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ABSTRACT

This study examines the transverse elastic wave propagation
bandgap in a buckled kirigami sheet. Kirigami — the ancient art
of paper cutting — has become a design and fabrication frame-
work for constructing metamaterials, robotics, and mechanical
devices of vastly different sizes. For the first time, this study fo-
cuses on the wave propagation in a buckled kirigami sheet with
uniformly distributed parallel cuts. When we apply an in-plane
stretching force that exceeds a critical threshold, this kirigami
sheet buckles and generates an out-of-plane, periodic deforma-
tion pattern that can change the propagation direction of pass-
ing waves. That is, waves entering the buckled Kirigami unit
cells through its longitudinal direction can turn to the out-of-
plane direction. As a result, the stretched kirigami sheet shows
wave propagation band gaps in specific frequency ranges. This
study formulates an analytical model to analyze the correlation
between such propagation bandgap and the kirigami geometry.
This model first simplifies the complex shape of buckled kirigami
by introducing “virtual” folds and flat facets in between them.
Then it incorporates the plane wave expansion method (PWE) to
calculate the dispersion relationship, which shows that the pe-
riodic nature of the buckled kirigami sheet is sufficient to cre-
ate Bragg scattering propagation bandgap. This study’s results
could open up new dynamic functionalities of kirigami as a ver-
satile and multi-functional structural system.
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1 Introduction

Recently, there have been many efforts to develop smart
structural systems by harnessing the rapid advancements in
metamaterial research, particularly regarding their unique elas-
tic wave propagation properties [1, 2]. Metamaterials — mate-
rials constructed with a carefully designed and typically peri-
odic architecture — predominantly obtain their mechanical prop-
erties from its underlying architecture’s geometry (or topology)
rather than the constituent material properties. Such geometry-
property coupling can impart metamaterials with many “unnat-
ural” behaviors, such as negative Poison’s ratio [3, 4], negative
bulk modulus and mass density [5, 6], negative transformation
acoustics [7-9], and hyper-elastic cloaking [10, 11]. Moreover,
the periodicity embedded in the metamaterial also creates acous-
tic and elastic wave propagation bandgaps for vibration isola-
tion and mitigation [12-16], and the frequency range of such
bandgap is controllable by directly tuning the underlying peri-
odicity [17,18].

To fully materialize the promising potentials of metamate-
rials, it is crucial to develop versatile, scalable, and easy-to-
fabricate methods that can both generate and tailor the under-
lying periodic architecture [19,20]. To this end, we propose
the use of kirigami — a popular recreational art of cutting and
manipulating paper — as a platform to create periodicity and
wave propagation bandgaps. The Japanese word of kirigami
means “cut’-“paper.” It involves adding slit cuts to a flat sheet
material and then transform it into a three-dimensional shape
by stretching and folding [21]. The simplicity of kirigami has
inspired many innovative engineering solutions for fabricating
super-stretchable electronics [22,23], adaptive structures [24,25],
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and transformable robots [26, 27]. This study adopts a simple
kirigami pattern involving a “zig-zag” distributed parallel slit
cuts. If one stretches it beyond a critical load, it will buckle into
a three-dimensional and periodic shape (Figure 1). By simply
adjusting the post-buckling stretching force, one can control the
shape of the kirigami and thus achieve structural adaptation.

This study aims to examine the wave propagation bandgap
created by the stretch-buckled Kirigami sheet, particularly the
transverse wave. We first propose a methodology to simplify the
3D geometry of post-buckled kirigami by introducing “virtual
folds” and assuming flat facets in-between these folds. Then, we
apply the plane wave expansion (PWE) method [28, 29] to the
simplified kirigami geometry and calculate the dispersion rela-
tionships, showing the existence of a propagation bandgap. We
conduct additional calculations to illustrate how the bandgap fre-
quencies are directly related to kirigami designs, illustrating the
versatility of this concept.

In the following part of this paper, section 2 details the ge-
ometry of the stretch-buckled kirigami sheet; section 3 sum-
marizes the technical background, including wave propagation
through periodic metamaterial, governing equations of motion,
and plane wave expansion method; section 4 shows the theoreti-
cal predictions of wave propagation bandgaps with two different
kirigami designs; and the last section 5 concludes this paper with
a discussion.

2 Geometry of Stretch-Buckled Kirigami

Figure 1(a) explains the parameters defining the parallel and
zig-zag distributed cutting pattern. Here, [,, [, and [, define the
slit cuts’ lengths and the gap in-between two adjacent cuts; W
is the spacing between two cuts along the longitudinal direction.
Once buckled via stretching, the kirigami sheet takes a compli-
cated three-dimensional shape with significant out-of-plane de-
formation. As a result, the buckled kirigami structure has a finite
thickness, satisfying Euler-Bernoulli’s beam geometrical condi-
tions. In other words, the stretch-buckled Kirigami sheet be-
comes a beam-like structure consisting of a linear periodic array
of “unit cells” as shown in Figure 1(c).

The ligaments inside the unit cells exhibit complex deforma-
tions with a non-uniform curvature distribution, making it chal-
lenging to calculate the parameters relevant to wave propagation
analyses, such as the cross-sectional area and area moment of
inertia. To address this challenge, we introduce “virtual folds”
at critical locations on the ligaments that exhibit the most con-
centrated bending deformation and assume the facets in-between
these folds are flat surfaces (Surfaces A, B, and C in Figure 1(d)
and 2). Indeed, these folds can naturally occur when the stretch-
ing is strong enough to induce plastic deformation [30], so they
could represent the mechanics of buckled kirigami sheets with
reasonable accuracy. Moreover, the simplified kirigami becomes
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FIGURE 1: The geometry of the stretch-buckled kirigami sheet.
(a) Schematic of the kirigami cutting pattern consisting of “zig-
zag” distributed parallel cuts. (b) A paper-based prototype before
stretching. (c) The original stretch buckled kirigami sheet, show-
ing a complex out-of-plane deformation and curved “ligaments.”
(d) The stretched kirigami sheet with a simplified geometry, where
the buckling-induced deformations are concentrated to the folds
so that the surfaces in-between the folds remain flat.

rigid-foldable, making the kirigami deformation a one degree-of-
freedom mechanism.

To solve the dynamic equation of motion for wave propa-
gation (as we detail later in Section 3), we need to calculate the
distribution of cross-sectional area A(x) and bending moment of
inertia I(x) over a unit cell, where x represents the longitudi-
nal direction. To this end, we choose the dihedral angle (¢) be-
tween the Surface B within the kirigami unit cell and the y —z
reference plane as the independent variable (Figure 2(c)). When
the kirigami sheet is un-deformed (or flat in the x — y reference
plane), ¢ takes the maximum value (@, = 7/2); when the
buckled kirigami sheet is fully stretched, ¢ take the minimum
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value:

Pmin = tan™"' <21_W> . (D
c

We also denote the dihedral angle between Surface C de-
fined in Figure 2 and the x — z reference place as f3, so that

B =cos! ( 2w ) . 2)

l.tan@

B = n/2 when the Kirigami sheet is un-deformed (flat), and
B = 0 when the Kirigami sheet is fully stretched. The overall
length of the unit cell is

LW )

 sing’

Another important geometric variable is the projected length
of Surface C along the y axis as illustrated in Figure 2(b):

t 2wz l
d—w@nB _ Jle — “sinp. @)
tan @ 4 tan’¢ 2

Here, we assume the kirigami sheet is highly stretched after
buckling in that ¢, < @ < m/4 (assuming [. > 2W). We can
divide half of the unit cell in this case into three sections (Section
1, ii, and iii in Figure 2(c)) because the cross-sections take distinct
shapes in these three sections (Figure 2(c)).

The first Section i corresponds to 0 < x < Wsin @, and the
cross-sectional areas involves surface B and surface C. The cross
section (solid lines in Figure 2(b;)) is the summation of these two
parts so that

t
Ai(x) = sin @

t X
=— (1 JAW? + Rtant @ |,
sin@ (b+Wsin(p Hictan (P>

where ¢ is the thickness of the kirigami sheet material. The bend-
ing moment of inertia with respect to the y-axis also includes two
parts:

(I, +2Lf)
Q)

2
L) =18 41, ( ) +2IF + ...
sing \ tan¢

2xtanﬁ t [xtang—xcote\?
cosQ sing 2 ’

(6)
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FIGURE 2: The unit cell geometry of a simplified Kirigami sheet
with a relatively large stretch. (a-c): The isometric, front, and
side view of Kirigami unit cell, respectively. Notice that the inde-
pendent variable ¢ and the three sections in the half unit cells
are highlighted in the side view. (b;-b;;): Close-up front view of
the cross-section area corresponding to different x values. Notice
that the solid, dashed, dotted black lines are the cross-section of
the kirigami unit cell in three different sections.

where the first two terms come from the cross-section of Surface
B (using parallel axis theorem), and the third and fourth terms
come from the cross-section of Surface C. Here, I? is the bending
moment of inertia of the Surface B’s cross-section with respect
to its own neutral axis in that

B_ b [ 1 }
=1 sing ) ™

Similarly, € is Surface C’s bending moment of inertia with
respect to its own neutral axis in that

If (x)

t xtanﬁ[ 2

— 2 2
= 12sing cos@ +x"(tan @ +cot @) } 8)

sin® @
The second Section ii corresponds to wsin < x < a/2 —

wsin@, and the overall cross-section area involves Surface C
(dashed line in Figure 2(bj;)).

=2 pe— U faw2 12 an
Ai(x) Zsin(pL” sng 4W?2 + 2 tan* @. )
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The bending moment of inertia with respect to the y-axis is

(o) =2 + 2 [(af4 —x)tan o], (10)
where
t 12 w?
Ig— lzsin(PWtan(ptanﬁ <Sn]2(p+0082(p> (11D

Finally, the third Section iii of the half unit cell corresponds
to sin @ < x < a/2. In this section, the cross-section (dotted line
in Figure 2(b;;;)) involve Surface A and C in that

t
Aiii(x) = 7sin(p (la + ZLSz)
t af2—x
= l \/4W?2 + [2 tan* .
sin(p<a+Wsin(p et

The corresponding bending moment of inertia with respect
to the y—axis includes two components in that,

t 2-x\?2
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where,
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and J4 is the bending moment of inertia of the cross-section area
in Surface A with respect to its own neutral axis so that

l r o\’
A _ e
=% (sin(p) ' (15)

3 Wave Propagation Bandgap Analysis

This section details the wave propagation and bandgap anal-
ysis in the stretch-buckled kirigami sheet using the plane wave
expansion (PWE) method. First, we introduce the equations of
motions governing the elastic wave propagation in the beam-like,
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buckled kirigami structure. Then, we expand these equations
over the periodic unit cells by Blotch’s theory. Finally, by apply-
ing the geometry parameters obtained in Section 2, we formulate
an analytical solution describing the dispersion relationship and
bandgap frequencies in the stretched kirigami.

Governing Equation of Motion Here, we apply free-
free boundary conditions to the stretch-buckled kirigami and
only allow transverse waves (in the z-direction) to propagate
along the x-direction. Suppose the buckled kirigami’s overall
thickness in the z direction and width in the y direction are signif-
icantly smaller than the length in the x direction, we can describe
it as an Euler-Bernoulli beam — by neglecting the shearing de-
formation and rotational inertia of the cross-sections — based on
the governing equation:

9%U (x,1)

9? 92U (x,1)
E pAw 9% —o. g

2 (X)I(X)T

where p(x) and E(x) are the mass density and Young’s modulus
distribution, respectively. They are constant in this case since we
assume the kirigami sheet is made of homogeneous sheet ma-
terial. U (x,?) is the transverse displacement field in the out-of-
plane z direction. The cross-section area A(x) and the second
moment of inertia /(x) have been calculated in Section 2

Lattice Vectors Here we briefly review some fundamen-
tal concepts regarding periodic structures. A two-dimensional
periodic structure can be represented by a set of infinite transla-
tion operations on a unit cell along specific directions, and the
corresponding translational vectors are:

V=ae; +aye;. (17)

In this equation, e; and e, are called the lattice vectors in
the direct space, and a; and a, are integers. The translational
vector’s dimension depends on the nature of periodicity, and its
direction defines the orientations of the underlying periodicity.

The reciprocal lattice is defined as the set of vectors G
that satisfy the following relationship ¢ "¢V = 1, where G =
mib; +myb,. Here, by and b, are the lattice vectors in the re-
ciprocal space. Simplification of the above relations leads to the
conclusion that the reciprocal lattice vectors (b, b) are orthog-
onal to the original lattice vectors (e, e;) in that

e,'-bj:27'l?6,'j (]8)

Like the lattice vectors e, e, that define the periodicity in
the direct space, reciprocal lattice vectors by, b, describe the cor-
responding periodicity in the reciprocal space. Moreover, based
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on the connection between the direct and reciprocal lattice vec-
tors, a “primitive” unit cell can be defined in the reciprocal space
corresponding to the original unit cell, and such primitive unit
cells are referred to as the first Brillouin zone [13]. The impor-
tance of the Brillouin zone stems from the Bloch description of
the wave field in periodic media. It is found that the solutions
to wave governing equations can be completely characterized by
Bloch wave theory in the first Brillouin zone as multiplication of
plane waves and a periodic function.

Plane Wave Expansion Method (PWE) Here, we ap-
ply the PWE method to the wave propagation problem and cal-
culate the band structure induced by kirigami’s periodicity. The
band structures provide an abundance of information on the wave
propagation characteristics.

The first step in implementing the PWE method is to apply
the separation of variables to extract time as one independent
variable from the displacement field U (r,7) in that

U(r,t) =U(r)e " (19)

where o is the frequency of harmonic oscillation. Next, the spa-
tial domain function U(r) are factorized as a combination of
plane wave fields and harmonic function in the first Brillouin
zone by Blotch theory,

U(r) =e®"Y U(H)eM. (20)
H

Now that U(H) is a harmonic function in space. Here,
H = n1b; + nyb, is a direction vector, where ny, np are inte-
gers. K = k1b; + kyb, is the wave vector, whose component
can restricted to vary within the First Brillouin Zone in that
ki,kz € [0, %] We use the basis functions in the Fourier series
expansion to represent the periodic geometrical properties and
define the wave field as a set of all transverse wave numbers.
These functions are expanded through the multiplication of re-
ciprocal lattice vector G with an increasing integer m; and my.
Therefore, the periodicity of geometrical parameters can be rep-
resented as:

ey

Substituting the above terms in equations (19)-(21) into the
equation (16), for a two-dimension case, we can re-rearrange the
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equation of motion as:

P(K+H+G)1(G)—

ZZ[

o pA( )] U(H)e i(K+G+H)r _ 0

(22)

By defining a new vector G/, such that G’ = G + H, we
can shift the vector G by H. In addition, we eliminate the part
U(H)e/K+G)T a5 it cannot take the zero value. Then, we obtain
the characteristic equation in that

Z): (H+K)?(K+G)*/(G' —H) — 0*pA(G’' —H)] =0.
(23)

Applications to Stretched Kirigami The stretch-
buckled kirigami sheet is periodic only in the x direction (both
stretched and unstretched). Therefore, we consider it a beam-like
structure, and the position vector r is one-dimensional, align-
ing with the x direction. For an observer at any location on
the stretch-buckled kirigami, the structure appears to be an as-
sembly of identical unit cells. If the kirigami is infinitely long
and translated by any vector joining two cuts of the same type,
it appears identical as it did before the translation. Therefore,
the direct lattice vector and corresponding reciprocal lattice vec-
tors are also one-dimensional and in x direction (V = a;e;, and
G = mby). Subsequently, the wave vector K = k;b; and har-
monic wave propagation H = n1b;. Kirigami geometric prop-
erties — including the cross-section area A(x) and area moment
of inertia I(x) — are periodic functions defined in the x direc-
tion through a unit cell. We expand these functions according to
Equation 21. Finally, the dispersion curve with respect to chang-
ing wave number between [0, 0.5] is derived, and the results are
discussed in the following section.

4 Bandgap Structure Results

We apply the theoretical formulation from Section 3 to
two stretched kirigami sheets with different cutting patterns.
These two sheets have the same overall width L=1[,+ 1, + 1. =
0.122m, spacing between cuts W = 0.01m, and sheet thickness
t = 0.002m. Both kirigami sheets are assumed to be made of Ny-
lon material so that E = 9.2GPa and p = 1200kg/m>. However,
they have different cut lengths. For the first sheet, [, = 0.04m,
I, = 0.02m, and /. = 0.062m; for the second sheet, [, = 0.05m,
I, =0.02m, and /. = 0.052m.

Figures 3 and 4 show the dispersion relationship of this
kirigami sheet after buckling (solved using MATLAB). The first
sheet is stretched until ¢ = 27°, while the second one is stretched
until ¢ = 32°. The dispersion relationship clearly indicates the
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FIGURE 3: Band diagram for a stretched buckled kirigami by
changing integer m; € [—3,3]. bandgap in light blue for case 1.
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FIGURE 4: Band diagram for a stretched buckled kirigami by
changing integer m; € [—3,3]. bandgap in light blue for case 2.

existence of wave propagation bandgaps. For the first kirigami
sheet, its bandgap occurs between 465 and 668Hz; and the sec-
ond sheet shows a bandgap between 361 and 518Hz. Such differ-
ences in bandgap frequencies indicate that adjusting the cutting
pattern of the kirigami sheet (and thus cross-sectional area A(x)
and bending moment of inertia /(x) in the unit cell) is a simple
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yet effective method to tailor the wave propagation behaviors.

5 Summary and Conclusion

This study examines the transverse wave propagation
bandgaps in stretch-buckled Kirigami sheets. We conduct an
analytical investigation using the plane wave expansion (PWE)
method and the Bloch analysis on the unit cell of the kirigami
sheet. The most significant challenges here come from the com-
plicated 3D geometry of the unit cell, especially the curved liga-
ments. To this end, we propose a method to simplify the kirigami
unit cell geometry by placing folds at the locations with the
most concentrated deformation and then assuming flat facets in-
between these folds. Such simplification provides us with clear
insight into the correlation between periodicity and cutting de-
sign in the stretched Kirigami sheet. It also makes the mathe-
matical formulation manageable. We present the dispersion re-
lationship and propagation bandgaps of two stretched kirigami
sheets with different cut sizes. The results show that the bandgap
properties can be tailored effectively through optimizing the un-
derlying kirigami cuts pattern design. This study’s results could
open up new dynamic functionalities of kirigami as a versatile
and multi-functional structural system.
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