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Abstract. Is intelligence realized by connectionist or classicist? While
connectionist approaches have achieved superhuman performance, there
has been growing evidence that such task-specific superiority is partic-
ularly fragile in systematic generalization. This observation lies in the
central debate between connectionist and classicist, wherein the latter
continually advocates an algebraic treatment in cognitive architectures.
In this work, we follow the classicist’s call and propose a hybrid ap-
proach to improve systematic generalization in reasoning. Specifically,
we showcase a prototype with algebraic representation for the abstract
spatial-temporal reasoning task of Raven’s Progressive Matrices (RPM)
and present the ALgebra-Aware Neuro-Semi-Symbolic (ALANS) learner.
The ALANS learner is motivated by abstract algebra and the represen-
tation theory. It consists of a neural visual perception frontend and an
algebraic abstract reasoning backend: the frontend summarizes the vi-
sual information from object-based representation, while the backend
transforms it into an algebraic structure and induces the hidden oper-
ator on the fly. The induced operator is later executed to predict the
answer’s representation, and the choice most similar to the prediction is
selected as the solution. Extensive experiments show that by incorporat-
ing an algebraic treatment, the ALANS learner outperforms various pure
connectionist models in domains requiring systematic generalization. We
further show the generative nature of the learned algebraic representa-
tion; it can be decoded by isomorphism to generate an answer.

1 Introduction

“Thought is in fact a kind of Algebra.”
—William James [25]

Imagine you are given two alphabetical sequences of “c,b,a” and “d, ¢,b”, and
asked to fill in the missing element in “e,d,?”. In nearly no time will one realize
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the answer to be c. However, more surprising for human learning is that, ef-
fortlessly and instantaneously, we can “freely generalize” [37] the solution to any
partial consecutive ordered sequences. While believed to be innate in early devel-
opment for human infants [39], such systematic generalizability has constantly
been missing and proven to be particularly challenging in existing connectionist
models [2,29]. In fact, such an ability to entertain a given thought and seman-
tically related contents strongly implies an abstract algebra-like treatment [12];
in literature, it is referred to as the “language of thought” [11], “physical sym-
bol system” [44], and “algebraic mind” [37]. However, in stark contrast, existing
connectionist models tend only to capture statistical correlation [7,26,29], rather
than providing any account for a structural inductive bias where systematic
algebra can be carried out to facilitate generalization.

This contrast instinctively raises a question—what constitutes such an al-
gebraic inductive bias? We argue that the foundation of modeling counterpart
to the algebraic treatment in early human development [37,39] lies in algebraic
computations set up on mathematical axioms, a form of formalized human intu-
ition and the beginning of modern mathematical reasoning [17,34]. Of particular
importance to the algebra’s basic building blocks is the Peano Axiom [46]. In the
Peano Axiom, the essential components of algebra, the algebraic set, and corre-
sponding operators over it, are governed by three statements: (1) the existence
of at least one element in the field to study (“zero” element), (2) a successor
function that is recursively applied to all elements and can, therefore, span the
entire field, and (3) the principle of mathematical induction. Building on such
a fundamental axiom, we begin to form the notion of an algebraic set and in-
duce the operator to construct an algebraic structure. We hypothesize that such
an algebraic treatment set up on fundamental axioms is essential for a model’s
systematic generalizability, the lack of which will only make it sub-optimal.

To demonstrate the benefits of adopting such an algebraic treatment in sys-
tematic generalization, we showcase a prototype for Raven’s Progressive Ma-
trices (RPM) [48,49], an exemplar task for abstract spatial-temporal reason-
ing [51,68]. In this task, an agent is given an incomplete 3 x 3 matrix consisting
of eight context panels with the last one missing, and asked to pick one answer
from a set of eight choices that best completes the matrix. Human’s reasoning
capability of solving this abstract reasoning task has been commonly regarded
as an indicator of “general intelligence” [4] and “fluid intelligence” [19,24,55,56].
In spite of the task being one that ideally requires abstraction, algebraization,
induction, and generalization [4,48,49], recent endeavors unanimously propose
pure connectionist models that attempt to circumvent such intrinsic cognitive
requirements [21,51,58,64,68,70,74]. However, these methods’ inefficiency is also
evident in systematic generalization; they struggle to extrapolate to domains
beyond training [51,70], shown also in this paper.

To address the issue, we introduce an ALgebra-Aware Neuro-Semi-Symbolic
(ALANS) learner. At a high-level, the ALANS learner is embedded in a general
neuro-symbolic architecture [14,36,66,67] but has the on-the-fly operator learn-
ability, hence semi-symbolic. Specifically, it consists of a neural visual per-
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ception frontend and an algebraic abstract reasoning backend. For each RPM
instance, the neural visual perception frontend first slides a window over each
panel to obtain the object-based representation [26,63] for every object. A belief
inference engine latter aggregates all object-based representation in each panel to
produce the probabilistic belief state. The algebraic abstract reasoning backend
then takes the belief states of the eight context panels, treats them as snapshots
on an algebraic structure, lifts them into a matrix-based algebraic representa-
tion built on the Peano Axiom and the representation theory [23], and induces
the hidden operator in the algebraic structure by solving an inner optimization
problem [3,8,72]. The answer’s algebraic representation is predicted by executing
the induced operator: its corresponding set element is decoded by isomorphism,
and the final answer is selected as the one most similar to the prediction.

The ALANS learner enjoys several benefits in abstract reasoning with an
algebraic treatment:

1. Unlike previous monolithic models, the ALANS learner offers a more inter-
pretable account of the entire abstract reasoning process: the neural visual
perception frontend extracts object-based representation and produces be-
lief states of panels by explicit probability inference, whereas the algebraic
abstract reasoning backend induces the hidden operator in the algebraic
structure. The final answer’s representation is obtained by executing the in-
duced operator, and the choice panel with minimum distance is selected.
This process much resembles the top-down bottom-up strategy in human
reasoning missed in recent literature [21,51,58,64,68,70,74]: humans reason
by inducing the hidden relation, executing it to generate a feasible solution
in mind, and choosing the most similar answer available [4].

2. While keeping the semantic interpretability and end-to-end trainability in ex-
isting neuro-symbolic frameworks [14,36,66,67], ALANS is semi-symbolic
in the sense that the symbolic operator can be learned and concluded on
the fly without manual definition for every one of them. Such an inductive
ability also enables a greater extent of the desired generalizability.

3. By decoding the predicted representation in the algebraic structure, we can
also generate an answer that satisfies the hidden relation in the context.

This work makes three major contributions. (1) We propose the ALANS
learner, a neuro-semi-symbolic design, in contrast to existing monolithic models.
(2) To demonstrate the efficacy of incorporating an algebraic treatment in rea-
soning, we show the superior systematic generalization ability of the proposed
ALANS learner in various extrapolatory RPM domains. (3) We present analyses
into both neural visual perception and algebraic abstract reasoning.

2 Related Work

2.1 Quest for Symbolized Manipulation

The idea to treat thinking as a mental language can be dated back to Augus-
tine [1,62]. Since the 1970s, this school of thought has undergone a dramatic
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revival as the quest for symbolized manipulation in cognitive modeling, such
as “language of thought” [11], “physical symbol system” [44], and “algebraic
mind” [37]. In their study, connectionist’s task-specific superiority and inabil-
ity to generalize beyond training [7,26,51,68] have been hypothetically linked
to a lack of such symbolized algebraic manipulation [7,29,38]. With evidence
that an algebraic treatment adopted in early human development [39] can po-
tentially address the issue [2,36,38], classicist [12] approaches for generalizable
reasoning used in programs [40] and blocks world [61] have resurrected. As a hy-
brid approach to bridge connectionist and classicist, recent developments lead to
neuro-symbolic architectures. In particular, the community of theorem proving
has been one of the earliest to endorse the technique [13,50,53]: JILP [10] and
NLM [9] make inductive programming end-to-end, and DeepProbLog [35] con-
nects learning and reasoning. Recently, Hudson and Manning [22] propose NSM
for visual question answering where a probabilistic graph is used for reasoning.
Yi et al. [67] demonstrate a neuro-symbolic prototype for the same task where a
perception module and a language parsing module are separately trained, with
the predefined logic operators associated with language tokens chained to process
the visual information. Mao et al. [36] soften the predefined operators to afford
end-to-end training with only question answers. Han et al. [14] use the hybrid ar-
chitecture for metaconcept learning. Yi et al. [66] and Chen et al. [6] show how
neuro-symbolic models can handle explanatory, predictive, and counterfactual
questions in temporal and causal reasoning. Lately, NeSS [5] exemplifies an al-
gorithmic stack machine that can be used to improve generalization in language
learning. ALANS follows the classicist’s call but adopts a neuro-semi-symbolic
architecture: it is end-to-end trainable as opposed to Yi et al. [66,67] and the
operator can be learned and concluded on the fly without manual specification.

2.2 Abstract Visual Reasoning

Recent works by Santoro et al. [51] and Zhang et al. [68] arouse the commu-
nity’s interest in abstract visual reasoning; the task of Raven’s Progressive Ma-
trices (RPM) is introduced as such a measure for intelligent agents. As an intelli-
gence quotient test for humans [48,49], RPM is believed to be strongly correlated
with human’s general intelligence [4] and fluid intelligence [19,24,55,56]. Early
RPM-solving systems employ symbolic representation based on hand-designed
features and assume access to the underlying logics [4,31,32,33]. Another stream
of research on RPM recruits similarity-based metrics to select the most similar
answer from the choices [20,30,41,42,43,54]. However, these visual or semantic
features are unable to handle uncertainty from imperfect perception, and di-
rectly assuming access to the logic operations simplifies the problem. Recently
proposed data-driven approaches arise from the availability of large datasets:
Santoro et al. [51] extend a pedagogical RPM generation method [59], whereas
Zhang et al. [68] use a stochastic image grammar [75] and introduce structural
annotations in it, which Hu et al. [21] further refine to avoid shortcut solutions
by statistics in candidate panels. Despite the fact that RPM intrinsically re-
quires one to perform abstraction, algebraization, induction, and generalization,
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Fig.1. An overview of the ALANS learner. For an RPM instance, the neural
visual perception module produces the belief states for all panels: an object CNN ex-
tracts object attribute distributions for each image region, and a belief inference engine
marginalizes them out to obtain panel attribute distributions. For each panel attribute,
the algebraic abstract reasoning module transforms the belief states into matrix-based
algebraic representation and induces hidden operators by solving inner optimizations.
The answer representation is obtained by executing the induced operators, and the
choice most similar to the prediction is selected as the solution. An example of the
underlying discrete algebra and its correspondence is also shown on the right.

existing methods bypass such cognitive requirements using a single feedforward
pass in connectionist models: Santoro et al. [51] use a relational module [52],
Steenbrugge et al. [57] augment it with a VAE [28], Zhang et al. [68] assemble a
dynamic tree, Hill et al. [18] arrange the data in a contrastive manner, Zhang et
al. [70] propose a contrast module, Zhang et al. [74] formulate it in a student-
teacher setting, Wang et al. [58] build a multiplex graph network, Hu et al. [21]
aggregate features from a hierarchical decomposition, and Wu et al. [64] apply
a scattering transformation to learn objects, attributes, and relations. Recently,
Zhang et al. [71] employ a neuro-symbolic design but requires full knowledge over
the hidden relations to perform abduction. While our work adopts the visual per-
ception module and employs a similar training strategy from Zhang et al. [71],
the ALANS learner manages to induce the hidden relations, enabling on-the-fly
relation induction and systematic generalization on relational learning. The re-
cent work of Neural Interpreter (NI) [47] is a complementary neural approach
to our method: Although both NI and ALANS decompose the reasoning process
into sub-components and aggregate them, NI focuses more on compositionality,
routing new input via different paths of learned modules to generalize, whereas
ALANS more on induction, enabling a learned module to adapt on the fly.

3 The ALANS Learner

In this section, we introduce the ALANS learner for the RPM problem. In each
RPM instance, an agent is given an incomplete 3 x 3 panel matrix with the last
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entry missing and asked to induce the operator hidden in the matrix and choose
from eight choice panels one that follows it. Formally, let the answer variable
be denoted as y, the context panels as {I,;}_;, and choice panels as {I.;}%_;.
Then the problem can be formulated as estimating P(y | {I,;}5_q, {Ic.i}5 ;).
According to the common design [4,51,68], there is one operator that governs
each panel attribute. Hence, by assuming independence among attributes, we
propose to factorize the probability of P(y =n | {I,;}5_;,{I..:}3_,) as

[ID PG =n | T {Loabiy, {Leabiog) x P(T* | {Lo,}i-), (1)
a Tae

where y® denotes the answer selection based only on attribute a and 7° the
operator on a.

Overview As shown in Fig. 1, the ALANS learner decomposes the process into
perception and reasoning: the neural visual perception frontend is adopted from
Zhang et al. [71] and extracts the belief states from each of the sixteen panels,
whereas the algebraic abstract reasoning backend views an instance as an ex-
ample in an abstract algebra structure, transforms belief states into algebraic
representation by the representation theory, induces the hidden operators, and
executes the operators to predict the representation of the answer. Therefore, in
Eq. (1), the operator distribution is modeled by the fitness of an operator and
the answer distribution by the distance between the predicted representation
and that of a candidate.

3.1 Neural Visual Perception

We follow the design in Zhang et al. [71] and decompose visual perception into an
object CNN and a belief state inference engine. Specifically, for each panel, we use
a sliding window to traverse the spatial domain of the image and feed each image
region into an object CNN. The CNN has four branches, producing for each
region its object attribute distributions, including objectiveness (if the region
contains an object), type, size, and color. The belief inference engine summarizes
the panel attribute distributions (over position, number, type, size, and color)
by marginalizing out all object attribute distributions (over objectiveness, type,
size, and color). As an example, the distribution of the panel attribute of Number
can be computed as such: for N image regions and their predicted objectiveness

N
P(Number =k) = Y [[P(¢=RY, (2)
R°e{0,1}V j=1
>, Ro=k
where P(r?) denotes the jth region’s estimated objectiveness distribution, and
R is a binary sequence of length N that sums to k. All panel attribute dis-
tributions compose the belief state of a panel. In the following, we denote the
belief state as b and the distribution of an attribute a as P(b%). For more details,
please refer to Zhang et al. [71] and the Appendix.



Learning Algebraic Representation in Abstract Reasoning 7

3.2 Algebraic Abstract Reasoning

Given the belief states of both context and choice panels, the algebraic abstract
reasoning backend concerns the induction of hidden operators and the prediction
of answer representation for each attribute. The fitness of induced operators is
used for estimating the operator distribution and the difference between the
prediction and the choice panel for estimating the answer distribution.

Algebraic Underpinning Without loss of generality, here we assume row-wise
operators. For each attribute, under perfect perception, the first two rows in an
RPM instance provide snapshots into an example of group [15] constrained to
an integer-indexed set, a simple algebra structure that is closed under a binary
operator. To see this, note that an accurate perception module would see each
panel attribute as a deterministic set element. Therefore, RPM instances with
unary operators, such as progression, are group examples with special binary
operators where one operand is constant. Instances with binary operators, such
as arithmetics, directly follow the group properties. Those with ternary operators
are ones defined on a three-tuple set from rows.

Algebraic Representation A systematic

algebraic view allows us to felicitously

recruit ideas in the representation the-

ory [23] to glean the hidden properties in Mbe ) ML) T MbE 5
the abstract structures: it makes abstract \{()’ ' ‘;r‘(_) wa“ -
algebra amenable by reducing it onto lin- ; :

ear algebra. Following the same spirit, we b5.i bgiv1 o b3 iva
propose to lift both the set elements and .

the hidden operators to a learnable matrix

space. To encode the set element, we em- Fig. 2. Isomorphism between the
ploy the Peano Axiom [46]. According to abstract algebra and the matrix-
the Peano Axiom, an integer-indexed set based representation. In this view,
can be constructed by (1) a zero element ©Perator induction is now reduced to
(0), (2) a successor function (S(-)), and solving for a matrix.

(3) the principle of mathematical induc-

tion, such that the kth element is encoded

as S¥(0). Specifically, we instantiate the zero element as a learnable matrix My
and the successor function as the matrix-matrix product parameterized by M.
In an attribute-specific manner, the representation of an attribute taking the kth
value is (M) Mg. For operators, we consider them to live in a learnable matrix
group of a corresponding dimension, such that the action of an operator on a
set can be represented as matrix multiplication. Such algebraic representation
establishes an isomorphism between the matrix space and the abstract algebraic
structure: abstract elements on the algebraic structure have a bijective mapping
to/from the matrix space, and inducing the abstract relation can be reduced
to solving for a matrix operator. See Fig. 2 for a graphical illustration of the
isomorphism.

M) M()
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Operator Induction Operator induction concerns about finding a concrete oper-
ator in the abstract algebraic structure. By the property of closure, we formulate
it as an inner-level regularized linear regression problem: a binary operator 7,
for attribute a in a group minimizes £§(7) defined as

6G(T) = Z]E 105 )T M (b i11) = MG 40) 7] + AT 3)

where under visual uncertainty, we take the expectation w.r.t. the distributions
in the belief states of context panels P(b3 ;) in the first two rows, and denote
its algebraic representation as M (b ;). For unary operators, one operand can be
treated as constant and absorbed into 7. Note that Eq. (3) admits a closed-form
solution (please refer to the Appendix for details). Therefore, the operator can
be learned and adapted for different instances of binary relations and concluded
on the fly. Such a design also simplifies the recent neuro-symbolic approaches,
where every single symbol operator needs to be hand-defined [14,36,66,67]. In-
stead, we only specify an inner-level optimization framework and allow symbolic
operators to be quickly induced based on the neural observations, while keeping
the semantic interpretability in the neuro-symbolic methods. Therefore, we term
such a design semi-symbolic.

The operator probability in Eq. (1) is then modeled by each operator type’s
fitness, e.g., for binary,

P(T* = Ty" | {Lo.i}iz1) o= exp(—€5(Ty"))- (4)

Operator Ezecution To predict the algebraic representation of the answer, we
solve another inner-level optimization similar to Eq. (3), but now treating the
representation of the answer as a variable:

Z@ZM%M@wnaMM@ﬂﬁMwy—Mm, (5)

where the expectation is taken w.r.t. context panels in the last row. The opti-
mization also admits a closed-form solution (please refer to the Appendix for
details), which corresponds to the execution of the induced operator in Eq. (3).

The predicted representation is decoded probabilistically as the predicted
belief state of the solution,

P(b* =k | T*) o exp(—| M — (M) Mg |7). (6)

Answer Selection Based on Egs. (1) and (4), estimating the answer distribution
is now boiled down to estimating the conditional answer distributions for each
attribute. Here, we propose to model it based on the Jensen—Shannon Divergence
(JSD) of the predicted belief state and that of a choice,

P(y* =n| T {Loa}ioy: {ei}izy) % exp(—dy), (7)
where we define d? as

d2 = Dysp(P(be | T)|P(2,.))). (8)
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Discussion Comparing with the possible problem-solving process by humans [4],
we argue that the proposed algebraic abstract reasoning module offers a compu-
tational and interpretable counterpart to human-like reasoning in RPM. Specif-
ically, the induction component resembles fluid intelligence, where one quickly
induces the hidden operator by observing the context panels. The execution com-
ponent synthesizes an image by executing the induced operator, and the choice
most similar to the image is selected as the answer.

We also note that by decoding the predicted representation in Eq. (6), a
solution can be generated: by sequentially selecting the most probable operator
and the most probable attribute value, a rendering engine can directly render the
solution. The reasoning backend also enables end-to-end training: by integrating
the belief states from neural perception, the module conducts both induction
and execution in a soft manner, such that the gradients can be back-propagated
and both the visual frontend and the reasoning backend jointly trained.

3.3 Training Strategy

We train the entire ALANS learner by minimizing the cross-entropy loss between
the estimated answer distribution and the ground-truth selection and an auxil-
iary loss [51,58,68,71] that shapes the operator distribution from the reasoning
engine, i.e.,
min APy | {To}iors (i) ye) + DA UP(T [ {Lo3}1),98), (9)
0,{Mg},{M=} a
where £(-) denotes the cross-entropy loss, y. the correct choice in candidates,
and y¢ the ground-truth operator selection for attribute a. The first part of the
loss encourages the model to select the right choice for evaluation, while the
second part motivates meaningful internal representation to emerge. Compared
to Zhang et al. [71], the system requires joint operation from not only a trained
perception module @, but also the algebraic encodings from the zero elements
{M§} and the successor functions {M“*}, and correspondingly, induced operators
7. We notice the three-stage curriculum in Zhang et al. [71] is crucial for such
a neuro-semi-symbolic system. In particular, we use A® to balance the trade-off
in the curriculum: in the first stage, we only train parameters regarding objec-
tiveness; in the second stage, we freeze objectiveness parameters and cyclically
train parameters involving type, size, and color; in the last stage, we fine-tune
all parameters.

4 Experiments

A cognitive architecture with systematic generalization is believed to demon-
strate the following three principles [12,37,38]: (1) systematicity, (2) productivity,
and (3) localism. Systematicity requires an architecture to be able to entertain
“semantically related” contents after understanding a given thought. Productiv-
ity states the awareness of a constituent implies that of a recursive application
of the constituent; vice versa for localism.
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To verify the effectiveness of an algebraic treatment in systematic gener-
alization, we showcase the superiority of the proposed ALANS learner on the
three principles in the abstract spatial-temporal reasoning task of RPM. Specif-
ically, we use the generation methods proposed in Zhang et al. [68] and Hu
et al. [21] to generate RPM problems and carefully split training and testing
to construct the three regimes. The former generates candidates by perturbing
only one attribute of the correct answer while the later modifies attribute val-
ues in a hierarchical manner to avoid shortcut solutions by pure statistics. Both
methods categorize relations in RPM into three types, according to Carpenter
et al. [4]: unary (Constant and Progression), binary (Arithmetic), and ternary
(Distribution of Three), each of which comes with several instances. Grounding
the principles into learning abstract relations in RPM, we fix the configuration
to be 3 x 3Grid and generate the following data splits for evaluation (please refer
to the Appendix for details):

— Systematicity: the training set contains only a subset of instances for each
type of relation, while the test set all other relation instances.

— Productivity: as the binary relation results from a recursive application of
the unary relation, the training set contains only unary relations, whereas
the test set only binary relations.

— Localism: the training and testing sets in the productivity split are swapped
to study localism.

We follow Zhang et al. [68] to generate 10,000 instances for each split and
assign 6 folds for training, 2 folds for validation, and 2 folds for testing.

4.1 Experimental Setup

We evaluate the systematic generalizability of the proposed ALANS learner on
the above three splits, and compare the ALANS learner with other baselines, in-
cluding ResNet [16], ResNet+DRT [68], WReN [51], CoPINet [70], MXGNet [58],
LEN [74], HriNet [21], and SCL [64]. We use either official or public implemen-
tations that reproduce the original results. All models are implemented in Py-
Torch [45] and optimized using ADAM [27] on an Nvidia Titan Xp GPU. We
validate trained models on validation sets and report performance on test sets.

4.2 Systematic Generalization

Tab. 1 shows the performance of various models on systematic generalization,
i.e., systematicity, productivity, and localism. Compared to results reported in
existing works mentioned above, all pure connectionist models experience a
devastating performance drop when it comes to the critical cognitive require-
ments on systematic generalization, indicating that pure connectionist models
fail to perform abstraction, algebraization, induction, or generalization needed
in solving the abstract reasoning task; instead, they seem to only take a short-
cut to bypass them. In particular, MXGNet’s [58] superiority is diminishing
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Table 1. Model performance on different aspects of systematic generaliza-
tion. The performance is measured by accuracy on the test sets. Results on datasets
generated by Zhang et al. [68] (upper) and by Hu et al. [21] (lower).

Method MXGNet ResNet+DRT ResNet HriNet LEN WReN SCL CoPINet ALANS ALANS-Ind ALANS-V

Systematicity 20.95% 33.00% 27.35% 28.05% 40.15% 35.20% 37.35% 59.30% 78.45%  52.70% 93.85%
Productivity  30.40% 27.95% 27.05% 31.45% 42.30% 56.95% 51.10% 60.00% 79.95%  36.45% 90.20%
Localism 28.80% 24.90% 23.05% 29.70% 39.65% 38.70% 47.75% 60.10% 80.50%  59.80% 95.30%

Average 26.72% 28.62% 25.82% 29.73% 40.70% 43.62% 45.40% 59.80% 79.63%  48.65% 93.12%

Systematicity 13.35% 13.50% 14.20% 21.00% 17.40% 15.00% 24.90% 18.35% 64.80%  52.80% 84.85%
Productivity 14.10% 16.10% 20.70% 20.35% 19.70% 17.95% 22.20% 29.10% 65.55%  32.10% 86.55%
Localism 15.80% 13.85% 17.45% 24.60% 20.15% 19.70% 29.95% 31.85% 65.90%  50.70% 90.95%

Average 14.42% 14.48% 17.45% 21.98% 19.08% 17.55% 25.68% 26.43% 65.42%  45.20% 87.45%

in systematic generalization. In spite of learning with structural annotations,
ResNet+DRT [68] does not fare better than its base model. The recently pro-
posed HriNet [21] slightly improves on ResNet [16] in this aspect, with LEN [74]
being only marginally better. WReN [51], on the other hand, shows oscillat-
ing performance across three regimes. Evaluated under systematic generation,
SCL [64] and CoPINet [70] also far deviate from “superior performance.” These
observations suggest that pure connectionist models highly likely learn from
variation in visual appearance rather than the algebra underlying the problem.

Embedded in a neural-semi-symbolic framework, the proposed ALANS learner
improves on systematic generalization by a large margin. With an algebra-aware
design, the model is considerably stable across different principles of system-
atic generalization. The algebraic representation learned in relations of either a
constituent or a recursive composition naturally supports productivity and local-
ism, while semi-symbolic inner optimization further allows various instances of
an operator type to be induced from the algebraic representation and boosts sys-
tematicity. The importance of the algebraic representation is made more signif-
icant in the ablation study: ALANS-Ind, with algebraic representation replaced
by independent encodings and the algebraic isomorphism broken, shows inferior
performance. We also examine the performance of the learner with perfect visual
annotations (denoted as ALANS-V) to see how the proposed algebraic reason-
ing module works: the gap despite of accurate perception indicates space for
improvement for the inductive reasoning part of the model. In the next section,
we further show that the neuro-semi-symbolic decomposition in ALANS’s design
enables diagnostic tests into its jointly learned perception module and reasoning
module. This design is in stark contrast to black-box models.

4.3 Analysis into Perception and Reasoning

The neural-semi-symbolic design affords analyses into both perception and rea-
soning. To evaluate the neural perception and the algebraic reasoning modules,
we extract region-based object attribute annotations from the datasets [21,68]
and categorize all relations into three types, i.e., unary, binary, and ternary.
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Tab. 2 shows the perception module’s performance on the test sets in the
three regimes of systematic generalization. We note that in order for the ALANS
learner to achieve the desired results shown in Tab. 1, ALANS learns to construct
the concept of objectiveness perfectly. The model also shows fairly accurate pre-
diction on the attributes of type and size. However, on the texture-related con-
cept of color, ALANS fails to develop a reliable notion on it. Despite that, the
general prediction accuracy of the perception module is still surprising, consider-
ing that the perception module is jointly learned with ground-truth annotations
on answer selections. The relatively lower accuracy on color could be attributed
to its larger space compared to other attributes.

Table 2. Perception accuracy of the proposed ALANS learner, measured
by whether the module can correctly predict an attribute’s value. Results on
datasets generated by Zhang et al. [68] (left) and by Hu et al. [21] (right).

Object Attribute Objectiveness Type Size Color  Object Attribute Objectiveness Type  Size  Color

Systematicity 100.00%  99.95% 94.65% 71.35%  Systematicity 100.00%  96.34% 92.36% 63.98%
Productivity 100.00%  99.97% 98.04% 77.61%  Productivity 100.00%  94.28% 97.00% 69.89%
Localism 100.00%  95.65% 98.56% 80.05%  Localism 100.00%  95.80% 98.36% 60.35%
Average 100.00%  98.52% 97.08% 76.34%  Average 100.00%  95.47% 95.91% 64.74%

Tab. 3 lists the reasoning module’s performance during testing for the three
aspects. Note that on position, the unary operator (shifting) and binary opera-
tor (set arithmetics) do not systematically imply each other. Hence, we do not
count them as probes into productivity and localism. In general, we notice that
the better the perception accuracy on one attribute, the better the performance
on reasoning. However, we also note that despite the relatively accurate percep-
tion of objectiveness, type, and size, near perfect reasoning is never guaranteed.
This deficiency is due to the perception uncertainty handled by expectation in
Eq. (3): in spite of correctness when we take arg max, marginalizing by expecta-
tion will unavoidably introduce noise into the reasoning process. Therefore, an
ideal reasoning module requires the perception frontend to be not only correct
but also certain. Computationally, one can sample from the perception module
and optimize Eq. (9) using REINFORCE [60]. However, the credit assignment
problem and variance in gradient estimation will further complicate training.

4.4 In-Distribution Performance

To further evaluate how models perform under the regular Independent and
Identically Distributed (I.I.D.) setup, we train the models on the original datasets
generated by Zhang et al. [68] and Hu et al. [21] and measure the model accuracy
in the test splits. We compare ALANS with published baselines in Tab. 1.

Tab. 4 (left) shows the results on the RAVEN dataset [68]. With the jointly
trained vision component, the ALANS learner does not fare better than the best
connectionist approaches, making it on par with SCL only. As the dataset is
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Table 3. Reasoning accuracy of the proposed ALANS learner, measured
by whether the module can correctly predict the type of a relation on an
attribute. Results on datasets generated by Zhang et al. [68] (left) and by Hu et
al. [21] (right).

Relation on  Position Number Type Size Color Relation on Position Number Type Size Color

Systematicity 72.04% 82.14% 81.50% 80.80% 40.40%  Systematicity 69.96% 80.34% 83.50% 80.85% 28.85%

Productivity - 98.75% 89.50% 72.10% 33.95%  Productivity - 99.10% 87.95% 68.50% 23.10%
Localism - 74.70% 44.25% 56.40% 54.20%  Localism - 70.55% 36.65% 42.30% 33.20%
Average 72.04% 85.20% T71.75% 69.77% 42.85%  Average 69.96% 83.33% 69.37% 63.88% 28.38%

Table 4. Model performance on RAVEN [68] (left) and I-RAVEN [21] (right)
under the regular I.I.D. evaluation, measured by accuracy on the test sets.

Method Acc Center 2x2Grid 3x3Grid L-R U-D O-I1C O-1G

WReN 34.0%/21.5% 58.4%/24.0% 38.9%/25.0% 37.7%/20.1% 21.6%/19.7% 19.8%/19.9% 38.9%/21.3% 22.6%/20.6%
ResNet 53.4%/18.4% 52.8%/22.6% 41.9%/15.5% 44.3%/18.1% 58.8%/19.0% 60.2%/19.6% 63.2%/17.5% 53.1%/16.6%
ResNet+DRT 59.6%/20.7% 58.1%/24.2% 46.5%/18.2% 50.4%/19.8% 65.8%/22.0% 67.1%/22.1% 69.1%/21.0% 60.1%/18.1%
LEN 71.6%/32.8% 79.1%/44.8% 56.1%/27.9% 60.3%/23.9% 80.5%/34.1% 76.4%/34.4% 79.3%/35.8% 69.9%/28.5%
HriNet 45.1%/60.8% 66.1%/78.2% 40.7%/50.1% 38.0%/42.4% 44.9%/70.1% 43.2%/70.3% 47.2%/68.2% 35.8%/46.3%

MXGNet 84.0%/33.1% 94.3%/40.7% 60.5%/27.9% 64.9%/24.7% 96.6%/35.8% 96.4%/34.5% 94.1%/36.4% 81.3%/31.6%
CoPINet 91.4%/46.1% 95.1%/54.4% 77.5%/36.8% 78.9%/31.9% 99.1%/51.9% 99.7%/52.5% 98.5%/52.2% 91.4%/42.8%
ALANS T4.4%/78.5% 69.1%/72.3% 80.2%/79.5% 75.0%/72.9% 72.2%/79.2% 73.3%/79.6% 76.3%/85.9% 74.9%/79.9%
SCL 74.2%/80.5% 82.8%/84.6% 70.4%/79.4% 64.1%/69.9% TT.6%/82.7% 78.4%/82.6% 84.2%/87.3% 62.2%/77.2%
ALANS-V  94.4%/93.5% 98.4%/98.9% 91.5%/85.0% 87.0%/83.2% 97.3%/90.9% 96.4%/98.1% 97.3%/99.1% 93.2%/89.5%

known to have shortcut solutions, neural approaches like MXGNet and CoPINet
could potentially find it easier to solve and hence achieve much superior results in
this setup. However, ALANS-V, the variant with a perfect perception component
reaches a level of much robustness and accuracy, attaining the best results in
grid-like layouts, empirically believed to be the hardest in human evaluation [68].

Tab. 4 (right) shows the results on the 'RAVEN dataset [21]. Apart from
ALANS-V’s realizing the best performance across all models, we also notice
the consistency of performance of the proposed method across datasets, with or
without the shortcut issues. All other methods show drastically varying perfor-
mance, particularly for CoPINet and MXGNet, arguably because of the choice
generation strategy that effectively prunes easy solution paths via statistics.

In summary, by analyzing the results from Tabs. 1 and 4 together, we notice
that ALANS not only attains reasonable performance on the I.I.D. setup but
also generalizes systematically.

4.5 Generative Potential

Compared to existing discriminative-only RPM-solving methods, the proposed
ALANS learner is unique in its generative potential. As mentioned above, the
final panel attribute can be decoded by sequentially selecting the most probable
hidden operator and the attribute value. A solution can be generated when
equipped with a rendering engine. In Fig. 3, we use the rendering program from
Zhang et al. [68] to showcase the generative potential in the ALANS learner.
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Fig. 3. Examples of RPM instances with the missing entries filled by solu-
tions directly generated by the ALANS learner. Ground-truth relations are also
listed. Note the generated results do not look exactly the same as the correct candidate
choices due to random rotations during rendering, but they are semantically correct.

5 Conclusion and Limitation

In this work, we propose the ALgebra-Aware Neuro-Semi-Symbolic (ALANS)
learner, echoing a normative theory in the connectionist-classicist debate that
an algebraic treatment in a cognitive architecture should improve a model’s
systematic generalization ability. In particular, the ALANS learner employs a
neural-semi-symbolic architecture, where the neural visual perception module is
responsible for summarizing visual information and the algebraic abstract rea-
soning module transforms it into algebraic representation with isomorphism es-
tablished by the Peano Axiom and the representation theory, conducts operator
induction, and executes it to arrive at an answer. In three RPM domains reflec-
tive of systematic generalization, the proposed ALANS learner shows superior
performance compared to other pure connectionist baselines.

The proposed ALANS learner also bears some limitations. For one thing, we
make the assumption in our formulation that relations on different attributes are
independent and can be factorized. This assumption is not universally correct
and could potentially lead to failure in more complex reasoning scenarios when
attributes are correlated. For another, we assume a fixed and known space for
each attribute in the perception module, while in the real world the space for
one attribute could be dynamically changing. In addition, the reasoning mod-
ule is sensitive to perception uncertainty as has already been discussed in the
experimental results. Besides, the gap between perfection and the status quo
in reasoning remains to be filled. In this work, we only show how the hidden
operator can be induced with regularized linear regression via the representa-
tion theory. However, more elaborate differentiable optimization problems can
certainly be incorporated for other problems.

With the limitation in mind, we hope that this preliminary study could in-
spire more research on incorporating algebraic structures into current connec-
tionist models and help address challenging modeling problems [65,69,73,76].
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