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Abstract

Massive-star binaries are critical laboratories for measuring masses and stellar wind mass-loss rates. A major
challenge is inferring viewing inclination and extracting information about the colliding-wind interaction (CWI)
region. Polarimetric variability from electron scattering in the highly ionized winds provides important diagnostic
information about system geometry. We combine for the first time the well-known generalized treatment of Brown
et al. for variable polarization from binaries with the semianalytic solution for the geometry and surface density
CWI shock interface between the winds based on Cantó et al. Our calculations include some simplifications in the
form of inverse-square law wind densities and the assumption of axisymmetry, but in so doing they arrive at
several robust conclusions. One is that when the winds are nearly equal (e.g., O+O binaries) the polarization has a
relatively mild decline with binary separation. Another is that despite Thomson scattering being a gray opacity, the
continuum polarization can show chromatic effects at ultraviolet wavelengths but will be mostly constant at longer
wavelengths. Finally, when one wind dominates the other, as, for example, in WR+OB binaries, the polarization is
expected to be larger at wavelengths where the OB component is more luminous and generally smaller at
wavelengths where the WR component is more luminous. This behavior arises because, from the perspective of the
WR star, the distortion of the scattering envelope from spherical is a minor perturbation situated far from the WR
star. By contrast, the polarization contribution from the OB star is dominated by the geometry of the CWI shock.

Unified Astronomy Thesaurus concepts: Spectropolarimetry (1973); Stellar winds (1636); Massive stars (732)

1. Introduction

Despite composing the rarest stellar mass group, massive
stars (>8 Me) are the most important originators of elements in
the universe because they synthesize and distribute heavy
elements when they explode as supernovae (Nomoto et al.
2013). Massive stars also enrich the interstellar medium during
their presupernova lifetime via their strong stellar winds. High
levels of mass loss also affect the evolution of massive stars, in
particular the nature of their remnants (Puls et al. 2008;
Langer 2012; Smith 2014).

Most massive stars spend a large fraction of their lives in
binary systems with other massive stars; approximately 50%
are thought to engage in mass exchange with a close
companion (Sana et al. 2012). Interactions between compa-
nions drive the evolutionary paths that can shape both stars’
subsequent fates (e.g., Langer 2012; Song et al. 2016).

Colliding-wind binaries can teach us a great deal about the
individual stars and their winds because the geometry of the
interaction region is dependent on the relative mass-loss rates

and velocities of the binary components. Early theories
describing these binaries used momentum flux (e.g., Girard &
Willson 1987) and ram pressure balance (e.g., Kallrath 1991),
or hydrodynamic models (e.g., Stevens et al. 1992), and even
some semianalytic work (e.g., Usov 1992; Cantó et al. 1996;
Pilyugin & Usov 2007; Gayley 2009). Further work in the area
has focused on hydrodynamic simulations (Parkin & Pit-
tard 2008; Lamberts et al. 2011; MacLeod & Loeb 2020) and
predictions of line profiles in both optical (Luehrs 1997;
Georgiev & Koenigsberger 2004; Ignace et al. 2009) and
X-rays (Henley et al. 2003; Rauw et al. 2016; Mossoux &
Rauw 2021). The result of these models, combined with a
number of phase-resolved observations, is that we have
generally a good understanding of the expected geometry of
colliding winds (e.g., Rauw et al. 1999; Gosset et al. 2001;
Sana et al. 2004; Gosset et al. 2009; Williams et al. 2009;
Kennedy et al. 2010; Fahed et al. 2011; Nazé et al. 2012;
Cazorla et al. 2014; Rauw et al. 2014; Lomax et al. 2015;
Gosset & Nazé 2016; Nazé et al. 2018; Callingham et al. 2020;
Rodríguez et al. 2020).
Given that massive-star winds are strongly ionized, it is

natural to consider Thomson scattering as the dominant
scattering opacity in the winds, which in turn can polarize
the observed light. The resulting polarization is sensitive to the
geometry of the scattering regions. The classic (Brown et al.
1978, hereafter BME) model approximates the time-varying
continuum polarization caused by the illumination of
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circumstellar material in a binary system viewed at an arbitrary
inclination angle. Those authors assume that the electron
scattering region is optically thin. Their approach allows for a
general geometry, but for binary stars they consider two point
sources of illumination and a corotating scattering envelope.

Brown et al. (1982) extended the BME model to consider
elliptical orbits, and Fox (1994) further extended the formalism
to consider finite-size illuminators. Fox (1994) showed that
occultation is only important in very close binary systems,
where the separation of stars is less than 10 times the radius of
the primary. However, none of these enhancements to the
theory specifically addressed the effects of colliding winds in
the time-dependent polarization results. Furthermore, the
effects of the wind collision regions on the wavelength
dependence of polarization have not been considered as part
of this theoretical framework. However, such polarized signals
associated with colliding winds have been observed in several
systems (St.-Louis et al. 1993; Lomax et al. 2015). A modeling
effort in this domain is therefore critically important.

Polarization models of stellar wind bow shock structures
produced by the interaction of stellar winds with a local
ambient medium shows that significant polarization can arise
from scattering of light in these structures (Shrestha et al.
2018, 2021). Modeling the polarization signal caused by
colliding-wind geometries has been done specifically for the
system V444 Cyg (St.-Louis et al. 1993; Kurosawa et al. 2002),
but a general formalism has not yet been produced. In this
paper we derive a consistent model for the polarization signal
produced by wind collision regions in massive binary systems.
In Section 2 we describe our model of polarimetric variability
from optically thin electron scattering in a shock illuminated by
two stars. In Section 3 we derive expressions for the
polarization signal based on the system parameters and show
how these expressions lead to chromatic and orbital effects in
polarization. We summarize our results in Section 4.

2. Polarimetric Variability from Thin Electron Scattering

Our treatment is based on that of BME, who presented a
thorough theoretical construction for thin electron scattering in
a generalized envelope with an arbitrary number of illuminat-
ing point sources. With regard to our application for a binary
system, we assume that the colliding-wind interaction (CWI) is
axisymmetric about the line of centers (LOC) joining the two
stars (i.e., we ignore the Coriolis effect in our example cases,
though this has been detected in at least one colliding-wind
binary; Lomax et al. 2015). We further assume that the separate
winds of the two stars are each spherically symmetric up to the
CWI. As a result, in the notation of BME, we have
γ1= γ2= γ3= γ4= 0, and the only factors that are nonzero are
γ0 and τ0. In our development we will modify this notation
slightly.

BME then considered the more limited scenario of a binary
system with a circular orbit and corotating envelope. Our
approach allows for elliptical orbits (which Brown et al. 1982
later considered), and for the shape and density of the bow
shock, we employ the analytical solution of Cantó et al. (1996).

The Cantó et al. (1996) solution is predicated on strong
radiative cooling. There are two initial concerns about adopting
this model. The first is that radiative cooling leads to thin-shell
instabilities (e.g., Lamberts et al. 2011). The second is that
radiative cooling is limited to relatively close binaries, orbital
periods of order a week (e.g., Antokhin et al. 2004). These

issues have significant relevance for predicting X-ray spectra,
where the temperature distribution along the shock is
important, or when simulating emission-line profile shapes,
where the detailed vector velocity field is crucial. However, our
case deals with electron scattering and continuum polarization.
Unlike the case of X-ray diagnostics, where the distribution of
hot gas is important, we can safely assume that the gas is
everywhere highly ionized for computing scattering polariza-
tion. Of chief importance to our case is that the Cantó et al.
(1996) derivation is conveniently analytic and driven by
considerations of ram pressure balance, which captures much
of the key physics. Most, but not all, of our examples involve
either equal winds or binaries with one dominant wind, and our
general conclusions based on the Cantó et al. (1996) model are
fairly robust.
As in the BME formalism, our approach assumes point-

source illumination. This is reasonable when the binary
separation is not too small (of order the stellar radii). One
distinction, however, is that we do account for finite stellar size
when evaluating volume integrals. This is not incompatible
with BME; we are merely explicit about its inclusion.
A final point about our use of the BME treatment is that, due

to the axisymmetry, we employ the notation and approach
of BME for a single star and use superposition in our
application to a binary system. In doing so, our notation departs
from BME, although we still employ similar variables. The
following sections introduce our geometry for the systems, our
application of BME to axisymmetric binaries, and semianalytic
solutions for the variable polarization based on the Cantó et al.
(1996) solution for the CWI.

2.1. Geometry and Stellar Properties

In our model, the winds of the two stars and the intervening
colliding-wind shock are prescribed using primarily polar
coordinates for each star. We define the primary star to be the
one with the stronger wind in terms of momentum flux, Mv ¥,
where M is the mass-loss rate and v∞ is the terminal wind
speed. The secondary is then the weaker wind case in terms of
this product. We typically use subscripts “1” and “2” to identify
primary and secondary.
We introduce spherical coordinates with respect to the axis

that is the LOC between the two stars. Coordinates centered on
the primary star (r1, θ1, f1) are such that θ1= 0 in the direction
of the secondary. Likewise, the coordinates linked to the
secondary star (r2, θ2, f2) also have θ2= 0 in the direction of
the primary. Frequently, our approach employs the standard
cosine notation, cos1 1m q= and cos2 2m q= .
The individual winds are taken to be spherical, with densities

varying with the inverse square of the distance from the star.
Consequently, we are ignoring the wind acceleration zone that
is relevant whenever the bow shock forms close to either or
both stars. We do not include the potential for radiative braking
of the stronger wind if it enters the region of dominance of the
companion stellar flux (Gayley et al. 1997; Lomax et al. 2015),
nor the possibility that the stronger wind might in some cases
ram directly into the photosphere of the secondary star.
With spherical winds and constant speed radial outflow, the

density relations for the primary and secondary winds are
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where nj for j= 1, 2 are electron number densities with
corresponding scale parameter nj,0= ρ0/μemH, with mH the
mass of hydrogen and μe the mean molecular weight per free
electron. Since we consider terminal speed flow, we have
omitted the subscript∞ for the primary and secondary wind
speeds in Equations (1) and (2).

2.2. Bow Shock Model

To explore polarimetric variability from colliding-wind
shocks, we choose the formulation of Cantó et al. (1996) for
their semianalytic bow shock solution involving radiative
cooling and two stellar spherical winds at terminal speed. This
solution specifically assumes radiative cooling, and the bow
shock takes the form of an interface of infinitesimal thickness
between the two otherwise spherical winds. This interface for
the CWI is axisymmetric and characterized with a surface
density.

Here we reproduce in brief the key expressions for the
solution of Cantó et al. (1996), but with a few changes of
notation. Cantó et al. (1996) use a “1” subscript for the primary
but no subscript for the secondary; we use a “2” subscript for
the secondary. Cantó et al. (1996) use σ for the surface mass
density, while we use Σ= σ/μemH for the surface number
density of electrons. In principle μe is a function of position in
either wind and in the bow shock itself; however, for
simplicity, we assume that μe is constant throughout the shock.

The bow shock geometry and its surface density are related
to two fundamental ratios:
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The first of these, β� 1, is the ratio of wind momentum of the
secondary compared to the primary; the second, α, is the ratio
of wind terminal speeds. Figure 1 provides a schematic of the
binary system with intervening CWI region between the two
stars. The radial distances of the bow shock from the stars are
denoted as R1,S and R2,S, with

R D
sin

sin
, 7S2,

1

1 2( )
( )q

q q
=

+

R D R D R2 cos , 8S S S1,
2

2,
2

2, 1 ( )q= + -

where D is the separation between the two stars at any moment.
We denote the standoff radii of the bow shock from each star
along the LOC as R1,0 and R2,0, with
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While the above relations are analytic formulations in θ1 and
θ2, the relation between the two coordinate angles is implicit,
making the solution overall semianalytic. The relationship of
the angles is given by
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Note that the asymptotic angles (“opening angles”) for the bow
shock are given by
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The case β= 1 corresponds to a planar shock between identical
stars and winds, with θ1,∞= θ2,∞= π/2.
The final key ingredient for modeling the polarimetric

variability is the surface number density distribution. Again
from Cantó et al. (1996), this is given by
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where the scaling constant is
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The last step in the above expression represents the surface
number density as being twice the column depth of the wind of
the secondary from the bow shock to infinity.

Figure 1. Top-down illustration of the two stars, primary and secondary, in
magenta and the bow shock in blue, formed by the colliding winds. Labeled
variables are defined in text.
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In the special case of β= 1 for a planar shock forming from
two identical stars, R1,S= R2,S=D/2μ, where cosm q= with
θ= θ1= θ2. Combined with α= 1, the surface density then
simplifies to

4
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q q q q

S
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=
-

-

Having defined the geometry of the CWI interface and its
properties, we turn next to characterizing the electron scattering
polarization.

2.3. Thin Scattering

As previously noted, we employ the approach of BME in
application to the results of Cantó et al. (1996), which is
explicitly axisymmetric. In the treatment of BME, ignoring
absorption and assuming that the total amount of scattered light
is small compared to the specific luminosities of either star, the
polarization is given by

p i p i1 3 sin sin , 17tot
2

0
2( – ) ( )t g= =

where ptot is the polarization, τ is an angle-averaged optical
depth of the envelope, γ is called the shape factor, and i is the
viewing inclination relative to the symmetry axis of the
envelope. We introduce p0 for conveniently representing the
product of optical depth and envelope shape. The definitions of
τ and γ are

n r dr d
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where n(r, μ) is the axisymmetric distribution of electrons
throughout the scattering volume. If the scattering region is
spherically symmetric, γ= 1/3, and the polarization is zero.
For a wind whose density varies as the inverse of the squared
distance, τ= 3τ*/8, with τ* = n0 σT R* being the radial
optical depth of the wind in electron scattering.

The integrals for τ and γ are defined with respect to the star
center, and the treatment for axisymmetry does not require top-
down symmetry. Thus, one can introduce τ1 and γ1 associated
with polarization from scattering of starlight from the primary,
and then τ2 and γ2 for scattering of starlight by the secondary.
Being optically thin, the results add linearly as weighted by the
wavelength-dependent luminosities of the two stars:

p
L p L p

L L
. 200

1 1 2 2

1 2
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( )
l l
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This result, in our notation, is equivalent to Equations (6a) and
(7) from BME for axisymmetry. The dependence on viewing
inclination is implicit in Equation (20) via Equation (17). As
pointed out by BME, we have that i1= i2= i so that
p p isintot 0

2= as in Equation (17) earlier.
Note that for a particular geometry as expressed by the wind

and orbital properties, p1 and p2 have generally different values
but are defined with respect to the same axis, the LOC between
the stars. While these values are not wavelength dependent (
i.e., chromatic), p0 can be chromatic because the two

illuminating sources will generally have different spectral
energy distributions (SEDs).
This last point deserves additional comment. When one star

dominates the brightness of the system in a given wavelength
range, the polarization will be flat and take the polarization
value of the dominant star. At wavelengths for which the
emission of both stars follows a Rayleigh–Jeans law, the
relative contribution to the total luminosity of the stars will
always be the same; hence, ptot will also be flat. However, for
stars of unequal temperatures, at wavelengths around the Wien
peak, the ratio of specific luminosities will vary, and either p1
or p2 may dominate, or the dominant terms may switch. Thus,
for hot stars, p0 will be chromatic at short wavelengths, despite
the fact that electron scattering is gray.

3. Model Results

3.1. Expressions for the Polarization

Recall that for BME the polarization depends on source
parameters τ and γ, but these in turn depend on angle-averaged
column densities of free electrons. It is convenient to introduce
two varieties of angle-averaged column densities, one that is a
zeroth-order moment and one that is a second-order moment:

N n r dr d
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2
, 21( ) ( )ò ò m má ñ =

and
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2
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Then,
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3

8
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and

N N , 24˜ ( )g = á ñ á ñ

where these parameters would have subscript 1 or 2 for the
primary or secondary stars, respectively. For example, the
primary wind with density given by Equation (3) would have a
first-moment column density of 〈N1〉= n1,0R1,*.
In application to the colliding-wind binary, there are three

key angular regimes to consider in relation to each of the two
stars. These three solid angle sectors contribute to the
parameters γ1,2 and τ1,2. These will be detailed next in terms
of Cases A, B, and C, with reference to Figure 2.
Figure 2 is a copy of Figure 1 in terms of the stars and the

CWI (labeled as “Shock”), now used to emphasize the three
angular regimes. There is still the LOC with separation D.
Using the secondary as an example, three rays are labeled with
A2, B2, and C2. Similar rays could be drawn as originating
from the primary, which would then be labeled A1, B1, and
C1. Consequently,

N N N N 25A B C ( )á ñ = á ñ + á ñ + á ñ

and

N N N N . 26A B C ( )= + +~ ~ ~ ~
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3.1.1. Case A: Rays Not Intersecting the Colliding-wind Shock

For θ1> θ1,∞ or θ2> θ2,∞, the ray does not intersect the
shock or the opposite star but travels strictly through its own
wind. In this case the angle-averaged column densities are
trivial for an inverse-square law, with

*N n R
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2
1 , 27A1 1,0 1, 1,( ) ( )má ñ = + ¥

*N n R
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6
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3.1.2. Case B: Rays Intersecting the Shock but Not the Opposite Star

When a ray intersects the shock, there are three distinct
contributions to the relevant angle-averaged column densities:
a segment of the star’s own wind, the surface density at the
shock itself, and finally a segment through the wind of the
opposite star. The ray does not intercept the surface of the
opposite star, a case treated in the next section.

We denote these three contributions as I for the star’s own
wind, II for the shock, and III for the opposite wind, and we use
these as subscripts to accompany 1 and 2 to signify whether the
rays originate from the primary or the secondary star. Note that
the angular integrations are affected by the ray missing or
intercepting the opposite star.

The first segment is the column within the star’s own wind
from its surface to the shock. The columns are
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where
* * *R Dcos 11, 1, 1,

2( )m q= = - and

* * *R Dcos 12, 2, 2,
2( )m q= = - . In the integrand, the frac-

tion being subtracted represents the missing column in the
star’s own wind that would be present if not for the shock.
At the shock itself, the surface density contributes to the

column along the ray, due to the accumulation of material
entering the shock and outflowing along its surface. However,
the kinematics are not of relevance here; only the surface
density itself matters. What is relevant is the projection of the
surface with respect to the ray. The contribution to the column
depends on a direction cosine between the radial unit vector
and the local normal to the surface. We represent these as K1(μ)
and K2(μ). Omitting the subscripts, K for each star is given by
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The third region is in the wind of the opposite star, beyond
the shock. The integration in radius depends on whether the ray
strikes the star or not. The former case is treated in the next
section. Here we express the columns along the ray from the
shock that stretches to infinity with impact parameter ϖ.
Consider, for example, a ray originating from the secondary at
orientation θ2. The ray intercepts the shock at R2,S. Further, the
ray is in the wind of the primary. The impact parameter for that
ray is D sin1 2v q= .
For a spherical wind with inverse-square density, the

integration for the column along such a chord is analytic:

* *
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Figure 2. Similar to Figure 1, the two stars and colliding-wind shock are
illustrated. For calculation of the polarization properties, column density
moments involve three different ray categories, here identified as A2, B2, and
C2 in relation to the secondary star. The dotted line is the LOC for separation D
between the stars. The impact parameter ϖ1 is the same as for Figure 1. For
Case B2, the contributions associated with I (path segment), II (point), and III
(semi-bound line segment) are identified.
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where the subscripts 1 and 2 have been suppressed for this
general result. Take again the example of a ray from the
secondary. Then, z0 refers to the z-coordinate in the wind of the
primary corresponding to R1,S and ϖ1. Figure 3 shows the
location of z0 in relation to the system components. With θ0
defined with respect to the stellar axis, one can show that
θ0+ θ1+ θ2= π.

The next step is to integrate in μ. Again using the secondary
as an example, this integration will be of the form
θ0(μ2)dμ2/ϖ1∼ θ0(θ2)dθ2. The end result from the columns
for section III is

*
*

*

N n R
R

D

d

1

2

, 41

B III1, 2,0 2,
2,

1 2 1
1,

2,

( ) ( )ò p q q q

á ñ =

´ - -
q

q

¥

*
*

*

N n R
R

D

d

1

2

, 42

B III2, 1,0 1,
1,

1 2 2
2,

1,

( ) ( )ò p q q q

á ñ =

´ - -
q

q

¥

*
*

*

N n R
R

D

d

1

2

cos , 43

B III1, 2,0 2,
2,

1 2
2

1 1
1,

2,

˜

( ) ( )ò p q q q q

á ñ =

´ - -
q

q

¥

*
*

*

N n R

dcos , 44

B III
R

D2,
1

2 1,0 1,

1 2
2

2 2

1,

2,

1, ( ) ( )ò p q q q q

=

´ - -

~

q

q

¥

where * *R Dsin 1, 1,q = and * *R Dsin 2, 2,q = . When the ray
intercepts the opposite star, the lower limit to the integral in
Equation (40) is no longer 0 in dθ. Thus, the integrands for the
angular integrations above are different over the solid angle
extent of the opposite star.

For Case B, one adds the contributions from the different
segments to obtain

N N N N , 45B B I B II B III1 1, 1, 1, ( )á ñ = á ñ + á ñ + á ñ

N N N N , 46B B I B II B III2 2, 2, 2, ( )á ñ = á ñ + á ñ + á ñ

N N N N , 47B B I B II B III1 1, 1, 1,˜ ˜ ˜ ˜ ( )á ñ = á ñ + á ñ + á ñ

N N N N . 48B B I B II B III2 2, 2, 2,˜ ˜ ˜ ˜ ( )á ñ = á ñ + á ñ + á ñ

3.1.3. Case C: Rays That Intercept the Opposite Star

In the final scenario, case C, the ray intersects the opposite
star. This modifies the upper limit for the integral associated
with segment III. Segments I and II from case B are the same
for case C; only segment III differs. To be explicit, for segment
C,I for a star’s own wind up to the shock, one still uses
Equations (31)–(34) for B,I but with different limits to the
integrals. The lower limit is μ* for star 1 or 2 as appropriate,
and the upper limit is +1 for all the integrals. Similarly, the
contribution C,II at the shock uses Equations (36)–(39) for B,II
also with μ* (again, as appropriate for 1 or 2) for the lower
limit and +1 for the upper limit. It is only C,III that requires
reconsideration, as follows.
One way of expressing case C,III is that when ϖ< R*, or

alternatively when θ< θ*, for the primary or secondary as the
case may be, the radial integral along the chord is still given by
an angle, but this angle is not θ0. Instead, we introduce new
angles ò and δ, with

 2. 491 2 ( )q q d p+ + + =

Figure 4 shows the locations of ò and δ with respect to the
system. We have that * D Rsin cos1 2 1, 1v q= = , so that ò1
is defined in terms of θ2 for a ray originating from the

Figure 3. Similar to Figure 2, the two stars and colliding-wind shock are
illustrated. Cases A2, B2, and C2 in relation to the secondary star are indicated.
The z-coordinate is indicated in this version, with z0 labeled. For columns
evaluated along radials from the secondary, z is defined in the wind of the
primary, and vice versa.

Figure 4. Similar to Figure 1, but zoomed in to emphasize angular quantities
used for case C calculations. The primary star is shown at top, with its extent a
dashed curve. The shock is a dotted curve. For the secondary star at bottom,
only its center is indicated.

6

The Astrophysical Journal, 933:5 (15pp), 2022 July 1 Ignace et al.



secondary and intercepting the primary. When the case is
reversed, all the subscripts are reversed. This allows us to find δ
from the definition above, and the radial integration along the
ray segment is δ.

The columns now become

*
* *N n R

R

D
d

1

2
, 50C III1, 2,0 2,

2,

0
1 1

2,

( ) ( )ò d q qá ñ =
q

*
* *N n R

R

D
d

1

2
, 51C III2, 1,0 1,

1,

0
2 2

1,

( ) ( )ò d q qá ñ =
q

*
* *N n R

R

D
d

1

2
cos , 52C III1, 2,0 2,

2,

0
1

2
1 1

2,˜ ( ) ( )ò d q q qá ñ =
q

*
* *N n R

R

D
d

1

2
cos . 53C III2, 1,0 1,

1,

0
2

2
2 2

1,˜ ( ) ( )ò d q q qá ñ =
q

3.2. Special Case of a Planar Shock

For a binary consisting of two identical stars, α= β= 1, and
the resulting CWI is a planar shock located midway between
the stars at D/2 from either one. The Appendix details the
simplifications that result for this scenario, in particular an
analytic expression for RS,1= RS,2 in terms of μ, K1=K2, and
the surface density distribution.

We introduce the simplifying notation τ= τ1= τ2 and
γ= γ1= γ2 and display in Figure 5 how these properties vary
with separation between the stars. Note also that p1= p2≡ p0,
and because the two stars have L1= L2, p0 is a constant at all
wavelengths. For this figure we assume a stellar radius of 10R*,
wind speed 2000 km s−1, and mass-loss rates 10−5Me yr−1.
The polarization amplitude scales with M v for the case of
equal stars.

By our convention for Figure 1, both (1 – 3γ) and p0 are
negative, so they are shown in Figure 5 as multiplied by −1 for
convenience. Since many, but not all, terms associated with the
calculation scale as D−1, dotted magenta curves are shown with
that scaling for comparison. The outcome is that the
polarization amplitude p0 does indeed decline with binary
separation, but much less steeply than D−1; its behavior is
closer to linear for the chosen parameters and distances shown.

3.3. Parameter Study

We conducted a parameter study of relatively similar winds
for primary and secondary components. Results are displayed
in Figure 6, with model parameters identified in Table 1. The
figure has three panels with model parameters similarly
grouped in Table 1. The top is for variation of the ratio of
mass-loss rates (which turns out to be β because α is fixed), the
middle is for variation of the ratio of the wind terminal speeds
(which is α= v2/v1, but also β= α for fixed mass-loss rates),
and the bottom is for variation of radii. Note that for the top and
middle panels the far right side corresponds to equal winds and
a planar shock. For the bottom panel, β= 1 and the shock is
always planar.
In the top panel, the ratio of mass-loss rates varies from 0.65

up to 1.0. The four curves are for τ1 in red, τ2 in purple, 1 – 3γ1
in blue, and 1 – 3γ2 in green. While the primary wind has the
higher optical depth, the deviation of the envelope from

Figure 5. For the case of two equal stars and a planar shock, τ = τ1 = τ2 and
γ = γ1 = γ2. The figure shows the variations of these parameters along with
ptot as a function of binary separation, D/R*, where R* = R1 = R2. Example
lines of D−1 variation are shown for reference; the parameters determining the
colliding-wind polarization decline much more slowly than D−1. Note that
since ptot < 0, its negative is plotted for convenience.

Figure 6. Variation of optical depth τ1 (red) and τ2 (purple) and shape factors
(1 – 3γ1) (blue) and (1 – 3γ2) (green) for the parameter study with model
properties detailed in Table 1; filled points are optical depths, and open squares
are for the shape factors involving γ. The top panel shows how the polarization
varies with the ratio of mass-loss rates for the stars; the middle panel is for the
ratio of wind speeds, v2/v1 = α; the bottom panel is for the ratio of stellar radii.
For each panel, the eight points on the curves correspond to model calculations
for the eight parameter combinations shown in Table 1.
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spherical increases faster for the secondary (green) than the
primary (blue) as β declines. This is an important feature of the
discussion in Section 3.6, where small β values are emphasized
as being typical of WR+OB binary systems.

For the middle panel, β= α, yet the behavior is reversed.
Lowering the wind speed of the secondary actually elevates the
density scale for its wind.

Finally, for the bottom panel, β= α= 1 is fixed, and the
wind shock is planar. Despite the geometry being invariant, the
polarization depends on the radii of the two stars. This arises
because the polarization properties scale with column density,
which are generally inverse to radius. For example, with a
secondary smaller than the primary yet having the same mass-
loss rate and wind speed, the column density is higher in the
secondary wind, so τ2 (purple) increases with decreasing R2.

3.4. Chromatic Effects

To illustrate chromatic effects, we fixed a particular set of
binary parameters while allowing the temperatures of the two
stars to vary. The fixed properties lead to p1= 0.009 and
p2= 0.192. In this example, the binary components are
separated by 40 Re. The secondary is twice as large (10 Re)
as the primary (5 Re), the two winds have equal speeds
(2000 km s−1), and the mass-loss rate for the primary is
3.3× larger than the secondary (M M3 102

6 = ´ - yr−1).
Additionally, we took isin 1;= the effect of viewing
inclination is to scale the curves by isin2 at all wavelengths.

To illustrate changes in the spectropolarimetric continuum
shape, we treated the two stars as simple Planckian sources
with effective temperatures T1 and T2. We fixed the temper-
ature of the secondary at T2= 25,000 K. We varied the
temperature of the primary from 16,000 to 40,000 K in 3000 K
intervals, and we display the results in Figure 7, where
polarization is shown as positive. These variations may not be

consistent with actual combinations of parameters for real stars.
The point of the exercise is to highlight the fact that when the
stars have different SEDs, the continuum polarization is not
generally constant with wavelength, even though electron
scattering is gray. Only when the two stars have equal

Table 1
Stellar and Wind Properties for the Parameter Study Displayed in Figure 6

Panel R2,* R1,* M2 M1 v2 v1 D
(Re) (Re) (10−7 Me yr−1) (10−7 Me yr−1) (103 km s−1) (103 km s−1) (Re)

Top 10 10 65 100 2 2 100
Top 10 10 70 100 2 2 100
Top 10 10 75 100 2 2 100
Top 10 10 80 100 2 2 100
Top 10 10 85 100 2 2 100
Top 10 10 90 100 2 2 100
Top 10 10 95 100 2 2 100
Top 10 10 100 100 2 2 100
Middle 10 10 100 100 1.3 2 100
Middle 10 10 100 100 1.4 2 100
Middle 10 10 100 100 1.5 2 100
Middle 10 10 100 100 1.6 2 100
Middle 10 10 100 100 1.7 2 100
Middle 10 10 100 100 1.8 2 100
Middle 10 10 100 100 1.9 2 100
Middle 10 10 100 100 2.0 2 100
Bottom 3 10 100 100 2 2 100
Bottom 4 10 100 100 2 2 100
Bottom 5 10 100 100 2 2 100
Bottom 6 10 100 100 2 2 100
Bottom 7 10 100 100 2 2 100
Bottom 8 10 100 100 2 2 100
Bottom 9 10 100 100 2 2 100
Bottom 10 10 100 100 2 2 100

Figure 7. Variation of the polarized continuum with wavelength, here shown
from the FUV to 1 μm. The stars are treated as Planckian. The temperature of
the secondary is fixed at 25,000 K, and the temperature of the primary varies
from 16,000 to 40,000 K in 3000 K increments. The particulars of the stellar
and wind parameters for this illustrative case are described in Section 3.4. For
the selected parameters, the limiting polarizations p1 and p2 are indicated with
horizontal red and blue dotted lines, respectively.
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temperatures is the continuum polarization truly flat at all
wavelengths.

Note especially that the polarization signal changes strongly
from the far-UV (FUV) through the optical to 1 μm. For
massive stars with typical temperatures well in excess of
10,000 K, both the primary and secondary spectra are in the
Rayleigh–Jeans tail in the optical, and so the continuum will
always be flat or nearly flat in that wave band. It is only in the
UV that the polarization deviates significantly from constant.
For the selected parameters, the polarization actually drops
toward the UV when the primary is hotter (i.e., more
luminous), due to the fact that p1= p2. By contrast, when
the secondary is hotter (i.e., more luminous), the polarization
increases significantly. Ultimately, for any combination of
binary parameters, when the more luminous star in the UV also
has the higher polarimetric component (i.e., p1 or p2), the
polarization is enhanced in the UV relative to the optical; when
the more luminous UV source has the lower polarimetric
component, the polarization will drop toward the UV.

The behavior in Figure 7 is included in the formalism
of BME but is specific to binaries with two hot stars. Other
categories of binaries can certainly show rather different
behavior. For example, consider symbiotic stars, which involve
a hot white dwarf and a cool giant star (e.g., Muerset et al.
1991). In such a case, the polarigenic opacity may be more
complex than simple electron scattering (i.e., not simply gray
opacity) and may not involve a colliding wind but perhaps
instead accretion onto a disk. Nonetheless, if the scattering
opacity is dominated by Thomson scattering, the combination
of an optically bright component with a UV-bright component
would yield a wavelength-dependent polarization that would
reveal a telltale gradual variation from the FUV to the IR.

In any situation where intrinsic polarization from Thomson
scattering is observable over a wide spectral domain (separable
from interstellar polarization by its binary variation in the time
domain, or line effects in the stellar winds, or modeling the
wavelength dependence of the interstellar polarization), these
results show that the residual wavelength dependence of the
intrinsic polarization offers a unique and important diagnostic.
Via the following analysis, we obtain complementary leverage
in our understanding of both the different polarizations
produced by the two stellar light sources and the spectral
shape of the continua of both stars. This stems from the
grayness of Thomson scattering, which implies that the sole
source of wavelength dependence in the intrinsic polarization
derives from the contrasting brightnesses of the two stars.
Hence, if L21(λ) is the wavelength-dependent ratio of the
secondary brightness to the primary, then the total polarization
q(λ) presents as a brightness-weighted average of the
wavelength-independent polarization induced by the primary
light source, q1, and that induced by the secondary, q2,
according to

q
q q L

L1
. 541 2 21

21
( )

( )
( )

( )l
l

l
=

+
+

If the spectral shape contrast L21(λ) is regarded as known by
the stellar spectral types, then observing q at two different
wavelengths that sample suitably different values of L21(λ)
allows the above equation to separate the q1 and q2
contributions. This separation of the polarizations caused by
the two different light sources allows a unique probe of the
geometry of the wind collision zone.

Furthermore, to the extent that q1 and q2 are expected to be
wavelength independent, a self-consistency check on the
assumed L21(λ) becomes possible by inverting the above
equation into
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To whatever extent this inferred brightness contrast deviates
from its assumed value, we have the opportunity to update it to
recover consistency with the polarized spectrum q(λ). For
example, a (q1, q2) pair can be inferred from wavelength pairs
generated by fixing a wavelength at the UV end of the observed
q(λ) and sweeping the second wavelength over the full
observed range. If the assumed L21(λ) contains errors, that
would generate a curve in (q1, q2) space rather than a single
consistent point. Then, by fixing the second wavelength at its
longest value and sweeping the first wavelength back toward
the UV, the curve is closed back to its starting (q1, q2) point.
The resulting closed curve then gives an estimate of the
preferred (q1, q2) value near the center of this curve, and that
preferred (q1, q2) pair then allows L21(λ) to be self-consistently
updated via the above equation. The wavelength independence
of the intrinsic polarization contributions q1 and q2, assuming
that they are dominated by Thomson scattering in the colliding
winds, then provides an improved estimate of L21(λ) and an
independent check of our understanding of binary spectral
types. In addition, when both q1 and q2 are appreciable,
independent knowledge of both allows an important probe of
the colliding-wind geometry, since the two stars illuminate that
geometry differently.
On the other hand, in situations where one contribution

dominates, say, q1, as may be the case in WR/O binaries
discussed below, the wavelength dependence of the intrinsic q
(λ) directly inherits the wavelength dependence of L21(λ) via
q q L11 21( ) ( ( ))l l= + . Hence, in this case we have an even
more direct handle on the correct brightness contrast between
the two stars over the full wavelength regime of the observed
polarization. The wider that wavelength regime accessed by our
technology, the more powerful is this constraint, underscoring
the value of extending our polarization capabilities into the
FUV range for understanding binaries containing hot stars.

3.5. Orbital Effects

The polarimetric properties of the colliding-wind system
depend on the binary separation, D. When the orbit is circular (
i.e., D is constant), the values p1 and p2 are constant as well.
For an eccentric orbit with eccentricity e and semimajor axis a,
the binary separation varies as

D a
e

e

1

1 cos
, 56

2
( ) ( )j

j
=

-
+

where j is the orbital azimuth, defined so that j= 0
corresponds to periastron. Thus, p1 and p2 are functions of
orbital phase through the variation of D(j).
The polarization also varies throughout the orbital motion

because the inclination, i, of the LOC between the stars
changes relative to the observer’s line of sight. Let iorb be the
viewing inclination of the orbital plane, so that iorb= 0° is a
top-down view of the orbit and iorb= 90° is an edge-on view.
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Despite a fixed orientation of the orbital plane, iorb, our
construction for calculating polarization depends on the system
axis defined by the LOC between the stars, and this rotates in
the fixed orbital plane to produce variability.

The time-variable polarization is given by

q p D i t tsin cos 2 , 570
2( ) ( ) ( ) ( )y=

u p D i t tsin sin 2 , 580
2( ) ( ) ( ) ( )y=

where D=D(t) for eccentric orbits, t depends on orbital phase
through the azimuth (j of the LOC), and the polarization
position angle ψ relates to the orbital azimuth and the fixed
viewing inclination of the orbital plane via

itan cos tan . 59orb ( )y j= -

The inclination, i, for the LOC to the viewer’s line of sight is
given by

i icos sin cos . 60orb ( )j=

In order to understand the relevance of CWIs for the
polarization level, we introduce the idea of “noninteracting
winds” (NIWs). The concept of an NIW provides a reference
against which to compare the physical case of CWI polarization
arising from the shock. What CWI ultimately represents is a
redistribution of matter from the two stellar winds via the wind
collision. There is polarization without a CWI because each of
the two stars shines on the wind of the other, even if both winds
remain spherical. The CWI represents another contribution by
breaking spherical symmetry. For wide binary separations
(D? R*), we expect the two cases to become proportional,
since the column depths of the various regions will scale as
D−1 (see the Appendix).

We thus define an NIW simply as a superposition of the two
separate binary winds as if no collision takes place and neither
wind impacts the opposite star. This means that each wind is
spherically symmetric about its own star, which contributes no
polarization. Instead, polarization arises only from scattering of
starlight from the secondary by the wind of the primary, and
vice versa. We do, however, account for occultation of the
wind behind each respective star in calculating the polarization.

Our results are shown in Figure 8, with the polarization
amplitude in percent for the NIW along the horizontal and for
the CWI along the vertical. For this example we assume two
equal winds and thus a planar shock for the CWI case. The
points represent stellar separations of D= 25−115 Re in 5 Re
increments, with closer and farther separations labeled for the
sequence. The values are for a face-on binary, oriented so that
u= 0 and q< 0, and p= |q| for this plot. The dotted diagonal
indicates where the polarizations would be equal; the solid
green line is the asymptotic relation derived in the Appendix.

For the CWI case, we fitted a linear regression to p0(D) in the
case of a binary with two identical stars (i.e., planar CWI
shock) to obtain p0= 1.328− 0.0111D, normalized so that
p0= 1% at D= 30 Re. For the NIWs, we used the same stellar
wind and star properties as for the wind collision case. The
polarization from a CWI is larger than for an NIW, often by a
significant factor. At larger separations, the trend is for the
points to approach the diagonal line, signifying that the wind
collision is becoming irrelevant.

We recognize that we are using a model for a bow shock
with radiative cooling and that at large separations the cooling
will be adiabatic. Even so, with identical stars and winds, the

shock will still be planar, and the qualitative conclusion
remains valid even if the quantitative values are inaccurate.
Figure 9 displays a suite of polarimetric variations for CWIs

with different values of e and iorb. We show model variable
polarization curves for inclinations and eccentricities, as
labeled. The top panel displays the resulting q− u loops; the
bottom panel shows polarized light curves as a function of
orbital phase. At iorb= 90° (not shown), all curves in Figure 9
would become horizontal lines with only q variation but no u
variation. Note also that p q utot

2 2= + .

3.6. Special Case of WR+OB Binaries

Among the more extreme massive-star colliding-wind
systems (β= 1) are the ones involving an evolved WR star
with an OB companion. While the wind speeds of the two stars
can be comparable in this case, the mass-loss rate of the
WRwind will be one to several orders of magnitude larger than
for the OB component. As a result, the CWI shock is
significantly displaced from the WR star and considerably
closer to the OB star; it also significantly confines the spatial
scope of the OB wind. On the other hand, the WR and OB
components may or may not have comparable luminosities. In
terms of a UV study, the situation can be ideal for extracting
information about the orbital parameters and properties of the
CWI region from both temporal and chromatic effects.
The scenario of β= 1 offers some simplifications for the

problem of the polarization. Foremost is that the “primary”
(defined as above as the WRwind with higher mass loss, not
necessarily the more luminous component) is relatively far
from the CWI shock. Consequently, one expects the angle-
averaged column densities over the WRwind component to
approach zero. The associated column densities for the

Figure 8. Comparison of the percent polarization from a face-on binary system
with colliding winds against that from a binary with NIWs (Section 3.5). The
points represent separations of 25−115 Re in 5 Re increments, with monotonic
sequence as indicated by “Closer” and “Farther.” Wind collision significantly
increases the level of polarization of colliding winds over NIWs, but less so as
the binary separation increases to large values. The green line represents the
analytic derivation from the Appendix for wide binary separations.
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secondary wind evaluated at the primary will be small. It may
seem that p1= pWR would be dominated by the CWI shock, but
this may not mean that the WR component dominates the
polarization, since the CWI is relatively far removed and thus
only acts as a perturbation on the otherwise spherical wind of
the WR star. The result for the O star, p2= pO, is less clear. Its
wind has lower column density than the WR, but the distorted
envelope is closer to the O star at low β. In addition, the CWI
wraps around the O star, leading to polarimetric cancellation.
We use the Cantó et al. (1996) formalism to evaluate the
possibilities.

To illustrate some of these features, Figure 10 shows a
density contour plot in the orbital plane for a WR+OB binary.
The WR star is the smaller star at right; the secondary is taken
to be an O star. The dotted curves are density contours at
approximately 0.5 dex intervals, with two labeled for
illustration, normalized to unit density at the surface of the
WR star.

To explore the polarization expected from WR+OB
colliding winds, we adopted the following stellar and orbital
parameters. For the WR as primary and an O star as secondary,
we assumed M1=M2= 30 Me, R1= Re, R2= 12 Re, and
v1= v2 so that α= 1, and we considered orbital scenarios
ranging from a short-period orbit of PS= 7 days to a medium-
period orbit of PM= 30 days (a typical range for colliding
winds in circular orbits; see, e.g., Fahed & Moffat 2012;
Zhekov 2012). Given the masses, these two orbits correspond
to semimajor axes of aS= 60 Re and aM= 160 Re.

As a fiducial, we also adopted M M101 2 = so that
β= 0.1. At this value of β, the relative standoff distance for the
bow shock is RS,2/D= 0.24, which is a fixed ratio regardless of
binary eccentricity, given that we assumed that the winds are at
terminal speed. For the short-period binary, we assumed a
circular orbit, hence RS,2= 14.4 Re. For a typical O star wind,
this would be well within the zone of wind acceleration, where

effects such as radiative braking could be significant (as seen in
the WR+O binary V444 Cyg; Lomax et al. 2015). For the sake
of illustration, we ignored such effects.
We calculated pWR and pO for three scenarios, with a

summary of results displayed in Figure 11. The first case is

Figure 9. Top: example q − u loops for a binary consisting of identical stars, for which p1 = p2 ≡ p0. Eccentricities e and inclinations iorb are indicated for line type
and color. There are two loops per orbit, but with eccentric orbits, the pair separate into different sizes except for e = 0. Bottom: same six models as in the top panel,
but now displayed as light curves in q (red), u (blue), and total polarization ptot (black). Periastron passage is at phase 0.0, and apastron at phase 0.5. The line types still
relate to e as in the top panel. The case iorb = 45° has the higher polarization in ptot and larger amplitude variation in q and u.

Figure 10. Top-down view of a WR+OB binary with density contours
superposed. The WR star is the smaller component at right; at left is the
OB star. The magenta curve highlights the CWI shock. Two representative
contours indicate relative densities, normalized to unity at the surface of the
WR star. The contours are displayed in roughly 0.5 dex intervals. In this
example, the binary separation is 60 Re, the OB star has a radius of 12 Re, and
the WR star has a radius of 1 Re.
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β= 0.1 with orbital separation ranging from 60 to 160 Re for
“slow” winds of 1000 km s−1 for both stars. The second case is
for fast winds at 3000 km s−1, with all other parameters fixed.
The third scenario corresponds to an intermediate wind speed
of 2000 km s−1 at a fixed separation of D= 160 Re, but with β
ranging between 1/15 and 1/5.

The top panel of Figure 11 summarizes the comparison
between slow and fast winds. Note that polarization is negative
for our convention. In this panel, the red lines represent pO and
the blue lines represent pWR. The solid circles are for the slow-
wind cases, and the open circles are for the fast-wind cases. The
results are plotted against D−1, normalized as indicated. The
net result is that the polarization is overall larger for a slower
wind, since the density is larger. We find that τWR is roughly
constant as D changes, indicating that its value is dominated by
the relatively extended spherical wind of the WR star, since the
CWI is far removed. Because the CWI is relatively farther from
the WR star with increasing D, (1 – 3γWR) becomes smaller
with D. Consequently, pWR decreases with increasing D. The
behavior for the O star is that the polarization is dominated by
the CWI. The surface density of the CWI shock for the Cantó
et al. (1996) solution scales as D−1 overall. This is evidenced
by the fact that both blue curves appear quite linear in the plot.

For the bottom panel of Figure 11, we display the results
differently, as β is allowed to vary between 1/15 and 1/5; with
smaller β, the CWI is closer to the O star component. Consider
first the dashed and dotted curves in black, for τWR and τO,
respectively. As β becomes smaller, τWR is larger, approaching
the limit of the strictly spherical wind value. The value of τO is
much lower and is plotted as scaled up by 10 times.

The blue curve in the bottom panel represents the ratio of
pWR/pO. Its behavior indicates that from geometrical con-
siderations the contribution to the polarization from the O star
wind is much greater than for the WRwind, even more so as β
becomes smaller. Even though the WRwind has a much higher
optical depth scale, the distortion of the scattering envelope
from spherical is quite minor from the perspective of the
WR star. This is made clear by the red curve, where “shape” is
the ratio (1 – 3γWR)/(1 – 3γO) and scaled up by 100 times.
From the perspective of the O component, the scattering
envelope is highly distorted.
In combination, these results suggest that at wavelengths

where the O star is more luminous, the polarization will overall
be larger (biased toward pO) than at wavelengths where the
WR star is more luminous (polarization biased toward pWR).
Our treatment does have limitations, the most important being
that we ignore the wind acceleration region and that we treat
the WRwind as optically thin to electron scattering. Radiative
transfer models have shown that multiple scattering in bow
shock structures can increase the degree of polarization, as well
as changing the polarization behavior with inclination angle
(Shrestha et al. 2018). However, in this case it is clear that the
WRwind is already a minor contributor to the polarization
when β= 1, and a more full treatment of multiple scattering at
the inner WRwind is not expected to impact that conclusion.
For the rare case of WR–WR binaries, multiple scattering could
be significant, and future modeling will need to take it into
consideration. Inclusion of the wind acceleration region and
associated density distribution, along with radiative inhibition,
could certainly change the detailed outcomes of the models
presented here. Additionally, WR+O binaries can generally be
expected to show chromatic behavior over a broader wave band
than indicated in Section 3.4. Free–free opacity is important in
the winds of WR stars at all wavelengths; hence, the WR stellar
spectrum is never Rayleigh–Taylor even though the OB SED
can be (e.g., Hillier 1987). Nonetheless, the present treatment
indicates that pO? pWR, another qualitative result that is
unlikely to change despite our more simplistic assumptions.

3.7. Comment on the Overall Scale of the Polarization

As mentioned above for identical stars, the polarization is
proportional to M v . This extends more generally to unequal
stars, where the two different mass-loss rates receive different
weightings, as a change in both mass-loss rates by any given
factor produces a change in polarization by that same factor.
This implies that a good model of the polarizing geometry
allows the scale of the observed polarization to yield a
constraint on the stellar mass-loss rates that is independent, and
hence complementary, of all other methods for such determina-
tions. Furthermore, to the extent that the polarization is due to
optically thin scattering, the connection between polarization
and mass-loss rate is independent of local clumping in the
winds. Hence, contrasting the mass-loss rates inferred from the
overall scale of the polarization to those obtained from
conventional methods that are sensitive to clumping (often
termed “density-squared”-type mass-loss rate diagnostics such
as radio free–free emission or Hα emission) provides an
independent measure of the degree of clumping. Constraining
wind clumping is an important goal for understanding the basic
dynamics of radiatively driven winds.

Figure 11. Model results for a WR+O star binary (Section 3.6). The top panel
shows results for a fixed value of β = 0.1 for the slow and fast wind cases,
plotted against binary separation as D−1. Blue lines represent pO, and red lines
represent pWR; solid circles are for slow models and open circles for fast wind
models. The bottom panel shows results for D = 160 Re with β varying
between 1/15 and 1/5. Black curves represent the WR and O optical depths, as
labeled. The blue line in this panel represents the ratio of pWR/pO. The red line
represents the “shape,” defined as the ratio (1 – 3γO)/(1 – 3γWR) and scaled up
by 100 times.
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4. Summary

This study has made use of the theory of BME for optically
thin electron scattering polarization for a massive colliding-
wind binary. The main novelty has been to explore the analytic
solution for the CWI shock structure in terms of shape and
density from Cantó et al. (1996), who assume radiative cooling
to derive a thin-shell result. We assume axisymmetry
throughout and explore polarization characteristics and con-
tributions from the two separate components. Our results range
from the limiting case of equal star scenarios with β= 1 and a
planar shock interface (more appropriate to O+O binaries) to
small β scenarios (more appropriate to WR+O binaries).
Overall, there are numerous free parameters for the model,

from the binary separation to the wind properties. Even when
most star and wind properties are held fixed, raising and
lowering the terminal wind speeds at fixed ratio α still affects
the polarization characteristics, since slower winds are denser
and faster ones are less dense.

Our three main results are as follows:

1. From a detailed consideration of the contributions to the
column density moments, there are various terms that
scale with D−1 for the binary separation. However, for
the equal wind scenario, the scale of polarization declines
far less steeply than D−1, so that even relatively wide
binaries may display a significant polarimetric amplitude,
with a telltale orbitally varying phase angle. (See
Figure 5.)

2. Chromatic effects can become quite significant toward
UV wavelengths. When dealing with massive stars, all of
which are “hot” at> 10,000 K, the optical emission is
mostly or even very closely following the Rayleigh–Jeans
law. The consequence is that for optical and longer
wavelengths the continuum polarization is flat. That
polarization can still vary with orbital phase, but there are
no chromatic effects. However, at UV wavelengths for
stars with different temperatures, the continuum polariza-
tion will generally deviate from flat (unless one star
dominates the luminosity at all wavelengths). The
wavelength-dependent polarization provides additional
diagnostic leverage for extracting information about the
winds and CWI shock (Figure 7). This motivates UV
polarimetric observations of colliding-wind binaries, such
as would be provided by the proposed Polstar satellite
(Scowen et al. 2021).

3. Orbital effects produce distinguishable shapes in the q–u
plane. The shapes are mainly elliptical, as pointed out
by BME already. Importantly, we used the context of
orbital effects to explore the influence of the CWI shock,
and its boundary separating the two stellar winds, on the
amplitude of polarization. For this purpose we introduced
the NIW construct. This assumes an (unphysical) super-
position of the respective two winds, with polarization
arising solely from each star shining on the spherical
wind of the other. In this way the scenario for NIWs and
CWIs can be compared on the scale of the same mass
fluxes. For the case of equal winds and a planar shock,
inclusion of the CWI increases the polarization by factors
of several, until the separation of the two stars becomes
large compared to the stellar radii. As expected, the CWI
and NIW polarizations become equal, since the CWI is

far removed from either star and thus adds only a small
column density compared to the spherical winds.

4. When β= 1, as, for example, in the case of WR+OB
binaries, we find the interesting result that the polarization
for the OB component is much higher than for the
WR component. Whether the observed polarization is
dominated by the WR or the OB star will depend on the
weighting by the specific luminosities. However, it is
clear that at wavelengths where the WR star is more
luminous, the polarization will be lower as set by pWR,
and where it is less luminous, the polarization will be
higher as set by pO (or pB, as the case may be; Figure 11.)

In closing, it is worth noting that the individual stars in a
massive colliding-wind system may themselves be sources of
polarization, which may be steady or variable. For example,
around 10% of massive stars are known to be magnetic (Wade
et al. 2016), and it is possible (although very rare) for massive-
star binaries to have a component that possesses a significant
magnetic field (e.g., Plaskett’s star; Grunhut et al. 2013).
Munoz et al. (2022) have recently explored the effects of
variable linear polarization from electron scattering for rotating
magnetospheres. While this could complicate efforts to isolate
the variable polarization from the CWI, the polarization from
individual stars will be modulated on a rotation period, whereas
the colliding-wind polarization is modulated on the orbital
period. Unless the binaries are very close, these periods are
unlikely to be the same.
WR stars in particular are known to be sources of

polarization. However, typical polarization behavior from
individual WR stars appears stochastic (e.g., St.-Louis et al.
1987; Drissen et al. 1987). The behavior is likely associated
with the wind flow time, R*/v∞, which is much shorter than
binary orbital periods. In addition to being stochastic in nature,
the effect could be averaged out to emphasize the smoother
variable polarization from the CWI on the longer period of the
orbit. In addition to variable polarization, some WR stars may
have long-term stable polarizations (e.g., Harries et al. 1998).
Abdellaoui et al. (2022) have explored the polarization that
could result for axisymmetric rotationally distorted winds of
WR stars. However, such polarization would be constant. The
effect would be to contribute to a constant offset to the system
polarization, similar to the effect of interstellar polarization.
Variable polarization would arise entirely from the CWI over
the timescale of the orbital period.
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Appendix
Special Case of α= β= 1

When β= 1 and α= 1, with stars of identical stellar and
wind parameters, the CWI is planar, and the solution for the
shock properties simplifies considerably. First, we introduce
θ= θ1= θ2 as the angle from either star to a point on the planar
shock. The distance of the shock from either star becomes

R D 2 . A1S ( )m=

The projection factors become K= K1= K2= μ. Simplification
of the surface density was noted already in Equation (16).
Contributions to the polarization from the CWI component
depend on the following integrals (see Equations (36)–(39)):
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Using these two results, we can analytically derive the
polarization for the scenario of two equal stars that are widely
separated, with D? R*. At wide separation we can ignore the
finite size of each star (i.e., θ*→ 0), which amounts to not
having to consider case C (see Section 3.1.3). Additionally, the
region of case A for each star (see Section 3.1.1) is
hemispherical and consequently makes no contribution to the
net polarization. All that remains are contributions I, II, and III
for case B (see Section 3.1.2), where the limits of the angular
integrations are 0 to π/2 in θ or +1 to 0 in μ. The total
polarization becomes
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where each number in the square brackets of Equation (A6)
corresponds to each term in the preceding line of
Equation (A5). Note that if grouped by region, each of I, II,
and III would separately yield net negative polarizations.

For comparison the polarization for the NIW case introduced
in Section 3.5 can also be evaluated analytically for D? R*.
The two relevant angle-averaged column densities are
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For an NIW with wide binary separation, the polarization is
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The ratio of the coefficients from Equations (A7) and (A10) is
1.8, which is the solid green line appearing in Figure 8.
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