocols for a given set of 
data and specific model use.

Here we present flexsdm, a new r package created to provide 
SDM workflow flexibility by incorporating comprehensive tools 
for data preparation, model fitting, prediction and evaluation 
(Franklin, 2010). flexsdm consists of >40 functions that can be used 
independently or combined with other modelling tools (Figure  1). 
One of the most exciting features of flexsdm is its broad parametriza-
tion capacity using a wide variety of functions and arguments. This 
allows users to define their complete or partial modelling procedure.

2  |  PACK AGE OVERVIE W

The main features of flexsdm are as follows:

1.	 Modelling flexibility: One of the most important goals of this 
r package is to offer a flexible modelling procedure by com-
bining many independent functions with multiple arguments 
that serve as building blocks to construct a specific modelling 
protocol for user's needs. Furthermore, dividing the modelling 
process into individual functions allows control and inspection 
of the output of each step (from filtering occurrence data to 
correcting overprediction).

2.	 Integration with other modelling tools: This modelling procedure 
is based on modular functions and allows users to use a required 
function without depending on this package to complete the 
modelling process. For instance, the outputs of the functions for 
defining calibration area, data partitions or a pseudo-absence 
sample can be saved and used with other modelling tools. 
Furthermore, data generated outside flexsdm can be used with 
flexsdm functions and workflows, such as a sampling bias layer for 

sampling background points or correcting the overprediction of 
models fitted using other software.

3.	 Simplicity of the object(s) returned by function output: flexsdm 
functions return a single or combination of four common R ob-
jects: (a) tibble tables from the dplyr package, (b) SpatialVect vector 
spatial data and (c) SpatRaster raster spatial data, the last two from 
terra package, these three objects can be combined in a (iv) list 
class object. Additionally, Modelling functions return algorithm-
specific objects (see Table 1). This feature facilitates a posteriori 
inspection, manipulation and exportation of function outputs, re-
ducing memory requirements.

4.	 Function speed: Because flexsdm uses the recently developed terra 
package as a dependency, spatial data manipulation is faster and re-
quires less computer memory than was used by the raster package. 
Additionally, flexsdm uses the foreach and doParallel packages, al-
lowing parallel data processing and speeding up function execution.

In the flexsdm package, functions are grouped into three modelling 
steps. Pre-modelling includes functions that prepare input data (e.g. 
species occurrences thinning, sample pseudo-absences or background 
points, delimiting calibration area, reducing collinearity in predictors). 
The Modelling step includes functions related to model construction 
and validation. Post-modelling includes tools for geographical predic-
tions, model evaluation and overprediction correction (Figure 1).

3  |  PRE- MODELLING FUNC TIONS

3.1  |  Delimitating a calibration area calib_area

Delimiting a calibration area (a.k.a. species' accessible area) is not a 
trivial decision because it interacts with other modelling steps, such as 
sampling pseudo-absences and background points, and affects perfor-
mance metrics and predicted suitability patterns (Barve et al., 2011; 
Giovanelli et al.,  2010; VanDerWal et al.,  2009). The calib_area 
function delimits the calibration areas based on the following meth-
ods: ‘buffer’ defines a calibration area using a buffer around pres-
ences; ‘mcp’ uses a minimum convex polygon constructed on species 
presences; ‘bmcp’ uses a minimum convex polygon and adds a buffer 
around it; and ‘mask’ delimits the calibration area based on the pol-
ygons intersected by presences. The polygons used in the ‘mask’ 
method could be based on boundaries of ecological regions, veg-
etation types, hydrological basins or any other data that ecologically 
defines a species' accessible area. The package allows any externally 
defined calibration area to be named in the ‘calibarea’ argument found 
in sample_background and sample_pseudoabs function.

3.2  |  Filtering occurrences—occfilt_ function  
family

flexsdm provides functions for thinning species occurrences 
in geographical or environmental space implemented in the 
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occfilt_geo and occfilt_env functions. occfilt_geo 
uses the same process implemented in the r package spThin to 
geographically filter occurrence points is based on a minimum 
nearest-neighbour distance (Aiello-Lammens et al.,  2015). Three 
methods can be used to define minimum distance: ‘moran’ deter-
mines the threshold as the minimum distance which minimizes the 
spatial autocorrelation in occurrence data, following a Moran's 
semi-variogram; ‘cellsize’ filters occurrences based on the spatial 

resolution of predictors, and in addition that minimum distance can 
be adjusted to represent a larger grid cell size that are multiples of 
the original predictors; finally, ‘determined’ requires a user-defined 
minimum distance in kilometres. The environmental thinning func-
tion is based on Varela et al. (2014). However, occfilt_env has 
the advantage of running filtering procedure quickly, working with 
the original variables without performing a PCA beforehand, using 
any number of variables and multidimensional grid size. As far as 

F I G U R E  1  Functions of flexsdm 
package structured in three modelling 
steps: Pre-modelling (functions that 
prepare modelling input), modelling 
(functions related to model construction 
and validation) and post-modelling (tools 
related to models' predictions, inspection 
and correction)

Algorithm name Function family Suffix Package

Generalized Additive Models fit_ , tune_ , esm_ gam mgcv

Gaussian Process models fit_ , esm_ gau GRaF

Generalized Boosted Regression fit_ , tune_ , esm_ gbm gbm

Generalized Linear Models fit_ , esm_ glm stats

Maximum Entropy fit_ , tune_ , esm_ max maxnet

Artificial Neural Networks fit_ , tune_ , esm_ net nnet

Random Forest fit_ , tune_ raf randomForest

Support Vector Machine fit_ , tune_ , esm_ svm kernlab

TA B L E  1  Algorithms implemented in 
flexsdm, the function family where were 
implemented, function suffix and package 
dependency
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we know, this procedure with such improvements is not available 
in another r package.

3.3  |  Pseudo-absence and background point 
sampling—sample_ function family

flexsdm allows users to sample background points and pseudo-
absences with the sample_background and sample_pseudoabs 
functions. We implemented three background allocation methods: 
‘random’ randomly samples background points in a given study area; 
‘thickening’ is a new method proposed by Vollering et al. (2019) that 
selects background points that are geographically biased towards 
species presences based on the superposition of buffers around 
presences; and ‘biased’ samples background points using a ras-
ter layer representing sampling effort of occurrences throughout 
the study area approach (e.g. presence kernel density, Fourcade 
et al., 2014; Phillips et al., 2009) without biasing towards presences 
as in ‘thickening’. These methods allow modellers to generate back-
ground samples for specific situations (e.g. rare species or biased 
samples; Elith et al., 2010; Vollering et al., 2019).

Pseudo-absences sample size and allocation method affect SDM 
outcomes (Liu et al., 2019). The sample_pseudoabs function im-
plements five allocation approaches: ‘random’ randomly allocates 
pseudo-absences throughout the area used for model fitting. ‘env_
const’ environmentally constrains pseudo-absences to regions with 
lower suitability values predicted by a Bioclim model (Busby, 1991). 
With ‘geo_const’ pseudo-absences are sampled a given distance 
away from presences. ‘geo_env_const’ combines ‘env_const’ and 
‘geo_const’. ‘geo_env_km_const’ constrains sampling using a three-
level procedure, similar to geo_env_const with an additional step 
that distributes the pseudo-absences in environmental space using a 
K-means cluster analysis.

Both functions can sample data within a calibration area or re-
gions with given values (e.g. groups delimited by geographical block 
or band partition). Spatial constraint types are relevant because they 
control how much data will be allocated in a defined region (see ex-
ample, below).

3.4  |  Data partitioning—part_ function family

We implemented a broad range of data partition methods suit-
able for different modelling conditions, such as the amount of 
data, modelling approach or use of models. part_random per-
forms partitioning based on the random selection of training and 
testing groups, such as k-fold, repeated k-fold, leave-one-out 
cross-validation (a.k.a. Jackknife) and bootstrapping (Fielding 
& Bell,  1997). The other part_ functions are geographically or 
environmentally structured. Structured partition methods are 
required to evaluate model transferability, relevant when using 
SDMs to project models onto different periods or regions (Roberts 
et al., 2017; Santini et al., 2021).

The part_sband and part_sblock functions allow testing 
with different numbers of partitions using latitudinal or longitudi-
nal bands, or square blocks, respectively. Both functions explore 
a range of band or block sizes and automatically select the best 
size for a given presence, presence–absence or presence-pseudo-
absence dataset. Size selection uses an optimization procedure 
that explores partition size in three dimensions determined by 
spatial autocorrelation (measured by Moran's I), environmental 
similarity (Euclidean distance) and differences in the amount of 
data among partition groups (Standard Deviation—SD; Velazco 
et al., 2019). This procedure will iteratively select those partitions 
with autocorrelation values less than the first quartile of Moran's 
I, then those with environmental similarity values greater than the 
third quartile of the Euclidean distances, and finally, those with 
a difference in the amount of data less than the first quartile of 
SD. This selection is repeated until only one partition is retained 
(Velazco et al., 2019). The optimization procedure uses quartiles 
because it pragmatically selects the best subset for each parame-
ter, quartiles being more restrictive than just using the mean. This 
partition selection method: (a) is not subjective, (b) balances the 
environmental similarity and spatial autocorrelation between par-
titions, and (c) controls the selection of partitions with few data 
that may be problematic for model fitting.

part_senv partitions data based on its environmental con-
dition. This function explores a broad range of partition numbers 
(i.e. groups in environmental space) based on K-mean clustering 
and returns the number best suited for a given presence, presence–
absence or presence-pseudo-absence database. part_senv selects 
the best partition number using the same optimization procedure 
used in part_sband and part_sblock.

All part_ functions will add columns to an occurrence data-
set with partition groups (using column names that start with 
‘.part’). Because partitions are stored in columns, it is possible to 
use partition groups defined outside of the package, for instance, 
partitioning using temporal bins or native vs. invaded localities. 
Because these partition groups are stored as numeric or text 
(using the words ‘train’ and ‘test’) and with column names that 
start with .part, the Modelling functions will interpret them as 
partition information.

3.5  |  Collinearity correction of predictors variable 
correct_colinvar

Predictor collinearity is a common issue for species distribution 
models, leading to model overfitting and unstable parameters esti-
mation, which affect model projections (Brun et al., 2020; De Marco 
& Nóbrega, 2018). correct_colinvar has four methods to deal 
with collinearity: ‘pearson’ detects pair of predictors with a Pearson 
correlation index higher than a determined threshold; ‘vif’ is based 
on the variance inflation factor (VIF) and removes those predictors 
with a higher VIF than the chosen threshold; ‘fa’ performs a facto-
rial analysis to reduce dimensionality and selects the predictor with 
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the highest correlation to each axis; finally, ‘pca’ performs a principal 
components analysis in the predictors and returns the axes that ac-
count for 95% of the total variance in the system as predictors.

3.6  |  Additional pre-modelling functions

The sdm_directory function assists in organizing inputs (e.g. oc-
currences, predictors) and outputs by creating folders (directories) 
based on user specifications, such as choice of algorithms, ensemble 
methods and model projections to new geographical regions or peri-
ods. To implement SDMs in flexsdm, users first need a database with 
spatial coordinates of species occurrences, absences/background 
points/pseudo-absences and environmental data extracted at each 
point location. The sdm_extract function returns the original da-
tabase and additional columns of the environmental values stored in 
the raster object.

4  |  MODELLING FUNC TIONS

Because the choice of modelling algorithm is one of the main sources 
of model uncertainty (Watling et al.,  2015) and there is no single 
modelling method that can perform well in all modelling situations 
(Qiao et al., 2015), flexsdm allows construction of models based on 
different algorithms and approaches (Table 1). Thus, we developed 
the following function families: (a) fit_: creates models based on 
default hyperparameter values or with user-specified values; (b) 
tune_: creates models by hyperparameter tuning, (c) esm_: uses 
the ensembles of small models approach (Breiner et al., 2015) and 
(d) fit_ensemble: create ensemble models. All these functions 
work with continuous and categorical predictors and allow para-
metrization with user-specified formulas. For fit_, tune_ and 
esm_ function families, an algorithm name is specified with the last 
three letters of the functions (Table 1). All Modelling functions cre-
ate and validate models with any combination of outputs from the 
Pre-modelling functions.

4.1  |  fit_ family functions

This family of functions fits and validates eight algorithms with de-
fault hyperparameters values. However, hyperparameters are pro-
vided as arguments so that the user can specify other values.

4.2  |  tune_ family functions

Models' hyperparameter values affect the degree of model com-
plexity and the predicted species' geographical range; therefore, se-
lecting the best hyperparameter values for a given dataset could be 
preferred over default ones (Fourcade, 2021; Morales et al., 2017). 
The tune_ family functions allow tuning of eight algorithms based on 

a grid search approach, that is, ‘brute-forcing’ all possible combina-
tions of hyperparameter values. One of the most important features 
of tuning in flexsdm is that it can be based on any partition methods, 
thresholds and performance metrics. For instance, it is possible to 
tune a Maximum Entropy model based on spatial block partitioning, 
the Boyce metric and one or more thresholds. We recommend tun-
ing models whenever possible because the best values of hyperpa-
rameters are specific to a modelling condition (e.g. partition method, 
number of records, predictors variables). However, the time for run-
ning tuned models can be considerably higher than those using de-
fault hyperparameters.

4.3  |  esm_ family functions

Ensembles of small models is an approach for modelling rare or 
poorly sampled species (Breiner et al., 2015). This method creates 
bivariate (two predictors) models with all the pairwise combinations 
of available predictors and performs an ensemble based on the av-
erage of suitability weighted by Somers' D metric (an example for 
modelling a rare species is available at https://sjeve​lazco.github.io/
flexs​dm/artic​les/v05_Rare_speci​es_examp​le.html

4.4  |  fit_ensemble function

An ensemble approach in SDM is used to reduce model uncertainty 
or get a consensus prediction (Araújo & New, 2007). The function 
fit_ensemble allows users to perform and validate an ensemble 
based on different modelling methods. The ability to validate an 
ensemble model is a notable attribute of our package. The follow-
ing ensemble methods are available: (a) average of different models' 
suitability; (b) weighted average based on model performance; (c) 
average of the best models, the set of algorithms with a higher-than-
average performance among the algorithms (for this and previous 
methods, it is possible to use any performance metric); (d) averaging 
performed only on cells with suitability values above the selected 
threshold; and (e) median of models' suitability.

4.5  |  Model performance metrics and  
thresholds—sdm_eval

flexsdm supports model evaluation based on several performance 
metrics and threshold types (Freeman & Moisen,  2008; Leroy 
et al., 2018) using the sdm_eval function, which interacts with all 
previous modelling functions. The range of performance metrics is 
important because some will be more appropriate than others de-
pending on, for example, the quality of species occurrence data or 
data type used for modelling (Table 2; Leroy et al., 2018). Threshold 
criteria are used to divide SDM-generated probability values into a 
binary (present, absent) prediction, either for evaluation (Table 2) or 
for application of the SDM. The threshold criteria (Liu et al., 2005) 

https://sjevelazco.github.io/flexsdm/articles/v05_Rare_species_example.html
https://sjevelazco.github.io/flexsdm/articles/v05_Rare_species_example.html
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available are those at which: (a) there is no omission, (b) the sensi-
tivity and specificity are equal, (c) the threshold that maximizes the 
TSS), (d) Jaccard is the highest, (e) Sorensen is highest, (f) FPB is high-
est, or (g) based on a specified sensitivity value.

5  |  POST-MODELLING FUNC TIONS

5.1  |  Method for correcting model overprediction

Sometimes, models are needed that estimate ranges close to realized 
distributions (Peterson & Soberón, 2012). Models that overpredict this 
range can produce misleading results and misguide conservation assess-
ments (Velazco et al., 2020). flexsdm provides nine constraining methods 
adapted from the code of the msdm package (Mendes et al., 2020). These 
constraining methods can be grouped into those that generate predictor 
variables that are used in modelling fitting (msdm_priori) and those 
where constraints are based on the interaction of observed species 
presences and suitability patterns (msdm_posteriori). Some of these 
methods can increase the error of omission; consequently, they must be 
used carefully with species with low detectability (Mendes et al., 2020). 
We advise using these approaches to create models used only for cur-
rent conditions and not for different time periods (past or future).

5.2  |  Additional post-modelling functions

sdm_summarize merges model performance tables from different 
modelling functions. sdm_predict performs spatial predictions for 
individual or ensemble models, producing maps of continuous suit-
ability, binary predictions based on one or more specified thresholds 
or continuous suitability above a given threshold. Interp makes an-
nual maps of suitability by interpolating between suitability maps 
for two time periods; interpolation could be useful when SDMs are 
coupled to, for example, spatially explicit population or metapopula-
tion models.

5.3  |  flexsdm and other SDM packages for r

Over the last decade, several r packages have been published offer-
ing complete or partial SDM workflows. We found that, on average, 
24% of flexsdm features are shared with other r packages (Tables S1 
and S2). The most similar packages were enmtml (64%), biomod2 
(37%) and ssdm (32%). Features that distinguish flexsdm from most 
other packages (i.e. are unique to flexsdm or are shared with only a 
few other packages) are related to occurrences filtering, geographi-
cal and environmental partitioning, algorithm tuning based on any 
partition methods, some threshold types and performance metrics, 
ensembles of small models, and overprediction correction (Table S2). 
Although flexsdm shares several features with ENMTML (and not 
with other packages), the main difference is that flexsdm allows these 
features to be used independently of each other.

SDM is still a developing field in which new and improved meth-
ods are constantly being proposed. Consequently, it is difficult for a 
package to offer all modelling possibilities and always be up to date. 
Flexsdm encompasses a broad range of the SDM workflow; however, 
other packages provide alternative methods and complementary 
tools. It is necessary to integrate different packages to implement 
state-of-the-art SDM. flexsdm supports such integration because 
modelling procedures are constructed with individual functions 
and simple and easily handled objects are returned. For instance, 
the pre-modelling functions can be used in combination with pack-
ages that lack pre-modelling functionality such as biomod2, ecospat, 
ENMeval, kuenm, sdm or SDMtune. Additionally, the overprediction 
correction and interpolation functions can be used with predicted 
distributions of any other package (Table S2).

6  |  E X AMPLE

We illustrate the use of flexsdm to model the distribution of California 
red fir Abies magnifica (https://sjeve​lazco.github.io/flexs​dm/artic​les/
v04_Red_fir_examp​le.html). Red fir is a high-elevation conifer tree 

Performance metric Dependent of threshold Range

True-Positive Rate or Sensitivity (TPR) Yes 0–1

True-Negative Rate or Specificity (TNR) Yes 0–1

Sorensen Yes 0–1

Jaccard Yes 0–1

F-measure on presence-background (FPB) Yes 0–2

Omission Rate (OR) Yes 0–1

True Skill Statistic (TSS) Yes −1–1

Kappa Yes 0–1

Area Under Curve (AUC) No 0–1

Continuous Boyce index (BOYCE) No −1–1

Inverse Mean Absolute Error (IMAE)a No 0–1

aIMAE is calculated as 1 − (Mean Absolute Error) to be consistent with the other metrics where the 
higher the value of a given performance metric, the greater the model's accuracy.

TA B L E  2  Performance metric 
implemented in flexsdm, their dependency 
of threshold and range

https://sjevelazco.github.io/flexsdm/articles/v04_Red_fir_example.html
https://sjevelazco.github.io/flexsdm/articles/v04_Red_fir_example.html
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species whose geographical range extends through the Sierra Nevada 
in California into the Cascade Ranges of Oregon, USA. We used species 
occurrence data compiled from several sources (Hannah et al., 2008; 
calfl​ora.org; wildl​ife.ca.gov/Data/BIOS) with the following predictors: 
climatic water deficit, summer precipitation, winter precipitation, and 
minimum temperature of the coldest month sourced from the Basin 
Characterization Model (http://clima​te.calco​mmons.org/bcm).

A calibration area was delimited by a 100-km buffer around 
presences using calib_area; then, species presences were envi-
ronmentally filtered using occfilt_env with eight bins (Figure 2a). 
With part_sblock, the presence data were spatially partitioned 
into four groups, after testing 30 grid-sizes. The get_block func-
tion was used to produce a map layer with partition information 
using the resolution and extent of the environmental variables. 
Then we used this layer for allocating a stratified sample of pseudo-
absences and background points with sample_background and 
sample_pseudoabs, respectively. The number of pseudo-absences 
and background points were set equal to 10 times the number of 

presences found in each partition, respectively (Figure 2b). We used 
the modelling algorithms Maxent, Gaussian Process and Generalized 
Linear Model, which were fitted and validated by tune_max, fit_
gau and fit_glm. The final model consisted of a weighted mean en-
semble fitted and validated with fit_ensemble and predicted with 
sdm_predict (Figure 2c). Finally, we used the occurrences-based 
restriction method (Mendes et al., 2020) in the msdm_posteriori 
to correct model overprediction (Figure 2d).

7  |  CONCLUSIONS

flexsdm is a new r package that offers comprehensive and flexible 
tools for species distribution modelling, ranging from outlier detec-
tion to overprediction correction. flexsdm users can delineate partial 
or complete modelling workflows based on the combination of >40 
functions to meet specific modelling needs. The main flexsdm fea-
tures are its modelling flexibility, integration with other modelling 

F I G U R E  2  flexsdm outputs for 
the example modelling workflow for 
California red fir Abies magnifica. (a) 
Calibration area delimited by a buffer 
around unfiltered presences, then the 
sampling bias of presences was corrected 
using an environmental approach. (b) 
Pseudo-absences and background points 
sampled within each partition block, both 
weighted by the number of presences in 
each partition. (c) Suitability predicted 
by an ensemble model. (d) Suitability 
overprediction was corrected by 
occurrences based restriction method

http://calflora.org
http://wildlife.ca.gov/Data/BIOS
http://climate.calcommons.org/bcm
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tools, simplicity of the objects returned, and function speed. Novel 
innovations in this sdm package include model tuning functions 
based on any partition methods, thresholds, and performance met-
rics, ensemble model validation, flexible data partitioning, environ-
mental occurrence filtering, and overprediction correction.
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