
1

Energy-Based Continuous Inverse Optimal Control
Yifei Xu, Jianwen Xie, Tianyang Zhao, Chris Baker, Yibiao Zhao and Ying Nian Wu

Abstract—The problem of continuous inverse optimal control
(over finite time horizon) is to learn the unknown cost func-
tion over the sequence of continuous control variables from
expert demonstrations. In this article, we study this fundamental
problem in the framework of energy-based model, where the
observed expert trajectories are assumed to be random samples
from a probability density function defined as the exponential
of the negative cost function up to a normalizing constant.
The parameters of the cost function are learned by maximum
likelihood via an “analysis by synthesis” scheme, which iterates
(1) synthesis step: sample the synthesized trajectories from the
current probability density using the Langevin dynamics via
back-propagation through time, and (2) analysis step: update the
model parameters based on the statistical difference between the
synthesized trajectories and the observed trajectories. Given the
fact that an efficient optimization algorithm is usually available
for an optimal control problem, we also consider a convenient
approximation of the above learning method, where we replace
the sampling in the synthesis step by optimization. Moreover, to
make the sampling or optimization more efficient, we propose
to train the energy-based model simultaneously with a top-
down trajectory generator via cooperative learning, where the
trajectory generator is used to fast initialize the synthesis step of
the energy-based model. We demonstrate the proposed methods
on autonomous driving tasks, and show that they can learn
suitable cost functions for optimal control.

Index Terms—Inverse optimal control; Energy-based models;
Langevin dynamics; Cooperative learning.

I. INTRODUCTION

A. Background and motivation

THE problem of continuous optimal control has been
extensively studied. In this paper, we study the control

problem of finite time horizon, where the trajectory is over a
finite period of time. In particular, we focus on the problem
of autonomous driving as a concrete example. In continuous
optimal control, the control variables or actions are continuous.
The dynamics is known. The cost function is defined on the
trajectory and is usually in the form of the sum of stepwise
costs and the cost of the final state. We call such a cost
function Markovian. The continuous optimal control seeks to
minimize the cost function over the sequence of continuous
control variables or actions, and many efficient algorithms
have been developed for various optimal control problems [1].
For instance, in autonomous driving, the iLQR (iterative linear

Y. Xu is with the Department of Statistics, University of California, Los
Angeles, CA 90095, USA. E-mail: fei960922@ucla.edu

J. Xie is with the Cognitive Computing Lab, Baidu Research, Bellevue, WA
98004, USA. E-mail: jianwen@ucla.edu

T. Zhao is with the Department of Statistics, University of California, Los
Angeles, CA 90095, USA. E-mail: tyzhao@ucla.edu

C. Baker is with iSee Inc., Cambridge, MA 02139, USA. E-mail: chris-
baker@isee.ai

Y. Zhao is with iSee Inc., Cambridge, MA 02139, USA. E-mail: yz@isee.ai
Y. N. Wu is with the Department of Statistics, University of California, Los

Angeles, CA 90095, USA. E-mail: ywu@stat.ucla.edu

quadratic regulator) algorithm is a commonly used optimization
algorithm [2], [3]. We call such an algorithm the built-in
optimization algorithm for the corresponding control problem.

In applications such as autonomous driving, the dynamics
is well defined by the underlying physics and mechanics.
However, it is a much harder problem to design or specify
the cost function. One solution to this problem is to learn the
cost function from expert demonstrations by observing their
sequences of actions. Learning the cost function in this way is
called continuous inverse optimal control (IOC) problem.

In this article, we study the fundamental problem of
continuous inverse optimal control in the framework of energy-
based model [4]. Originated from statistical physics, an energy-
based model (EBM) is a probability distribution where the
probability density function is in the form of exponential of
the negative energy function up to a normalizing constant. The
energy function maps the input into a scalar, which is called
energy. Instances with low energies are assumed to be more
likely according to the model. For continuous inverse optimal
control, the cost function plays the role of energy function,
and the observed expert sequences are assumed to be random
samples from the energy-based model so that sequences with
low costs are more likely to be observed. We can choose
the cost function either as a linear combination of a set of
hand-designed features, or a non-linear and non-markovian
neural network. The goal is to learn the parameters of the cost
function from the expert sequences.

The parameters can be learned by the maximum likelihood
estimation (MLE) in the context of the energy-based model. The
maximum likelihood learning algorithm follows an “analysis
by synthesis” scheme, which iterates the following two steps:
(1) Synthesis step: sample the synthesized trajectories from the
current probability distribution using the Markov chain Monte
Carlo (MCMC), such as Langevin dynamics [5]. The gradient
computation in the Langevin dynamics can be conveniently
and efficiently carried out by back-propagation through time.
(2) Analysis step: update the model parameters based on the
statistical difference between the synthesized trajectories and
the observed trajectories. Such a learning algorithm is very
general, and it can learn complex cost functions such as those
defined by the neural networks.

We need to point out that MLE is the most commonly used
method for learning energy-based models, due to its asymptotic
optimality. Among all the asymptotically unbiased estimators,
MLE is the most accurate in terms of asymptotic variance
[6]. Alternative methods for learning EBMs include contrastive
divergence (CD) [7] and noise contrastive estimation (NCE) [8].
Contrastive divergence replaces MCMC by one or a few steps
of MCMC sampling initialized from observed examples, and
as a result, it has a big bias. NCE estimates the energy function
discriminatively by recruiting a noise distribution to produce

ar
X

iv
:1

90
4.

05
45

3v
6

 [c
s.L

G
]

19
 A

pr
 2

02
2

2

negative or contrastive examples against the observed examples
which are treated as positive examples. For accurate estimation,
the noise distribution should have substantial overlap with the
data distribution. For high dimensional observations such as
trajectories, it is difficult to find such a noise distribution. If the
noise distribution does not have sufficient overlap with the data
distribution, the estimate will have a big variance. Therefore,
the maximum likelihood training is a more preferable algorithm
to train EBMs.

For an optimal control problem where the cost function is of
the Markovian form, a built-in optimization algorithm is usually
already available, such as the iLQR algorithm for autonomous
driving. In this case, we also consider a convenient modification
of the above learning method, where we change the synthesis
step into an optimization step while keeping the analysis step
unchanged. We give justifications for this optimization-based
method, although we want to emphasize that the sampling-
based method is still more fundamental and principled, and we
treat optimization-based method as a convenient modification.

Moreover, we propose another novel energy-based IOC
framework, where the energy-based model is trained with a
top-down trajectory generator that serves as a fast initializer of
the Langevin sampling of the energy-based model through a
cooperative learning manner [9], [10]. Within each cooperative
learning iteration, the trajectory generator generates initial
trajectories to initialize a finite-step Langevin dynamics that
samples from the energy-based model, and then the energy-
based model is trained by comparing the expert trajectories and
the synthesized trajectories. After that, the trajectory generator
learns from how the MCMC changes its initial generated
trajectories. The proposed framework belongs to the “fast
thinking initializer and slow thinking solver” framework [11].
The trajectory generator plays the role of the fast thinking
initializer because its generation of trajectory is accomplished
by direct mapping, while the energy-based model plays the role
of the slow thinking solver because it learns a cost function in
the form of a conditional energy function, so that the trajectory
can be synthesized by minimizing the cost function, or more
rigorously by sampling from the energy-based model. The
trajectory generator is like a policy, while the energy-based
model is like a planner. Compared to GAN-type method, ours
is equipped with an iterative refining process (slow thinking)
guided by a learned cost (energy) function.

We empirically demonstrate the proposed energy-based IOC
methods on autonomous driving in both single-agent and multi-
agent scenarios, and show that the proposed methods can learn
suitable cost functions for optimal control.

B. Related work

The following are research themes related to our work.
(1) Maximum entropy framework. Our work follows the

maximum entropy framework of [12] for learning the cost
function. Such a framework has also been used previously
for generative modeling of images [13] and Markov logic
network [14]. In this framework, the energy function is a
linear combination of hand-designed features. Recently, [15]
generalized this framework to a deep version. In these methods,

the state spaces are discrete, where dynamic programming
schemes can be employed to calculate the normalizing constant
of the energy-based model. In our work, the state space
is continuous, where we use Langevin dynamics via back-
propagation through time to sample trajectories from the learned
model. We also propose an optimization-based method where
we use the gradient descent algorithm or a built-in optimal
control algorithm as the inner loop for learning.

(2) ConvNet-EBM. Recently, [16], [17], [18], [19], [20],
[21] applied deep energy-based models to various generative
modeling tasks, where the energy functions are parameterized
by ConvNets [22], [23]. Our method is different from ConvNet
EBM. The control variables in our method form a time
sequence. In gradient computation for Langevin sampling,
back-propagation through time is used. Also, we propose an
optimization-based modification and give justifications.

(3) Inverse reinforcement learning. Most of the inverse
reinforcement learning methods [24], [25], including adversarial
learning methods [26], [27], [28], [25], involve learning a policy
in addition to the cost function. In our work, the energy-based
IOC framework (without an extra trajectory generator) does
not learn any policy, and it only learns a cost function (i.e.,
the energy function), where the trajectories are sampled by
the Langevin dynamics or obtained by gradient descent or a
built-in optimal control algorithm.

(4) Continuous inverse optimal control (IOC). The IOC
problem has been studied by [29] and [30]. In [29], the
dynamics is linear and the cost function is quadratic, so
that the normalizing constant can be computed by a dynamic
programming scheme. In [30], the Laplace approximation is
used for approximation. However, the accuracy of the Laplace
approximation is questionable for complex cost function. In
our work, we assume general dynamics and cost function, and
we use Langevin sampling for maximum likelihood learning
without resorting to Laplace approximation.

(5) Trajectory prediction. A recent body of research has been
devoted to supervised learning for trajectory prediction [31],
[32], [33], [34], [35], [36]. These methods directly predict the
coordinates and do not consider control and dynamic models.
Thus, they cannot be used for inverse optimal control.

(6) Cooperative Learning. Our joint training framework for
IOC follows the generative cooperative learning algorithm
(i.e., the CoopNets algorithm) of [10] for training the cost
function in the EBM and the trajectory generator. Such a
learning algorithm has also been applied previously to image
generation [10], video generation [10], 3D shape generation
[20], supervised conditional learning [11], and unsupervised
image-to-image translation [37]. The CoopVAEBM [38] is a
variant of the CoopNets algorithm by replacing the generic
generator with a variational auto-encoder (VAE) [39]. The
CoopFlow [40] is another variant of the CoopNets algorithm
by changing the generator into a normalizing flow [41].

C. Contributions

The contributions of our work are as follows.
• We propose an energy-based method for continuous

inverse optimal control based on Langevin sampling

3

via back-propagation through time. To the best of our
knowledge, this is the first work that studies MCMC
sampling-based inverse optimal control. Such an “analysis
by synthesis” learning scheme makes our work essentially
different from [12], [29], [30].

• We also propose an optimization-based method as a con-
venient approximation of the MCMC sampling under the
proposed energy-based learning framework. The modified
algorithm becomes an “analysis by optimization” scheme.

• We evaluate the proposed methods on autonomous driving
tasks for trajectory prediction. We apply our framework
to both single-agent system and multi-agent system, with
both linear cost function and neural network non-linear
cost function. This is the first work to study vehicle
trajectory prediction under the energy-based framework.

• We also propose to train an energy-based model together
with a policy-like trajectory generator, which serves as a
fast initializer for the Langevin sampling, in a cooperative
learning scheme.

• We conduct extensive ablation studies to analyze the
effects of the key components and hyperparameters of the
proposed frameworks to understated the model behaviors.

D. Organization
The rest of our paper is organized as follows: Section

II presents the proposed framework of the energy-based
inverse optimal control. Section III presents the proposed joint
training framework, in which the energy-based model is trained
simultaneously with a trajectory generator as amortized sampler.
Qualitative and quantitative results of experiments are shown
in Section IV. Conclusion of the paper is given in Section V.

II. ENERGY-BASED INVERSE OPTIMAL CONTROL

A. Optimal control
We study the finite horizon control problem for discrete time

𝑡 ∈ {1, ..., 𝑇}. Let 𝑥𝑡 be the state at time 𝑡. Let x = (𝑥𝑡 , 𝑡 =
1, ..., 𝑇). Let 𝑢𝑡 be the continuous control variable or action
at time 𝑡. Let u = (𝑢𝑡 , 𝑡 = 1, ..., 𝑇). The dynamics is assumed
to be deterministic, 𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡), where 𝑓 is given, so that
u determines x. The trajectory is (x, u) = (𝑥𝑡 , 𝑢𝑡 , 𝑡 = 1, ..., 𝑇).
Let 𝑒 be the environment condition. We assume that the recent
history ℎ = (𝑥𝑡 , 𝑢𝑡 , 𝑡 = −𝑘, ..., 0) is known.

The cost function is 𝐶𝜃 (x, u, 𝑒, ℎ) where 𝜃 consists of the
parameters that define the cost function. Its special case is
of the linear form 𝐶𝜃 (x, u, 𝑒, ℎ) = 〈𝜃, 𝜙(x, u, 𝑒, ℎ)〉, where 𝜙
is a vector of hand-designed features, and 𝜃 is a vector of
weights for these features. We can also parameterize 𝐶𝜃 by a
neural network. The problem of optimal control is to find u to
minimize 𝐶𝜃 (x, u, 𝑒, ℎ) with given 𝑒 and ℎ under the known
dynamics 𝑓 . The problem of inverse optimal control is to learn
𝜃 from expert demonstrations 𝐷 = {(x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖), 𝑖 = 1, ..., 𝑛}.

B. Energy-based probabilistic model
The energy-based model assumes the following conditional

probability density function

𝑝𝜃 (u|𝑒, ℎ) =
1

𝑍𝜃 (𝑒, ℎ)
exp[−𝐶𝜃 (x, u, 𝑒, ℎ)], (1)

where 𝑍𝜃 (𝑒, ℎ) =
∫

exp[−𝐶𝜃 (x, u, 𝑒, ℎ)]𝑑u is the normalizing
constant. Recall that x is determined by u according to
the deterministic dynamics, so that we only need to define
probability density on u. The cost function 𝐶𝜃 serves as the
energy function. For expert demonstrations 𝐷, u𝑖 are assumed
to be random samples from 𝑝𝜃 (u|𝑒𝑖 , ℎ𝑖), so that u𝑖 tends to
have low cost 𝐶𝜃 (x, u, 𝑒𝑖 , ℎ𝑖).

C. Sampling-based inverse optimal control

The parameters 𝜃 can be learned by maximum likelihood.
The log-likelihood is given by

𝐿 (𝜃) = 1
𝑛

𝑛∑︁
𝑖=1

log 𝑝𝜃 (u𝑖 |𝑒𝑖 , ℎ𝑖). (2)

We can maximize 𝐿 (𝜃) by gradient ascent, and the learning
gradient is computed by

𝐿 ′(𝜃) = 1
𝑛

𝑛∑︁
𝑖=1

[
E𝑝𝜃 (u |𝑒𝑖 ,ℎ𝑖)

(
𝜕

𝜕𝜃
𝐶𝜃 (x, u, 𝑒𝑖 , ℎ𝑖)

)
− 𝜕

𝜕𝜃
𝐶𝜃 (x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖)

]
,

(3)

which follows the property of the normalizing constant
𝜕
𝜕𝜃

log 𝑍𝜃 (𝑒, ℎ) = −E𝑝𝜃 (u |𝑒,ℎ)
(
𝜕
𝜕𝜃
𝐶𝜃 (x, u, 𝑒, ℎ)

)
.

In order to approximate the above expectation, we can
generate multiple random samples via ũ𝑖 ∼ 𝑝𝜃 (u|𝑒, ℎ), which
generates each sampled trajectory (x̃𝑖 , ũ𝑖) by unfolding the
dynamics. We estimate 𝐿 ′(𝜃) by

𝐿̂ ′(𝜃) = 1
𝑛

𝑛∑︁
𝑖=1

[
𝜕

𝜕𝜃
𝐶𝜃 (x̃𝑖 , ũ𝑖 , 𝑒𝑖 , ℎ𝑖) −

𝜕

𝜕𝜃
𝐶𝜃 (x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖)

]
,

(4)

which is the stochastic unbiased estimator of 𝐿 ′(𝜃). Then we
can run the gradient ascent algorithm 𝜃𝜏+1 = 𝜃𝜏 + 𝛾𝜏 𝐿̂ ′(𝜃𝜏) to
obtain the maximum likelihood estimate of 𝜃, where 𝜏 indexes
the time step, 𝛾𝜏 is the step size. According to the Robbins-
Monroe theory of stochastic approximation [42], if

∑
𝜏 𝛾𝜏 = ∞

and
∑
𝜏 𝛾

2
𝜏 < ∞, the algorithm will converge to a solution of

𝐿 ′(𝜃) = 0. For each 𝑖, we can also generate multiple copies
of (x̃𝑖 , ũ𝑖) from 𝑝𝜃 (u|𝑒𝑖 , ℎ𝑖) and average them to approximate
the expectation in Equation (3). A small number is sufficient
because the averaging effect takes place over time.

In linear case, where 𝐶𝜃 (x, u, 𝑒, ℎ) = 〈𝜃, 𝜙(x, u, 𝑒, ℎ)〉,
we have 𝜕

𝜕𝜃
𝐶𝜃 (x, u, 𝑒, ℎ) = 𝜙(x, u, 𝑒, ℎ), making 𝐿̂ ′(𝜃) =

1
𝑛

∑𝑛
𝑖=1 [𝜙(x̃𝑖 , ũ𝑖 , 𝑒𝑖 , ℎ𝑖) − 𝜙(x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖)]. It is the statistical

difference between the observed trajectories and synthesized
trajectories. At maximum likelihood estimate, the two match
each other.

The synthesis step that samples from 𝑝𝜃 (u|𝑒, ℎ) can be
accomplished by an efficient gradient-based MCMC, the
Langevin dynamics, which iterates the following steps:

u𝑠+1 = u𝑠 +
𝛿2

2
𝜕

𝜕u
log 𝑝𝜃 (u𝑠 |𝑒, ℎ) + 𝛿z𝑠 ,

= u𝑠 −
𝛿2

2
𝜕

𝜕u
𝐶𝜃 (x𝑠 , u𝑠 , 𝑒, ℎ) + 𝛿z𝑠 , (5)

4

where 𝑠 indexes the time step, 𝛿 is the step size, and z𝑠 ∼
N(0, 𝐼) the Brownian motion independently over 𝑠, where 𝐼 is
the identity matrix of the same dimension as u. The Langevin
dynamics is an inner loop of the learning algorithm, with u0 (u
at the initial time step) being initialized by Gaussian white noise.
The gradient descent part u𝑠+1 = u𝑠 − 𝛿2

2
𝜕
𝜕u𝐶𝜃 (x𝑠 , u𝑠 , 𝑒, ℎ) of

Equation (5) is a mode seeking process that minimizes the cost
function 𝐶𝜃 , while the added Gaussian noise z𝑠 will prevent
the samples from being trapped by local minima. According
to the second law of thermodynamics [43], as 𝑠 → ∞ and
𝛿 → 0, u𝑠 becomes an exact sample from 𝑝𝜃 (u|𝑒, ℎ) under
some regularity conditions. A Metropolis-Hastings [44] step
can also be added to correct for the error due to discrete time
step in Equation (5), but most existing works, such as [45], [4],
[46], have shown that this can be ignored in practice if a small
enough step size 𝛿 is used. Thus, for computational efficiency,
in this work, we do not have the Metropolis-Hastings correction
in our implementation.

The gradient term 𝜕𝐶𝜃 (x, u, 𝑒, ℎ)/𝜕u is computed via back-
propagation through time, where x can be obtained from u by
unrolling the deterministic dynamics. The computation can be
efficiently and conveniently carried out by auto-differentiation
on the current deep learning platforms.

D. Optimization-based inverse optimal control
We can remove the noise term in Langevin dynamics in

Equation (5), to make it a gradient descent process, i.e., u𝑠+1 =

u𝑠−𝜂 𝜕
𝜕u𝐶𝜃 (x𝑠 , u𝑠 , 𝑒, ℎ), and we can still learn the cost function

that enables optimal control. This amounts to modifying the
synthesis step into an optimization step.

Moreover, a built-in optimization algorithm is usually already
available for minimizing the cost function 𝐶𝜃 (x, u, 𝑒, ℎ) over
u. For instance, in autonomous driving, a commonly used
algorithm is iLQR. In this case, we can replace the synthesis
step by an optimization step, where, instead of sampling ũ𝑖 ∼
𝑝𝜃𝑡 (u|𝑒𝑖 , ℎ𝑖), we optimize

ũ𝑖 = arg min
u
𝐶𝜃 (x, u, 𝑒𝑖 , ℎ𝑖). (6)

The analysis step remains unchanged. In this paper, we em-
phasize the sampling-based method, which is more principled
maximum likelihood learning, and we treat the optimization-
based method as a convenient modification. We will evaluate
both learning methods in our experiments.

A justification for the optimization-based algorithm in the
context of the energy-based model in Equation (1) is to consider
its tempered version 𝑝𝜃 (u|𝑒, ℎ) ∝ exp[−𝐶𝜃 (x, u, 𝑒, ℎ)/𝑇],
where 𝑇 is the temperature. Then the optimized ũ that min-
imizes 𝐶𝜃 (x, u, 𝑒, ℎ) can be considered the zero-temperature
sample, which is used to approximate the expectation in
Equation (3).

Moment matching. For simplicity, consider the linear cost
function 𝐶𝜃 (x, u, 𝑒, ℎ) = 〈𝜃, 𝜙(x, u, 𝑒, ℎ)〉. At the convergence
of the optimization-based learning algorithm, which has the
same analysis step as the sampling-based algorithm, we have
𝐿̂ ′(𝜃) = 0, so that

1
𝑛

𝑛∑︁
𝑖=1

𝜙(x̃𝑖 , ũ𝑖 , 𝑒𝑖 , ℎ𝑖) =
1
𝑛

𝑛∑︁
𝑖=1

𝜙(x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖), (7)

where the left-hand side is the average of the optimal behaviors
obtained by Equation (6), and the right-hand side is the average
of the observed behaviors. We want the optimal behaviors to
match the observed behaviors on average. We can see the above
point most clearly in the extreme case where all 𝑒𝑖 = 𝑒 and all
ℎ𝑖 = ℎ, so that 𝜙(x̃, ũ, 𝑒, ℎ) = 1

𝑛

∑𝑛
𝑖=1 𝜙(x𝑖 , u𝑖 , 𝑒, ℎ), i.e., we

want the optimal behavior under the learned cost function to
match the average observed behaviors as far as the features
of the cost function are concerned. Note that the matching is
not in terms of raw trajectories but in terms of the features
of the cost function. In this matching, we do not care about
modeling the variabilities in the observed behaviors. In the
case of different (𝑒𝑖 , ℎ𝑖) for 𝑖 = 1, ..., 𝑛, the matching may
not be exact for each combination of (𝑒, ℎ). However, such
mismatches may be detected by new features which can be
included in the features of the cost function.

Adversarial learning. We can also justify this optimization-
based algorithm outside the context of probabilistic model as
adversarial learning. To this end, we re-think about the inverse
optimal control, whose goal is not to find a probabilistic model
for the expert trajectories. Instead, the goal is to find a suitable
cost function for optimal control, where we care about the
optimal behavior, not the variabilities of the observed behaviors.
Define the value function

𝑉 (𝜃, {ũ𝑖}) =
1
𝑛

𝑛∑︁
𝑖=1
[𝐶𝜃 (x̃𝑖 , ũ𝑖 , 𝑒𝑖 , ℎ𝑖) − 𝐶𝜃 (x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖)] ,

(8)

then 𝐿̂ ′(𝜃) = 𝜕
𝜕𝜃
𝑉 , so that the analysis step increases 𝑉 . The

optimization step and the analysis step play an adversarial
game max𝜃 minũ𝑖 ,∀𝑖 𝑉 , where the optimization step seeks to
minimize 𝑉 by reducing the costs, while the analysis step seeks
to increase 𝑉 by modifying the cost function. More specifically,
the optimization step finds the minima of the cost functions to
decrease 𝑉 , whereas the analysis step shifts the minima toward
the observe trajectories in order to increase 𝑉 .

E. Energy-based IOC algorithm

Algorithm 1 and Algorithm 2 present the sampling-based
and optimization-based learning algorithms, respectively. We
treat the sampling-based method as a more fundamental and
principled method, and the optimization-based method as a
convenient modification. In our experiments, we shall evaluate
both sampling-based method using Langevin dynamics and
optimization-based method with gradient descent (GD) or iLQR
as optimizer.

III. JOINT TRAINING

A. A trajectory generator model as a fast initializer

Both sampling-based method via Langevin dynamics and
optimization-based method via gradient descent are based on
iterative process, which will benefit from good initialization. A
good initial point can not only greatly shorten the number of
iterative steps but also help find the optimal modes of the cost
function. Therefore, we propose to train an energy-based model
simultaneously with a trajectory generator model that serves as

5

Algorithm 1 Energy-based IOC with synthesis step

1: input expert demonstrations 𝐷 = {(x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖),∀𝑖}.
2: output cost function parameters 𝜃, and synthesized trajec-

tories {(x̃𝑖 , ũ𝑖),∀𝑖}.
3: Let 𝜏 ← 0, randomly initialize 𝜃.
4: repeat
5: synthesis step: for each 𝑖, synthesize ũ𝑖 ∼ 𝑝𝜃𝑡 (u|𝑒𝑖 , ℎ𝑖)

by Langevin sampling and then obtain x̃𝑖 .
6: analysis step: update 𝜃𝜏+1 = 𝜃𝜏 + 𝛾𝜏 𝐿̂ ′(𝜃𝜏), where 𝐿̂ ′

is computed according to Equation (4).
7: 𝜏 ← 𝜏 + 1.
8: until 𝜏 = 𝜏max, the number of iterations.

Algorithm 2 Energy-based IOC with optimization step

1: input expert demonstrations 𝐷 = {(x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖),∀𝑖}.
2: output cost function parameters 𝜃, and optimized trajecto-

ries {(x̃𝑖 , ũ𝑖),∀𝑖}.
3: Let 𝜏 ← 0, randomly initialize 𝜃.
4: repeat
5: optimization step: for each 𝑖, optimize ũ𝑖 =

arg minu 𝐶𝜃 (x, u, 𝑒𝑖 , ℎ𝑖), by gradient descent (GD) or
iLQR, and then obtain x̃𝑖 .

6: analysis step: update 𝜃𝜏+1 = 𝜃𝜏 + 𝛾𝜏 𝐿̂ ′(𝜃𝜏), where 𝐿̂ ′

is computed according to Equation (4).
7: 𝜏 ← 𝜏 + 1.
8: until 𝜏 = 𝜏max, the number of iterations.

a fast initializer for the Langevin dynamics or gradient descent
of the energy-based model.

The basic idea is to use the trajectory generator model to
generate trajectories via ancestral sampling to initialize a finite
step Langevin dynamics or gradient descent for training the
energy-based model. In return, the trajectory generator model
learns from how the Langevin dynamics or gradient descent
updates the initial trajectories it generates. Such a cooperative
learning strategy is proposed in [10], [11], [40] for image
generation.

To be specific, we propose the trajectory generator model
that consists of the following two components

𝑢𝑡 = 𝐹𝛼 (𝑥𝑡−1, 𝜉𝑡 , 𝑒) (9)
𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡) (10)

where 𝑡 = 1, ..., 𝑇 , Equation (9) is the policy model, and
Equation (10) is the known dynamic function. 𝜉𝑡 ∼ N(0, 𝐼)
is the Gaussian noise vector. The Gaussian noise vectors at
different times (𝜉𝑡 , 𝑡 = 1, ..., 𝑇) are independent of each other.
Given the state 𝑥𝑡−1 at the previous time step 𝑡−1 along with the
environment condition 𝑒, the policy model outputs the action
𝑢𝑡 at the current time step 𝑡, where the noise vector 𝜉𝑡 accounts
for the randomness in the mapping from 𝑥𝑡−1 to 𝑢𝑡 . 𝐹𝛼 is a
multi-layer perceptron, where 𝛼 is the model parameters of
the network. The initial state 𝑥0 is assumed to be given.

We denote 𝝃 = (𝜉𝑡 , 𝑡 = 1, ..., 𝑇) and 𝑝(𝝃) = ∏𝑇
𝑡=1 𝑝(𝜉𝑡).

Given the state 𝑥𝑡−1 and the environment condition 𝑒, although
𝑥𝑡 is dependent on the action 𝑢𝑡 , 𝑢𝑡 is generated from 𝜉𝑡 . In
fact, we can write the trajectory generator in a compact form,

i.e., u = 𝐺𝛼 (𝝃, 𝑒, ℎ), where 𝐺𝛼 composes 𝐹𝛼 and 𝑓 over time,
and we use ℎ = 𝑥0 for simplicity in our implementation.

The algorithm for joint training of the energy-based model
and the trajectory generator is that: at each iteration, (i) we
first sample 𝝃𝑖 from the Gaussian prior distribution, and then
generate the initial trajectories by û𝑖 = 𝐺𝛼 (𝝃𝑖 , 𝑒𝑖 , ℎ𝑖) for 𝑖 =
1, ..., 𝑛. (ii) Starting from the initial trajectories {û𝑖}, we sample
from the energy-based model by running a finite number of
Langevin steps or optimize the cost function by running a finite
steps of gradient descent to obtain the updated trajectories {ũ𝑖},
and then obtain {x̃𝑖}. (iii) We update the parameters 𝜃 of the
energy-based model by maximum likelihood estimation, where
the computation of the gradient of the likelihood is based on
{ũ𝑖} and follows Equation (4). (iv) We update the parameters
𝛼 of the trajectory generator by gradient descent on the loss

𝑙 ′𝑔 (𝛼) =
𝜕

𝜕𝛼

[
1
𝑛

𝑛∑︁
𝑖=1
| |ũ𝑖 − 𝐺𝛼 (𝝃𝑖 , 𝑒𝑖 , ℎ𝑖) | |2

]
. (11)

Algorithm 3 presents a detailed description of the cooperative
training algorithm of an energy-based model and a trajectory
generator for inverse optimal control. Synthesis step and
optimization step are two options to generate (ũ, x̃).

Algorithm 3 Energy-based IOC with a trajectory generator

1: input expert demonstrations 𝐷 = {(x𝑖 , u𝑖 , 𝑒𝑖 , ℎ𝑖),∀𝑖}.
2: output cost function parameters 𝜃, trajectory generator

parameters 𝛼, and synthesized or optimized trajectories
{(x̃𝑖 , ũ𝑖),∀𝑖}.

3: Let 𝜏 ← 0, randomly initialize 𝜃 and 𝛼.
4: repeat
5: Initialization step: Initialize û𝑖 = 𝐺𝛼𝑡 (𝝃𝑖 , 𝑒𝑖 , ℎ𝑖),

where 𝝃𝑖 ∼ 𝑝(𝝃) by ancestral sampling, and then obtain
x̂𝑖 for each 𝑖.

6: Synthesis step or optimization step: Given the initial
û𝑖 , synthesizing ũ𝑖 ∼ 𝑝𝜃𝑡 (u|𝑒𝑖 , ℎ𝑖) by Langevin sampling,
or optimizing ũ𝑖 = arg minu 𝐶𝜃 (x, u, 𝑒𝑖 , ℎ𝑖) by gradient
descent (GD) or iLQR, and then obtain x̃𝑖 , for each 𝑖.

7: Analysis step (update cost function): Update 𝜃𝜏+1 =

𝜃𝜏 + 𝛾𝜏 𝐿̂ ′(𝜃𝜏), where 𝐿̂ ′(𝜃) is computed according to
Equation (4).

8: Analysis step (update policy model): Update 𝛼𝜏+1 =

𝛼𝜏 − 𝜂𝜏 𝑙 ′𝑔 (𝛼𝜏), where 𝑙 ′𝑔 (𝛼) is computed according to
Equation (11).

9: 𝜏 ← 𝜏 + 1.
10: until 𝜏 = 𝜏max, the number of iterations.

B. Bottom-up and top-down generative models of trajectories

Algorithm 3 presented in the main text is about a joint
training of two types of generative models, the energy-based
model (we also call it the trajectory evaluator) and the latent
variable model (i.e., the trajectory generator). Both of these
two models can be parameterized by deep neural networks
and they are of opposite directions. The energy-based model
has a bottom-up energy function that maps the trajectory
to the cost, while the trajectory generator owns a top-down
transformation that maps the sequence of noise vectors (i.e., the

6

latent variables) to the trajectory, as illustrated by the following
diagram.

Bottom-up model Top-down model
cost noise sequence

(energy) (latent variables)
⇑ ⇓

trajectory trajectory
(a) Trajectory evaluator (b) Trajectory generator
(energy-based model) (latent variable model)

C. Iterative and non-iterative generations of trajectories

The energy-based model 𝑝𝜃 (u|𝑒, ℎ) defines a cost function or
an energy function 𝐶𝜃 (x, u, 𝑒, ℎ), from which we can derive the
Langevin dynamics to generate u. This is an implicit generation
process of u that iterates the Langevin step in Equation (5).

Figure 1 (a) illustrates the generation process of (u, x). Given
(ℎ, 𝑒), the Langevin sampling seeks to find u = (𝑢1, ..., 𝑢𝑇)
to minimize the 𝐶𝜃 (x, u, 𝑒, ℎ). The dashed double line arrows
indicate iterative generation by sampling in the energy-based
model, while the dashed line arrows indicate the known
dynamic function 𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡). With the generated action
sequence u = (𝑢1, ..., 𝑢𝑇), the state sequence x = (𝑥1, ..., 𝑥𝑇)
can be easily obtained by applying the dynamic function.

The trajectory generator generates (u, x) via ancestral
sampling, (u, x) = 𝐺𝛼 (𝝃, 𝑒, ℎ) which is a non-iterative process
to produce (u, x) from the recent history ℎ (We assume ℎ = 𝑥0),
environment 𝑒, and a sequence of noise vectors 𝝃 = (𝜉1, ...𝜉𝑇)
serving as the latent variables. The generator can unfold
over time and can be decomposed into the policy model
𝑢𝑡 = 𝐹𝛼 (𝑥𝑡−1, 𝜉𝑡 , 𝑒) and the dynamic function 𝑥𝑡 = 𝑓 (𝑥𝑡−1, 𝑢𝑡)
at each time step. The latent variable 𝜉𝑡 accounts for variation
in the policy model at time step 𝑡. Figure 1(b) illustrates the
generation process of the trajectory generator. The double line
arrows indicate the mapping of the policy model, while the
dashed line arrows indicate the known dynamic function. The
whole process of generating (u, x) is of a dynamic or causal
nature in that it directly evolves or unfolds over time.

(a) Trajectory generation via Langevin sampling

(b) Trajectory generation via ancestral sampling

Fig. 1: Trajectory generation by (a) iterative method and (b)
non-iterative method.

D. Issue in maximum likelihood training of a single trajectory
generator

Let 𝝃 = (𝜉𝑡 , 𝑡 = 1, ..., 𝑇), where 𝜉𝑡 ∼ N(0, 𝐼) indepen-
dently over time 𝑡. Let u = (𝑢𝑡 , 𝑡 = 1, ..., 𝑇). We have
u = 𝐺𝛼 (𝝃, 𝑒, ℎ) + 𝝐 , where 𝝐 = (𝜖𝑡 , 𝑡 = 1, ..., 𝑇) are observation
errors and 𝜖𝑡 ∼ N(0, 𝜎2𝐼). For notational simplicity, we omit
x and only keep u in the output of 𝐺𝛼, because x is just the
intermediate output of 𝐺𝛼 and u is determined by x. The
trajectory generator defines the joint distribution of (u, 𝝃)
conditioned on (𝑒, ℎ) as below,

𝑞𝛼 (u, 𝝃 |𝑒, ℎ) = 𝑞𝛼 (u|𝝃, 𝑒, ℎ)𝑝(𝝃) (12)

where 𝑝(𝝃) =
∏𝑇
𝑖=𝑡 𝑝(𝜉𝑡) is the prior distribution and

𝑞𝛼 (u|𝝃, 𝑒, ℎ) = N(𝐺𝛼 (𝝃, 𝑒, ℎ), 𝜎2𝐼). The marginal distribu-
tion of u conditioned on (𝑒, ℎ) is given by 𝑞𝛼 (u|𝑒, ℎ) =∫
𝑞𝛼 (u, 𝝃 |𝑒, ℎ)𝑑𝝃. The posterior distribution is 𝑞𝛼 (𝝃 |u, 𝑒, ℎ) =

𝑞𝛼 (u, 𝝃 |𝑒, ℎ)/𝑞𝛼 (u|𝑒, ℎ). Suppose we observe expert demon-
strations 𝐷 = {(u𝑖 , x𝑖 , 𝑒𝑖 , ℎ𝑖), 𝑖 = 1, ..., 𝑛}. The maximum
likelihood estimation of 𝛼 seeks to maximize the log-likelihood
function

𝐿 (𝛼) =
𝑛∑︁
𝑖=1

log 𝑞𝛼 (ui |𝑒𝑖 , ℎ𝑖). (13)

The learning gradient can be computed according to

𝜕

𝜕𝛼
log 𝑞𝛼 (u|𝑒, ℎ) =

1
𝑞𝛼 (u|𝑒, ℎ)

𝜕

𝜕𝛼

∫
𝑞𝛼 (u, 𝝃 |𝑒, ℎ)𝑑𝝃

(14)

=

∫ [
𝜕

𝜕𝛼
log 𝑞𝛼 (u, 𝝃 |𝑒, ℎ)

]
𝑞𝛼 (u, 𝝃 |𝑒, ℎ)
𝑞𝛼 (u|𝑒, ℎ)

𝑑𝝃 (15)

=E𝑞𝛼 (𝝃 |u,𝑒,ℎ)
[
𝜕

𝜕𝛼
log 𝑞𝛼 (u, 𝝃 |𝑒, ℎ)

]
(16)

The expectation term in Equation (16) is under the posterior
distribution 𝑞𝛼 (𝝃 |u, 𝑒, ℎ) that is analytically intractable. One
may draw samples from 𝑞𝛼 (𝝃 |u, 𝑒, ℎ) via Langevin inference
dynamics that iterates

𝝃𝑠+1 = 𝝃𝑠 +
𝛿2

2
𝜕

𝜕𝝃
log 𝑞𝛼 (𝝃𝑠 |u, 𝑒, ℎ) + 𝛿z𝑠 , (17)

where z ∼ N(0, 𝐼), 𝛿 is the step size and 𝑠 indexes the time
step. Also, 𝜉0 is usually sampled from Gaussian white noise for
initialization. After we infer 𝝃 from each observation (u𝑖 , 𝑒𝑖 , ℎ𝑖)
by sampling from 𝑞𝛼 (𝝃 |u𝑖 , 𝑒𝑖 , ℎ𝑖) via Langevin inference
process, the Monte Carlo approximation of the gradient of
𝐿 (𝛼) in Equation (13) is computed by

𝜕

𝜕𝛼
𝐿 (𝛼) ≈

𝑛∑︁
𝑖=1

[
𝜕

𝜕𝛼
log 𝑞𝛼 (u𝑖 , 𝝃𝑖 |𝑒𝑖 , ℎ𝑖)

]
(18)

Since 𝜕
𝜕𝝃 log 𝑞𝛼 (𝝃 |u, 𝑒, ℎ) = 𝜕

𝜕𝝃 log 𝑞𝛼 (u, 𝝃 |𝑒, ℎ) in Equation
(17). Both inference step in Equation (17) and learning step in
Equation (18) need to compute derivative of log 𝑞𝛼 (u, 𝝃 |𝑒, ℎ) =

1
2𝜎2 | |𝐺𝛼 (𝝃, 𝑒, ℎ) − u| |2 + const. The former is with respect to
𝝃, while the latter is with respect to 𝛼, both of which can
be computed by back-propagation through time. The resulting
algorithm is called alternating back-propagation through time
(ABPTT) algorithm [47].

7

Although the ABPTT algorithm is natural and simple, the
difficulty of training the trajectory generator in this way might
lie in the non-convergence issue of the short-run Langevin
inference in Equation (17). Even long-run Langevin inference
chains are easy to get trapped by local modes. Without fair
samples drawn from the posterior distribution, the estimation
of 𝛼 will be biased.

E. Understanding the learning behavior of the cooperative
training

In this section, we will present a theoretical understand of
the learning behavior of the proposed Algorithm 2 shown in
main text. We firstly start from the Contrastive Divergence (CD)
algorithm that was proposed for efficient training of energy-
based models. The CD runs 𝑘 steps of MCMC initialized from
the training examples, instead of the Gaussian white noise.
Given the energy-based model for IOC 𝑝𝜃 (u|𝑒, ℎ). Let 𝑀𝜃

be the transition kernel of the finite-step MCMC that samples
from 𝑝𝜃 (u|𝑒, ℎ). The original CD learning of 𝑝𝜃 (u|𝑒, ℎ) seeks
to minimize

𝜃𝜏+1 = arg min
𝜃
[KL(𝑝expert (u|𝑒, ℎ)‖𝑝𝜃 (u|𝑒, ℎ)) −

KL(𝑀𝜃𝜏 𝑝expert (u|𝑒, ℎ)‖𝑝𝜃 (u|𝑒, ℎ))], (19)

where 𝑝expert (u|𝑒, ℎ) is the unknown distribution of the
observed demonstrations of experts. Let 𝑀𝜃 𝑝expert (u|𝑒, ℎ)
denote the marginal distribution obtained after running 𝑀𝜃

starting from 𝑝expert (u|𝑒, ℎ). If 𝑀𝜃 𝑝expert (u|𝑒, ℎ) converges
to 𝑝𝜃 (u|𝑒, ℎ), then the second KL-divergence will become very
small, and the CD estimate eventually is close to maximum
likelihood estimate which minimizes the first KL-divergence
in Equation (19).

In Algorithm 3, the MCMC sampling of the energy-based
model is initialized from the trajectory generator 𝑞𝛼 (u|𝑒, ℎ),
thus the learning of the energy-based model follows a modified
CD estimate which, at learning step 𝜏, seeks to minimize

𝜃𝜏+1 = arg min
𝜃
[KL(𝑝expert (u|𝑒, ℎ)‖𝑝𝜃 (u|𝑒, ℎ)) −
KL(𝑀𝜃𝜏𝑞𝛼 (u|𝑒, ℎ)‖𝑝𝜃 (u|𝑒, ℎ))], (20)

where we replace the 𝑝expert (u|𝑒, ℎ) in Equation (20) by
𝑞𝛼 (u|𝑒, ℎ). That means we run a finite-step MCMC from
a given initial distribution 𝑞𝛼 (u|𝑒, ℎ), and use the resulting
samples as synthesized examples to approximate the gradient
of the log-likelihood of the EBM.

At learning step 𝜏, the learning of 𝑞𝛼 (u|𝑒, ℎ) seeks to
minimize

𝛼𝜏+1 = arg min
𝛼
[KL(𝑀𝜃𝑞𝛼𝜏

(u|𝑒, ℎ)‖𝑞𝛼 (u|𝑒, ℎ))] . (21)

Equation (21) shows that 𝑞𝛼 learns to be the stationary
distribution of 𝑀𝜃 . In other words, 𝑞𝛼 seeks to be close to
𝑝𝛼, i.e., 𝑞𝛼 → 𝑝𝜃 . If so, the second KL-divergence term in
Equation (20) will become zero. The Equation (20) is reduced
to minimize the KL-divergence between the observed data
distribution 𝑝expert and the energy-based model 𝑝𝜃 . Eventually,
𝑞𝛼 chases 𝑝𝜃 toward 𝑝expert.

IV. EXPERIMENTS

We evaluate the proposed energy-based continuous inverse
optimal control methods on autonomous driving tasks. The
code, dataset, more results and experiment details can be found
in the project page: http://www.stat.ucla.edu/~yifeixu/ebm-ioc.

A. Experimental setup

In the task of autonomous driving, the state 𝑥𝑡 consists of the
coordinate, heading angle and velocity of the car, the control
𝑢𝑡 consists of steering angle and acceleration, the environment
𝑒 consists of road condition, speed limit, the curvature of the
lane (which is represented by a cubic polynomial), as well
as the coordinates of other vehicles. The trajectories of other
vehicles are treated as known environment states and assumed
to remain unchanged while the ego vehicle is moving, even
though the trajectories of other vehicles should be predicted
in reality. In this paper, we sidestep this issue and focus on
the inverse optimal control problem.

We assume the dynamic function of all vehicles is a non-
linear bicycle model [48], which considers longitudinal, lateral
and yaw motions and assumes negligible lateral weight shift,
roll and compliance steer while traveling on a smooth road. We
assume all vehicles are standard two-axle, four-tire passenger
cars with a 3-meter wheelbase. We set an understeering shift
to be 0.043 when calculating heading angles.

As to learning, the model parameters are randomly initial-
ized by a normal distribution. The control variables are initial-
ized by zeros, which means keeping straight. We normalize the
control variables, i.e., the steering and acceleration, because
their scales are different. Instead of sampling the control
variables, we sample their changes. We set the number of
steps of the Langevin dynamics or the gradient descent to be
𝑙 = 64 and set the step size to be 𝛿 = 0.2. The choice of 𝑙 is
a trade-off between computational efficiency and prediction
accuracy. For parameter training, we use the Adam optimizer
[49].

We use Root Mean Square Error (RMSE) in meters with
respect to each timestep 𝑡 to measure the accuracy of prediction,

i.e., RMSE(𝑡) =
√︃

1
𝑛

∑𝑛
𝑖=1 ‖ 𝑦̂𝑖𝑡 − 𝑦𝑖𝑡 ‖

2, where 𝑛 is the number
of expert demonstrations, 𝑦̂𝑖𝑡 is the predicted coordinate of the 𝑖-
th demonstration at time 𝑡 and 𝑦𝑖𝑡 is the ground truth coordinate
of the 𝑖-th demonstration at timestep 𝑡. A small RMSE is desired.
As a stochastic method, our method draws 5 samples from the
learned model for prediction and the model performance is
evaluated by the average RMSE and the minimum RMSE over
5 sampled trajectories.

B. Dataset

We test our methods on two datasets. The Massachusetts
driving dataset focuses on highways with curved lanes and
static scenes, while the NGSIM US-101 dataset focuses on
rich vehicle interactions. We randomly split each dataset into
training and testing sets. The introductions of these two datasets
are given below.

(1) Massachusetts driving dataset: This is a private dataset
collected through a vehicle during repeated trips on a stretch

http://www.stat.ucla.edu/~yifeixu/ebm-ioc

8

of highway. The dataset includes vehicle states and controls,
which are collected by the hardwares on the vehicles, as well
as environment information. This dataset has a realistic driving
scenario, including curved lanes and complex static scenes. To
solve the problem of noisy GPS signal, Kalman filtering is
used to denoise the data. There are 44,000 trajectories, each of
which contains 40 0.1-second timesteps and is 4 seconds long.

(2) NGSIM US-101: NGSIM [50] contains real highway
traffics captured at 10Hz over a time span of 45 minutes.
Compared to Massachusetts driving dataset, NGSIM has rich
vehicle interactions. The control needs to consider other nearby
vehicles. We preprocess the data by dividing the data into
5-second/50-timestep trajectories. The first 10 timesteps are for
history and the remaining 40 timesteps are used for prediction.
There are 831 scenes with 96,512 5-second vehicle trajectories.
No control variables are provided. Thus, we need to infer the
controls of each vehicle given the vehicle states. Assuming
the bicycle model [48] dynamics, we perform an inverse
dynamics optimization using gradient descent to infer controls.
In addition to minimizing the reconstruction error on states,
we also minimize the L2 norm of the control variables and the
difference between every two consecutive controls. The overall
RMSE between the reconstructed positions and the ground truth
GPS positions is 0.97 meters. The preprocessed trajectories are
assumed to have perfect dynamics with noiseless and smooth
sequences of controls and GPS coordinates.

C. Network structure

We first use a linear combination of some hand-designed
features as the cost function. The features include: the distance
from the current vehicle to the goal point (a virtual point set
at front of the vehicle) in terms of longitude and latitude,
the distance to the center of the lane, the difference between
the current speed and the speed limit, the difference between
the vehicle direction and the lane direction, the L2 norm of
the control values (including acceleration and steering), the
difference between the current control value and the control
value at the previous timestep (including acceleration and
steering), and the distance from the vehicle to the nearest
obstacle. Feature normalization is adopted to make sure that
each feature has the same scale of magnitude. These features
are also used to design the cost function networks of our
methods, as well as baseline methods for fair comparison.

Tables I and II present the multilayer perceptron (MLP)
structure and the convolutional neural network (CNN) structure
of cost functions, respectively, that we use in Section IV-G.
As to the MLP structure, the number of hidden layers 𝑁hidden
is 64 and the number of layers is 3 (i.e., 2 hidden layers and
1 output layer) by default. The MLP cost function in Table
I is defined on a single frame and the cost function of the
whole trajectory is the summation of costs over all frames.
The CNN cost function presented in Table II is defined on a
trajectory with 40 time frames. Table III shows the structure
of the generator model used in the joint training framework. It
is similar to the actor network of the PPO policy [51] in the
generative adversarial imitation learning (GAIL) [27].

TABLE I: Network structure of the MLP cost function

Layer Output Size
concat([𝑥, 𝑢, 𝑒]) 6 + 2 + 29
hand-designed features 10
Linear, LeakyReLU 𝑁hidden
Linear, LeakyReLU 𝑁hidden
Linear 1

TABLE II: Network structure of the CNN cost function

Layer Output Size Stride
♯ of frames × concat([𝑥, 𝑢, 𝑒]) 1 × 40 × (6 + 2 + 29) −
hand-designed features 1 × 40 × 10 −
1×4 Conv1d, LeakyReLU 1 × 19 × 32 2
1×4 Conv1d, LeakyReLU 1 × 9 × 64 2
1×4 Conv1d, LeakyReLU 1 × 4 × 128 2
1×4 Conv1d, LeakyReLU 1 × 1 × 256 1
Linear 1 −

TABLE III: Network structure of the generator model

Layer Output Size
concat([𝑥, 𝑒, 𝜉]) 6 + 29 + 4
Linear, ReLU 64
Linear, ReLU 16
Linear, ReLU 8
Linear, Tanh 2

D. Training details

Normalization. We apply normalization to the controls (i.e.,
acceleration and steering) and hand-designed features. For the
controls, we normalize their values to have zero mean and unit
variance. We also normalize each hand-designed feature by
dividing by the mean. We normalize two datasets separately.

Optimizer. We use the Adam optimizer on training our
models. Both 𝛽1 and 𝛽2 are set to be 0.5. All model parameters
are randomly initialized by the He initialization method [52],
which is a uniform distribution. In the linear setting, we set
learning rate of the Adam to be 0.1 with an exponential decay
rate 0.999. For the MLP cost function setting, we set the
learning rate to be 0.005 without an exponential decay. In the
CNN cost function setting, we set the learning rate to be 0.005
with an exponential decay rate 0.999. For the training of the
generator model, the learning rate is 0.002 and the exponential
decay rate is 0.998. For each epoch, we shuffle the whole
dataset. The batch size is 1,024.

Langevin Dynamics. To prevent gradient values from being
too large in each Langevin step, we set the maximum limit
to be 0.1. The Langevin step size is set to be 0.1 and the
number of Langevin steps is 64. All settings are the same for
the gradient descent method to synthesize the controls.

iLQR As to the iLQR solver, we perform a grid search for
the learning rate from 0.001 to 1. The maximum step is 100. If
the difference between the current step and the previous step is
smaller than 0.001, early stop is triggered. In the experiment,
the average number of iLQR steps is around 30.

E. Single-agent control

We first test our methods, including sampling-based and
optimization-based ones, on a single-agent control problem.
We compare our method with three baseline methods below:

9

ca
se

1
ca

se
2

starting point 1st second 2nd second 3rd second 4th second

Fig. 2: Predicted trajectories for single-agent control on the Massachusetts driving dataset. The staring point is the last frame of
the history trajectory. (Green: predicted trajectories by our model. Blue: predicted trajectories by GAIL. Red: ground truth
trajectories. Orange: trajectories of other vehicles. Gray: lanes.)

• Constant velocity: the simplest baseline with a constant
velocity and a zero steering.

• Generative adversarial imitation learning (GAIL) [27]:
The original GAIL method was proposed for imitation
learning. We use the same setting as in [53], which applies
the GAIL to the task of modeling human highway driving
behavior. Besides, we change the policy gradient method
from Trust Region Policy Optimization (TRPO) [54] to
Proximal Policy Optimization (PPO) [51].

• IOC with Laplace [30] (IOC-Laplace): We implement this
baseline with the same iLQR method as that in our model.

It takes roughly 0.1 seconds to predict a full trajectory with
a 64-step Langevin dynamics (or gradient descent). Figure 2
displays two qualitative results. Each row shows one 4-frame
example with a frame interval equal to 1 second. Each frame
shows trajectories over time for different vehicles as well as
different baseline methods for comparison. Table IV and V
show quantitative results for Massachusetts driving dataset
and NGSIM, respectively. In the last two rows, we provide
both average RMSE and minimum RMSE for our sampling-
based approach. Our methods achieve substantial improvements
compared to baseline methods, such as IOC-Laplace [30] and
GAIL, in terms of testing RMSE. We find that the sampling-
based methods outperform the optimization-based methods
among our energy-based approaches.

TABLE IV: Massachusetts driving dataset results (RMSE).

Method 1s 2s 3s
Constant Velocity 0.340 0.544 1.023
IOC-Laplace 0.386 0.617 0.987
GAIL 0.368 0.626 0.977
ours (via iLQR) 0.307 0.491 0.786
ours (via GD) 0.257 0.413 0.660
ours AVG (via Langevin) 0.255 0.401 0.637
ours MIN (via Langevin) 0.157 0.354 0.607

The reason why the method “IOC-Laplace” performs poorly
on both two datasets is due to the fact that its Laplace
approximation is not accurate enough for a complex cost
function used in the current tasks. Our models are more genetic
and do not make such an approximation. Instead, they use

TABLE V: NGSIM dataset results (RMSE).

Method 1s 2s 3s 4s
Constant Velocity 0.569 1.623 3.075 4.919
IOC-Laplace 0.503 1.468 2.801 4.530
GAIL 0.367 0.738 1.275 2.360
ours (via iLQR) 0.351 0.603 0.969 1.874
ours (via GD) 0.318 0.644 1.149 2.138
ours AVG (via Langevin) 0.311 0.575 0.880 1.860
ours MIN (via Langevin) 0.203 0.458 0.801 1.690

Langevin sampling for maximum likelihood training. Therefore,
they can provide more accurate prediction results.

The problem of GAIL is its model complexity. GAIL
parameterizes its discriminator, policy and value function
by MLPs. Designing optimal MLP structures of these three
components for GAIL is challenging. Our method only needs
to design a single architecture for the cost function.

Additionally, the optimal control of our method is performed
by simulating trajectories of actions and states according to
the learned cost function that takes into account the future
information. In contrast, the GAIL relies on its learned policy
net for step-wise decision making.

Compared with gradient descent (optimization-based ap-
proach), Langevin dynamics-based method can obtain smaller
errors. One reason is that the sampling-based approach rigor-
ously maximizes the log-likelihood of the expert demonstrations
during training, while the optimization-based approach is just a
convenient approximation. The other reason is that the Gaussian
noise term in each Langevin step helps to explore the cost
function and avoid sub-optimal solutions.

F. Corner case testing with toy examples

Corner cases are important for model evaluation. We
construct 6 typical corner cases to test our model. Figure
3 shows the predicted trajectories by our method for several
cases. Figures 3(a) and 3(b) show two cases of the sudden
braking. In each of the cases, a vehicle (orange) in front of the
ego vehicle (green) is making a sudden brake. In case (a), there
are not any other vehicles moving alongside the ego vehicle, so
it is predicted to firstly change the lane, then accelerate past the
vehicle in front, and return to its previous lane and continue its

10

driving. In case (b), two vehicles are moving alongside the ego
vehicle. The predicted trajectory shows that the ego vehicle is
going to trigger a brake to avoid a potential collision accident.
Figures 3(c) and 3(d) show two cases in the cut-in situation.
In each case, a vehicle is trying to cut in from the left or right
lane. The ego vehicle is predicted to slow down to ensure the
safe cut-in of the other vehicle. Figures 3(e) and 3(f) show two
cases in the large lane curvature situation, where our model
can still perform well to predict reasonable trajectories.

Figure 4 shows the corresponding plots of the predicted
controls, i.e., steering and acceleration, over time steps. In
each plot, blue lines stand for acceleration and orange lines
stand for steering. The dash lines represent the initialization
of the controls for Langevin sampling, which are actually the
controls at the last time steps of the history trajectories. We
use 64 Langevin steps to sample the controls from the learned
cost function. We plot the predicted controls (i.e., acceleration
and steering) over time for each Langevin step. The curves
with more numbers of Langevin steps appear darker. Thus, the
darkest solid lines are the final predicted trajectories of controls.

In short, this experiment demonstrates that our method is
capable of learning a reasonable cost function that handles
corner cases, such as situations of sudden braking, lane cut-in,
and making turns in curved lanes.

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

(a) (c) (e)

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

0 20 40 60 80 100
−15

−10

−5

0

5

10

15

(b) (d) (f)

Sudden braking Lane cut-in Large lane curvature

Fig. 3: Prediction in corner cases. (Green : predicted trajectories.
Orange : trajectories of other vehicles. Gray: lanes.)

G. Evaluation of different cost functions

The neural network is a powerful function approximator. It is
capable of approximating any complex nonlinear function given
sufficient training data, and it is also flexible to incorporate
prior information, which in our case are the manually designed
features. In this experiment, we replace the linear cost function
in our sampling-based approach with a neural network cost
function. Specifically, we design a cost function by multilayer
perceptron (MLP), where we put three layers on top of the vec-
tor of hand-designed features: 𝐶𝜃 (x, u, 𝑒, ℎ) = 𝑓 (𝜙(x, u, 𝑒, ℎ)),
where 𝑓 contains 2 hidden layers and 1 output layer, and 𝜃

contains all trainable parameters in 𝑓 . We also consider using
a 1D CNN that takes into account the temporal relationship
inside the trajectory for the cost function. We add four 1D
convolutional layers on top of the sequence of vectors of

0 5 10 15 20 25 30 35 40
Time Frames

−1.5

−1.0

−0.5

0.0

0.5

Co
nt

ro
l V

al
ue

Steering
Acceleation

0 5 10 15 20 25 30 35 40
Time Frames

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Co
nt

ro
l V

al
ue

Steering
Acceleation

0 5 10 15 20 25 30 35 40
Time Frames

0.0

0.2

0.4

0.6

0.8

1.0

Co
nt

ro
l V

al
ue Steering

Acceleation

(a) (c) (e)

0 5 10 15 20 25 30 35 40
Time Frames

−4

−3

−2

−1

0

Co
nt

ro
l V

al
ue

Steering
Acceleation

0 5 10 15 20 25 30 35 40
Time Frames

−3.5

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

Co
nt

ro
l V

al
ue

Steering
Acceleation

0 5 10 15 20 25 30 35 40
Time Frames

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

Co
nt

ro
l V

al
ue

Steering
Acceleation

(b) (d) (f)

Sudden braking Lane cut-in Large lane curvature

Fig. 4: Predicted controls over time. (Dash lines: initial values
of the controls for Langevin sampling. Solid lines: predicted
controls over time steps. Blue: control of acceleration. Orange:
control of steering.)

hand-designed features, where the kernel size in each layer
is 1 × 4. The numbers of channels are {32, 64, 128, 256}
and the numbers of strides are {2, 2, 2, 1} for different layers,
respectively. One fully connected layer with a single kernel is
attached at the end.

Table VI shows a comparison of performances of different
designs of cost functions. We can see that improvements can
be obtained by using cost functions parameterized by either
MLP or CNN. Neural network provides nonlinear connection
layers as a transformation of the original input features. This
implies that there are some internal connections between the
features and some temporal connections among feature vectors
at different time steps.

TABLE VI: A comparison of performances of models with
different cost functions (average RMSE).

Method 1s 2s 3s
Linear cost function 0.255 0.401 0.637
MLP cost function 0.237 0.379 0.607
CNN cost function 0.234 0.372 0.572

H. Multi-agent control

In the setting of single-agent control, the future trajectories
of other vehicles are assumed to be given and they remain
unchanged no matter how the ego vehicle moves. We extend our
energy-based framework to the multi-agent setting, in which we
simultaneously control all vehicles in the scene. The controls
of other vehicles are used to predict the trajectories of other
vehicles.

Suppose there are 𝐾 agents, and every agent in the scene
can be regarded as a general agent. The state and control
space are Cartesian products of the individual states and
controls respectively, i.e., X = (x𝑘 , 𝑘 = 1, 2, ..., 𝐾),U =

(u𝑘 , 𝑘 = 1, 2, ..., 𝐾). All the agents share the same dynamic
function, which is 𝑥𝑘𝑡 = 𝑓 (𝑥𝑘

𝑡−1, 𝑢
𝑘
𝑡),∀𝑘 = 1, 2, ..., 𝐾. The

overall cost function are set to be the sum of each agent

11

ca
se

1
ca

se
2

starting point 1st second 2nd second 3rd second 4th second

Fig. 5: Predicted trajectories for multi-agent control on the NGSIM dataset. The starting point is the last frame of the history
trajectory. (Green: predicted trajectories by our model. Red: ground truth trajectories. Gray: lanes.)

𝐶𝜃 (X,U, 𝑒, ℎ) =
∑𝐾
𝑘=1 𝐶𝜃 (x𝑘 , u𝑘 , 𝑒, ℎ𝑘). Thus, the condi-

tional probability density function becomes 𝑝𝜃 (U|𝑒, ℎ) =
1

𝑍𝜃 (𝑒,ℎ) exp[−𝐶𝜃 (X,U, 𝑒, ℎ)], where 𝑍𝜃 (𝑒, ℎ) is the intractable
normalizing constant.

We compare our method with the following baselines for
multi-agent control.
• Constant velocity: The simplest baseline with a constant

velocity and a zero steering.
• The parameter sharing GAIL (PS-GAIL) [55] [56]:

It extends the single-agent GAIL and the Parameter
Sharing Trust Region Policy Optimization (PS-TRPO)
[57] to enable imitation learning in the multi-agent
control context.

We test our method on the NGSIM dataset. We use a linear
cost function setting for each agent in this experiment. The
maximum number of agents is 64. Figure 5 shows two examples
of the qualitative results. Each row is one example. The rows
from first to fifth show the positions of all vehicles in the
scene as dots at different timesteps respectively, along with the
predicted trajectories (the green lines) and the ground truths
(the red lines). Table VII shows a comparison of performances
between our method and the baselines in terms of RMSE.
Results show that our method can also work very well in the
multi-agent control scenario.

TABLE VII: Performance comparison in multi-agent control
on the NGSIM dataset. Average RMSEs are reported.

Method 1s 2s 3s 4s
Constant Velocity 0.569 1.623 3.075 4.919
PS-GAIL 0.602 1.874 3.144 4.962
ours (multi-agent) 0.365 0.644 1.229 2.262

I. Joint training with trajectory generator

In this section, we follow Algorithm 3 to introduce a
trajectory generator as a fast initializer for our Langevin sampler.
In the experiment, we design 𝐹𝛼 as a 4-layer MLP with output
dimensions 64, 16, 8 and 2, respectively, at different layers.
The activation function is ReLU for each hidden layer and

Tanh for the final layer. The learning rate of the trajectory
generator is set to be 0.005. We update the generator 5 times
for each cooperative learning iteration. The rest of the setting
remains the same as in the model with a linear cost function.

Table VIII compares the proposed joint training method
with the following baselines in terms of average RMSE. The
methods include (1) “EBM w/o a generator”: the single EBM
method without using a trajectory generator. (2) “generator in
joint training”: the trajectory generator trained with an EBM
via the proposed cooperative training algorithm. We train both
baseline methods (1) and (2) as well as our joint training
framework (which we refer to as “EBM with a generator” in
Table VIII with different numbers of Langevin steps. Besides,
we implement method (3), which is a single trajectory generator
trained via maximum likelihood estimation with MCMC-based
inference [47].

TABLE VIII: Results of the joint training with trajectory
generator on the Massachusetts driving dataset. (average
RMSE)

Number of steps 2 8 16 32 64
EBM w/o a generator 0.845 0.746 0.709 0.672 0.636
generator in joint training 0.956 0.835 0.844 0.845 0.854
EBM with a generator 0.804 0.672 0.649 0.638 0.633
generator only ——————– 0.911 ——————–

This comparison results show that a fast initializer can
improve the performance even with less Langevin steps. For
example, an EBM using 8 Langevin steps with a fast initializer
is comparable with the one with a 32-step Langevin dynamics.
Also, the method of “generator in joint training” performs better
than the “generator only” setting because of the guidance of
Langevin sampling of the EBM.

J. Training time and model size

We make a comparison of different methods in terms of
computational cost and model size in the task of single-agent
control on the Massachusetts driving dataset. We use a mini-
batch of size 1,024 during training. For GAIL, the mini-batch
size is 64. The total number of epochs is 40. Table IX lists

12

2 8 16 32 64
Number of steps

0.7

0.8

0.9

Av
er

ag
e

RM
SE

 = 0.02
 = 0.05
 = 0.1
 = 0.2

2 8 16 32 64
Number of steps

0.6

0.7

0.8

0.9

m
in

im
um

 R
M

SE

 = 0.02
 = 0.05
 = 0.1
 = 0.2

2 8 16 32 64
Number of steps

0.1

0.2

0.3

M
iss

in
g

Ra
te

= 0.02
= 0.05
= 0.1
= 0.2

(a) (b) (c)

Fig. 6: Influence of hyperparameters. Performance comparison of energy-based models with different numbers of Langevin steps
and Langevin step sizes is shown in each sub-figure. Each curve represents a model with a certain Langevin step size 𝛿. We set
𝛿=0.02, 0.05, 0.1 and 0.2. For each setting of 𝛿, we choose different numbers of steps 𝑙=2, 8,16, 32 and 64. Performances are
measured by (a) average RMSE, (b) minimum RMSE, and (c) missing rate on the Massachusetts driving dataset.

0 50 100 150 200
Training epoch

0.7

0.8

0.9

1.0

Av
g

RM
SE

 = 2
 = 8
 = 16
 = 32
 = 64

0 50 100 150 200
Training epoch

0.7

0.8

0.9

1.0
Av

g
RM

SE
 = 0.02
 = 0.05
 = 0.1
 = 0.2

0 100 200 300 400 500
Number of steps

0.6

0.7

0.8

0.9

1.0

1.1

Av
g

RM
SE

δ = 0.00
δ = 0.02
δ = 0.04
δ = 0.10
δ = 0.20
δ = 0.40
δ = 0.80

(a) (b) (c)

Fig. 7: Influence of hyperparameters. (a) a line chart of testing average RMSEs over training epochs for different numbers of
Langevin steps 𝑙 used in training. (b) a line chart of testing average RMSEs over training epochs for different Langevin step
sizes 𝛿 used in training. (c) Influence of different numbers of Langevin steps 𝑙 and step sizes 𝛿 used in testing.

the time consumption per training epoch and the number of
model parameters for different settings on the Massachusetts
driving dataset. The training time is recorded in a PC with a
CPU i9-9900 and a GPU Tesla P100. As to the energy-based
framework, a simple cost function design can lead to less
computation time and less parameters. However, complex cost
function can result in better performance in terms of RMSE.
Overall, compared with the GAIL and IOC-Laplace baselines,
our energy-based IOC methods are competitive.

TABLE IX: Comparison of computation cost and model size.

Method time per epoch ♯ of parameters

EBM-IOC

Linear ∼ 3 mins 11
MLP ∼ 10 mins 2817
CNN ∼ 12 mins 44017
Joint Training ∼ 3 mins 3790

GAIL ∼ 10 mins 5893
IOC-Laplace ∼ 1 min 11

K. Hyperparameter analysis for energy-based IOC models

1) Influence of the number of Langevin steps and the
Langevin step size in the single EBM framework: We firstly
study the influence of different choices of some hyperparame-
ters, such as the number of Langevin steps 𝑙, and the step size
𝛿 of each Langevin step. Figure 6 depicts the performances
of energy-based IOC models with different 𝛿 and 𝑙 on the
Massachusetts driving dataset. Each curve is associated with
a certain step size 𝛿 and shows the testing performances over
different numbers of Langevin steps. The performances are

measured by (a) average RMSE, (b) minimum RMSE and (c)
missing rate. In our experiments, we draw 5 samples from
the learned model for prediction. Missing rate is the ratio
of scenarios where none of all 5 sampled trajectories has an
endpoint L2 error less than 1.0 meters. The three metrics are
used in the sub-figures of Figure 6, respectively. In general, with
the same 𝛿, the model performance increases as the number
of Langevin steps increases. However, the performance gains
become smaller and smaller while using more Langevin steps.
Using more Langevin steps will also increase the computational
time of sampling. We use 𝑙 = 64 to make a trade-off between
performance and computational efficiency. We also choose
𝛿 = 0.1 for a trade-off among performances measured by
different metrics.

Figures 7(a) and 7(b) depict training curves of the models
with different 𝑙 and 𝛿, respectively. The models are trained
on the Massachusetts driving dataset. Each curve reports the
testing average RMSEs over training epochs. For testing, we
use the same 𝑙 and 𝛿 as those in training. We observe that the
learning is quite stable in the sense that the testing errors drop
smoothly with an increasing number of training epochs.

We also study, given a trained model, how different choices
of 𝑙 and 𝛿 in testing can affect the performance of the model.
Figure 7(c) shows the average RMSEs of trajectories that are
sampled from a learned model by using different numbers of
Langevin steps 𝑙 and step sizes 𝛿. The model we use is with a
linear cost function and trained with 𝑙 = 64 and 𝛿 = 0.1. We
observe that: in the testing stage, using Langevin step sizes
smaller than that in the training stage may take more Langevin

13

2 8 16 32 64
Number of steps

0.65

0.70

0.75

0.80

Av
er

ag
e

RM
SE

 = 0.05
 = 0.1
 = 0.2

2 8 16 32 64
Number of steps

0.65

0.70

0.75

m
in

im
um

 R
M

SE

 = 0.05
 = 0.1
 = 0.2

2 8 16 32 64
Number of steps

0.10

0.11

0.12

0.13

0.14

M
iss

in
g

Ra
te

 = 0.05
 = 0.1
 = 0.2

(a) (b) (c)

Fig. 8: Influence of hyperparameters for the cooperative training framework. Performance comparison of frameworks using
different numbers of Langevin steps and different Langevin step sizes is given in each sub-figure. Each curve represents a
framework with a certain Langevin step size 𝛿. We set 𝛿=0.05, 0.1 and 0.2. For each setting of 𝛿, different numbers of Langevin
steps are chosen, 𝑙=2, 8,16, 32 and 64. Performances are measured by three different metrics, which are (a) average RMSE, (b)
minimum RMSE, and (c) missing rate.

0 50 100 150 200
Training epoch

0.7

0.8

0.9

1.0

Av
g

RM
SE

 = 2
 = 8
 = 16
 = 32
 = 64

0 50 100 150 200
Training epoch

0.7

0.8

0.9

1.0
Av

g
RM

SE
 = 0.05
 = 0.1
 = 0.2

0 100 200 300 400 500
Number of steps

0.65

0.70

0.75

0.80

Av
g

RM
SE

 = 0.00
 = 0.05
 = 0.10
 = 0.15
 = 0.20
 = 0.40
 = 0.80

(a) (b) (c)

Fig. 9: Influence of hyperparameters for the cooperative training framework. (a) Testing performances during the cooperative
training with different Langevin steps 𝑙. (b) Testing performances during the cooperative training with different Langevin step
sizes 𝛿. (c) Testing performances after training. Each curve shows testing performances over different numbers of Langevin
steps used to sample trajectories in testing. Each curve is associated with a step size chosen in testing. The model is trained
with the Langevin step size 𝛿 = 0.2 and the number of steps 𝑙 = 32.

steps to converge, while using larger ones may lead to a non-
convergence issue. Thus, we suggest using the same 𝑙 and 𝛿
in both training and testing stages for optimal performance.

2) Influence of the number of Langevin steps and the
Langevin step size in the cooperative training framework: We
hence study the influence of different choices of the number of
Langevin steps 𝑙 and the Langevin step size 𝛿 in the cooperative
training framework. Figure 8 depicts the performances of
cooperative training frameworks with different 𝛿 and 𝑙 on
the Massachusetts driving dataset. The performances shown in
Figures 8(a), 8(b), and 8(c) are measured by average RMSE,
minimum RMSE and missing rate, respectively. Each curve
corresponds to a framework with a certain step size 𝛿 and shows
the testing performances over different numbers of Langevin
steps. Fixing 𝛿, the model performance increases as the number
of Langevin steps increases. We use 𝑙 = 32 and 𝛿 = 0.1 to make
a trade-off between performance and computational efficiency.

Figures 9(a) and 9(b) shows the learning curves of the
cooperative training with different numbers of Langevin steps
and different step sizes, respectively. Each learning curve shows
testing average RMSE over different of training epochs. We
observe that the testing average RMSE decreases smoothly as
the number of training epochs increases. We also study how
different 𝑙 and 𝛿 chosen in testing affect the performance of
a learned energy-based IOC model. We first train an energy-
based model with 𝛿 = 0.2 and 𝑙 = 32, and use the learned

model in testing with varying Langevin step size 𝛿 and number
of Langevin steps 𝑙. Figure 9(c) depicts the influences of
varying 𝛿 and 𝑙 in testing. We observe that given a learned
cost function, Langevin sampling with a smaller step size and
a larger number of Langevin steps may allow the model to
generate better trajectories.

V. CONCLUSION

This paper studies the fundamental problem of learning
the cost function from expert demonstrations for continuous
optimal control. We study this problem in the framework of
the energy-based model, and propose a sampling-based method
and optimization-based modification to learn the cost function.
Unlike the previous method for continuous inverse optimal
control [30], we learn the model by maximum likelihood using
Langevin sampling, without resorting to Laplace approximation.
This is a possible reason for improvement over the previous
method. Langevin sampling in general also has the potential
to avoid sub-optimal modes. Moreover, we propose to train
the energy-based model with a trajectory generator as a fast
initializer to improve the learning efficiency. The experiments
show that our method is generally applicable, and can learn
non-linear and non-Markovian cost functions.

In our future work, we shall explore other MCMC sampling
or optimal control algorithms. We shall also experiment with
recruiting a flow-based model [58], [59], [41] as a learned

14

approximate sampler to amortize the MCMC sampling. We
shall also adapt our model to the scenario where the human
drivers may be sub-optimal, and some human judges may
assign scores to the trajectories of some of the drivers.

ACKNOWLEDGMENT

The work is supported by NSF DMS-2015577, DARPA
SIMPLEX N66001-15-C-4035, ONR MURI N00014-16-1-
2007, DARPA ARO W911NF-16-1-0579, DARPA N66001-17-
2-4029, and XSEDE grant CIS210052.

REFERENCES

[1] E. Todorov, “Optimal control theory,” Bayesian brain: probabilistic
approaches to neural coding, pp. 269–298, 2006.

[2] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems.” in Proceedings of the First
International Conference on Informatics in Control, Automation and
Robotics (ICINCO), 2004, pp. 222–229.

[3] A. Bemporad, M. Morari, V. Dua, and E. N. Pistikopoulos, “The explicit
linear quadratic regulator for constrained systems,” Automatica, vol. 38,
no. 1, pp. 3–20, 2002.

[4] J. Xie, Y. Lu, S.-C. Zhu, and Y. Wu, “A theory of generative convnet,”
in International Conference on Machine Learning (ICML), 2016, pp.
2635–2644.

[5] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.

[6] P. J. Bickel and K. A. Doksum, Mathematical statistics: basic ideas and
selected topics, volumes I-II package. CRC Press, 2015.

[7] G. E. Hinton, “Training products of experts by minimizing contrastive
divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–1800, 2002.

[8] A. Hyvärinen, “Estimation of non-normalized statistical models by score
matching,” Journal of Machine Learning Research, vol. 6, pp. 695–709,
2005.

[9] J. Xie, Y. Lu, R. Gao, S. Zhu, and Y. Wu, “Cooperative learning of
energy-based model and latent variable model via mcmc teaching,” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
vol. 32, no. 1, 2018.

[10] J. Xie, Y. Lu, R. Gao, S.-C. Zhu, and Y. N. Wu, “Cooperative training
of descriptor and generator networks,” IEEE transactions on pattern
analysis and machine intelligence (TPAMI), vol. 42, no. 1, pp. 27–45,
2018.

[11] J. Xie, Z. Zheng, X. Fang, S.-C. Zhu, and Y. N. Wu, “Cooperative
training of fast thinking initializer and slow thinking solver for condi-
tional learning,” IEEE Transactions on Pattern Analysis and Machine
Intelligence (TPAMI), 2021.

[12] B. D. Ziebart, A. L. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning.” in Proceedings of the Twenty-
Third AAAI Conference on Artificial Intelligence (AAAI), vol. 8. Chicago,
IL, USA, 2008, pp. 1433–1438.

[13] S. C. Zhu, Y. Wu, and D. Mumford, “Filters, random fields and
maximum entropy (frame): Towards a unified theory for texture modeling,”
International Journal of Computer Vision (IJCV), vol. 27, no. 2, pp. 107–
126, 1998.

[14] M. Richardson and P. Domingos, “Markov logic networks,” Machine
learning, vol. 62, no. 1-2, pp. 107–136, 2006.

[15] M. Wulfmeier, P. Ondruska, and I. Posner, “Maximum entropy deep
inverse reinforcement learning,” arXiv preprint arXiv:1507.04888, 2015.

[16] J. Xie, S.-C. Zhu, and Y. N. Wu, “Learning energy-based spatial-temporal
generative convnets for dynamic patterns,” IEEE transactions on pattern
analysis and machine intelligence (TPAMI), 2019.

[17] J. Xie, W. Hu, S.-C. Zhu, and Y. N. Wu, “Learning sparse frame models
for natural image patterns,” International Journal of Computer Vision
(IJCV), vol. 114, no. 2-3, pp. 91–112, 2015.

[18] J. Xie, S.-C. Zhu, and Y. N. Wu, “Synthesizing dynamic patterns
by spatial-temporal generative convnet,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), 2017,
pp. 7093–7101.

[19] J. Xie, Z. Zheng, R. Gao, W. Wang, S.-C. Zhu, and Y. N. Wu,
“Generative voxelnet: Learning energy-based models for 3d shape
synthesis and analysis,” IEEE Transactions on Pattern Analysis and
Machine Intelligence (TPAMI), 2020.

[20] J. Xie, Z. Zheng, R. Gao, W. Wang, S. Zhu, and Y. N. Wu, “Learning
descriptor networks for 3d shape synthesis and analysis,” in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2018, pp. 8629–8638.

[21] J. Xie, Y. Xu, Z. Zheng, S. Zhu, and Y. N. Wu, “Generative pointnet:
Deep energy-based learning on unordered point sets for 3d generation,
reconstruction and classification,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2021, pp. 14 976–
14 985.

[22] Y. LeCun, Y. Bengio et al., “Convolutional networks for images, speech,
and time series,” The handbook of brain theory and neural networks,
vol. 3361, no. 10, p. 1995, 1995.

[23] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in neural
information processing systems (NIPS), 2012, pp. 1097–1105.

[24] C. Finn, S. Levine, and P. Abbeel, “Guided cost learning: Deep inverse
optimal control via policy optimization,” in International Conference on
Machine Learning (ICML), 2016, pp. 49–58.

[25] C. Finn, P. Christiano, P. Abbeel, and S. Levine, “A connection between
generative adversarial networks, inverse reinforcement learning, and
energy-based models,” arXiv preprint arXiv:1611.03852, 2016.

[26] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Advances in neural information processing systems (NIPS), 2014, pp.
2672–2680.

[27] J. Ho and S. Ermon, “Generative adversarial imitation learning,” in
Advances in Neural Information Processing Systems (NIPS), 2016, pp.
4565–4573.

[28] Y. Li, J. Song, and S. Ermon, “Infogail: Interpretable imitation learn-
ing from visual demonstrations,” in Advances in Neural Information
Processing Systems (NIPS), 2017, pp. 3812–3822.

[29] M. Monfort, A. Liu, and B. D. Ziebart, “Intent prediction and trajectory
forecasting via predictive inverse linear-quadratic regulation,” in Pro-
ceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence
(AAAI), 2015, pp. 3672–3678.

[30] S. Levine and V. Koltun, “Continuous inverse optimal control with locally
optimal examples,” in International Conference on Machine Learning
(ICML), 2012, pp. 475–482.

[31] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and
S. Savarese, “Social lstm: Human trajectory prediction in crowded spaces,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016.

[32] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social gan:
Socially acceptable trajectories with generative adversarial networks,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2018.

[33] A. Vemula, K. Muelling, and J. Oh, “Social attention: Modeling attention
in human crowds,” in Proceedings of the International Conference on
Robotics and Automation (ICRA) 2018, May 2018.

[34] N. Lee, W. Choi, P. Vernaza, C. B. Choy, P. H. Torr, and M. Chandraker,
“Desire: Distant future prediction in dynamic scenes with interacting
agents,” in Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2017, pp. 336–345.

[35] N. Deo, A. Rangesh, and M. M. Trivedi, “How would surround vehicles
move? a unified framework for maneuver classification and motion
prediction,” IEEE Transactions on Intelligent Vehicles, vol. 3, no. 2, pp.
129–140, 2018.

[36] T. Zhao, Y. Xu, M. Monfort, W. Choi, C. Baker, Y. Zhao, Y. Wang, and
Y. N. Wu, “Multi-agent tensor fusion for contextual trajectory prediction,”
in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2019.

[37] J. Xie, Z. Zheng, X. Fang, S. Zhu, and Y. N. Wu, “Learning cycle-
consistent cooperative networks via alternating MCMC teaching for
unsupervised cross-domain translation,” in Thirty-Fifth AAAI Conference
on Artificial Intelligence (AAAI), 2021, pp. 10 430–10 440.

[38] J. Xie, Z. Zheng, and P. Li, “Learning energy-based model with variational
auto-encoder as amortized sampler,” in Thirty-Fifth AAAI Conference on
Artificial Intelligence (AAAI), 2021, pp. 10 441–10 451.

[39] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
International Conference on Learning Representations (ICLR), 2014.

[40] J. Xie, Y. Zhu, J. Li, and P. Li, “A tale of two flows: Cooperative learning
of langevin flow and normalizing flow toward energy-based model,” in
International Conference on Learning Representations (ICLR), 2022.

[41] D. P. Kingma and P. Dhariwal, “Glow: Generative flow with invertible
1x1 convolutions,” Advances in neural information processing systems
(NeurIPS), vol. 31, 2018.

15

[42] H. Robbins and S. Monro, “A stochastic approximation method,” The
annals of mathematical statistics, pp. 400–407, 1951.

[43] T. M. Cover and J. A. Thomas, Elements of information theory, Second
Edition. Wiley, 2006.

[44] W. K. Hastings, “Monte carlo sampling methods using markov chains
and their applications,” 1970.

[45] T. Chen, E. B. Fox, and C. Guestrin, “Stochastic gradient hamiltonian
monte carlo,” in International Conference on Machine Learning (ICML),
vol. 32, 2014, pp. 1683–1691.

[46] E. Nijkamp, M. Hill, T. Han, S. Zhu, and Y. N. Wu, “On the anatomy
of mcmc-based maximum likelihood learning of energy-based models,”
in Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
vol. 34, no. 04, 2020, pp. 5272–5280.

[47] J. Xie, R. Gao, Z. Zheng, S.-C. Zhu, and Y. N. Wu, “Learning dynamic
generator model by alternating back-propagation through time,” in
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
vol. 33, 2019, pp. 5498–5507.

[48] P. Polack, F. Altché, B. d’Andréa Novel, and A. de La Fortelle, “The
kinematic bicycle model: A consistent model for planning feasible
trajectories for autonomous vehicles?” in Intelligent Vehicles Symposium
(IV). IEEE, 2017, pp. 812–818.

[49] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2018.

[50] J. Colyar and J. Halkias, “US highway 101 dataset,” vol. Federal Highway
Administration (FHWA), Tech. Rep. FHWA-HRT-07-030, 2007.

[51] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[52] K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers:
Surpassing human-level performance on imagenet classification,” in IEEE
International Conference on Computer Vision (ICCV), 2015, pp. 1026–
1034.

[53] A. Kuefler, J. Morton, T. Wheeler, and M. Kochenderfer, “Imitating
driver behavior with generative adversarial networks,” in IEEE Intelligent
Vehicles Symposium, 2017, pp. 204–211.

[54] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust
region policy optimization,” in International conference on machine
learning (ICML), 2015, pp. 1889–1897.

[55] R. P. Bhattacharyya, D. J. Phillips, B. Wulfe, J. Morton, A. Kuefler,
and M. J. Kochenderfer, “Multi-agent imitation learning for driving
simulation,” in International Conference on Intelligent Robots and
Systems (IROS), 2018, pp. 1534–1539.

[56] R. P. Bhattacharyya, D. J. Phillips, C. Liu, J. K. Gupta, K. Driggs-
Campbell, and M. J. Kochenderfer, “Simulating emergent properties of
human driving behavior using multi-agent reward augmented imitation
learning,” in Proceedings of the International Conference on Robotics
and Automation (ICRA), May 2019.

[57] J. K. Gupta, M. Egorov, and M. Kochenderfer, “Cooperative multi-agent
control using deep reinforcement learning,” in International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), 2017, pp.
66–83.

[58] L. Dinh, D. Krueger, and Y. Bengio, “NICE: non-linear independent
components estimation,” in International Conference on Learning
Representations (ICLR) Workshop, 2015.

[59] L. Dinh, J. Sohl-Dickstein, and S. Bengio, “Density estimation using
real NVP,” in International Conference on Learning Representations
(ICLR), 2017.

Yifei Xu received his Ph.D. degree in statistics from
University of California, Los Angeles (UCLA) in
2022. He received his B.E. degree in computer sci-
ence at Shanghai Jiao Tong University. His research
interests focus on genertive model, reinforcement
learning and computer vision.

Jianwen Xie received his Ph.D. degree in statistics
from University of California, Los Angeles (UCLA)
in 2016. He is currently a senior research scientist at
Cognitive Computing Lab, Baidu Research, USA.
Before joining Baidu, he was a senior research
scientist at Hikvision Research Institute USA from
2017 to 2020, and a staff research associate and
postdoctoral researcher in the Center for Vision,
Cognition, Learning, and Autonomy (VCLA) at
UCLA from 2016 to 2017. His research interests
focus on generative modeling and unsupervised

learning.

Tianyang Zhao is currently a Ph.D. candidate in
the Center for Vision, Cognition, Learning and Au-
tonomy at the University of California, Los Angeles
(UCLA). He received his B.E. degree in computer
science at Peking University. His research interests
lie in generative model and representation learning.

Chris Baker received his Ph.D. degree in cognitive
science from Massachusetts Institude of Technology
(MIT) in 2012. He is currently a co-founder and
chief scientist at iSee Inc.

Yibiao Zhao received his Ph.D. degree in statistics
from University of California, Los Angeles (UCLA)
in 2015. He is currently a co-founder and CEO at
iSee Inc.

Ying Nian Wu received his Ph.D. degree in statistics
from Harvard University in 1996. He was an assistant
professor in the Department of Statistics, University
of Michigan from 1997 to 1999. He joined University
of California, Los Angeles (UCLA) in 1999, and
is currently a professor in UCLA Department of
Statistics. His research interests include generative
models, representation learning, and computer vision.
He received Honorable Mention for the David Marr
Prize with S. C. Zhu et al. in 1999 and 2007 for
generative modeling in computer vision.

	I Introduction
	I-A Background and motivation
	I-B Related work
	I-C Contributions
	I-D Organization

	II Energy-based inverse optimal control
	II-A Optimal control
	II-B Energy-based probabilistic model
	II-C Sampling-based inverse optimal control
	II-D Optimization-based inverse optimal control
	II-E Energy-based IOC algorithm

	III Joint training
	III-A A trajectory generator model as a fast initializer
	III-B Bottom-up and top-down generative models of trajectories
	III-C Iterative and non-iterative generations of trajectories
	III-D Issue in maximum likelihood training of a single trajectory generator
	III-E Understanding the learning behavior of the cooperative training

	IV Experiments
	IV-A Experimental setup
	IV-B Dataset
	IV-C Network structure
	IV-D Training details
	IV-E Single-agent control
	IV-F Corner case testing with toy examples
	IV-G Evaluation of different cost functions
	IV-H Multi-agent control
	IV-I Joint training with trajectory generator
	IV-J Training time and model size
	IV-K Hyperparameter analysis for energy-based IOC models
	IV-K1 Influence of the number of Langevin steps and the Langevin step size in the single EBM framework
	IV-K2 Influence of the number of Langevin steps and the Langevin step size in the cooperative training framework

	V Conclusion
	References
	Biographies
	Yifei Xu
	Jianwen Xie
	Tianyang Zhao
	Chris Baker
	Yibiao Zhao
	Ying Nian Wu

