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ABSTRACT
Structures with adaptive capabilities offer many potentials

to achieve future needs in efficiency, reliability, and intelligence.
To this end, bistable CFRP (Carbon Fibre Reinforced Polymers)
composites with asymmetric fiber layout are a promising concept
that has shown shape morphing capabilities that adapt to the
changes in the environment such as external forces and moments.
This adaptability opens them to endless application potentials,
ranging from small micro-switches to large airfoil sections in air-
plane wings or wind turbine blades. To harness this potential, it
is essential to predict these composites’ physical shapes and be-
havior accurately. To this end, Hyer and Dano devised the first
analytical model based on the concepts of Classical Lamination
Theory, and this model has become the cornerstone of almost
all subsequent studies. However, this theory uses Kirchoff’s the-
ory of thin plates that are limited by several assumptions. As a
result, Hyer’s theory can predict the overall shape of these lami-
nates but lacks accuracy. A reason for this model’s underperfor-
mance is that it ignores the inter-laminar stresses and strains, but
such stresses/strains play a vital role in the balance of the over-
all stress field and are found significantly higher near the free
edges. To overcome these fundamental limitations, we propose a
new analytical approach by combining the Reissner-Mindlin the-
ory with concepts from the Classical Lamination Theory. This
new model introduces in-plane rotations as two additional de-
grees of freedom. Thus, it has five independent variables com-
pared to only three in Hyer and Dano’s model and its deriva-
tives. Hence, we have a more complex but more accurate model.
This paper outlines our new analytical approach by 1) introduc-
ing these two additional degrees of freedom; 2) selecting appro-
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priate polynomial approximations; 3) formulating inter-laminar
stresses that are functions of these added rotations; and 4) in-
corporating these inter-laminar stresses in the potential energy
equation. By comparing this model’s prediction with the finite
element simulation results, we found the new model slightly un-
der predicts the laminate deformation, but the overall accuracy
is promising, as evidenced by high R-squared correlation.

Nomenclature
at Transformed Vector of thermal coefficients
e0 Strain Vector
k Curvature Vector
P Potential Energy
qx,qy Rotations in x-dir and y-dir
ci Unknown constants to be determined
Lx,Ly Length of the laminate in x-dir and y-dir
Mt Thermal Moment vector
Nt Thermal Force vector
S and Q Compliance and Stiffness Matrix respectively
T Stiffness Transformation matrix for Material to Spatial

coordinates
U0,V0,W0 Displacements in x-dir, y-dir and z-dir.
x,y,z Spatial Coordinates
CFRP Carbon Fibre Reinforced Polymer
CLT Classical Lamination theory
FEA Finite Element Analysis

1 INTRODUCTION
In this ever-changing age of technology, the need for dy-

namic structures as the foundation for dexterous and efficient
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systems is rapidly increasing. As the traditional structures (e.g.,
fixed solar panels, rigid airplane wing panels) are becoming in-
efficient for future needs, adaptive structures offer many excit-
ing prospects, including bio-inspired structures [1–4], energy
harvesting structures [5, 6], and mechano-electronic hybrid sys-
tems [7–9]. One of the materials that offer such capabilities is
CFRPs, which can achieve adaptability using the phenomenon
of bistability from unsymmetric ply layup.

Bistability, in general, is a phenomenon in which a sys-
tem has two distinct stable equilibriums without external con-
straints or aids. For example, the simplest two-ply bistable lam-
inate could be made by adding a 90�layer of unidirectional fiber
prepreg over a 0�layer. Once cured, the laminate produces a
cylindrical shape, and it can switch to another cylindrical shape
anti-symmetric to the first one by any external force. The ap-
plications of CFRP bistable composites are an ongoing research
area with promising initial attempts [10–15].

To understand the full functionality of the bistable CFRP, it
is essential to formulate an analytical model to predict the be-
havior of these laminates. To this end, we have observed vari-
ous research efforts, and a prominent and widely followed one
is the classical lamination theory in combination with Kirchoff’s
plate theory. Hyer and Dano first developed this model in their
seminal paper [16], where they approximated the shapes of the
laminates using constant curvatures formulation. The polynomi-
als used for approximation of strain definition and out-of-plane
deformation field had redundant terms whose contributions were
minimal. This formulation was improved later in their following
paper, predicting the snap-through of the unsymmetrical lami-
nate [17]. In this paper, they approximated the strain fields to be
of the second-order polynomials and the out-of-plane displace-
ment consisting only of second-order terms. Due to this, the
curvatures, which are the second-order differentials of the out-
of-plane displacements, are constants. This formulation led to
under-prediction of the curvatures and hence, displacements.

Mattioni et al. in their paper [18], used an extension of
Hyer et al.’s model [17] for the stable state shape predictions of
two-patch [0�/0�]� [90�/0�] CFRP bistable laminates. To im-
prove the degree of polynomial estimation for the out-of-plane
displacement field, they calculate the curvatures using quadratic
terms. Their formulation displayed a good agreement with the
FEA results for the selected two-patch CFRP laminate. Many
other researchers exploited the analytical model proposed by
Hyer et al. For example, Algmuni et al. [19] compared the perfor-
mance of their model for four-patch laminates with finite element
simulations. Other mention-worthy researches [12, 20].

In the following sections of this paper, we discuss the lim-
itations of the current analytical model developed by Hyer and
Dano; then we propose a new theory in combination with the
existing classical lamination theory; and finally, the results from
the new analytical model are compared with the finite element
simulations, showing high accuracy.

2 Modelling
We observe that there are certain limitations of the Classical

Lamination theory in predicting the deformation characteristics
of the laminate. The following sections discuss these limitations
and the use of Reissner-Mindlin theory in formulating a new an-
alytical model.

2.1 Limitations of CLT and New Approach
All the current analytical models for predicting the behav-

iors of bistable laminates are derived from the CLT. It is of our
critical concern to understand its principles and underlying as-
sumptions. CLT bases on Kirchoff’s plate theory, which has
several assumptions directly affecting the out-of-plane displace-
ments calculations and hence, the laminate shape. The first as-
sumption states that the cross-section area normal to the mid-
plane of the laminate remains straight even after deformation.
This could be understood from figure 1, the line AD is perpendic-
ular to the mid-plane initially and remains flat after deformation
(normal direction given by the red arrow). By this assumption,
through-the-thickness deformation is ignored.

FIGURE 1: Transverse section of the Kirchoff-plate [21]. The red
arrow depicts the normal to the mid-plane.

The second assumption states that the slope of the laminate’s
mid-plane is equal to the rotation angle of the corresponding
cross-section area. As observed in the figure, the angle b rep-
resents the rotation of the mid-plane axis. Following the above
assumption, the cross-section also has a slope equal to b with
respect to the vertical reference axis. Therefore, this angle is
typically considered small — the in-plane deformations due to
this rotation in different laminate layers follow the equation z⇤b ,
where z is the distance between this layer and the mid-plane. This
assumption could underestimate laminate deformation, making it
appear stiffer than the finite element simulations and experiment
results. Also, it is assumed that the laminate thickness does not
vary after deformation.

Moreover, due to the above assumptions, the inter-laminar
stresses, i.e., stresses in-between the laminate plies, are ne-
glected. Such simplification creates an inconsistency in the stress
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field definition. Especially, the stresses appear imbalanced near
the free edges of the laminate. Referring to the figure 2, the cut
section of the upper ply of the laminate has a free edge surface
A�B�C�D. Ideally, the free edges should have zero stress on
their surface. However, under the assumptions of CLT, the sur-
face on the x-z plane of the cut section has a shear stress txy from
the strain definition. To balance it, the other two adjacent sur-
faces and the surface A�B�C�D must also have a stress txy.
This indeed violates the free edge condition (i.e., stresses on the
surface should be zero due to the absence of external loads). Due
to this shear stress on the free edge surface, under-estimation of
deflections and over-estimation of frequencies and buckling load
have been observed [21].

FIGURE 2: The effect of inter-laminar stresses. The red lines
emphasize the plane on which inter-laminar stress txz acts. [21]

The neglection of inter-laminate stress in the classical lami-
nation theory also makes it incapable of explaining the free-edge
delamination failure (aka. separation of fiber plies in the lam-
inate). In reality, inter-laminate stress txz acting on the lower
surface of the ply (highlighted by the red lines in Figure 2) is
responsible for balancing the stress field at the free edge. This
inter-laminate stress can become very high near the edges to
ensure moment equilibrium about the out-of-plane axis (z-axis
here) [21]. These issues give rise to our main objective of ad-
dressing these issues by using a more elaborate theory.

Here, We propose to adopt the Reissner-Mindlin theory,
which allows the in-plane stress txy near the free edges to be
balanced by the inter-laminar stresses so that free edge surfaces
have no stress acting on them. Reissner-Mindlin theory partially
addresses the limitations of the CLT by relaxing the second as-
sumption of Kirchoff’s theory. This theory introduces two addi-
tional independent parameters, rotation about the y-axis qx and
rotation about the x-axis qy, besides the transverse deflection W0.
This could be understood from the Figure 3; the cross-section
A�B (shown in red-line in the upper part of the figure) is ini-
tially straight and normal to the mid-plane of the laminate. After
deformation, A0 �B0 is still straight, but no longer normal to the

mid-plane. Therefore, the rotation about the mid-plane is addi-
tional degrees of freedom which should provide a better approx-
imation of the laminate deformation.

FIGURE 3: Transverse section of the Reissner-Mindlin plate. The
normal orientation is shown by the arrow and cross-section by the
red-line.

2.2 Formulation based on Reissner-Mindlin Theory
Most of the analytical formulation of the proposed new

model is similar to CLT, except for two polynomial approxima-
tions for the additional degrees of freedom (rotations qx and qy)
and the two inter-laminar stresses. As a result, the strain and
curvature definitions are different from the CLT.

From CLT, the total potential energy of the laminate is a
function of the total stiffness of all the plies, the mid-plane strains
and curvatures, and the thermal loads and moments. Mathemati-
cally, the energy is expressed as follows,

P =
Z Lx/2

�Lx/2

Z Ly/2

�Ly/2

1
2
⇥
e0 k

⇤A B
B D

�
e0
k

�

�
⇥
e0 k

⇤Nt
Mt

�
dydx

. (1)

In the above equation, the mid-plane strains e0 and curva-
tures k definitions are adopted from Reissner-Mindlin theory and
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modified for our model as,

e0 =

2

66664

ex0
ey0
gyz0
gxz0
gxy0

3

77775
, k =

2

66664

kx
ky
kyz
kxz
kxy

3

77775
=

2

666664

� ∂qx
∂x

� ∂qy
∂y
0
0

�( ∂qx
∂y +

∂qy
∂x )

3

777775
. (2)

The various terms in the overall stiffness matrix [21] could
be calculated using summations as follows,

Ai j =
k=n

Â
k=1

Q(k)
i j (zk � zk�1),

Bi j =
1
2

k=n

Â
k=1

Q(k)
i j (z

2
k � z2

k�1),

Di j =
1
3

k=n

Â
k=1

Q(k)
i j (z

3
k � z3

k�1),

(3)

where, Nt is the thermal forces vector induced due to the temper-
ature difference during the laminate curing process, and Mt is a
similar thermal moments vector so that

Nt =
k=n

Â
k=1

Q(k)
i j at—T (zk � zk�1),

Mt =
1
2

k=n

Â
k=1

Q(k)
i j at—T (z2

k � z2
k�1).

(4)

Here, ‘n’ refers to the number of plies in the laminate. Also,
the global stiffness matrix Qi j is calculated from the compliance
matrix S, which is guided by the orthotropic properties of the
fiber ply material. This compliance matrix is defined using the
constituent material properties as below,

S =

2

666664

1
E1

�n12
E1

0 0 0
�n12

E1
1

E2
0 0 0

0 0 1
G23

0 0
0 0 0 1

G13
0

0 0 0 0 1
G12

3

777775
(5)

The relation between the compliance matrix and stiffness
matrix is given below. Also, the above compliance matrix is de-
fined in the material coordinate system. The respective values
of the material properties are listed in Table 1 and are referred
from our previous studies [22]. The transformation of stiffness

TABLE 1: Constituent material properties of Grafil TR50s carbon
fibres with Newport 301 resin carbon composite prepregs and
thickness = 0.117mm. Ei and Gi j are the elastic modulus (unit
of GPA). n is the Poisson’s ratio. ai j are the thermal coefficients
of expansion (unit of �C�1).

Property Value Property Value Property Value

E1 140 G12 5 a11 �2⇥10�8

E2 9.4 G13 7.17 a22 2.4⇥10�5

n12 0.3 G23 3.97 a33 2.4⇥10�5

matrix from this material coordinate system to the global coordi-
nate system is,

[Q] = [S]�1, [Q] = [T ][Q][T ]T . (6)

And, the transformation matrix is,

T =

2

66664

cos2 f sin2 f 0 0 �sin2f
sin2 f cos2 f 0 0 sin2f

0 0 1 0 0
0 0 0 1 0

sinf cosf �sinf cosf 0 0 cos2f

3

77775
. (7)

The formulation of the proposed new model involves five in-
dependent quantities - mid-plane strain ex0 and ey0, out-of-plane
displacement W0, as well as the cross-sectional area rotation qx
and qy. These quantities need to be approximated using appropri-
ate polynomials, and all other quantities are derived from them.
Here, we use the approximations by Hyer and Dano [17] for the
mid-plane strains ex0 and ey0 so that

ex0 = c1 + c2
x2

L2
x
+ c3

y2

L2
y
+ c4

xy
LxLy

,

ey0 = c5 + c6
x2

L2
x
+ c7

y2

L2
y
+ c8

xy
LxLy

.

(8)

The most critical assumption here is the out-of-plane dis-
placement field that defines the external shape of the bistable
laminate. Hyer and Dano used a constant curvature formulation,
so there are only three terms in their W0 definition [16,17]. How-
ever, we assume a higher-order polynomial for better accuracy.
We use a third order-polynomial to define the z-displacement
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field:

W0 = c9
x2

L2
x
+ c10

y2

L2
y
+ c11

xy
LxLy

+ c12
x2y

L2
xLy

+c13
xy2

LxL2
y
+ c14

x3

L3
x
+ c15

y3

L3
y
,

(9)

And, the cross-section rotations are assumed using the com-
plete second-order polynomials:

qx = c16
x
Lx

+ c17
y
Ly

+ c18
xy

LxLy
+ c19

x2

L2
x
+ c20

y2

L2
y
,

qy = c21
x
Lx

+ c22
y
Ly

+ c23
xy

LxLy
+ c24

x2

L2
x
+ c25

y2

L2
y
.

(10)

Based on rotation approximation above, the curvatures,
which are the first order differentials of these rotations, are com-
plete first-order polynomials. The in-plane displacements are
calculated using the strain definitions as follows,

U0 =
Z "

ex0 �
1
2

✓
∂W0

∂x

◆2
#

dx+g(y),

V0 =
Z "

ey0 �
1
2

✓
∂W0

∂y

◆2
#

dy+h(x).

(11)

The in-plane displacements have constants of integration,
these are used to complete the polynomials using suitable ap-
proximation including the linear and cubic terms as follows,

g(y) = g1
y
Ly

+g2
y3

L3
y

; h(x) = h1
x
Lx

+h2
x3

L3
x
. (12)

To eliminate the rigid body rotations in the in-plane dis-
placement field assumption, constraint g1 = h1 needs to be ap-
plied, eliminating one undetermined constant. The in-plane shear
is a function of the in-plane and out-of-plane displacement in that

gxy0 =
∂U0

∂y
+

∂V0

∂x
+

∂W0

∂x
∂W0

∂y
. (13)

Lastly, the inter-laminar shear strains, which are the integral
part of our formulation, are calculated as follows,

gyz0 =
∂W0

∂y
�qy ;

gxz0 =
∂W0

∂x
�qx.

(14)

These terms are zero in the CLT formulation due to its as-
sumption that the slope at the cross-section is equal to the mid-
plane rotations. However, in our formulation these terms are a
second order polynomials.

The above formulation produces a highly nonlinear equation
for the laminate’s potential equation, which is a function of the
undetermined constants. There are several undetermined con-
stants, 8 from the mid-plane strain definitions, 7 from the out-
of-plane displacement field, 10 from the rotations, and 3 from
the integration constant. Hence, a total of 28 undetermined con-
stants are used in the new formulation. In comparison, the Hyer’s
model [16, 17] had only 14 undetermined constants, 3 from the
out-of-plane displacement field, 8-from the mid-plane strain def-
initions, and 3 from the integration constant. Therefore, the ana-
lytical model we present is comparatively expensive to compute
but is still faster than the FEA simulations.

The solution is achieved by minimization of the potential
function 1. To do so, we use MATLAB’s built-in multivariate
optimizer fmincon, which is designed for highly nonlinear op-
timization problems. To expedite the calculations, we supply the
fmincon solver with the gradients of the potential function with
respect to each undetermined constants. Also, all the assumed
polynomials are normalized to enhance computation efficiency
in that each term is divided by the length size in that direction
(either Lx or Ly) of the same order.

FIGURE 4: FEA model with the mesh size; showing the thirteen
selected points whose nodal coordinates are extracted from the
simulation results to compare with the analytical model prediction.
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2.3 FEA Model
We also modeled the bistable laminates by finite element

analysis using ABAQUS 6.14. The “Static Structural” module
allows us to model the composite layers based on the patch’s
ply length, ply thickness, and ply orientation. We have se-
lected to study three types of laminates with different configu-
rations – two-ply laminates with a 100mm⇥100mm size, four-
ply laminates of 100mm⇥100mm, and two-ply laminates with
200⇥200mm. The material properties used for modeling these
CFRP laminates are listed in Table 1. The composite layup
model is meshed using S4R elements with a mesh size of 2.5mm
(Figure 4). After the completion of modeling, the laminate is
cured at the temperature of 135�C in the initial step by fixing all
degrees of freedom on the whole laminate, simulating the vac-
uum bagging procedure. Then, it is cooled down to 20�C (room
temperature) with the fixed constraints still applied. This step al-
lows the residual stresses to develop inside the laminate plies as
there is a difference in the thermal expansion coefficients in the
two in-plane directions. Once settled at room temperature, the
laminate is then released of the initial fix of the whole laminate
and only the middle node is fixed in U1,U2,U3 and UR3, allow-
ing it to deform into one of the stable shapes freely. For com-
parison we extract nodal coordinates of thirteen selected points
from the final results of the FEA simulation: which are all four
corners, the mid-point of every edge, mid-point of all the four
quadrants and the center point (Figure 4). These are adequate to
capture the overall shape and curvature of the laminates.

3 Results & Observations
To gauge the new model’s performance, we compare its pre-

dictions of the external shapes of the bistable laminates with dif-
ferent designs and the finite element simulation results. The se-
lected laminate design and comparison parameters are summa-
rized in Table 2. Besides the laminate size and ply number men-
tioned above, we also test different fiber orientations such as 90�,
60�, 45�, 30�, and 0�. These ply orientations have been widely
studied in previous studies; hence their results would be suffi-
cient to justify our model’s performance.

Figure 5 shows the two-ply square laminates of 100 ⇥
100 mm2 size and different fiber ply orientations. Each of
these laminates has a ply of 0�as the base, and the other
ply varies in orientation. Four configurations are presented -
[0�/90�], [0�/60�], [0�/45�], and [0�/30�]; the red dots indicate
the the positions of nodal points extracted from the finite ele-
ment simulations and the numbers 1� 13 besides them are in
order to indicate the selected points used for comparison. The
result shapes from the analytical model are plotted as surfaces,
and the colorbar shows the range of out-of-plane displacements.
Among these results, the maximum deformation occurs in the
[0�/60�] laminate at points 3 and 7, which could be attributed to
the high twist curvature in the laminate. The [0�/90�] laminate

has almost zero twists in its shape.
We evaluate the discrepancy between our new analytical

model predictions and the finite element simulation by compar-
ing the thirteen selected points’ displacements. In particular, we
quantify the analytical model performance using two measures
which helps in holistic comparison. First, a root-mean-squared
error (referred to as “R-square” hereafter), which can be calcu-
lated as,

R-square = 1� Âi=13
i=1 (pact � ptarget)2

i

Âi=13
i=1 (pact)2

i
, (15)

where, pact represents the selected nodal position vector in the
analytical result, ptarget refers to the nodal position vector from
the FEA simulation results, and i refers to the selected nodes.
Here, an R-squared value closer to 1 indicates a better fit, or more
accurate model predictions.

Second, a normalized error percentage is determined to
compare the the different sized laminates and with different ply
thickness. It is calculated from the maximum deviation observed
in the results from FEA and analytical result using the extracted
points and the max deflection (max z-displacement) observed in
the laminate. Mathematically,

normalized error % =
Max. deviation in Nodes

Max. deflection of laminate
⇥100 (16)

The normalized error helps in comparing the performance
of the displacement field function for the changing laminate size
and their deformation characteristics defined by the curvatures
due to different ply orientations.

Table 2 lists the absolute deviations between the analytical
and FEA simulation results at all the selected points, as well as
the corresponding R-square value and normalized error percent-
age. The node 7 has all deviations equal to zero as the the lam-
inate is firstly fixed at the centre in simulations and secondly,
the laminate’s z-displacement is always zero from the nature of
equation 9. We observe the maximum deviation for two-ply lam-
inates (fig. 5) in out-of-plane displacements is 2.2 mm at the two
opposite corners (points 3 and 11) in the [0�/45�] laminate. Even
though the maximum deviations in absolute terms are not sig-
nificant the normalized error suggests otherwise. The maximum
of 23.2% error is observed in the [0�/30�] laminate. Regardless,
the R-squared values suggest that the analytical results give an
excellent estimation of laminate shapes (R2 > 0.95).

Four-ply laminates are shown in Figure 6. These laminates
consist of two plies of 0� and two plies with varying fiber orienta-
tions. This result helps in testing our analytical model for stiffer
laminates that have smaller deformations. The maximum devia-
tion of 1.3 mm is observed in the 45� laminate. We also observe
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FIGURE 5: Two-ply laminates with all of them having base layer of 0� ply and top layer of different orientation. All the colorbar shows
z-displacement values measured in mm.

TABLE 2: Absolute deviation (measured in mm) at the selected points in the result from FEA compared to the analytical model.

Select
Points 1 2 3 4 5 6 7 8 9 10 11 12 13 R-sqr.

value
Norm.
Error

[0�/90�] 1.1 0.1 1.1 0.2 0.2 0.6 0 0.6 0.2 0.2 1.1 0.1 1.1 0.99 10.4

[0�/60�] 0.7 0.8 1.9 0.2 0.4 0.1 0 0.1 0.4 0.2 1.9 0.8 0.7 0.98 16.0

[0�/45�] 0.8 1.2 2.2 0.3 0.4 0.0 0 0.0 0.4 0.3 2.2 1.2 0.8 0.97 20.8

[0�/30�] 0.6 1.0 1.9 0.3 0.3 0.0 0 0.0 0.3 0.3 1.9 1.0 0.6 0.95 23.2

[0�2/90�2] 0.6 0.0 0.6 0.0 0.0 0.1 0 0.1 0.0 0.0 0.6 0.0 0.6 0.99 10.5

[0�2/60�2] 0.2 0.1 1.2 0.1 0.0 0.1 0 0.1 0.0 0.1 1.2 0.1 0.2 0.98 18.5

[0�2/45�2] 0.5 0.0 1.3 0.1 0.1 0.1 0 0.1 0.1 0.1 1.3 0.0 0.5 0.96 22.1

[0�2/30�2] 0.6 0.1 1.2 0.1 0.1 0.0 0 0.0 0.1 0.1 1.2 0.1 0.7 0.91 27.3

[0�/90�]
(200mm) 2.5 0.1 2.6 0.1 0.1 2.1 0 2.1 0.1 0.1 2.6 0.1 2.5 0.99 5.8

[0�/60�]
(200mm) 1.6 1.0 1.6 0.3 0.1 0.0 0 0.0 0.1 0.3 1.6 1.0 1.6 0.99 3.3

[0�/45�]
(200mm) 1.1 0.5 1.1 0.5 0.0 0.1 0 0.1 0.0 0.5 1.1 0.5 1.1 0.99 2.5

[0�/30�]
(200mm) 2.1 0.8 0.8 0.6 0.0 0.2 0 0.2 0.0 0.6 0.8 0.8 2.1 0.99 5.6
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FIGURE 6: Four-ply laminates with all of them having base two layers of 0� ply and top two layers with different orientation. All the colorbar
shows z-displacement values measured in mm.

that the maximum percentage error is 27.2% for 30� laminate
suggesting the relatively poorer performance of our proposed
model for this design but, the R-squared values (Row 6-9 in Ta-
ble 2) are all above 0.91 indicating that the model performs de-
cently for these thick laminates. The performance decreases as
the ply orientation changes from 90� to 30�. This drop in per-
formance indicates that our analytical model slightly overesti-
mates the laminate’s stiffness and underestimates the deforma-
tion. Even though the absolute discrepancy is small, they are not
insignificant compared to the total displacements of the selected
nodes. Nevertheless, the proposed model still captures the over-
all laminate shape and could be used for even thicker laminates
(with more layers of fiber plies).

Lastly, Figure 7 shows the results for two-ply laminates with
a larger dimension, i.e. 200⇥200 mm2. From rows 10-13 of
Table 2, we observe that the max absolute deviations in nodal
displacements are similar for these laminates when compared to
smaller laminates (rows 2-9); also, R-squared values are all very
high (almost close to 1). For example, recall that in the smaller
[0�/30�] laminate in Figure 5, we observe that the maximum de-
viation in nodal displacement is about 1.9 mm at points 3 and 11.
The maximum discrepancy still occurs at points 3 and 11 with a
relatively larger (but in the similar range) magnitude of 2.1mm
for the larger laminate with the same fiber orientation. However,
the R-squared value for the smaller laminate is 0.95 and for the
bigger laminate is 0.99. Also, the normalized error has reduced

significantly from 23.2% to 5.6%. This is because a larger lam-
inate also shows a more significant out-of-plane deformation, so
the overall ratio between the model discrepancy and the overall
deformation becomes smaller. The [0�/45�] laminate gives the
best fit compared to the other configurations but just marginally
as it has the lowest normalized error percentage of 2.5%. Over-
all, the new analytical model performs exceptionally well for all
configurations of the two-ply laminates with a bigger size.

4 Conclusion
This study proposes and evaluates a new analytical approach

— combining Reissner-Mindlin plate theory and classical lami-
nation theory — to predict the shapes of bistable CFRP lami-
nates. We discuss certain limitations of the currently favored
model, initially developed by Hyer and Dano based on Kirchoff’s
theory, and then attempt to address these limitations by intro-
ducing two additional degrees of freedom, i.e., rotations of the
laminate cross-section. We conduct case studies using this new
model on bistable laminates with “standard” configurations, such
as plies at 0�,90�,60�,45�,30� orientations, square-shaped with
100mm/200mm side lengths, and with a two-ply or four-ply con-
struction.

Also, we use finite element simulation to obtain the shapes
of the bistable laminates to serve as a basis for the comparison
study. We extract nodal positions of thirteen selected points from
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FIGURE 7: Two-ply laminates with all of them having base layer of 0� ply and top layer of different orientation. All the colorbar shows
z-displacement values measured in mm.

these simulation results, which are plotted against new analytical
model predictions. The absolute deviations between the model
prediction and FEA results for all the nodes are summarized
and used to calculate the (a) R-squared value for each configura-
tion and, (b) normalized error percentage. The R-squared value
serves as a performance indicator of the approximation functions
selected for the independent quantities: the mid-plane strains,
cross-section rotations about the x and y-axis, and out-of-plane
displacement. The closer the R-squared value is to unity, the bet-
ter the agreement. And, the normalized error percentage com-
pares laminates with different sizes and different deformation
characteristics. This also helps in gauging the span of the ap-
proximation polynomials used to define the displacement field.
These two factors together help in providing a holistic compari-
son of the FEA results with our analytical model results.

Through comparative studies, we can conclude that the an-
alytical model performs very well over the range of laminate
configurations studied. The maximum R-squared values are ob-
tained with bigger laminates with two plies, indicating that the
new analytical model is quite accurate for predicting the shapes
of the large and thin bistable laminates. The smallest R-squared
value and the largest normalized error percentage is observed for
a thick [0�2/30�2] four-ply laminate, but the model prediction is
still satisfactory for predicting the laminates’ shape as the abso-
lute magnitude of deviation is considerably small.

It is worth noting that the accuracy of the shape prediction
is hinged mainly on the selection of approximation polynomi-

als for the independent quantities. Hence, for better results, one
could use higher-order polynomials, but this would inevitably in-
crease the model’s complexity and computational time (but still
less than a finite element simulation). Due to the inclusion of
the inter-laminar strains in our analytical model, the strain def-
inition is complete. Since, the bistable CFRP laminates are be-
ing researched to make active materials by adding passive/active
actuators, the inter-laminar interactions of these actuators might
have a significant change in the stiffness of the laminate. Thus,
the proposed analytical model offers a new angle for such addi-
tions to the laminates. In all, we offer a new modeling approach
to the composites community, which provides high accuracy in
predicting the shapes of bi-stable composites and could serve as
a basis for future studies.
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