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Abstract. Public clouds fundamentally changed the Internet landscape,
centralizing traffic generation in a handful of networks. Internet perfor-
mance, robustness, and public policy analyses struggle to properly reflect
this centralization, largely because public collections of BGP and tracer-
oute reveal a small portion of cloud connectivity.
This paper evaluates and improves our ability to infer cloud connectivity,
bootstrapping future measurements and analyses that more accurately
reflect the cloud-centric Internet. We also provide a technique for identi-
fying the interconnections that clouds use to reach destinations around
the world, allowing edge networks and enterprises to understand how
clouds reach them via their public WAN. Finally, we present two tech-
niques for geolocating the interconnections between cloud networks at
the city level that can inform assessments of their resilience to link fail-
ures and help enterprises build multi-cloud applications and services.

1 Introduction

The growing deployment of low-latency and high-throughput applications, the
upfront and maintenance costs of computing resources, and constantly evolving
security threats make it increasingly complex and costly for organizations to
host services and applications themselves. Public cloud providers ease that bur-
den by allowing organizations to build and scale their applications on networks
and hardware managed by the cloud provider. At the core of cloud comput-
ing are virtual machines (VMs) and containers that run on physical hardware
in a data center [47]. Clouds locate these data centers in globally distributed
geographic regions [7, 8, 12]. The three major cloud providers, Amazon AWS,
Microsoft Azure, and Google Cloud Platform (GCP), interconnect their regions
using global backbones [6, 9, 52].

Public clouds fundamentally changed the Internet landscape from peer-to-
peer to a cloud-centric model. According to a recent estimate [49], the ten
highest-paying customers in AWS—all popular video and content generators—
combine to spend over $100 million per month, and many enterprises store opera-
tions data and host internal applications in public clouds. Existing measurement
platforms, with vantage points (VPs) located outside cloud networks, capture
only a small fraction of the paths that connect public clouds to end users and
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enterprises, and the importance of the clouds necessitates that the Internet mea-
surement community considers how to effectively capture this.

The goal of this paper is to evaluate and improve our ability to infer cloud
connectivity, in the hope that it bootstraps Internet measurements and anal-
yses that more accurately reflect the cloud-centric Internet. We also build on
those inferences, identifying the interconnections that clouds use to reach desti-
nations around the world. Such analysis enables edge networks and enterprises
to understand how clouds reach them, and potentially respond to fallout from
congestion on a cloud interconnection. Furthermore, we geolocate the intercon-
nections between cloud networks at the city level, providing techniques that can
inform assessments of their resilience to link failures and help enterprises build
multi-cloud applications and services. We make the following contributions:

1. We validate the state-of-the-art in identifying network interconnections
(bdrmapIT) on Azure, identifying path changes as a prominent source of error.

2. We demonstrate that changing the traceroute probing method to reduce
the number of simultaneous traceroutes reduces the impact of path changes on
the observed topology, and improves the accuracy of bdrmapIT’s AS operator
inferences for the interconnection addresses in our validation dataset by 8.6%.

3. We use traceroute to identify next-hop ASes for each Internet network
from AWS, Azure, and GCP, finding that clouds still rely on tier 1 and tier 2
networks, and that next-hop ASes can be region-dependent.

4. We geolocate all observed AWS-Azure and Azure-GCP interconnections,
and 34.4% of the AWS-GCP interconnections, discovering that clouds intercon-
nect on every populated continent, and often interconnect in the same cities.

2 Background and Previous Work

Our work builds on prior work that inferred AS-links from BGP, identified net-
work interconnections in traceroute paths, studied cloud backbone networks with
traceroute, and geolocated network infrastructure.

BGP Route Announcements Reveal AS Connectivity: The public
BGP route announcement collectors, Routeviews [4] and RIPE RIS [3], col-
lect announcements received from the ASes that peer with the collectors (VP
ASes), and researchers infer AS connectivity from adjacent ASes in collected AS
paths [16, 24]. We could infer cloud neighbors directly from the cloud networks
through routes they propagate to public collectors, but cloud networks share
few routes with public route collectors. We can also infer cloud connectivity in-
directly from announcements that clouds originate into BGP, but VP ASes are
unlikely to see cloud neighbors that enter into paid or settlement-free peering
with the cloud [19, 25, 27, 32, 37, 55, 58]. Furthermore, VP ASes typically only
propagate their chosen best-path for each prefix to collectors, and any VP AS
that interconnects with a cloud network will likely select their direct intercon-
nection as the best path to that cloud, and will not propagate alternate AS paths
to the public collectors.



Inferring Cloud Interconnections 3

Inferring Router Ownership From Traceroute Paths: Substantial prior
work attempted to infer AS interconnections from traceroute paths. Mao et
al. [39, 40] aligned traceroutes from VP ASes with BGP route announcements
seen by that same AS to better determine address space ownership. Chen et
al. [18] generalized and expanded Mao’s methodology to align AS-level links
seen in traceroute with those in BGP AS paths. Later work focused on inferring
the AS operators of routers in traceroute paths. Huffaker et al. [30] used alias
resolution to convert the IP address paths in traceroute to router graphs, and
proposed and validated four techniques to map routers to AS operators. Marder
et al. [44] and Luckie et al. [36] independently developed and validated heuris-
tics to extract constraints from traceroute to more accurately infer AS operators.
Marder and Luckie later integrated and extended their approaches, creating the
current state-of-the-art bdrmapIT, and validated their bdrmapIT technique [43].
Most recently, Luckie et al. [38] used the AS operator inferences from Huffaker
et al.’s technique and bdrmapIT as training data to learn regular expressions for
extracting AS operators embedded in hostnames in the form of AS numbers.

Revealing Cloud ConnectivityWith Traceroute: VPs outside the cloud
cannot reveal many of the paths and interconnections that clouds use to reach
the Internet. Yeganeh et al. [56] conducted traceroutes from AWS to every /24
to reveal interconnected networks, using a new unvalidated approach to infer
network interconnections. In subsequent work [57], they compared the quality
of service of default interconnections between cloud networks and third-party
transit between clouds, switching to bdrmapIT to perform interconnection IP
addresses inferences. Arnold et al. [15] inferred directly connected networks from
traceroute paths by converting traceroute IP addresses to ASes using longest-
matching prefix in BGP route announcements and IXP participant IP addresses
recorded in PeeringDB [2]. They then augmented the AS-level connectivity graph
in CAIDA’s AS Relationship dataset [1] with peer relationships between each
cloud and the newly inferred neighbors, using the graph to estimate that clouds
can avoid their transit providers listed in CAIDA’s AS Relationship dataset to
reach 76% of the Internet networks. They validated their neighbor inferences
with feedback from Azure and GCP, with 11%–15% false neighbor inferences.
Assuming nearly perfect accuracy for IXP participant addresses in PeeringDB,
these false neighbor inferences almost entirely result from false private intercon-
nection inferences.

We show that the traceroute technique used by prior studies is prone to path
change corruptions, and we validate our cloud interconnection inferences (§4).
Rather than use unvalidated AS interconnection inference techniques, we use the
previously validated bdrmapIT tool to infer private interconnections between
cloud public WANs and their neighbors, and perform additional validation to
understand bdrmapIT’s accuracy for cloud networks. Finally, while Arnold et
al. speculated how clouds could reach other ASes [15], we report how clouds
currently do reach other networks.

Geolocating Network Infrastructure: Commercial IP geolocation data-
bases focus nearly exclusively on edge hosts, with poor accuracy for network in-
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frastructure [22,26,48]. Some networks encode geographic information in router
interface DNS hostnames, but the geographic codes are difficult to automatically
extract and interpret, as they use a mix of IATA codes, CLLI codes, and com-
mon location abbreviations. Rocketfuel includes the undns tool [51] that uses
hand-crafted regular expressions to extract geolocations from hostnames. More
general approaches avoid manually constructing regular expressions. DRoP [31]
automatically learns rules to extract geolocation codes from hostnames, and
HLOC [50] searches hostnames for geolocation codes. Other approaches use RTT
to approximate distance between VPs and routers. Gueye et al. [28] and RIPE
IPMap [45] triangulate RTTs to estimate location, and Katz-Basset et al. [33]
refined RTT-based estimates using topology constraints. We use a combination
of geolocation codes extracted from Azure DNS hostnames and traceroute paths
to geolocate the interconnections between cloud providers.

3 Validating bdrmapIT With Azure Hostnames

Our analysis relies on bdrmapIT AS operator inferences to identify cloud in-
terconnections and neighbors, so we first validate bdrmapIT’s inferences on
Azure to gain confidence in its efficacy and look for opportunities to improve our
techniques. bdrmapIT addresses the difficult problem of inferring the networks
that operate each router observed in traceroute, but relies on general assump-
tions of router configurations, internal traffic engineering, and network topology
that might not hold in cloud WANs. Furthermore, prior bdrmapIT evaluations
on transit interconnection inferences might not translate to cloud interconnec-
tion inferences. Initial bdrmapIT evaluations used CAIDA’s Ark traceroutes and
ground truth from ISP operators, and later experiments also validated bdrmapIT
against pseudo ground truth derived from ISP DNS hostnames [38,41,42]. Tracer-
outes from CAIDA’s Ark VPs mostly reveal transit interconnections—those be-
tween providers and customers—so transit interconnections dominate their re-
ported accuracy. Clouds primarily peer with other networks, and we expect that
their peering interconnections vastly outnumber their transit interconnections.
Importantly, bdrmapIT leverages the industry convention that transit providers
supply the IP subnets for interconnection with customers, but no known con-
vention exists for peering interconnections [35]. To date, no study has evaluated
bdrmapIT’s accuracy using traceroutes that originate in the cloud.

For this initial experiment, we created a VM in every Azure region and
used Scamper [34], the traceroute tool used in prior cloud studies [15, 56, 57],
to conduct traceroutes from every VM to each of the 11.5 M /24s covered by
a prefix in a BGP route announcement collected by RouteViews or RIPE RIS
over 1-5 August 2020. Our choice of /24 granularity reflects our assumption that
clouds are unlikely to receive many prefixes longer than /24. Each traceroute to
a /24 targeted a random address to provide comprehensive coverage of Azure’s
neighboring networks, and we instructed Scamper to use Paris-style traceroute
probes to prevent load-balancing from corrupting the traceroute paths.
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To identify interconnection addresses between clouds and their neighbors, we
used a combination of bdrmapIT AS operator inferences and IXP participant
IP addresses listed in PeeringDB [2] and IXPDB [23] to map traceroute path IP
addresses to ASes. In the event of a conflict between PeeringDB and IXPDB, a
contact at both IXPDB and PeeringDB advised us to use the mapping in IXPDB,
since IXP operators update information in IXPDB while IXP members populate
information in PeeringDB, potentially causing stale entries. bdrmapIT requires
AS address spaces as input, and we supplied prefix origin ASes derived from BGP
announcements collected by RouteViews and RIPE RIS. For addresses with no
covering prefix in BGP, we relied on the potentially stale longest matching prefix
in RIR extended delegations. 0.8% of addresses did not have a covering prefix
in BGP or RIR. We used whois [20] and RADb [46] to determine ownership for
53.4% of those addresses; this was the only manual step in this process.

R1i1

104.44.40.3
ae28-0.dal-96cbe-1b.ntwk.msn.net

R2i2

104.44.12.159
internet2.dal-96cbe-1b.ntwk.msn.net

Azure Internet2

VM

Fig. 1: In traceroute paths from
Azure, the internet2 tag in-
dicates that 104.44.12.159 be-
longs to a router operated by
Internet2. We use this as val-
idation for bdrmapIT’s router
operator inferences from Azure
traceroutes.

We used Azure DNS hostnames to pro-
vide pseudo ground truth for our intercon-
nection inferences, and successfully resolved
hostnames for 59.5% of the 5749 Azure
IP addresses seen in our initial traceroutes.
Azure tags many of its network interconnec-
tion address hostnames with the name of
the neighboring network, and we used the
tags visible in traceroute paths from Azure
VMs to identify Azure addresses on routers
operated by neighbors; e.g., in a tracer-
oute starting from an Azure VM, the tag
in internet2.dal-96cbe-1b.ntwk.msn.net in-
dicates that 104.44.12.159 belongs to an In-
ternet2 router interconnected with Azure. Our
evaluation focused on comparing bdrmapIT
inferences to the tags extracted from Azure hostnames. We used the regular ex-
pression ([^-]*?)\..*\.ntwk\.msn\.net to extract the interconnection tags from
Azure hostnames, finding 214 tags corresponding to 419 address hostnames. For
each IP address with a hostname containing an interconnection tag, we manu-
ally validated that bdrmapIT’s AS operator inference aligns with the name of
the inferred AS or the organization that owns it. These tags are nearly always
network names rather than AS numbers, preventing us from using Luckie, et
al.’s technique [38] to identify the operating AS automatically.

3.1 Investigating AS Operator Inference Errors

Our initial evaluation on Azure interconnections yielded 87.4% AS operator ac-
curacy, with 53 errors. One source of error was that bdrmapIT occasionally
filtered out valid neighboring ASes in favor of ASes seen adjacent to Azure in
BGP AS paths. bdrmapIT relies heavily on AS connectivity inferred from BGP
to constrain the choice of AS operator for a router, but the largely incomplete
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Fig. 2: Scamper increases efficiency by
parallelizing traceroute probing across
destinations, but a path change can
corrupt all active traceroute paths.

R1i1

104.44.13.95 
cableone.dal-96cbe-1a.ntwk.msn.net 

Azure Cable One

VM

R3i3

104.44.23.80 
ae102-0.icr02.sn6.ntwk.msn.net

R2i2

160.3.115.1 
Cable One

Fig. 3: We observed the Azure ad-
dress 104.44.23.80 after the border
router in Cable One, likely indicat-
ing traceroute path corruption. This
caused bdrmapIT to incorrectly con-
clude that Azure operates router R1.

connectivity constraints led to six false inferences in our validation set. We mod-
ified bdrmapIT to remove these constraints only for the major cloud networks,
but this change can apply to edge networks with largely incomplete neighbor
constraints in BGP AS paths, like other cloud and content delivery networks.
This change increased the AS operator inference accuracy to 88.8%, correcting
all six of the AS operator inferences without introducing additional error.

Using an interface graph constructed from the traceroutes to investigate the
remaining errors led us to conclude that path changes during traceroutes likely
caused most of the errors. While Paris probes avoid corruptions due to load-
balancing along a path, they cannot prevent corruptions due to path changes
in router forwarding tables. Scamper probing is especially susceptible to cor-
ruptions caused by path changes. Like UNIX traceroute, Scamper waits for the
response to the probe with Time to Live (TTL) i before sending the probe with
TTL i+1, but for efficiency it parallelizes across traceroute destinations (Fig. 2).
This concurrency enables rapid path discovery, necessary for temporally coher-
ent snapshots of cloud topologies, but a path change can corrupt any of the
traceroutes active at any given time.

To look for evidence of potential path changes, we generated a directed inter-
face graph from the 355.8 M Azure traceroutes, creating directed edges between
an address and every address that immediately followed it in a traceroute, but
not when one or more unresponsive hops separate the addresses. We found 56
(13.4%) Azure interconnection addresses in our validation dataset followed by
at least one Azure address in a traceroute. These interconnection addresses are
on routers operated by neighboring networks, so an uncorrupted traceroute path
would most likely not contain a subsequent Azure address. Fig. 3 shows a poten-
tially corrupted traceroute path, where we observed an Azure IP address follow-
ing the interconnection with Cable One. Observing Azure addresses after routers
in neighboring ASes does not necessarily indicate that path changes corrupted
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a traceroute, and can result from off-path addresses and load-balancing as well,
so we conduct an additional experiment to rule out alternative explanations.

3.2 Fast And Straight Traceroute (FAST) Traceroute Probing

AWS Azure GCP

Regions 20 32 21
VM Type t3a-small B2s e2-micro
vCPUs 2 2 2
Memory 2 GB 4 GB 1 GB

Fig. 4: We set up VMs in every
cloud region available to us using
similar VM types in each cloud.

We developed a new traceroute tool, FAST,
to test our hypothesis that path changes
corrupted the cloud traceroute paths by
mitigating the impact of path changes on
the observed topology. FAST sends all
probes from TTL 1 to 32 to a destination
at a fixed packets per second (pps) rate, ir-
respective of replies, before moving on to
the next traceroute destination, and uses
packet capture to record probes and replies,
allowing it to construct traceroute paths
with accurate RTTs. Unlike similar tools
such as Yarrp [17], FAST’s guaranteed se-
quential probing allows it to construct traceroute paths during probing while
consuming few resources on the cloud VMs.

2500 5000 7500 10000

Packets Per Second
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Probing Speed Increases Rate Limiting

AWS Azure GCP

Fig. 5: We observed fewer tracer-
oute hops for Azure probing above
5000 pps. GCP inflates probe
TTLs (§4.1), causing relatively few
responses for all probing rates.

To efficiently reveal traceroute paths, we
determined a probing rate for FAST that
balances topology discovery with probing
speed by conducting traceroutes from a VM
in every region of AWS, Azure, and GCP
(Fig. 4) to one address in 100,000 distinct
prefixes announced into BGP. Our results
(Fig. 5) indicate that probing at 5000 pps
reveals nearly all of the hops found by prob-
ing at slower rates, but probing faster in-
duced rate-limiting in Azure. At 5000 pps,
FAST can complete probing to every routed
/24 in less than 21 hours.

To isolate the impact of path changes,
we changed only the traceroute tool from
Scamper to FAST, but conducted tracer-
outes from the same Azure regions to the
same destinations. Generating an interface-
graph from the new set of traceroutes appears to confirm our hypothesis that
path changes corrupted the scamper traceroutes. In the FAST traceroutes, we
never observed an Azure address after a router known to belong to a neighboring
AS. Furthermore, path changes played a large role in bdrmapIT’s inaccurate AS
operator inferences. bdrmapIT’s inferences on the FAST traceroutes were 97.4%
accurate, compared to 88.8% with the Scamper traceroutes.
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Dest: 158.130.69.163
1 128.91.238.217 [UPenn]
2 128.91.48.6 [UPenn]

(a) Los Angeles to UPenn.

Dest: 146.97.33.5
1 216.239.59.1 [GCP]
2 172.253.65.167 [GCP]
3 209.85.143.66 [GCP]
4 108.170.246.168 [GCP]
5 *
6 146.97.33.62 [JANET]
7 146.97.33.5 [JANET]

(b) Los Angeles to JANET.

Dest: 158.130.69.163
1 209.85.253.197 [GCP]
2 172.253.65.176 [GCP]
3 108.170.227.150 [GCP]
4 108.170.248.11 [GCP]
5 162.252.69.196 [I2]
6 *
7 128.91.238.218 [I2]
8 128.91.238.217 [UPenn]
9 128.91.48.6 [UPenn]

(c) Belgium to UPenn.

Fig. 6: A traceroute from GCP Los Angeles to the University of Pennsylvania
(UPenn) revealed no GCP IP addresses (a), but traceroutes from Los Angeles to
JANET in the UK (b), and Belgium to UPenn (c), each revealed GCP addresses.

4 Learning About Clouds From Interconnections

Armed with confidence in our interconnection inferences, we set up VMs in ev-
ery region available to us for AWS, Azure, and GCP, the three largest cloud
providers, and used FAST to conduct traceroutes from every VM to a random
address in every routed /24. We configured our VMs to use the WAN as much as
possible; Azure networking defaults to cold-potato routing, we selected GCP’s
premium network tier, and in AWS we used the default WAN behavior since
their Global Accelerator appears to primarily affect inbound traffic [5], although
we plan to investigate potential differences in future work. These experiments
derived routed address space using collected BGP route announcements from
1-5 October 2020. We used the same combination of bdrmapIT, PeeringDB,
and IXPDB as in §3 to infer interconnection addresses, and used these intercon-
nection inferences to analyze the neighboring networks that each cloud uses to
reach public Internet networks, and to geolocate the interconnections between
the three cloud providers.

4.1 GCP Inflates Traceroute Probe TTLs

One challenge for our analysis is that GCP, unlike AWS and Azure, inflates the
TTL values of traceroute probes after they leave VMs such that the hop #1
traceroute address belongs to a later router in that path, rather than to the first
router hop [13]3. This behavior violates a core traceroute assumption that hop
#1 corresponds to the first router probed. While invisible Multiprotocol Label
Switching (MPLS) tunnels exhibit similar behavior, hiding router hops between
the tunnel entry and exit routers [21,53,54], MPLS tunnels do not affect hop #1
since the probe with TTL 1 could not yet enter an MPLS tunnel. This practice
of rewriting probe TTLs has likely caused researchers to incorrectly conclude
that GCP routers do not respond to traceroute [29], or that hop #1 is a router
just past the GCP border [57].
3 We observed different behavior in February, 2021 (§A).



Inferring Cloud Interconnections 9

Fig. 6a shows the GCP TTL inflation with a traceroute from a VM in Los
Angeles, where hop #1 reported an address that router configurations from Inter-
net2 show belong to a University of Pennsylvania (UPenn) router [10], despite no
direct interconnection between GCP and UPenn [11]. In fact, the UPenn router
at hop #1 reported an interface address used to interconnect with Internet2 [10],
indicating that the probes traversed Internet2 to reach UPenn, but the inflated
TTL caused probes to expire only after reaching UPenn. Traceroutes from other
GCP VMs to the same UPenn destination, such as in the Belgium region, exposed
apparent GCP internal IP addresses, only reaching UPenn at hop 8 (Fig. 6c).
All of our VMs use GCP’s premium network tier, but not all revealed internal
GCP addresses, contradicting reported behavior that only GCP’s standard tier
inflates traceroute TTLs [14]. Our ability to observe internal GCP addresses
from the Belgium VM toward UPenn, and from the VM in Los Angeles toward
JANET in the UK (Fig. 6b), suggests that the opportunity to view internal and
interconnection GCP addresses depends on the combination of GCP region and
traceroute destination. We leave an analysis of the interconnection information
lost to GCP’s TTL inflation for future work.

4.2 Inferring How Clouds Reach Internet Networks

Cloud

R1

R2

AS 1

AS 2

AS 1, AS 3,
AS 4

AS 2, AS 3

i1

i2

Fig. 7: AS #1 is the next-hop
network in traceroute paths to
three ASes, so its cloud transit
degree (CTD)=3. AS #2 is the
next-hop network for two ASes,
so its CTD=2.

We define the cloud transit degree for a cloud
neighbor AS as the number of unique tracer-
oute destination ASes for which the neighbor
is the next-hop AS. This metric is an indica-
tion of the relative importance of that neigh-
bor to the cloud network. In Fig. 7, the cloud
network uses AS #1 to reach three ASes in-
cluding AS #1, giving it a CTD of 3, while
AS #2 has a CTD of 2. Here, the cloud uses
both AS #1 and AS #2 to reach AS #3, so we
count AS #3 once for each AS. This situation
occurs when clouds choose different next-hop
networks depending on the VM’s region.

We only used traceroutes with a cloud in-
terconnection in the path to compute the CTDs, so we discarded any traceroute
where an unresponsive hop separates the last hop inside the cloud network from
the first hop outside the cloud network. Fig. 8a shows the fraction of included
traceroutes in each cloud. For every neighbor AS, we maintain a set of desti-
nation ASes reached through that neighbor, so at the first hop in the neighbor
AS we add the traceroute’s destination AS to that neighbor’s set. Finally, we
compute the CTD for each neighbor as the cardinality of its destination set.

Fig. 8b shows the number of unique ASes for each cloud across their different
regions. The different variances reflect the traffic engineering policies of each
cloud. AWS uses hot-potato routing, so we not only saw different neighbors
from each region, but we saw different numbers of neighboring ASes as well.
Conversely, Azure uses cold-potato routing, so Azure transits packets destined
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Fig. 8: We excluded many of the GCP traceroutes since the traceroute path often
began outside GCP (a). Unlike AWS and GCP, we observed nearly all of the
same neighbor ASes from every Azure region (b). All clouds rely on tier 1 and
tier 2 networks, but AWS relies more heavily on tier 1s in most regions (c).

for a neighboring AS across its global backbone and hands them off to the
neighbor directly. GCP also employs cold-potato routing, but certain regions
included more internal routers in traceroute paths than others. We only included
an AS as a neighbor when we saw a GCP interconnection address, as traceroute
paths can start in unconnected networks (Fig. 6).

Fig. 8c shows the fraction of the total CTD accounted for by tier 1, tier 2, and
tier 3 networks. For the purposes of this analysis, we define tier 1 networks as the
19 ASes inferred to be at the top of the AS hierarchy in CAIDA’s AS relationship
dataset for October 1, 2020. Tier 2 networks include the 10,627 other ASes with
at least one customer in the dataset, with the remaining networks classified as
tier 3. Our analysis reveals that all three clouds rely heavily on ISPs, although we
expect that the clouds primarily peer with these ISPs, rather than interconnect
with them for Internet transit. AWS shows wide variance across regions, heavier
reliance on tier 1 networks (due to hot potato routing), and heavy tier 2 network
use in certain regions. Azure relies on tier 1 and tier 2 networks consistently
across regions, and GCP appears better connected to edge networks.

AWS Azure GCP

Traceroute 4110 3889 8620
BGP 327 300 381

Table 1: We observed an order
of magnitude more unique cloud
AS neighbors traceroutes than
in public BGP collections.

In total, we discovered an order of magni-
tude more cloud neighbor ASes in our tracer-
outes from cloud VMs than were visible in
RouteViews and RIPE RIS collections of BGP
route announcements from 1-5 October, 2020
(Table 1). We also found that GCP appears
to interconnect with more than twice as many
networks as AWS and Azure. Importantly, our
results indicate that the visible connectivity of
cloud networks, and their reliance on specific
neighbors, is region-dependent. To properly measure and analyze the cloud re-
quires gathering data from each region, and considering each region separately.
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R1i1

104.44.232.128 
ae22-0.fra-96cbe-1b.ntwk.msn.net 

R3i3

80.81.194.171

R2i2

google.fra-96cbe-1b.ntwk.msn.net 
198.200.130.255

Azure

GCP

DE-CIX Frankfurt

AS714

VM

(a) IXP and hostname geolocation.

R1b1

52.93.146.230

R2b3

99.82.177.85
AWS Azure

VM R3b5

104.44.24.41

b4

104.44.24.40 
ae30-0.gru-96cbe-1a.ntwk.msn.net

(b) Hostname geolocation.

Fig. 9: In (a) the interconnection address i2 and the IXP address i3 share a
common predecessor, so we infer i2 is also located in Frankfurt. The hostnames
for i2 and i1 also indicate Frankfurt. In (b) we use gru in the hostname for b4 to
infer that the interconnection occurs in Sao Paulo.

4.3 Geolocating Cloud Interconnections

Next, we use IXP location constraints and geolocation tags in Azure hostnames
to infer the locations of interconnections between the clouds. For IXP constraints,
we identify all addresses that preceded an interconnection address in a tracer-
oute that also preceded an IXP address, and infer that the interconnection
is located at the IXP location recorded in PeeringDB. Our reasoning follows
from the fact that interconnected routers operated by two different networks are
often located in the same facility or city. In Fig. 9a, bdrmapIT inferred that
address 198.200.130.255 interconnects Azure and GCP, and the prior address
104.44.232.128 also preceded an address used for public peering at DE-CIX
Frankfurt in a different traceroute, so we conclude that the interconnection us-
ing address 198.200.130.255 occurs in Frankfurt. Remote peering at IXPs, where
a network participates at multiple IXPs through a port at a single IXP, creates
the possibility that our method could identify multiple IXPs. We expect to more
often observe local IXP peering than remote peering, so in the event our tech-
nique identified multiple IXPs, we select the most frequently appearing IXP city
location.

We also used geographic locations embedded in Azure IP hostnames to ge-
olocate interconnections involving Azure, such as the reference to Frankfurt in
the hostname for 198.200.130.255, google.fra-96cbe-1b.ntwk.msn.net. We col-
lected hostnames for three groups of addresses most likely to reside in the same
city as the interconnection: (1) the interconnection address, (2) addresses that
precede the interconnection address, and (3) the other address in the /31 subnet
of addresses subsequent to the interconnection address. For the latter group,
while the subsequent addresses might not reside in the interconnection city,
we assume the other address in the point-to-point subnet likely belongs to the
same router as the interconnection address. In Fig. 9b, we use the hostname for
104.44.24.40 which we infer belongs to the same router as the interconnection
address 99.82.177.85, despite not appearing in the traceroutes. Using a hand-
crafted regular expression, we extracted the geolocation codes, and mapped each
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AWS-GCP 22 (34%) AWS-Azure 56 (100%) Azure-GCP 41 (100%)

Cloud Interconnection Locations

Fig. 10: Unique city locations for interconnections between the clouds. The clouds
often interconnect in the same cities, indicated with pie-chart markers. We could
only geolocate 22 of the 64 inferred AWS-GCP interconnections (34.4%).

code to a city. This technique always inferred a single city for each interconnec-
tion address. Using both techniques allowed us to infer geolocations for every
Azure link, and the two techniques never inferred conflicting cities.

Our two geolocation strategies yielded the city locations in Fig. 10. We found
that the clouds interconnect in all six populated continents and tend to inter-
connect in the same locations. The IXP constraints provided locations for 87.8%
and 80.4% of the Azure-GCP and Azure-AWS interconnections respectively, but
only geolocated 34.4% of the AWS–GCP interconnections, since many of their
interconnection IP addresses did not share a common predecessor with an IXP
address. Interconnections visible from AWS VMs rarely shared a predecessor
with an IXP address, and the GCP traceroutes often lacked internal hops. The
congruity between the two techniques indicates that these techniques can accu-
rately geolocate many of the cloud interconnections visible in traceroute.

5 Limitiations

Our analysis performs inferences on top of inferences, and an error at any step
can lead to false conclusions. Acknowledging the potential for compounding er-
ror, we validated as many of our interconnection and geolocation inferences as
possible. In general, we expect our analysis to reflect the reality revealed by our
traceroutes, despite imperfect accuracy.

One limitation of our validation is that we rely on the accuracy of Azure’s
DNS hostnames, but operators might not update them when an IP address
switches from one router interface to another. While this might apply to our
case, the 97.4% congruity between bdrmapIT AS operator inferences and the
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hostname tags suggests that Azure maintains its hostnames well. The coverage
of our validation is a more fundamental limitation, as our validation dataset
covers a single cloud network and only 30.3% of the total number of bdrmapIT
inferred Azure private interconnection IP addresses. Our reported bdrmapIT AS
operator accuracy might not generalize to the other Azure interconnections that
bdrmapIT inferred, let alone to AWS and GCP interconnections.

When inferring cloud neighbors, our traceroutes might not reveal all of the
interconnections between the cloud networks, and between the clouds and neigh-
boring networks. In GCP, most traceroute paths either start outside of GCP or
the VMs do not receive a reply from the apparent interconnection router hop
(Fig. 8a). Specific to AWS, its hot-potato routing means that traffic to a con-
nected AS might leave the WAN at a different neighbor closer to the the VM. For
all three clouds, a traceroute only reveals a single active path, and our probing
might miss alternate active paths. Furthermore, our probing can only reveal net-
works interconnected with cloud public WANs, but some networks interconnect
with clouds in a more private fashion.

Yeganeh et al. [56] described cloud exchanges as multipoint-to-point inter-
connections that use address space provided by the exchange operator, and spec-
ulated that bdrmapIT cannot draw accurate AS operator inferences for routers
at cloud exchanges. We do not expect cloud exchanges to pose problems for
bdrmapIT’s AS operator inferences, since it determines AS ownership by look-
ing forward from a router to addresses seen subsequently in a traceroute. This
allows bdrmapIT to determine ownership for IXP public peering addresses, and
it should perform similarly for the cloud exchanges Yeganeh et al. described. A
potential consequence of cloud exchanges is that our methodology for inferring
next-hop networks might select the cloud exchange provider as the next-hop AS
if the exchange does not use address space belonging to a cloud or list its address
space in PeeringDB or IXPDB.

6 Conclusion

Public clouds play a central role in the modern Internet, but we know little about
how they interconnect to each other or other networks. Understanding cloud
connectivity is critical to studying the modern Internet, including for network
planning and diagnosis, and resiliency assessments. This study lays a founda-
tion for future analyses by validating and improving a technique to infer cloud
interconnection IP addresses. We analyzed next-hop ASes that the clouds use
to reach other networks and proposed techniques to geolocate interconnections
between the clouds. We found that clouds interconnect with each other on all
six populated continents, and that next-hop ASes can be region-dependent, in-
dicating that properly analyzing cloud networks requires measurements from
every region. We will make FAST and the code for our analysis available at
https://alexmarder.github.io/cloud-pam21/.

https://alexmarder.github.io/cloud-pam21/
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A Recent GCP Traceroute Behavior

Dest: 158.130.69.163
1 72.14.237.86 [GCP]
2 162.252.69.188 [I2]
3 *
4 *
5 128.91.238.218 [I2]
6 128.91.238.217 [UPenn]
7 128.91.48.6 [UPenn]

(a) Los Angeles to UPenn.

Dest: 146.97.33.5
1 * [GCP]
2 * [GCP]
3 * [GCP]
4 * [GCP]
5 128.91.238.217 [UPenn]
6 128.91.48.6 [UPenn]

(b) Virginia to UPenn.

Fig. 11: Unlike the traceroute in October, 2020, the traceroute from GCP Los
Angeles to UPenn in February, 2021 revealed an internal GCP IP addresses (a).
The first responsive hop in the traceroute from Virginia was an address on a
UPenn router, but the path contained unresponsive hops until that point (b).

We conducted the traceroutes in §4.1 in October, 2020. Revisiting our ex-
amples in February, 2021, we noticed a different behavior. Many paths still do
not contain any internal GCP addresses, but the paths no longer appear to start
in neighboring networks. As seen in the traceroute path from GCP Los Ange-
les to UPenn (Fig. 11a), hop #1 is an internal GCP address followed by the
interconnection with Internet2 at hop #2 [10], rather than a UPenn address.
The first responsive hop in the path from our GCP Virginia VM (Fig. 11b) is
the same UPenn address that we previously observed as hop #1 in §4.1, but
hop #1 is now an unresponsive address. This behavior makes interpreting GCP
traceroutes more intuitive, as they follow conventional traceroute semantics, but
observing GCP internal addresses still appears to depend on the combination of
VM region and traceroute destination.
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