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1. Introduction

The current survey is an attempt to put into context a series of very recent
results of the author in co-authorship with Otto van Koert [98,99], and the
spin-off [100] by the author. It also serves the purpose of introducing and
threading together a collection of basic and important notions, disseminated
across the literature, with the main driving motivation coming from a very
old and famous problem; namely, the three-body problem. We shall be, there-
fore, mainly interested in Hamiltonian dynamics, and the intended audience
is that with a dynamical background/interest; a good deal of openness to-
wards topological/geometric/holomorphic techniques is also recommended.
We make no assumptions on previous knowledge on contact or symplectic
techniques, but we move at a fast pace.

We shall start from the basics of contact and symplectic geometry, the
geometries of classical mechanics, and move on to the more topological notion
of open book decompositions in the context of contact topology and Giroux’s
correspondence. We will then make a dynamical jump to discuss the notion
of global hypersurfaces of section and adapted dynamics, discussing examples
along the way. After paving the road, we focus on the three-body problem
(more precisely, a simplified version, the circular restricted case=CR3BP)
with the main interest being the spatial problem where the small mass is
allowed to move anywhere (SCR3BP), as opposed to the planar problem,
which historically has been of central interest. We give a historical account
of Poincaré’s original approach in the planar problem, and discuss classical
fixed-point theorems and perturbative results. We also provide a brief survey
of the beautiful history behind the search of closed geodesics, which one may
view as a spin-off of the search of closed orbits for the three-body problem;
as well as how this relates to recent developments of a dynamical flavor
in symplectic geometry. We further review non-perturbative modern results
coming from holomorphic curve theory à-la Hofer–Wysocki–Zehnder [73]. We
then introduce the main results of [98–100], which include:

• Existence of adapted open book decompositions for the SCR3BP in the
low-energy range (Theorem M);

• Existence of Hamiltonian return maps reducing the dynamics to dimen-
sion 4 (Theorem N);

• A generalization of the classical Poincaré–Birkhoff theorem for Liouville
domains in arbitrary even dimensions (Theorem O);
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• The construction by the author of the holomorphic shadow, which asso-
ciates with the SCR3BP (whenever the planar dynamics is convex, and
energy is low) a Reeb dynamics on S3 which is adapted to a trivial open
book (Theorem R); and (perturbative) dynamical applications.

We remark that the first two results are valid for arbitrary mass ratio
and are therefore non-perturbative. We also point out that the second result,
while a general fixed-point theorem, has not so far seen an application to the
SCR3BP, for which the generalized notion of a twist condition introduced in
[99] seems, as of yet, perhaps unsuitable. The third result, while of theoretical
interest, might perhaps lead to insights on the original problem coming from
3-dimensional dynamics; this is work in progress. In fact, everything in the
last sections should be considered work in progress. Therefore, the reader is
advised to proceed accordingly, and perhaps get excited enough to contribute
to this growing body of work.

Needless to say, this account will be very biased towards the author’s
interests; the subject is too vast to make it proper justice. The experienced
reader is encouraged to complain to the author for misinterpretations, misrep-
resentations, omissions, or mistakes. Disseminated across the text, we leave
a series of digressions, intended for non-experts and newcomers, which the
reader might choose to skip without affecting the understanding of the main
body. They take up a significant part of the document, in the hope to illus-
trate the richness of the material.

2. Basic concepts

We start with the basic concepts underlying the general principles of classical
mechanics.

2.1. Symplectic geometry

Roughly speaking, symplectic geometry is the geometry of phase space (where
one keeps track of position and velocities of classical particles, and so, it is a
theory in even dimensions). Formally, a symplectic manifold is a pair (M,ω),
where M is a smooth manifold with dim(M) = 2n even, and ω ∈ Ω2(M) is
a two-form (the symplectic form) satisfying

• (closedness) dω = 0;
• (non-degeneracy) ωn = ω ∧ · · · ∧ω ∈ Ω2n(M) is nowhere-vanishing, and

hence a volume form. Equivalently, the map

X(M) → Ω1(M)
X �→ iXω = ω(X, ·)

is a linear isomorphism.

Note that symplectic manifolds are always orientable. We assume that
M is always oriented by the orientation induced by the symplectic form.

Example 2.1. (From classical mechanics)
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• (Phase space) (R2n, ωstd), where, writing (q, p) ∈ R
2n = R

n ⊕ R
n

(q =position, p =momenta), we have

ωstd = −dλstd = dq ∧ dp,

where λstd = pdq is the standard Liouville form. Here, we use the short-
hand notation dq∧dp =

∑n
i=1 dqi∧dpi, and similarly, pdq =

∑n
i=1 pidqi.

• (cotangent bundles) (T ∗Q,ωstd), where Q is a closed n-manifold, and
ωstd is defined invariantly as

ωstd = −dλstd,

with

(λstd)(q,p)(η) = p(d(q,p)π(η)),

also called the standard Liouville form. Here, q is a point in the base,
and p a covector in TqQ

∗, and

π : T ∗Q → Q

is the natural projection to the base. Note that phase space corresponds
to the case Q = R

n.

A general important feature of symplectic manifolds (or, more like, the
reason for their existence) is that they are locally modelled on phase space:

Theorem A. (Darboux’s theorem for symplectic manifolds) If p ∈ (M,ω) is
an arbitrary point in a symplectic manifold, we can find local charts centered
at p, so that (M,ω) is isomorphic to standard phase space (R2n, ωstd) in this
local chart.

The notion of isomorphism we use above is the obvious one: two sym-
plectic manifolds (M1, ω1) and (M2, ω2) are symplectomorphic if there exists a
diffeomorphism f : M1 → M2 satisfying f∗ω2 = ω1. In particular, a symplec-
tomorphism preserves volume, i.e., f∗ωn

2 = ωn
1 . Darboux’s theorem is usually

interpreted as saying that, unlike in Riemannian geometry where the curva-
ture is a local isometry invariant, there are no local invariants for symplectic
manifolds (they locally all look the same).

Hamiltonian dynamics From a dynamical perspective, symplectic man-
ifolds are the natural geometric space where one can study Hamiltonian dy-
namics, via the Hamiltonian formalism. On a cotangent bundle T ∗Q, the
idea is to model the motion of a particle moving along the manifold Q,
subject to the principle of minimization of energy/action associated with
a given physical problem.

In general, we start with a symplectic manifold (M,ω), and a Hamil-
tonian H : M → R, which is simply a function (which we assume C1, say),
thought of as the energy function of the mechanical system. The symplectic
form implicitly defines a vector field XH ∈ X(M) (the Hamiltonian vector
field or Hamiltonian gradient of H) via the equation

iXH
ω = dH.

Note that this uniquely defines XH due to non-degeneracy of ω. The above
equation is the global, invariant version for the following:
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Fundamental example: Hamilton’s equation Whenever (M,ω) =
(R2n, ωstd), we have

XH =
(

∂H

∂p
,−∂H

∂q

)

=
∂H

∂p
∂q − ∂H

∂q
∂p.

In other words, a solution x(t) = (q(t), p(t)) to the ODE ẋ(t) = XH(x(t)) is
precisely a solution to the Hamilton equations

{
q̇ = ∂H

∂p

ṗ = −∂H
∂q .

By Darboux’s theorem, we see that, locally, solutions to the Hamiltonian
flow are solutions to the above.

More invariantly, we consider the Hamiltonian flow φH
t : M → M gen-

erated by H, i.e., the unique solution to the equations

φH
0 = id,

d
dt

φH
t = XH ◦ φH

t .

This flow can be thought of as a symmetry of the symplectic manifold, since
it preserves the symplectic form

d
dt

(φH
t )∗ω = LXH

ω = iXH
dω + diXH

ω = 0 + d2H = 0,

and so, (φH
t )∗ω = (φH

0 )∗ω = ω for every t. A symplectomorphism f :
(M,ω) → (M,ω) is called Hamiltonian whenever f = φ1

H is the time-1 map
of a Hamiltonian flow. Hamiltonian maps then preserve volume (which is a
way of stating Liouville’s theorem from classical mechanics).

Remark 2.2. The Hamiltonian usually also depends on time. We have as-
sumed for simplicity that it does not, i.e., it is autonomous. We will see that
this will hold for the simplified versions of the three-body problem we will
consider.

In the above symplectic formalism, it is a fairly straightforward mat-
ter to write down the fundamental conservation of energy principle (in the
autonomous case):

Theorem B. (Conservation of energy) Assume H is autonomous. Then

dH(XH) = 0.

In other words, the level sets H−1(c) are invariant under the Hamiltonian
flow.

This is also usually written down using the Poisson bracket as

{H,H} = 0,

which is another way of saying that H is preserved under the Hamiltonian
flow of itself, or that H is a conserved quantity (or integral) of motion. The
proof fits in one line

dH(XH) = iXH
ω(XH) = ω(XH ,XH) = 0,

since ω is skew-symmetric.
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2.2. Contact geometry

Contact geometry is, roughly speaking, the odd-dimensional analogue of sym-
plectic geometry, and arises on level sets of Hamiltonians satisfying a suitable
convexity assumption (see Proposition 2.5). Formally, a (strict) contact man-
ifold is a pair (X,α), where X is a smooth manifold with dim(X) = 2n − 1
odd, and α ∈ Ω1(X) is a 1-form (the contact form) satisfying the contact
condition

α ∧ dαn−1 �= 0 is nowhere-vanishing, and hence a volume form.

Contact manifolds are therefore orientable (see Remark 2.4 below). The
codimension-1 distribution ξ = ker α ⊂ TM (a choice of hyperplane at each
tangent space, varying smoothly with the point), is called the contact struc-
ture or contact distribution, and (M, ξ) is a contact manifold.

Example 2.3. • (standard) The standard contact form on R
2n−1 = R ⊕

R
n−1 ⊕ R

n−1 
 (z, q, p) is

αstd = dz − pdq,

where we again use the short-hand notation pdq =
∑n

i=1 pidqi.
• (First-jet bundles) Given a manifold Q, its first-jet bundle J1(Q) → Q,

by definition, has total space the collection of all possible first deriva-
tives of maps f : Q → R. The fiber over q is as all possible tuples
(q, f(q), dqf), and so, J1(Q) ∼= R × T ∗Q. It carries the natural contact
form

α = dz + λstd,

where z is the coordinate on the first factor, and λstd is the standard
Liouville form on T ∗Q; note that the standard contact form corresponds
to the case Q = R

n−1.
• (contactization) More generally: if (M,ω = dλ) is an exact symplectic

manifold, then its contactization is

(R × M,dz + λ),

where z is the coordinate in the first factor.

The contact condition should be thought of as a maximally non-
integrability condition, as follows. Recall the following theorem from differ-
ential geometry:

Theorem C. (Frobenius’ theorem) If α ∧ dα ≡ 0, then ξ = ker α ⊂ TM is
integrable. That is, there are codimension-1 submanifolds whose tangent space
is ξ.

The condition in Frobenius’ theorem is equivalent to dα|ξ ≡ 0. The
contact condition is the extreme opposite of the above: dα|ξ > 0 is symplectic,
i.e., non-degenerate. In fact, if Y ⊂ (X, ξ) is a submanifold of a (2n − 1)-
dimensional contact manifold, so that TY ⊂ ξ (i.e., Y is isotropic), then
dim(Y ) ≤ n − 1. The isotropic submanifolds of maximal dimension n − 1 are
called Legendrians.
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The analogous theorem of Darboux in the contact category is the fol-
lowing:

Theorem D. (Darboux’s theorem for contact manifolds) If p ∈ (X,λ) is an
arbitrary point in a strict contact manifold, we can find a local chart U ∼=
R

2n−1 centered at p, so that λ|U = αstd.

Reeb dynamics Whereas a contact manifold is a geometric object, a
strict contact manifold is a dynamical one, as we shall see below. Note first
that the choice of contact form for a contact structure ξ is not unique: if α is
such a choice, then να is also, for any smooth positive function ν > 0. This
is in fact the only ambiguity, i.e., every other contact form is of this form.

Given a contact form α, it defines an autonomous dynamical system on
X, generated by the Reeb vector field Rα ∈ X(X). This is defined implicitly
via

• iRα
dα = 0;

• α(Rα) = 1.

To understand the above, note that, since dα|ξ is symplectic, the kernel of
dα is the 1-dimensional distribution TX/ξ ⊂ TX. This is trivialized (as a
real line bundle) via a choice of contact form, which also gives it an ori-
entation induced from the one on M . The Reeb vector field then lies in
this 1-dimensional distribution; the second condition normalizes it, so that it
points precisely in the positive direction with respect to the co-orientation.
We emphasize that the Reeb vector field depends significantly on the contact
form, and not on the contact structure; different choices give, in general, very
different dynamical systems.

Remark 2.4. There are also examples of contact manifolds which are not
globally co-orientable (e.g., the space of contact elements); we will not be
concerned with those.

The Reeb flow ϕt has the property that it preserves the geometry in a
strict way, i.e., it is a strict contactomorphism. This means that ϕ∗

t α = α, or
in other words, the Reeb vector field generates a (strict) local symmetry of the
(strict) contact manifold. This fact easily follows from the Cartan formula

d
dt

ϕ∗
t α = diRα

α + iRα
dα = d(1) + 0 = 0,

and so ϕ∗
t α = ϕ∗

0α = α.

More generally, a (not necessarily strict) contactomorphism is a diffeo-
morphism f , such that f∗(ξ) = ξ, or f∗α = να for some strictly positive
smooth function ν.

The bridge The fundamental relationship between symplectic and con-
tact geometry lies in the following. If the symplectic form ω = dλ is exact
(which can only happen if the symplectic manifold is open, by Stokes’ theo-
rem), then we have a Liouville vector field V , defined implicitly via

iV ω = λ,
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where we again use non-degeneracy of ω. To understand this vector field,
consider ϕt the flow of V . The Cartan formula implies

d
dt

ϕ∗
t ω = diV ω + iV dω = dλ = ω,

and so, integrating, we get

ϕ∗
t ω = etω.

Taking the top wedge power of this equation: ϕ∗
t ω

n = entωn, and we see that
the symplectic volume grows exponentially along the flow of V , i.e., ϕt is a
symplectic dilation.

Assume that X ⊂ (M,ω = dλ) is a co-oriented codimension-1 subman-
ifold, and the Liouville vector field is positively transverse to X. Then, we
obtain a volume form on X by contraction

0 < iV ωn|X = niV ω ∧ ωn−1|X = nλ ∧ dλn−1|X = nα ∧ dαn−1,

where α = λ|X . We have proved:

Proposition 2.5. If ω = dλ, and the associated Liouville vector field V is
positively transverse to X, then (X,α = λ|X = iV ω|X) is a strict contact
manifold.

A hypersurface X as in the above proposition is then called contact-
type. The most relevant example to keep in mind is when X = H−1(c) is the
level set of a Hamiltonian (in fact, locally, this is always the case). In this
situation:

Proposition 2.6. If X = H−1(c) is contact-type, then the Reeb dynamics on
X is a positive reparametrization of the Hamiltonian dynamics of H.

This follows from the observation that both XH and Rα span the kernel
of dα along X. In other words, Reeb dynamics on contact-type Hamiltonian
level sets is dynamically equivalent to Hamiltonian dynamics. See Fig. 1 for
an abstract sketch.

Example 2.7. • (star-shaped domains) Assume that X ⊂ R
2n is star-

shaped, i.e., it bounds a compact domain D containing the origin, and
the radial vector field V = q∂q +p∂p = r∂r is positively transverse to X
(with the boundary orientation). Since V is precisely the Liouville vector
field associated with λstd, every star-shaped domain is contact-type.

• (standard contact form on S3) As a particular case, let S3 = {z ∈ R
4 :

|z| = 1} ⊂ R
4 be the round 3-sphere. Then, S3 = H−1(1/2), where

H : R4 → R, H(z) = 1
2 |z|2, and it is star-shaped. Writing z = (z1, z2) =

(x1, y1, x2, y2), the radial vector field

V =
1
2
r∂r =

1
2
(x1∂x1 + y1∂y1 + x2∂x2 + y2∂y2)

is Liouville and induces the contact form

α = iV ωstd|S3 = λstd|S3 =
1
2
(x1dy1 − y1dx1 + x2dy2 − y2dx2)|S3
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on S3 whose Reeb vector field is

Rα = 2(x1∂y1 − y1∂x1 + x2∂y2 − y2∂x2).

Its Reeb flow is, in complex coordinates, ϕt(z1, z2) = e2πit(z1, z2), whose
orbits are precisely the fibers of the Hopf fibration S3 
 (z1, z2) �→ [z1 :
z2] ∈ CP 1. In particular, this flow is periodic, and all orbits have the
same period.
As a side remark: the Hopf fibration π : S3 → S2 = CP 1 is an example
of what is usually called a prequantization bundle, i.e., the contact form
α is a connection form whose curvature form on the base is symplectic.
In other words, dα = iπ∗ωFS for a symplectic form ωFS on S2, and its
Reeb orbits are the S1-fibers (here, ωFS is the Fubini–Study metric on
CP 1, and the line bundle associated with the principal S1-bundle π is
O(1) → CP 1; see the digression on line bundles below).

• (ellipsoids) Given a, b > 0, define the ellipsoid

E(a, b) =
{

(z1, z2) ∈ C
2 :

π|z1|2
a

+
π|z2|2

b
≤ 1

}

,

a star-shaped domain. The restriction of the symplectic form ωstd is a
symplectic form on E(a, b), and its boundary ∂E(a, b) inherits a contact
form λstd|∂E(a,b) whose Reeb flow is

ϕt(z1, z2) = (e2πiatz1, e
2πibtz2).

In particular, if a, b are rationally independent, then this Reeb flow has
only two periodic orbits, passing through the points z1 = 0, or z2 = 0.
If a = b, E(a, a) is the unit ball, and we recover the Hopf flow along the
standard S3 = ∂E(a, a).

• (Unit cotangent bundle and geodesic flows) Given a manifold Q, choose
a Riemannian metric on TQ (which induces a metric on T ∗Q), and

Figure 1. The fundamental relationship between contact
and symplectic geometry is summarized here
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consider its unit cotangent bundle

S∗Q = {(q, p) ∈ T ∗Q : |p| = 1}.

We have S∗Q = H−1(1/2), where H : T ∗Q → R, H(q, p) = |p|2
2 is the

kinetic energy Hamiltonian. The radial vector field V = p∂p on each
fiber is the Liouville vector field associated with λstd, and is positively
transverse to S∗Q. It follows that αstd := λstd|S∗Q is a contact form,
and (S∗Q, ξstd = ker αstd) is called the standard contact structure on
S∗Q. Its Reeb dynamics is the (co)geodesic flow. We see that a geodesic
flow is a particular case of a Reeb flow.

Symplectization Given a contact form α on X, its symplectization is the
symplectic manifold

(R × X,ω = d(etα)).

The Liouville vector field is V = ∂t, which is positively transverse to all
slices {t} × X, where it induces the contact form iV ω = etα. Note that
the Reeb dynamics is the same in each slice (i.e., it is only rescaled by a
constant positive multiple). In fact, the symplectization is the ”universal
neighbourhood” for every contact-type hypersurface:

Proposition 2.8. Let X ⊂ (M,ω) be a contact-type hypersurface, with ω = dλ
exact near X. Then, we can find sufficiently small ε > 0, and an embedding

Φ : (−ε, ε) × X ↪→ M,

so that Φ∗ω = d(etα) where α = λ|X .

In other words, contact manifolds are always contact-type in some sym-
plectic manifolds, and vice versa. We can summarize this discussion in the
following motto: contact geometry is R-invariant symplectic geometry.

Remark 2.9. One also calls the symplectic manifold (R × X,ω = d(rα)) the
symplectization of α; this is related to the above by the obvious change of
coordinates r = et. We shall use the two interchangeably. Note that X =
{t = 0} = {r = 1}.

Digression: examples of symplectic manifolds from complex algebraic/
Kähler geometry

Example 2.10. • (Projective varieties) The complex projective space CPn

admits a natural symplectic form, called the Fubini–Study form ωFS ,
defined as follows. Let

K : Cn → R

K(z) = log

(

1 +
n∑

i=1

|zi|2
)

.

In homogenous coordinates (ζ0 : · · · : ζn) for CPn, let Uα = {(ζ0 : · · · :
ζn) : ζα �= 0} and

ϕα : Uα → C
n,
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ϕα(ζ0 : · · · : ζn) =
(

ζ0
ζi

, . . . ,
ζi−1

ζi
,
ζi+1

ζi
, . . . ,

ζn

ζi

)

= (zα
1 , . . . , zα

n )

be the standard affine chart around (0 : · · · : 1 : · · · : 0). Let Kα =
K ◦ ϕα, and define

ωα =
√−1∂∂Kα =

n∑

i,j=1

hij(zα)dzα
i ∧ dzα

j .

Here, one computes

hij(zα) =
δij

(
1 +

∑n
i=1 |zα

i |2)− zα
i zα

j

(1 +
∑n

i=1 |zα
i |2)2

.

One checks that on overlaps Uα ∩ Uβ , we have ωα = ωβ , and so, we get
a well-defined global ωFS so that ωFS |Uα

= ωα. The Kα are what is
called a local Kähler potential (or plurisubharmonic function) for the
Fubini–Study form. Every algebraic/analytic projective variety inherits
a symplectic form via restriction of the ambient Fubini–study form.

• (Affine varieties: Stein manifolds) The standard complex affine space Cn

carries the standard symplectic form via the identification C
n = R

2n,
which in complex notation is

ωstd =
√−1

2

n∑

i=1

dzi ∧ dzj =:
√−1

2
dz ∧ dz = −dλstd

with λstd =
√−1
4 (zdz−zdz). This admits the standard plurisubharmonic

function

fstd(z) = |z|2,
i.e., ωstd =

√−1∂∂fstd. This function is exhausting (i.e., {z : f(z) ≤ c}
is compact for every c ∈ R), and is a Morse function (with a unique
critical point at the origin).
By analogy as with the projective case, a Stein manifold X is a properly
embedded complex submanifold of Cn, endowed with the restriction of
the standard symplectic form, the standard complex structure i, and the
standard plurisubharmonic function. One may further assume (after a
small perturbation) that fstd defines a Morse function on X.

The above examples (projective and affine) are all instances of Kähler
manifolds, i.e., the symplectic form is suitably compatible with an integrable
complex structure, and with a Riemannian metric. One way to obtain Stein
manifolds from projective varieties is to remove a collection of generic hy-
perplane sections, i.e., the intersection of the variety with the zero sets of
generic homogeneous polynomials of degree 1. A confusing point is that the
Liouville form (i.e., the primitive of the resulting symplectic form), depends
on the number of sections, as we illustrate as follows in the case of CPn as
the projective variety.

Continued digression: relationship with line bundles, connections, and
Chern–Weil theory First, as a general fact, we recall that the Picard group of
CPn (i.e., the group of isomorphism classes of holomorphic line bundles, with



   29 Page 12 of 78 A. Moreno

tensor product as group operation) is isomorphic to Z, each k ∈ Z correspond-
ing to a line bundle O(k). For k ≥ 0, the holomorphic sections of O(k) are pre-
cisely homogeneous polynomials of degree k on the homogeneous coordinates;
O(k) has no holomorphic sections for k < 0, but admits meromorphic sections
given by Laurent polynomials with poles of total order k. Moreover, the first
Chern class of a line bundle is by definition the Poincaré dual of Z(s), the zero
set of a section s, generic in the sense that it is transverse to the zero section.
The zero set of a generic polynomial of degree k is, by definition, a hypersur-
face of degree k. For very degenerate cases (i.e., when the polynomial factor-
izes into linear polynomials), this consists of a collection of hyperplanes, i.e.,
zero sets of linear polynomials as e.g., H = {ζi = 0}, with total multiplicity k.
One should think of CP 1, where this zero set is simply a collection of points
with total multiplicity k. This translates to the fact that first Chern class of
O(k) is c1(O(k)) = kh ∈ H2(CPn,R), where h is the hyperplane class, the
Poincaré dual to the homology class [H] ∈ H2n−2(CPn,R) of any hyperplane
H, and a generator of the cohomology of CPn. On the other hand, Chern–
Weil theory says that c1 is represented by the curvature 2-form of a connection
on O(k) (e.g., the Chern connection associated with the standard Hermitian
metric). In practice, this means the following: for k ≥ 0, take a holomorphic
section sk ∈ Γ(O(k)), and consider Fk =

√−1∂∂log(|sk|2), which a (1, 1)-
form, defined on Xk := CPn\Z(sk). We further have Fk = −ddClog|sk|2,
where dC is defined via dCα(X) = dα(iX), and so, Fk is exact on Xk. More-
over, it is symplectic on Xk, which becomes a subset of C

n after choosing
affine charts, and is in fact a Stein manifold, where the appropriate Liouville
form for the symplectic form Fk is λk = −dClog|sk|2. In other words, pro-
jective space is obtained from Xk by compactifying with a divisor Z(sk) ”at
infinity”. Thinking of sk as providing a local trivialization of O(k) over Xk,
one checks that different choices of local trivializations give different Fk which
glue together to a global (1, 1)-form which is no longer exact, and actually
its cohomology class is precisely c1(O(k)). Note that by construction, any
standard chart Uα is of the form CPn\Z(s1) ∼= C

n, and ωFS |Uα
= F1, i.e.,

ωFS is the curvature of the Chern connection on O(1) and hence Poincaré
dual to h.

References Good references for Kähler and complex algebraic geometry
are Griffiths–Harris [57], Huybrechts [79], and many others.

2.3. Open book decompositions

Definition 2.11. Let M be a closed manifold. A (concrete) open book decom-
position on M is a fibration π : M\B → S1, where B ⊂ M is a closed,
codimension-2 submanifold with trivial normal bundle. We further assume
that π(b, r, θ) = θ along some collar neighbourhood B×D

2 ⊂ M , where (r, θ)
are polar coordinates on the disk factor.

Note that collar neighbourhoods of B exist, since they are trivializations
of its normal bundle. B is called the binding, and the closure of the fibers
Pθ = π−1(θ) are called the pages, which satisfy ∂Pθ = B for every θ. We
usually denote a concrete open book by the pair (π,B). See Fig. 2.
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Figure 2. A neighbourhood of the binding look precisely
like the pages of an open book, whose front cover has been
glued to its back cover

The above concrete notion also admits an abstract version, as follows.
Given the data of a typical page P (a manifold with boundary B), and a
diffeomorphism ϕ : P → P with ϕ = id in a neighbourhood of B, we can
abstractly construct a manifold

M := OB(P,ϕ) := B × D
2
⋃

∂

Pϕ,

where Pϕ = P × [0, 1]\(x, 0) ∼ (ϕ(x), 1) is the associated mapping torus.
By gluing the obvious fibration Pϕ → S1 with the angular map (b, r, θ) �→ θ
defined on B ×D

2, we see that this abstract notion recovers the concrete one.
Reciprocally, every concrete open book can also be recast in abstract terms,
where the choices are unique up to isotopy. However, while the two notions are
equivalent from a topological perspective, it is important to make distinctions
between the abstract and the concrete versions for instance when studying
dynamical systems adapted to the open books (as we shall do below), since
dynamics is in general very sensitive to isotopies.

Example 2.12. • (trivial open book) Since the relative mapping class group
of D

2 is trivial, the only possible monodromy for an open book with
disk-like pages is S3 = OB(D2,1). Viewing S3 = {(z1, z2) ∈ C

2 :
|z1|2 + |z2|2 = 1}, let B = {z1 = 0} ⊂ S3 be the binding (the un-
knot). The concrete version is e.g. π : S3\B → S1, π(z1, z2) = z1

|z1| . See
Fig. 3.

• (stabilized version) We also have S3 = OB(D∗S1, τ), where τ is the
positive Dehn twist along the zero section S1 of the annulus D

∗S1. A
concrete version is π : S3\L → S1, π(z1, z2) = z1z2

|z1z2| , where L = {z1z2 =
0} is the Hopf link. This is the positive stabilization of the trivial open



   29 Page 14 of 78 A. Moreno

Figure 3. The disk-like pages of the trivial open book in
S3 (above) are obtained by gluing two foliations on two solid
tori; similarly for its stabilized version (below), whose pages
are annuli. Here, we use the genus 1 Heegaard splitting for
S3

book, an operation which does not change the manifold (see below). See
Fig. 3.

• (Milnor fibrations) More generally, let f : C
2 → C be a polynomial

which vanishes at the origin, and has no singularity in S3 except per-
haps the origin. Then, πf : S3\Bf → S1, πf (z1, z2) = f(z1,z2)

|f(z1,z2)| , Bf =
{f(z1, z2) = 0} ∩ S3, is an open book for S3, called the Milnor fibra-
tion of the hypersurface singularity (0, 0). The link Bf is the link of
the singularity, and the binding of the open book, whereas the page is
called the Milnor fiber. If f has no critical point at (0, 0), then Bf is
necessarily the unknot.

• We have S1 × S2 = OB(D∗S1,1). This can be easily seen by removing
the north and south poles of S2 (whose S1-fibers become the binding),
and projecting the resulting manifold D

∗S1 × S1 to the second factor.
• (Some lens spaces) We have RP 3 = OB(D∗S1, τ2), as follows from

taking the quotient of the stabilized open book in S3 via the double
cover S3 → RP 3. More generally, for p ≥ 1, we have L(p, p − 1) =
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OB(D∗S1, τp), and for p ≤ 0, L(p, 1) = OB(D∗S1, τp). Here, L(p, q) =
S3/Zp, is the lens space, where the generator ζ = e

2πi
p ∈ Zp acts via

ζ ·(z1, z2) = (ζ.z1, ζ
q.z2). For p = 0, 1, 2, we recover the above examples.

In general, we have the following important result from smooth topol-
ogy, which says that the open book construction achieves all closed, odd-
dimensional manifolds:

Theorem E. (Alexander (dim = 3), Winkelnkemper (simply connected, dim ≥
7), Lawson (dim ≥ 7), Quinn (dim ≥ 5)). If M is closed and odd-dimensional,
then M admits an open book decomposition.

So far, we have discussed open books in terms of smooth topology. We
now tie it with contact geometry, via the fundamental work of Emmanuel
Giroux, which basically shows that contact manifolds can be studied from
a purely topological perspective. One therefore usually speaks of the field
contact topology, when the object of study is the contact manifold itself (as
opposed, e.g., to a Reeb dynamical system on the contact manifold).

If M is oriented and endowed with an open book decomposition, then
the natural orientation on the circle induces an orientation on the pages,
which in turn induce the boundary orientation on the binding. The funda-
mental notion is the following:

Definition 2.13. (Giroux ) Let (M, ξ) be an oriented contact manifold, and
(π,B) an open book decomposition on M . Then, ξ is supported by the open
book if one can find a positive contact form α for ξ (called a Giroux form),
such that:
(1) αB := α|B is a positive contact form for B;
(2) dα|P is a positive symplectic form on the interior of every page P .

Here, the a priori orientations on binding and pages are the ones described
above. Also, by a positive contact form, we mean a contact form α on M2n−1,
such that the orientation induced by the volume form α ∧ dαn−1 coincides
with the given orientation on M .

The above conditions are equivalent to:
(1)’ Rα|B is tangent to B;
(2)’ Rα is positively transverse to the interior of every page.

In the above situation, (B, ξB = ker αB) is a codimension-2 contact
submanifold, i.e., ξB = ξ|B .

Theorem F. (Giroux [56]) Every open book decomposition supports a unique
isotopy class of contact structures. Any contact structure admits a supporting
open book decomposition.

Here, two contact structures are isotopic if they can be joined by a
smooth path ξt of contact structures. An important result in contact ge-
ometry is Gray’s stability, which says that isotopic contact structures are
contactomorphic, i.e., there exists a diffeomorphism which carries one to the
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other. One may further assume that the pages in the above theorem are
Stein manifolds, as discussed above. One may unequivocally use OB(P,ϕ)
to denote the unique isotopy class of contact structures that this open book
supports.

Giroux’s result is actually much stronger in dimension 3, since it more-
over states that the supporting open book is unique up to a suitable notion
of positive stabilization, which can be thought of as two cancelling surgeries
which therefore smoothly do not change the ambient manifold. This pro-
cedure consists of choosing a properly embedded path l ⊂ P (a stabilizing
arc) inside the surface P , attaching a 1-handle H along the attaching sphere
S0 ∼= ∂l ⊂ ∂P , considering the loop γ obtained by gluing l with the core of
H, and replacing the monodromy ϕ with ϕ◦ τγ , where τγ is the right-handed
Dehn twist along γ. In abstract notation

OB(P,ϕ) � OB(P ∪ H,ϕ ◦ τγ).

The handle attachment on the page can be seen as an index 1 surgery on M ,
whereas composing with the monodromy adds a cancelling index 2 surgery,
so that OB(P,ϕ) ∼= OB(P ∪ H,ϕ ◦ τγ).

Theorem G. (Giroux’s correspondence [56]) If dim(M) = 3, there is a 1:1
correspondence

{contact structures}/isotopy ←→ {open books}/pos. stabilization.

This bijection is why in dimension 3, one talks about Giroux’s corre-
spondence, which reduces the study of contact 3-manifolds to the topological
study of open books. The analogous general uniqueness statement in higher
dimensions is an open question to this day. Let us emphasize that in the
above result, only the contact structure is fixed, and the contact form (and
hence the dynamics) is auxiliary; Giroux’s result is not dynamical, but rather
topological/geometrical.

2.4. Global hypersurfaces of section

From a dynamical point of view, one wishes to adapt the underlying topol-
ogy to the given dynamics, rather than vice versa. We therefore make the
following:

Definition 2.14. Given a flow ϕt : M → M of an autonomous vector field
on an odd-dimensional closed oriented manifold M carrying a concrete open
book decomposition (π,B), we say that the open book is adapted to the
dynamics if:

• B is ϕt-invariant;
• ϕt is positively transverse to the interior of each page;
• for each x ∈ M\B and P a page, then the orbit of x intersects the

interior of P in the future, and in the past, i.e., there exists τ+(x) > 0
and τ−(x) < 0, such that ϕτ±(x)(x) ∈ int(P ).

Note that the third condition actually follows from the second one, since
we require it for every page and these foliate the complement of B. If ϕt is a
Reeb flow, then the above is equivalent to asking that the (given) contact form
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is a Giroux form for the (auxiliary) open book. It follows from the definition
that each page is a global hypersurface of section, defined as follows:

Definition 2.15. (Global hypersurface of section) A global hypersurface of sec-
tion for an autonomous flow ϕt on a manifold M is a codimension-1 subman-
ifold P ⊂ M , whose boundary (if non-empty) is flow-invariant, whose interior
is transverse to the flow, such that the orbit of every point in M\∂P intersects
the interior of P in the future and past.

Poincaré return map Given a global hypersurface of section P for a flow
ϕt, this induces a Poincaré return map, defined as

f : int(P ) → int(P ), f(x) = ϕτ(x)(x),

where τ(x) = min{t > 0 : ϕt(x) ∈ int(P )}. This is clearly a diffeomorphism.
And, by construction, periodic points of f (i.e., points p for which fk(p) = p
for some k ≥ 1) are in 1:1 correspondence with closed spatial orbits (those
which are not fully contained in the binding).

Moreover, in the case of a Reeb dynamics, we have:

Proposition 2.16. If ϕt is the Reeb flow of a contact form α, and P is a global
hypersurface of section with induced return map f , then ω = dα|P = dλ, with
λ = α|P , is a symplectic form on int(P ), and

f : (int(P ), ω) → (int(P ), ω)

is a symplectomorphism, i.e., f∗ω = ω.

In fact, f is an exact symplectomorphism, which means that f∗λ =
λ+dτ for some smooth function τ (i.e., the return time). Differentiating this
equation, we obtain f∗ω = ω. In dimension 2, a symplectic form is just an
area form, and so the above proposition simply says that the return map is
area-preserving.

The proof is quite simple: ω is symplectic precisely because the Reeb
vector field, which spans the kernel of dα, is transverse to the interior of P
(note, however, that it is degenerate at ∂P ). For x ∈ int(P ), v ∈ TxP , we
have

dxf(v) = dxτ(v)Rα(f(x)) + dxϕτ(x)(v).

Using that ϕt satisfies ϕ∗
t α = α, we obtain

(f∗λ)x(v) = αf(x)(dxf(v))

= dxτ(v) + (ϕ∗
τ(x)α)x(v)

= dxτ(v) + λx(v).
(2.1)

Therefore

f∗λ = dτ + λ, (2.2)

which proves the proposition.

Remark 2.17. In general, the return map might not necessarily extend to the
boundary, and indeed, there are many examples on which this does not hold;
this is a delicate issue which usually relies on analyzing the linearized flow
equation along the normal direction to the boundary.
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Figure 4. The geodesic open book for S∗Sn

2.5. Examples of adapted dynamics

Let us discuss two important but simple examples of open books supporting
a Reeb dynamics.

Hopf flow The trivial open book on S3, as well as its stabilized version,
are both adapted to the Hopf flow.

Ellipsoids More generally, the trivial and stabilized open books on S3

are adapted to the Reeb dynamics of every ellipsoid E(a, b). In the trivial
case, the return map on each page is the rotation by angle 2π a

b ; and in the
stabilized case, we get a map of the annulus which rotates the two boundary
components in the same direction (i.e., it is not a twist map).

2.6. Geodesic flow on Sn and the geodesic open book

We write

T ∗Sn =
{
(ξ, η) ∈ T ∗

R
n+1 = R

n+1 ⊕ R
n+1 : ‖ξ‖ = 1, 〈ξ, η〉 = 0

}
.

The Hamiltonian for the geodesic flow is Q = 1
2‖η‖2|T ∗Sn with Hamiltonian

vector field

XQ = η · ∂ξ − ξ · ∂η.

This is the Reeb vector field of the standard Liouville form λstd on the energy
hypersurface Σ = Q−1( 12 ) = S∗Sn. We have the invariant set

B := {(ξ0, . . . , ξn; η0, . . . , ηn) ∈ Σ | ξn = ηn = 0} = S∗Sn−1.

Define the circle-valued map

πg : Σ\B −→ S1, (ξ0, . . . , ξn; η0, . . . , ηn) �−→ ηn + iξn

‖ηn + iξn‖ .

This is a concrete open book on S∗Sn, which we shall refer to as the geo-
desic open book. The page ξn = 0 and ηn > 0, i.e., the fiber over 1 ∈ S1,
corresponds to a higher dimensional version of the famous Birkhoff annulus
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(when n = 2), and is a copy of D
∗Sn−1. Indeed, it consists of those (co)-

vectors whose basepoint lies in the equator, and which point upwards to the
upper hemisphere. See Fig. 4.

We then consider the angular form

ωg = dπg =
ηndξn − ξndηn

ξ2n + η2
n

.

We see that ωg(XQ) = 1 > 0, away from B. This means that (B, πg) is a
supporting open book for Σ and the pages of πg are global hypersurfaces of
section for XQ. In fact, all of its pages are obtained from the Birkhoff annulus
by flowing with the geodesic flow. In terms of the contact structure ξstd =
ker λstd, this open book corresponds to the abstract open book (S∗Sn, ξstd) =
OB(D∗Sn−1, τ2) supporting ξstd. Here, τ : D∗Sn−1 → D

∗Sn−1 is an exact
symplectomorphism defined by Arnold in dimension 4 in [11] and extended
by Seidel to higher dimensions (see, e.g., [115]), and is a generalization of the
classical Dehn twist on the annulus. For n = 2, we reobtain the open book
RP 3 = S∗S2 = OB(D∗S1, τ2).

2.7. Double cover of S∗S2

We focus on n = 2, and consider

S∗S2 = {(ξ, η) ∈ T ∗
R

3 : ‖ξ‖ = ‖η‖ = 1, 〈ξ, η〉 = 0},

the unit cotangent bundle of S2, with canonical projection π0 : S∗S2 → S2,
π0(ξ, η) = ξ. It is easy to see that the map

Φ : S∗S2 → SO(3),
Φ(ξ, η) = (ξ, η, ξ × η)

is a diffeomorphism, where we view ξ, η as column vectors, and so S∗S2 ∼=
SO(3) ∼= RP 3. The projection π0 on SO(3) becomes π0(A) = A(e1), i.e., the
first column of the matrix A ∈ SO(3). We have π1(S∗S2) = Z2, generated
by the S1-fiber. By definition, the double cover of SO(3) is the Spin group
Spin(3), which can be constructed as follows. Consider the quaternions

H = {a + bi + cj + dk : a, b, c, d ∈ R},

with i2 = j2 = k2 = −1, ij = k, jk = i, ki = j. We identify S3 = Sp(1) :=
{q ∈ H : ‖q‖ = 1}, and R

3 = Im(H) = 〈i, j, k〉 the set of purely imaginary
quaternions. The conjugate of q = a + bi + cj + dk is q = a − bi − cj − dk.
We then define

p : S3 → SO(3),
p(q)(v) = qvq,

where v ∈ Im(H) = R
3. We have ‖qvq‖ = ‖q‖2‖v‖ = ‖v‖, and p(q) is seen to

preserve orientation, so indeed p(q) ∈ SO(3). Clearly, p(−q) = p(q), and the
map p is in fact a double cover, so that S3 = Spin(3).

Identifying i with e1, we have π0(p(q)) = p(q)(i) = qiq. A short compu-
tation gives

qiq = (a + bi + cj + dk)∗i(a + bi + cj + dk) = (a2 + b2 − c2 − d2)i
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+2(bc − ad)j + 2(ac + bd)k.

On the other hand, the Hopf map may be defined as the map

π : S3 → S2, π(z1, z2) = (|z1|2 − |z2|2, 2Rez1z2, 2Imz1z2),

where we view S3 = {(z1, z2) ∈ C
2; |z1|2 + |z2|2 = 1} and S2 ⊂ R

3. Writing
q = a + bi + cj + dk = z1 + z2j, i.e. z1 = a + ib, z2 = c + id, one can easily
check that

(|z1|2 − |z2|2, 2Rez1z2, 2Imz1z2) = (a2 + b2 − c2 − d2, 2(bc − ad), 2(ac + bd)).

We have proved the following:

Proposition 2.18. The Hopf fibration is the fiber-wise double cover of the
canonical projection π0, i.e., we have a commutative diagram

S1 S1

S3 = Spin(3) SO(3) = S∗S2

S2 S2

z �→z2

p

π π0

2.8. Magnetic flows and quaternionic symmetry

On this section, we expose the beautiful construction of [8] (to which we
refer the reader for further details here omitted), relating the quaternions
with Reeb flows on S3, as double covers of magnetic flows on S∗S2.

On S2, consider an area form σ (the magnetic field), and the twisted
symplectic form ωσ, defined on T ∗S2 via

ωσ = ωstd − π∗
0σ,

where π0 : T ∗S2 → S2 is the natural projection. Fixing a metric g on S2,
the Hamiltonian flow of the kinetic Hamiltonian H(q, p) = ‖p‖2

2 , computed
with respect to ωσ, is called the magnetic flow of (g, σ). Note that σ = 0
corresponds to the geodesic flow of g. Physically, the magnetic flow models
the motion of a particle on S2 subject to a magnetic field (the terminology
comes from Maxwell’s equations, which can be recast in this language). From
now on, we fix σ to be the standard area form on S2, with total area 4π, and
g the standard metric with constant Gaussian curvature 1.

On S∗S2, we can choose a connection 1-form α satisfying dα = π∗σ,
which is a contact form (usually called a prequantization form). We identify
T ∗S2\S2 with R

+ × S∗S2, and denoting by r ∈ R
+ the radial coordinate,

we have the associated symplectization form d(rα). Consider the S1-family
of symplectic forms

ωθ = cos θ d(rα) + sin θ d(rαstd), θ ∈ R/2πZ,
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defined on R
+ × S∗S2 = T ∗S2\S2, where d(rαstd) = ωstd. The Hamiltonian

flow of the kinetic Hamiltonian H, with respect to ωθ, and along r = 1, is eas-
ily seen to be the magnetic flow of (g,− cot θ·σ) up to constant reparametriza-
tion. In particular, for θ = π/2 mod π, we obtain the geodesic flow, whose
orbits are great circles; for other values of θ, the strength of the magnetic field
increases, and the orbits become circles of smaller radius with an increasing
left drift. For θ = 0 mod π, the circles become points and the flow rotates the
fibers of S∗S2, i.e., this is the magnetic flow with ”infinite” magnetic field.

We now construct the double covers of these magnetic flows on S3, using
the hyperkähler structure on H = R

4 = C
2. We view S3 as the unit sphere

in H. Every unit vector

c = c1i + c2j + c2k ∈ S2 ⊂ R
3

may be viewed as a complex structure on H, i.e., c2 = −1. Denoting the
radial coordinate on R

4 by r, we obtain an S2-family of contact forms on S3

given by

αc = −2dr ◦ c|TS2 , c ∈ S2.

The Reeb vector field of αc is Rc = 1
2c∂r. Note that αi is the standard contact

form on S3, whose Reeb orbits are the Hopf fibers.
We then consider the quaternionic action of S3 on itself, given by

la : S3 → S3

u �→ au,

for a ∈ S3. Recall that we also have the action of S3 on S2 via the SO(3)-
action of the previous section, i.e., a · c = p(a)(c) = aca ∈ S2, for a ∈ S3,
c ∈ S2, and p : S3 → SO(3) the spin group double cover. One checks directly
that (la)∗αc = αaca = αa·c. In particular, (la)∗αi = απ(a), where π is the
Hopf fibration.

On the other hand, the stabilizer of i ∈ S2 under the S3-action is the
circle

Stab(i) = {cos(ϕ) + i sin(ϕ) : ϕ ∈ S1} ∼= S1 ⊂ S3.

The action of an element in this subgroup on S3 then fixes αi, but reparametrizes
its Reeb orbits, i.e., rotates the Hopf fibers. We then consider an S1-subgroup
{aθ} ⊂ S3 of unit quaternions which are transverse to this stabilizer, inter-
secting it only at the identity, given by

aθ = cos(θ/2) + k sin(θ/2), θ ∈ [0, π]

for which

π(aθ) = aθiaθ = i cos θ + j sin θ.

Define

αθ := απ(aθ) = cos θ αi + sin θ αj ,

with Reeb vector field Rθ := Rπ(aθ). One further checks that

αθ = p∗(cos θ α + sin θ αstd),
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Figure 5. The binding of the magnetic open book pθ (in
red), consisting of two circles of latitude θ and π − θ, doubly
covered by two Reeb orbits of αθ. At θ = π, the action of aπ

maps the Hopf fiber over a point to the Hopf fiber over its
antipodal (cf. [8, Fig. 1])

and so

ω̃θ := dαθ = p∗ωθ|S∗S2

is the double cover of the twisted symplectic form ωθ along the unit cotangent
bundle (alternatively, we can also think of ω̃θ as being defined on R

4\{0} =
R

+ × S3 as the symplectization of αθ). We have obtained:

Theorem H. [8] There are contact forms αi, αj and an S1-action on S3, send-
ing αi to contact forms αθ = cos θ αi + sin θ αj, θ ∈ S1, such that the Reeb
flow of αθ doubly covers the magnetic flow of ωθ.

Remark 2.19. Note that for θ = 0, corresponding to the infinite magnetic
flow, this reduces to the statement of Proposition 2.18. For θ = π/2, this says
that we can lift the geodesic flow on S2 to (a rotated version of) the Hopf
flow. Of course, this statement depends on choices; we could have arranged
that the lift is precisely the Hopf flow by changing our choice of coordinates.

2.9. The magnetic open book decompositions

We now tie the previous discussion with open book decompositions. We have
seen that the geodesic open book on S∗S2 is constructed in such a way
that it is adapted to the geodesic flow of the round metric. On the other
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hand, by considering the action on S3 of the subgroup {aθ} ⊂ S3 of the
previous section, we obtain an S1-family {pθ : S3\aθ(L) → S1} of open book
decompositions on S3 (here, L is the Hopf link). These are, respectively,
adapted to the Reeb dynamics of αθ, and start from the stabilized open book
p0 on S3 (adapted to αi by the example discussed above); they are all just
rotations of each other.

Note that Proposition 2.18, the push-forward of p0 under the Hopf map,
i.e. p0 := π∗(p0) = p0 ◦ π−1 : S∗S2\B0 → S1 where B0 is the disjoint union
of the unit cotangent fibers over the north and south poles N,S in S2 (i.e.,
the image of the Hopf link under π), is adapted to the infinite magnetic flow.
The pages are cylinders obtained as follows: S∗S2\B0

∼= ((−1, 1) × S1) × S1

is a trivial bundle over S2\{N,S} ∼= (−1, 1) × S1 (the Euler class of S∗S2 is
−2), and p0 is the trivial fibration.

The push-forward pθ = π∗(pθ) : S∗S2\Bθ → S1 is then an open book
decomposition on S∗S2, which coincides with the geodesic open book at
θ = π. The binding Bθ consists of two magnetic geodesics for ωθ; see Fig. 5.
We call any element of the family {pθ}, a magnetic open book decomposition.

Digression: open books and Heegaard splittings A 3-dimensional genus
g (orientable) handlebody Hg is the 3-manifold with boundary resulting by
taking the boundary connected sum of g copies of the solid 2-torus S1 × D

2

(here, we set H0 = B3 the 3-ball). Hg can also be obtained by attaching
a sequence of g 1-handles to B3. Its boundary is Σg, the orientable surface
of genus g. A Heegaard splitting of genus g of a closed 3-manifold X is a
decomposition

X = Hg

⋃

f

H ′
g,

where f : Σg = ∂Hg → Σg = ∂H ′
g is a homeomorphism of the boundary

of two copies of Hg. The surface Σg is called the splitting surface. Different
choices of f in the mapping class group of Σg give, in general, different 3-
manifolds. In fact, it is a fundamental theorem of 3-dimensional topology that
every closed 3-manifold admits a Heegaard splitting. We have also touched
upon another structural result for 3-manifolds: namely, that every closed 3-
manifold admits an open book decomposition. Let us then discuss how to
induce a Heegaard splitting from an open book.

Starting from a concrete open book decomposition M\B → S1 = R/Z
of abstract type M = OB(P,ϕ), we obtain a Heegaard splitting via

Hg = π−1([0, 1/2]) ∪ B, H ′
g = π−1([1/2, 1]) ∪ B,

where the splitting surface Σg = P0 ∪B P1/2 is the double of the page P0 =
π−1(0), obtained by gluing P0 to its ”opposite” P1/2 = π−1(1/2). The gluing
map f is simply given by ϕ on P0, and the identity on P1/2. Stabilizing the
open book translates into a stabilization of the Heegaard splitting.

This shows that the Heegaard diagram thus induced is rather special,
since the gluing map is trivial on ”half” of the splitting surface. In fact, not
every Heegaard splitting arises this way, as is easy to see (e.g., the lens spaces
are precisely the 3-manifolds with Heegaard splittings of genus 1, but only the
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Figure 6. The Lefschetz fibration LF(P, τpτq) over D
2

lens spaces discussed in Example 2.12 arise from an open book with annulus
page, since its relative mapping class group is generated by the Dehn twist).

Digression: open books and Lefschetz fibrations/pencils We now explore
some further interplay between symplectic and algebraic geometry.

Definition 2.20. (Lefschetz fibration) Let M be a compact, connected, ori-
ented, smooth 4-manifold with boundary. A Lefschetz fibration on M is a
smooth map π : M → S, where S is a compact, connected, oriented sur-
face with boundary, such that each critical point p of π lies in the interior
of M and has a local complex coordinate chart (z1, z2) ∈ C

2 centered at p
(and compatible with the orientation of M), together with a local complex
coordinate z near π(p), such that π(z1, z2) = z21 + z22 in this chart.

In other words, each critical point has a local (complex) Morse chart,
and is therefore non-degenerate. We then have finitely many critical points
due to compactness of M . One may also (up to perturbation of π) assume
that there is a single critical point on each fiber of π. The regular fibers are
connected oriented surfaces with boundary, whereas the singular fibers are
immersed oriented surfaces with a transverse self-intersection (or node). This
singularity is obtained from nearby fibers by pinching a closed curve (the
vanishing cycle) to a point. See Fig. 6.

The boundary of a Lefschetz fibration splits into two pieces

∂M = ∂hM ∪ ∂vM,



Contact geometry in the restricted three-body problem Page 25 of 78    29 

where

∂hM =
⋃

b∈S

∂π−1(b), ∂vM = π−1(∂S).

By construction, ∂hM is a circle fibration over S, and ∂vM is a surface
fibration over ∂S. If we focus on the case S = D

2, the two-disk, denoting the
regular fiber P and B = ∂P , we necessarily have that ∂hM is trivial as a
fibration, and ∂vM is the mapping torus Pφ of some monodromy φ : P → P .
Therefore

∂M = ∂hM ∪ ∂vM = B × D
2
⋃

Pφ = OB(P, φ).

Now, the monodromy φ is not arbitrary, since orientations here play a crucial
role (Fig. 7). While every element in the symplectic mapping class group of a
surface is a product of powers of Dehn twists along some simple closed loops,
it turns out that φ is necessarily a product of positive powers of Dehn twists
(once orientations are all fixed). In fact, φ =

∏
p∈crit(π) τp, where τp = τVp

is
the positive (or right-handed) Dehn twist along the corresponding vanishing
cycle Vp

∼= S1 ⊂ P . This can be algebraically encoded via the monodromy
representation

ρ : π1(D2\critv(π)) → MCG(P, ∂P ),

where critv(π) = {x1, . . . , xn}, xi = π(pi), is the finite set of critical values
of π. We have

π1(D2\{x1, . . . , xn}) =

〈

g∂ , g1, . . . , gn : g∂ =
n∏

i=1

gi

〉

,

where gi is a small loop around xi and g∂ = ∂D2, and ρ is defined via
ρ(gi) = τVpi

.
Reciprocally, a 4-dimensional Lefschetz fibration on M over D

2 is ab-
stractly determined by the data of the regular fiber P (a surface with non-
empty boundary) and a collection of simple closed loops V1, . . . , Vn ⊂ P . This
determines a monodromy φ =

∏n
i=1 τVi

, a product of positive Dehn twists
along the vanishing cycles Vi. The recipe to construct M works as follows: de-
compose P = D

2
⋃

H1∪· · ·∪Hk into a handle decomposition with a single 0-
handle D

2 and a collection of 2-dimensional 1-handles H1, . . . , Hk
∼= D

1 ×D
1.

One starts with the trivial Lefschetz fibration M0 = D
2 ×D

2 → D
2 with disk

fiber, and then, one attaches (thickened) 4-dimensional 1-handles Hi × D
2

to M0 to obtain the trivial Lefschetz fibration M1 = P × D
2 → D

2 with
fiber P . To add the singularities, one attaches one 4-dimensional 2-handle
H = D

2 × D
2 along Vi ⊂ P × {1} ⊂ ∂M1, viewed as the attaching sphere

Vi = S1 × {0} ⊂ S1 × D
2 ⊂ ∂H. At each step of the 2-handle attach-

ments, we obtain a fibration with monodromy representation ρi extending
ρi−1 and satisfying ρi(gi) = τVi

, starting from the trivial representation
ρ0 = 1 : π1(D2) = {1} → MCG(P, ∂P ). We denote the resulting mani-
fold as M = LF(P, φ), for which we have a handle description with handles
of index 0, 1, 2.
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Figure 7. The local model for a Lefschetz singularity

Remark 2.21. The notation LF(P, φ), although simple, is a bit misleading:
we need to remember the factorization of φ, since different factorizations
lead in general to different smooth 4-manifolds. One should perhaps use
LF(P ;V1, . . . , Vn) instead, although we hope that this will not lead to con-
fusion.

Having said that, we summarize this discussion in the following:

Lemma 2.22. (Relationship between Lefschetz fibrations and open books)
We have

∂LF(P, φ) = OB(P, φ),

for φ =
∏n

i=1 τVi
a product of positive Dehn twists along a collection of van-

ishing cycles V1, . . . , Vn in P .

While so far this has been a discussion in the smooth category, one
may upgrade this to the symplectic/contact category. While we have seen
that open books support contact structures in the sense of Giroux, Lefschetz
fibrations also support symplectic structures. This is encoded in the following:

Definition 2.23. (Symplectic Lefschetz fibrations) An (exact) symplectic Lef-
schetz fibration on an exact symplectic 4-manifold (M,ω = dλ) is a Lefschetz
fibration π for which the vertical and horizontal boundary are convex, and
the fibers π−1(b) are symplectic with respect to ω, also with convex boundary.

Here, convexity means that the Liouville vector field is outwards point-
ing. Note that, by Stokes’s theorem and exactness of ω, a symplectic Lef-
schetz fibration cannot have contractible vanishing cycles, since otherwise



Contact geometry in the restricted three-body problem Page 27 of 78    29 

there would be a non-constant symplectic sphere in a fiber. The description
of Lefschetz fibrations in terms of handle attachments can also be upgraded to
the sympectic category via the notion of a Weinstein handle. After smooth-
ing out the corner ∂hM ∩ ∂vM , the boundary ∂M becomes contact-type via
α = λ|∂M , and the contact structure ξ = ker α is supported by the open book
at the boundary. The contact manifold (∂M, ξ) is said to be symplectically
filled by (M,ω) (see the discussion below on symplectic fillings of contact
manifolds).

Since the space of symplectic forms on a two-manifold is convex and
hence contractible, one can show that, given the Lefschetz fibration LF(P, φ),
an adapted symplectic form (i.e., as in the definition above) exists and is
unique up to symplectic deformation. Therefore, similarly as in Giroux’s cor-
respondence, one can talk about LF(P, φ) as a symplectomorphism class of
symplectic manifolds.

Example 2.24. An example which is relevant for the spatial CR3BP is that
of T ∗S2. We consider the Brieskorn variety

Vε =

⎧
⎨

⎩
(z0, . . . , zn) ∈ C

n+1 :
n∑

j=0

z2j = ε

⎫
⎬

⎭
,

and the associated Brieskorn manifold Σε = Vε ∩ S2n+1. If ε = 0, V0 has an
isolated singularity at the origin, and Σ0 is called the link of the singularity.
For ε �= 0, the domain V cpt

ε = Vε∩B2n+2 is a smooth manifold, with boundary
Σε

∼= Σ0; the manifold Vε also inherits a symplectic form by restriction of ωstd

on C
n+1. Similarly, Σε inherits a contact form by restriction of the standard

contact form αstd = i
∑

j zjdzj − zjdzj . In fact, Vε is a Stein manifold, and
V cpt

ε is a Stein filling of Σε; see the discussion on Stein manifolds above and
fillings below.

A standard fact is the following: the map

(V1, ωstd) → (T ∗Sn ⊂ T ∗
R

n+1, ωcan), z = q + ip �→ (‖q‖−1q, ‖q‖p)

is a symplectomorphism, which restricts to a contactomorphism

(Σ0, αstd) → (S∗Sn ⊂ T ∗
R

n+1, λcan).

The standard Lefschetz fibration on T ∗Sn can be obtained from the
Brieskorn variety model as

V1 → C, (z0, . . . , zn) �→ z0.

This induces the geodesic open book on S∗Sn at the boundary, given by the
same formula.

The above map induces the Lefschetz fibration T ∗S2 = LF(T ∗S1, τ2),
where τ is the Dehn twist along the vanishing cycle S1 ⊂ T ∗S1, the zero
section. We conclude again that S∗S2 = RP 3 = OB(D∗S1, τ2). See Fig. 8.

To tie the above discussion with classical algebraic geometry, we intro-
duce the following notion (in the closed case):
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Figure 8. The standard Lefschetz fibration on D
∗S2 =

LF(D∗S1, τ2), where τ is the Dehn twist along the zero sec-
tion S1 ⊂ D

∗S1. In the picture above, we draw T ∗S2, and
the fibers on D

∗S2 are obtained by projecting along the Li-
ouville direction. These are drawn in the picture below. The
two critical points induce the monodromy τ2. We call the
equators transversed in both directions the direct/retrograde
(circular) orbits, for reasons that will become apparent
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Figure 9. A cartoon of a pencil of cubics, where L consists
of 9 points, and each fiber has genus 1

Definition 2.25. (Lefschetz pencil) Let M be a closed, connected, oriented,
smooth 4-manifold. A Lefschetz pencil on M is a Lefschetz fibration π :
M\L → CP 1, where L ⊂ M is a finite collection of points, such that near
each base point p ∈ L there exists a complex coordinate chart (z1, z2) in
which π looks like the Hopf map π(z1, z2) = [z1 : z2].

Lefschetz pencils arise naturally in the study of projective varieties, and
linear systems of line bundles over them (Fig. 9). The basic construction is the
following: Consider two distinct homogeneous polynomials F (x, y, z), G(x, y, z)
of degree d in projective coordinates [x : y : z] ∈ CP 2 (i.e., sections of the
holomorphic line bundle O(d)), generic in the sense that V (F ) = {F = 0}
and V (G) = {G = 0} are smooth degree d curves, of genus g = (d−1)(d−2)

2
by the genus-degree formula, and so that the base locus V (F ) ∩ V (G) = L
consists of a collection of d2 distinct points (by Bézout’s theorem). Consider
the degree d pencil {C[λ:μ]}[λ:μ]∈CP 1 , where

C[λ:μ] = V (λF + μG) ⊂ CP 2.

Through any point in CP 2\L, there is a unique C[λ:μ] which contains it. We
then have a Lefschetz pencil

π : CP 2\L → CP 1,

where π([x : y : z]) = [λ : μ] if C[λ:μ] is the unique degree d curve in the
family passing through [x : y : z].
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By construction, every curve in the pencil meets at the d2 points in
L. One can further perform a complex blow-up along each of these points,
by adding an exceptional divisor (a copy of CP 1) of all possible incoming
directions at a given point, and the result is a Lefschetz fibration

BlLπ : BlLCP 2 → CP 1.

By construction, this Lefschetz fibration has plenty of spheres, i.e., the ex-
ceptional divisors, which are sections of the fibration.

The above construction also extends to the case of closed 4-dimensional
projective varieties in some ambient projective space. Moreover, as we have
already mentioned, projective varieties are Kähler, and in particular sym-
plectic. It is a very deep fact that the above construction extends beyond the
algebraic case to the general case of all closed symplectic 4-manifolds:

Theorem I. (Donaldson [34]) Any closed symplectic 4-manifold (M,ω) ad-
mits Lefschetz pencils with symplectic fibers. In fact, if [ω] ∈ H2(M ;Z) is
integral, the fibers are Poincaré dual to k[ω] for some sufficiently large k � 0.

The above implies that techniques from algebraic geometry can also be
applied in the symplectic category, and the interplay is very rich. From the
above discussion, after blowing up a finite number of points on the given
closed symplectic 4-manifold (M,ω), we obtain a Lefschetz fibration.

Digression: symplectic cobordisms and fillings We have already seen the
fundamental relationship between contact and symplectic geometry. We now
touch upon this a bit further.

Definition 2.26. (Symplectic cobordism) A (strong) symplectic cobordism
from a closed contact manifold (X−, ξ−) to a closed contact manifold (X+, ξ−)
is a compact symplectic manifold (M,ω) satisfying:

• ∂M = X+

⊔
X−;

• ω = dλ± is exact near X±, and the (local) Liouville vector field V±
(defined via iV±ω = λ±) is inwards pointing along X− and outwards
pointing along X+;

• ker λ±|X± = ξ±.

If ω = dλ is globally exact and the Liouville vector field is outwards/
inwards pointing along X±, we say that (M,ω) is a Liouville cobordism.
The boundary component X+ is called convex or positive, and X−, concave
or negative. Note that a symplectic cobordism is directed ; in general, there
might be such a cobordism from X− to X+ but not vice versa. In fact, the
relation (X−, ξ−) � (X+, ξ+) whenever there exists a symplectic cobordism
as above, is reflexive, transitive, but not symmetric. We remark that the
opposite convention on the choice of to and from is also used in the literature.

Definition 2.27. (Symplectic filling/Liouville domain) A (strong, Liouville)
symplectic filling of a contact manifold (X, ξ) is a (strong, Liouville) compact
symplectic cobordism from the empty set to (X, ξ). A Liouville filling is also
called a Liouville domain.
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The Liouville manifold associated with a Liouville domain (M,ω) is its
Liouville completion, obtained by attaching a cylindrical end

(M̂, ω̂ = dλ̂) = (M,ω = dλ) ∪∂M ([1,+∞) × ∂M, d(rα)),

where α = λ|∂M is the contact form at the boundary. Liouville manifolds are
therefore “convex at infinity”.

It is a fundamental question of contact topology whether a contact man-
ifold is fillable or not, and, if so, how many fillings it admits (say, up to sym-
plectomorphism, diffeomorphism, homeomorphism, homotopy equivalence, s-
cobordism, h-cobordism,. . . ). Note that, given a filling, one may choose to
perform a symplectic blow-up in the interior, which does not change the
boundary but changes the symplectic manifold; to remove this trivial ambi-
guity, one usually considers symplectically aspherical fillings, i.e., symplectic
manifolds (M,ω) for which [ω]|π2(M) = 0 (this holds if, e.g., ω is exact, as
the case of a Liouville filling).

For example, the standard sphere (S2n−1, ξstd) admits the unit ball
(B2n, ωstd) as a Liouville filling. A fundamental theorem of Gromov [59, p.
311] says that this is unique (strong, symplectically aspherical=:ssa) filling up
to symplectomorphism in dimension 4; this is known up to diffeomorphism in
higher dimensions by a result of Eliashberg–Floer–McDuff [94], but unknown
up to symplectomorphism. This was generalized to the case of subcritically
Stein fillable contact manifolds in [14]. Another example is a unit cotangent
bundle (S∗Q, ξstd), which admits the standard Liouville filling (D∗Q,ωstd).
There are known examples of manifolds Q with (S∗Q, ξstd) admitting only
one ssa filling up to symplectomorphism (e.g., Q = T

2, [126]; if n ≥ 3 and
Q = T

n, this also holds up to diffeomorphism [21,51]), but there are other
examples with non-unique ssa fillings which are not blowups of each other
(e.g., Q = Sn, n ≥ 3 [107]). See also [87,88,117]. The literature on fillings is
vast (especially in dimension 3) and this list is by all means non-exhaustive.

Remark 2.28. There are also other notions of symplectic fillability: weak,
Stein, Weinstein . . . which we will not touch upon. The set of contact mani-
folds admitting a filling of every such type is related via the following inclu-
sions:

{Stein} ⊂ {Weinstein} ⊂ {Liouville} ⊂ {strong} ⊂ {weak}.

The first inclusion is an equality by a deep result of Eliashberg [27]. All others
are strict inclusions, something that has been in known in dimension 3 for
some time [19,35,52], but has been fully settled in higher dimensions only
very recently [20,21,93,128].

A very broad class for which very strong uniqueness results hold is the
following. We say that a contact 3-manifold (X, ξ) is planar if ξ is supported
(in the sense of Giroux) by an open book whose page has genus zero.

Theorem J. (Wendl [126]) Assume that (M,ω) is a strong symplectic fill-
ing of a planar contact 3-manifold (X, ξ), and fix a supporting open book of
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genus zero pages, i.e., M = OB(P, φ) with g(P ) = 0. Then, (M,ω) is sym-
plectomorphic to a (symplectic) blow-up of the symplectic Lefschetz fibration
LF(P, φ).

If we assume that the strong filling is minimal, in the sense that it does
not have symplectic spheres of self-intersection −1 (i.e. exceptional divisors),
such a filling is then uniquely determined. It follows as a corollary that a
planar contact manifold is strongly fillable if and only if every supporting
planar open book has monodromy isotopic to a product of positive Dehn
twists. This reduces the study of strong fillings of a planar contact 3-manifolds
to the study of factorizations of a given monodromy into product of positive
Dehn twists, a problem of geometric group theory in the mapping class group
of a genus zero surface.

References A good introductory textbook to contact topology is Geiges’
book [49]; see also [50] by the same author for a very nice survey on the his-
tory of contact geometry and topology, including connections to the work of
Sophus Lie on differential equations (which gave rise to the contact condi-
tion), Huygens’ principle on optics, and the formulation of classical thermo-
dynamics in terms of contact geometry. For an introduction to symplectic
topology, McDuff–Salamon [95] is a must-read. Anna Cannas da Silva [23] is
also a very good source, touching on Kähler geometry as well as toric geom-
etry, relevant for the classical theory of integrable systems. For open books
and Giroux’s correspondence in dimension 3, Etnyre’s notes [36] is a good
place to learn. For open books in complex singularity theory (i.e., Milnor
fibrations), the classical book by Milnor [97] is a gem. For related reading
on Brieskorn manifolds in contact topology, Lefschetz fibrations, and further
material, Kwon–van Koert [86] is a great survey. Another good source for
symplectic geometry in dimension 4, Lefschetz pencils, and its relationship
to holomorphic curves and rational/ruled surfaces is Wendl’s recent book
[127].

3. The three-body problem

After paving the way, we now discuss a very old conundrum. The setup of the
classical 3-body problem consists of three bodies in R

3, subject to the gravi-
tational interactions between them, which are governed by Newton’s laws of
motion. Given initial positions and velocities, the problem consists in pre-
dicting the future positions and velocities of the bodies. The understanding
of the resulting dynamical system is quite a challenge, and an outstanding
open problem.

We consider three bodies: earth (E), moon (M), and satellite (S), with
masses mE ,mM ,mS . We have the following special cases:

• (restricted) mS = 0 (the satellite is negligible wrt the primaries E and
M);

• (circular) Each primary moves in a circle, centered around the common
center of mass of the two (as opposed to general ellipses);

• (planar) S moves in the plane containing the primaries;
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• (spatial) The planar assumption is dropped, and S is allowed to move
in three-space.

The restricted problem then consists in understanding the dynamics of
the trajectories of the Satellite, whose motion is affected by the primaries,
but not vice versa. For simplicity, we will use the acronym CR3BP=circular
restricted three-body problem. We denote the mass ratio by μ = mM

mE+mM
∈

[0, 1], and we normalize, so that mE + mM = 1, and so, μ = mM .
In a suitable inertial plane spanned by the E and M , the position of

the Earth becomes E(t) = (μ cos(t), μ sin(t)), and the position of the Moon
is M(t) = (−(1−μ) cos(t),−(1+μ) sin(t)). The time-dependent Hamiltonian
whose Hamiltonian dynamics we wish to study is then

Ht : R3\{E(t),M(t)} → R

Ht(q, p) =
1
2
‖p‖2 − μ

‖q − M(t)‖ − 1 − μ

‖q − E(t)‖ ,

i.e., the sum of the kinetic energy plus the two Coulomb potentials associated
to each primary. Note that this Hamiltonian is time-dependent. To remedy
this, we choose rotating coordinates, in which both primaries are at rest; the
price to pay is the appearance of angular momentum term in the Hamiltonian
which represents the centrifugal and Coriolis forces in the rotating frame.
Namely, we undo the rotation of the frame, and assume that the positions
of Earth and Moon are E = (μ, 0, 0), M = (−1 + μ, 0, 0). After this (time-
dependent) change of coordinates, which is just the Hamiltonian flow of L =
p1q2 − p2q1, the Hamiltonian becomes

H : R3\{E,M} × R
3 → R

H(q, p) =
1
2
‖p‖2 − μ

‖q − M‖ − 1 − μ

‖q − E‖ + p1q2 − p2q1,

and in particular is autonomous. By preservation of energy, this means that
it is a preserved quantity of the Hamiltonian motion. The planar problem is
the subset {p3 = q3 = 0}, which is clearly invariant under the Hamiltonian
dynamics.

There are precisely five critical points of H, called the Lagrangian points
Li, i = 1, . . . , 5, ordered, so that H(L1) < H(L2) < H(L3) < H(L4) = H(L5)
(in the case μ < 1/2; if μ = 1/2, we further have H(L2) = H(L3)). L1, L2, L3,
all saddle points, lie in the axis between Earth and Moon (they are the
collinear Lagrangian points). L1 lies between the latter, while L2 on the
opposite side of the Moon, and L3 on the opposite side of the Earth. The
others, L4, L5, are maxima, and are called the triangular Lagrangian points.
For c ∈ R, consider the energy hypersurface Σc = H−1(c). If

π : R3\{E,M} × R
3 → R

3\{E,M}, π(q, p) = q,

is the projection onto the position coordinate, we define the Hill’s region of
energy c as

Kc = π(Σc) ∈ R
3\{E,M}.
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Figure 10. The low-energy Hill regions

This is the region in space where the satellite of energy c is allowed to move.
If c < H(L1) lies below the first critical energy value, then Kc has three
connected components: a bounded one around the Earth, another bounded
one around the Moon, and an unbounded one. Namely, if the Satellite starts
near one of the primaries, and has low energy, then it stays near the primary
also in the future. The unbounded region corresponds to asteroids which stay
away from the primaries. Denote the first two components by KE

c and KM
c ,

as well as ΣE
c = π−1(KE

c ) ∩ Σc, ΣM
c = π−1(KM

c ) ∩ Σc, the components of the
corresponding energy hypersurface over the bounded components of the Hill
region. As c crosses the first critical energy value, the two connected compo-
nents KE

c and KM
c get glued to each other into a new connected component

KE,M
c , which topologically is their connected sum. Then, the Satellite in prin-

ciple has enough energy to transfer between Earth and Moon. In terms of
Morse theory, crossing critical values corresponds precisely to attaching han-
dles, so similar handle attachments occur as we sweep through the energy
values until the Hill region becomes all of position space. See Fig. 10.

4. Moser regularization

The 5-dimensional energy hypersurfaces are non-compact, due to collisions
of the massless body S with one of the primaries, i.e., when if q = M or
q = E. Note that the Hamiltonian becomes singular at collisions because of
the Coulomb potentials, and conservation of energy implies that the momenta
necessarily explodes whenever S collides (i.e., p = ∞). Fortunately, there are
ways to regularize the dynamics even after collision. Intuitively, the effect is:
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whenever S collides with a primary, it bounces back to where it came from,
and hence, we continue the dynamics beyond the catastrophe. More formally,
one is looking for a compactification of the energy hypersurface, which may be
viewed as the level set of a new Hamiltonian on another symplectic manifold,
in such a way that the Hamiltonian dynamics of the compact, regularized
level set is a reparametrization of the original one (time is forgotten under
regularization).

Two body collisions can be regularized via Moser’s recipe. This con-
sists in interchanging position and momenta, and compactifying by adding
a point at infinity corresponding to collisions (where the velocity explodes).
The bounded components ΣE

c and ΣM
c [for c < H(L1)), as well as ΣE,M

c (for
c ∈ (H(L1),H(L1) + ε)], are thus compactified to compact manifolds Σ

E

c ,
Σ

M

c , and Σ
E,M

c . The first two are diffeomorphic to S∗S3 = S3 × S2, and
should be thought of as level sets in (two different copies of) (T ∗S3, ωstd) of
a suitable regularized Hamiltonian Q : T ∗S3 → R. The fiber of the level sets
Σ

E

c , Σ
M

c over (a momenta) p ∈ S3 is a 2-sphere allowed positions q to have
fixed energy. If p = ∞ is the North pole, the fiber, called the collision locus,
is the result of a real blow-up at a primary, i.e., we add all possible ”infinites-
imal” positions nearby (which one may think of as all unit directions in the
tangent space of the primary) (Fig. 11). On the other hand, Σ

E

c is a copy of
S∗S3#S∗S3, which can be understood in terms of handle attachments along
a critical point of index 1. In the planar problem, the situation is similar: we
obtain copies of S∗S2 = RP 3 and RP 3#RP 3.

In terms of formulas, this can be done as follows.

4.1. Stark–Zeeman systems

We will only do the subcritical case c < H(L1). By restricting the Hamilton-
ian to the Earth or Moon component, we can view the three-body problem as
a Stark–Zeeman system, which is a more general class of mechanical systems.

To define such systems in general, consider a twisted symplectic form

ω = d�p ∧ d�q + π∗σB,

with σB = 1
2

∑
Bijdqi ∧ dqj a 2-form on the position variables (a magnetic

term, which physically represents the presence of an electromagnetic field,
as in Maxwell’s equations), and π(q, p) = q the projection to the base. A
Stark–Zeeman system for such a symplectic form is a Hamiltonian of the
form

H(�q, �p) =
1
2
‖�p‖2 + V0(�q) + V1(�q),

where V0(�q) = − g
‖ �q‖ for some positive coupling constant g, and V1 is an extra

potential.1

We will make two further assumptions.

1In this section, we will use the symbol� for vectors in R3 to make our formulas for Moser

regularization simpler. We will use the convention that ξ ∈ R4 has the form (ξ0, �ξ).
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Figure 11. In Moser regularization near the Earth, we add
a Legendrian sphere of collisions at the North pole (for fixed
energy). The planar problem, which also contains collisions,
is an invariant subset

Assumption. (A1) We assume that the magnetic field is exact with primitive
1-form �A. Then, with respect to d�p ∧ d�q, we can write

H(�q, �p) =
1
2
‖�p + �A(�q)‖2 + V0(�q) + V1(�q).

(A2) We assume that �A(�q) = (A1(q1, q2), A2(q1, q2), 0), and that the potential
satisfies that symmetry V1(q1, q2,−q3) = V1(q1, q2, q3).

Observe that these assumptions imply that the planar problem, defined
as the subset {(�q, �p) : q3 = p3 = 0}, is an invariant set of the Hamiltonian
flow. Indeed, we have

q̇3 =
∂H

∂p3
= p3, and ṗ3 = −∂H

∂q3
= − gq3

‖�q‖3 − ∂V1

∂q3
. (4.1)

Both these terms vanish on the subset q3 = p3 = 0 by noting that the
symmetry implies that ∂V1

∂q3
|q3=0 = 0.

For non-vanishing g, Stark–Zeeman systems have a singularity corre-
sponding to two-body collisions, which we will regularize by Moser regu-
larization. To do so, we will define a new Hamiltonian Q on T ∗S3 whose
dynamics correspond to a reparametrization of the dynamics of H. We will
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describe the scheme for energy levels H = c, which we need to fix a priori
(i.e., the regularization is not in principle for all level sets at once). Define
the intermediate Hamiltonian

K(�q, �p) := (H(�q, �p) − c)‖�q‖.

For �q �= 0, this function is smooth, and its Hamiltonian vector field equals

XK = ‖�q‖ · XH + (H − c)X‖ �q‖.

We observe that XK is a multiple of XH on the level set K = 0. Writing out
K gives

K =
(

1
2
(‖�p‖2 + 1) − (c + 1/2) + 〈�p, �A〉 +

1
2
‖ �A‖2 + V1(�q)

)

‖�q‖ − g.

Stereographic projection We now substitute with the stereographic co-
ordinates. The basic idea is to switch the role of momentum and position
in the �q, �p-coordinates, and use the �p-coordinates as position coordinates in
T ∗

R
n (for any n), where we think of Rn as a chart for Sn. We set

�x = −�p, �y = �q.
We view T ∗Sn as a symplectic submanifold of T ∗

R
n+1, via

T ∗Sn = {(ξ, η) ∈ T ∗
R

n+1| ‖ξ‖2 = 1, 〈ξ, η〉 = 0}.

Let N = (1, 0, . . . , 0) ∈ Sn be the north pole. To go from T ∗Sn\T ∗
NSn to

T ∗
R

n, we use the stereographic projection, given by

�x =
�ξ

1 − ξ0

�y = η0 �ξ + (1 − ξ0)�η.

(4.2)

To go from T ∗
R

n to T ∗Sn\T ∗
NSn, we use the inverse given by

ξ0 =
‖�x‖2 − 1
‖�x‖2 + 1

�ξ =
2�x

‖�x‖2 + 1
η0 = 〈�x, �y〉

�η =
‖�x‖2 + 1

2
�y − 〈�x, �y〉�x.

(4.3)

These formulas imply the following identities:

2
‖�x‖2 + 1

= 1 − ξ0, ‖�y‖ =
2‖η‖

‖�x‖2 + 1
= (1 − ξ0)‖η‖,
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which allows us to simplify the expression for K. Setting n = 3, we obtain a
Hamiltonian K̃ defined on T ∗S3, given by

K̃ =
(

1
1 − ξ0

− (c + 1/2) − 1
1 − ξ0

〈�ξ, �A(ξ, η)〉 +
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

)

(1 − ξ0)‖η‖ − g

= ‖η‖
(
1 − (1 − ξ0)(c + 1/2) − 〈�ξ, �A(ξ, η)〉 + (1 − ξ0)

(
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

))

− g.

Put

f(ξ, η) = 1 + (1 − ξ0)
(

−(c + 1/2) +
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

)

− 〈�ξ, �A(ξ, η)〉
= 1 + (1 − ξ0)b(ξ, η) + M(ξ, η), (4.4)

where

b(ξ, η) = −(c + 1/2) +
1
2
‖ �A(ξ, η)‖2 + V1(ξ, η)

M(ξ, η) = −〈�ξ, �A(ξ, η)〉.
Note that the collision locus corresponds to ξ0 = 1, i.e., the cotangent fiber
over N . The notation is supposed to suggest that (1 − ξ0)b(ξ, η) vanishes on
the collision locus and M is associated with the magnetic term; it is not the
full magnetic term, though. We then have that

K̃ = ‖η‖f(ξ, η) − g.

To obtain a smooth Hamiltonian, we define the Hamiltonian

Q(ξ, η) :=
1
2
f(ξ, η)2‖η‖2.

The dynamics on the level set Q = 1
2g2 are a reparametrization of the dy-

namics of K̃ = 0, which in turn correspond to the dynamics of H = c.

Remark 4.1. We have chosen this form to stress that Q is a deformation of
the Hamiltonian describing the geodesic flow on the round sphere, which is
given by level sets of the Hamiltonian

Qround =
1
2
‖η‖2.

This is the dynamics that one obtains in the regularized Kepler problem (the
two-body problem; see below), corresponding to the Reeb dynamics of the
contact form given by the standard Liouville form. As we have seen, this
is a Giroux form for the open book S∗S3 = OB(D∗S2, τ2), supporting the
standard contact structure on S∗S3.

Formula for the restricted three-body problem Since the restricted three-
body problem is our main interest, we conclude this section by giving the
explicit formula for this problem. By completing the squares, we obtain

H(�q, �p) =
1
2
(
(p1 + q2)2 + (p2 − q1)2 + p23

)− μ

‖�q − �m‖ − 1 − μ

‖�q − �e‖ − 1
2
(q21 + q22).
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This is then a Stark–Zeeman system with primitive
�A = (q2,−q1, 0),

coupling constant g = μ, and potential

V1(�q) = − 1 − μ

‖�q − �e‖ − 1
2
(q21 + q22), (4.5)

both of which satisfy Assumptions (A1) and (A2).
After a computation, we obtain

f(ξ, η) = 1 + (1 − ξ0) (−(c + 1/2) + ξ2η1 − ξ1η2) − ξ2 (1 − μ)

− (1 − μ)(1 − ξ0)

‖�η(1 − ξ0) + �ξη0 + �m − �e‖ , (4.6)

and we have

b(ξ, η) = −(c + 1/2) − (1 − μ)

‖�η(1 − ξ0) + �ξη0 + �m − �e‖ (4.7)

M(ξ, η) = (1 − ξ0)(ξ2η1 − ξ1η2) − ξ2(1 − μ). (4.8)

4.2. Levi–Civita regularization

We follow the exposition in [47]. Consider the map

L : C2\(C × {0}) → T ∗
C\C,

(u, v) �→
(u

v
, 2v2

)
,

where we view C ⊂ T ∗
C as the zero section. Using C as a chart for S2 via the

stereographic projection along the north pole, this map extends to a map

L : C2\{0} → T ∗S2\S2,

which is a degree 2 cover. Writing (p, q) for coordinates on T ∗
C = C×C (this

is the opposite to the standard convention, and comes from the Moser regu-
larization), the Liouville form on T ∗

C is λ = q1dp1 + q2dp2, with associated
Liouville vector field X = q1∂q1 + q2∂q2 . One checks that

L∗λ = 2(v1du1 − u1dv1 + v2du2 − u2dv2),

whose derivative is the symplectic form

ω = dλ = 4(dv1 ∧ du1 + dv2 ∧ du2).

Note that λ and ω are different from the standard Liouville and symplectic
forms (resp.) on C

2. However, the associated Liouville vector field defined via
iV ω = λ coincides with the standard Liouville vector field

V =
1
2
(u1∂u1 + u2∂u2 + v1∂v1 + v2∂v2),

and we have L∗X = V . We conclude the following:

Lemma 4.2. A closed hypersurface Σ ⊂ T ∗S2 is fiber-wise star-shaped if and
only if L−1(Σ) ⊂ C

2\{0} is star-shaped.

Note that Σ ∼= S∗S2 ∼= RP 3, and L−1(Σ) ∼= S3, and so, L induces a
two-fold cover between these two hypersurfaces.
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4.3. Kepler problem

We now work out the Moser and Levi–Civita regularizations of the Kepler
problem at energy − 1

2 . This is the well-known two-body problem, whose
Hamiltonian is given by

E : T ∗(R2\{0}) → R,

E(q, p) =
1
2
‖p‖2 − 1

‖q‖ .

The result of Moser regularization is the Hamiltonian

K(p, q) =
1
2

(

‖q‖
(

E(−q, p) +
1
2

)

+ 1
)2

=
1
2

(
1
2
(‖p‖2 + 1

) ‖q‖
)2

.

This is the kinetic energy of the “momentum” q, with respect to the round
metric, viewed in the stereographic projection chart. It follows that its Hamil-
tonian flow is the round geodesic flow. Moreover, we have

XK |E−1(−1/2)(p, q) = ‖q‖XE |E−1(−1/2)(−q, p),

so that the Kepler flow is a reparametrization of the round geodesic flow.
To understand the Levi–Civita regularization, we consider the shifted

Hamiltonian H = E + 1
2 (which has the same Hamiltonian dynamics). After

substituting variables via the Levi–Civita map L, we obtain

H(u, v) =
‖u‖2
2‖v‖2 − 1

2‖v‖2 +
1
2
.

We then consider the Hamiltonian

Q(u, v) = ‖v‖2H(u, v) =
1
2
(‖u‖2 + ‖v‖2 − 1).

The level set Q−1(0) = H−1(0) is the 3-sphere, and the Hamiltonian flow of
Q, a reparametrization of that of H, is the flow of two uncoupled harmonic
oscillators. This is precisely the Hopf flow. We summarize this discussion in
the following:

Proposition 4.3. The Moser regularization of the Kepler problem is the geo-
desic flow on S2. Its Levi–Civita regularization is the Hopf flow on S3, i.e.,
the double cover of the geodesic flow on S2 (cf. Remark 2.19).

5. Historical remarks

This section contains a historical account, from the Poincaré approach to find-
ing closed orbits in the three-body problem, to some current developments in
symplectic geometry. This is by all means non-exhaustive, and tilted towards
the author’s interests and biased understanding of the developments.

The perturbative philosophy One of the most basic approaches that un-
derlies mathematics and physics is the perturbative approach. Basically, it
means understanding a simplified situation first, where everything can be
explicitly understood, and attempt to understand ”nearby” situations by
perturbing the parameters relevant to the problem in question.
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In the context of celestial/classical mechanics, this was precisely the ap-
proach of Poincaré. The idea is to start with a limit case, which is completely
integrable (i.e., an integrable system), perturb it, and study what remained.
Integrable systems, roughly speaking, are those which allow enough symme-
tries, so that the solutions to the equations of motion can be “explicitly”
solved for (however, quantitative questions need to allow sufficiently many
functions, e.g., special functions such as elliptic integrals). The solutions tend
to admit descriptions in terms of algebraic geometry. In the classical setting
of celestial mechanics, if phase space is 2n-dimensional and the Hamiltonian
H Poisson-commutes with other n−1 Hamiltonians (which are therefore pre-
served under the Hamiltonian flow of H), the well-known Arnold–Liouville
theorem provides action-angle coordinates in which the symplectic manifold
is foliated by flow-invariant tori, along which the Hamiltonian flow is linear,
with varying slopes (the frequencies). In good situations, the generic tori are
half-dimensional (and Lagrangian, i.e., the symplectic form vanishes along
them), whereas there might also be degenerate lower dimensional tori. This
is the natural realm of toric symplectic geometry, dealing with symplectic
manifolds which admit a Hamiltonian action of the torus, and the study
of the corresponding moment maps and their associated Delzant polytopes.
There is also a related theory in algebraic geometry, where the polytope is
replaced with a fan. However, in general (e.g., the Euler problem), we get
only an R

n-action, which is unfortunately beyond the scope of toric geome-
try. See [67] for more connections between the theory of integrable systems,
and differential and algebraic geometry.

The study of what remains after a small perturbation of an integrable
system is the realm of KAM theory, as well as complementary weaker versions
such as Aubry–Mather theory. Roughly speaking, the original version of the
KAM theorem (due to Kolmogorov–Arnold–Moser) says that if one perturbs
a “sufficiently irrational” Liouville torus, i.e., the vector of frequencies of the
action is very badly approximated by rational numbers (it is diophantine),
and moreover, the Hessian with respect to action variables is non-degenerate,
then the Liouville tori survives to an invariant tori whose frequencies are close
to the original one, and hence is foliated by orbits which are quasi-periodic, in
the sense that they are dense in the tori and never close up. Aubry–Mather
theory is meant to deal with the rest of the tori, including resonant ones which
are foliated by closed orbits and non-diophantine non-resonant ones, as well
as large deformations (as opposed to sufficiently small perturbations). This
theory provides invariant subsets which are usually Cantor-like, and obtained
via measure-theoretical means (they are the supports of invariant measures
minimizing certain action functionals).

The Poincaré–Birkhoff theorem, and the planar three-body problem The
problem of finding closed orbits in the planar case of the restricted three-body
problem goes back to ground-breaking work in celestial mechanics of Poincaré
[109,110], building on work of G.W. Hill on the lunar problem [62,63]. The
basic scheme for his approach may be reduced to:

(1) Finding a global surface of section for the dynamics;
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(2) Proving a fixed-point theorem for the resulting first return map.

This is the setting for the celebrated Poincaré–Birkhoff theorem, proposed
and confirmed in special cases by Poincaré and later proved in full generality
by Birkhoff in [16]. The statement can be summarized as: if f : A → A is
an area-preserving homeomorphism of the annulus A = [−1, 1] × S1 that
satisfies a twist condition at the boundary (i.e., it rotates the two boundary
components in opposite directions), then it admits infinitely many periodic
points of arbitrary large period. The fact that the area is preserved is a
consequence of Liouville’s theorem for Hamiltonian systems; we have basically
used this in our proof of Proposition 2.16.

The whole point of a global surface of section is to reduce a continuous
flow on a 3-manifold to the discrete dynamics of a map on a 2-manifold, thus
reducing by one the degrees of freedom. It is perhaps fair to say, that this
key (and beautiful) idea is responsible for motivating the well-studied area
of dynamics on surfaces, a huge industry in its own right.

The direct and retrograde orbits The actual physical Moon is in direct
motion around the Earth (i.e., it rotates in the same direction around the
Earth as the Earth around the Sun). The opposite situation is a retrograde
motion. In [62,63], while attempting to model the motion of the Moon, Hill
indeed finds both direct and retrograde orbits. While still an idealized situ-
ation, such direct orbit is a reasonable approximation to the actual orbit of
the Moon, and Hill even goes further to find better approximations via per-
turbation theory, something which deeply impressed Poincaré himself. Let us
remark that direct orbits are usually the more interesting to astronomers,
since most moons are in direct motion around their planet. Topologically,
one may think of the retrograde/direct Hill orbits as obtained from a Hopf
link in S3, via the double cover to RP 3. This is the binding of the open book
RP 3 = OB(D∗S1, τ2), where τ is the positive Dehn twist along S1 ⊂ D

∗S1.
Brouwer’s and Frank’s theorem To find the direct orbit away from the lu-

nar problem, Birkhoff had in mind finding a disk-like surface of section whose
boundary is precisely the retrograde orbit. The direct orbit would then be
found via Brouwer’s translation theorem: every area-preserving homeomor-
phism of the open disk admits a fixed point. Removing the fixed point, we
obtain an area-preserving homeomorphism of the open annulus, which, via
a theorem of Franks, admits either none or infinitely many periodic points.
All this combined, one has: an area-preserving homeomorphism of an open
disk admits either one or infinitely many periodic points. Note that if the
boundary is also an orbit, we obtain 2 or infinitely many. If furthermore we
have twist, the Poincaré–Birkohff theorem provides infinitely many orbits.
This is a classical heuristic for finding orbits that has survived to this day in
several guises, as we will see below. See Fig. 12.

Perturbative results As we have seen, we have RP 3 = OB(D∗S1, τ2) as
smooth manifolds, and one would hope that a concrete version of this open
book is adapted to the (Moser-regularized) planar dynamics, and that the
return map is a Birkhoff twist map. For c < H(L1) and μ ∼ 0 small, one can
interpret from this perspective that Poincaré [110] proved this by perturbing
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Figure 12. Obtaining closed orbits in the planar problem

the rotating Kepler problem (when μ = 0), which is an integrable system
for which the return map is a twist map. Of course, he never stated it in
these words. In the case where c � H(L1) is very negative and μ ∈ (0, 1)
is arbitrary, this was done by Conley [29] (also perturbatively), who checked
the twist condition and used Poincaré–Birkhoff. In [96], McGehee provides
a disk-like global surface of section for the rotating Kepler problem problem
for c < H(L1), and computes the return map.

Non-perturbative results More generally and non-perturbatively, the ex-
istence of this adapted open book was obtained in [77, Theorem 1.18] for the
case where (μ, c) lies in the convexity range via holomorphic curve methods
due to Hofer–Wysocki–Zehnder [73] (see also [5,6]). This non-perturbative
approach, which implies the use of modern techniques of symplectic and con-
tact geometry, will be discussed below.

The search of closed geodesics: a very brief survey After suitable regu-
larization, the round geodesic flow on S2 appears as an integrable limit case
in the planar restricted three-body problem, when the Jacobi constant c con-
verges to −∞. Poincaré was aware of this fact, which brought him, near the
end of his life, to study the geodesic flow of ”near-integrable” metrics on S2,
i.e., perturbations of the round one. One may well argue that this was one
of the starting points of the very long and fruitful search of closed geodesics
that ensued later throughout the 20th century.

A basic argument for finding closed geodesics, sometimes attributed
to Birkhoff, was already present in work of Hadamard in 1898, who stud-
ied the case of surfaces with negative curvature. This is a variational ar-
gument on the loop space, in the sense that closed geodesics are viewed
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as loops which happen to be geodesics (as opposed to the dynamical point
of view, where a closed geodesic is a geodesic path which happens to close
up). It works as follows: on a compact manifold, one chooses a sequence of
loops in a fixed homotopy class whose length converges to the infinimum
in such class, and appeals to the Arzelà–Ascoli theorem. If the infimum is
non-zero, this gives a non-trivial closed geodesic. This argument works if the
fundamental group is non-trivial; it gives a geodesic in each non-trivial free
homotopy class, and hence infinitely many if the genus is at least 1. This
leaves out the case of S2, for which it gives nothing. The program of finding
geodesics for general manifolds was picked up by Birkhoff in a more system-
atic way, who proved existence of at least one geodesic for the case of all
surfaces and certain higher dimensional manifolds including spheres. For the
case where the infimum in the above variational argument is zero, Birkhoff
introduced the famous minmax argument. For S2, this works as follows: take
the foliation of S2 minus the north and south poles, whose leaves are the
circles given by the parallels (think of the standard embedding, but where
the metric is not the standard one). Choose a curve-shortening procedure
for each non-trivial leaf (there are several, the simplest one being replac-
ing two nearby points on a loop by a geodesic arc; this is a tricky business,
however, since the resulting loop might have self-intersections). This gives a
sequence of foliations, and we may choose the loop with maximal length for
each. These lengths are bounded from below for topological reasons. Again by
Arzelà–Ascoli, the limit of such curves, being invariant under the shortening
procedure, is a geodesic.

Before Birkhoff, Poincaré himself [111] had the idea of obtaining a ge-
odesic for the case of S2 embedded in R

3 as a convex surface S (with the
induced metric), by considering the shortest simple closed curve γ dividing S
into two pieces of equal total Gaussian curvature. A simple argument using
Gauss–Bonnet shows that γ should be a geodesic. The full details of this
beautiful argument were carried out by Croke in 1982 [32], who considered
the more general case of a convex hypersurface in R

n.

Poincaré further proposed that, also in the case of a convex S2 in R
3,

there should be at least 3 closed geodesics with no self-intersections (i.e.,
simple). A short proof of this was published by Lusternik–Schnirelmann in
1929 [91,92]. Their proof relied on two steps: first, to consider the space of all
simple circles (great and small) and a continuous curve-shrinking procedure
which keeps all such circles simple; and second, the fact that the space of
non-oriented round geodesics is a copy of RP 2 (it can be identified with the
space of planes in R

3 through the origin), together with the fact that every
Morse function on RP 2 has at least 3 critical points. Unfortunately, there
were gaps in both steps. These were filled in by Ballmann in 1978 [12], who
also considered the case of arbitrary genus; Gage–Hamilton and Grayson also
developed the curvature flow (or curve-shortening flow), which may be viewed
as the gradient flow of the length functional. It has the property that, if a
smooth simple closed curve undergoes the curvature flow, it remains smoothly
embedded without self-intersections.



Contact geometry in the restricted three-body problem Page 45 of 78    29 

Existence of at least one geodesic for arbitrary closed Riemannian man-
ifolds was finally proved by Lusternik–Fet in 1951–1952 [37,90]. Their ap-
proach was based on Morse theory; and indeed, the problem of finding geodesics
was the initial motivation for Morse himself. Geodesics are the critical points
of the energy functional on the loop space. Moreover, the space LM of
parametrized closed curves on M cannot be retracted into the subspace L0M
of homotopically trivial closed curves, and Lusternik–Schnirelmann theory
applies to give a critical point outside of L0M .

Even though the loop space of a manifold is infinite dimensional, if the
manifold is compact, then the energy functional satisfies the compactness
condition of Palais–Smale, which in practice means that it behaves as a Morse
function on a finite-dimensional manifold. However, the main difficulty in
this approach is that each geodesic can be iterated, and this corresponds to
distinct points in the loop space. Distinguishing two geometrically distinct
geodesics is a subtle, hard problem.

So far, all the above methods provide only finitely many geodesics, so
how about infinitely many? In this direction, another beautiful idea due to
Birkhoff, for a Riemannian S2, is that of an annulus global surface of section;
we have of course seen this in the previous sections. One considers a closed
geodesic γ (which Birkhoff proved to exist via the minmax argument ex-
plained above), dividing the sphere in a upper and a lower hemishpere. One
then considers vectors along γ which point towards the upper hemisphere
(this is an annulus) as initial values of geodesics, starts shooting orbits along
these vectors, and considers the first return map. However, for this annulus
to be a global surface of section, one needs that no geodesic gets “trapped” in
the upper hemisphere (this will be satisfied for example when the Gaussian
curvature is strictly positive). Moreover, one needs to further check the twist
condition at the boundary to apply the Poincaré–Birkhoff theorem. Here,
note that Birkhoff only stated the existence of at least two fixed points, but
a simple argument which Birkhoff seems to have overlooked was provided by
Neumann [103], thus obtaining infinitely many periodic points (not related
by iterations); this is the version of the Poincaré–Birkhoff theorem we stated
above. In the case where we do have a well-defined Birkhoff map, what if the
return map does not twist? This is where the theorem due to Franks from
1992 [46] that we mentioned above (which is a statement about the open an-
nulus) comes into play; he obtained infinitely many geodesics on S2 for this
case. In the case where the Birkhoff annulus is not a global section and so
there is no return map, an argument of Bangert from 1993 [13] shows that, if
geodesics get trapped, they need to do so around a small “waist” (a “short”
geodesic), or more formally, geodesics with no conjugate points. Moreover,
he shows that the existence of a waist forces the existence of infinitely many
geodesics. One key observation is that the Birkhoff return map sends a point
on the boundary (lying on a geodesic) to its second conjugate point along this
geodesic, and so, some of the ideas were already present in Birkhoff’s work.
This filled in the general case, finally (after almost 90 years) obtaining the
existence of infinitely many geodesics for an arbitrary metric on S2. We fur-
ther mention that in 1993, Nancy Hingston, building on work of other people
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(see [65] and references therein), also provided a full proof of a quantitative
estimate on the growth of the number of geodesics with respect to length; if
N(l) is the number of geodesics with length at most l then N(l) >∼ l/log(l),
i.e., the same growth rate as prime numbers.

One should further mention that Katok [82] (see also Ziller’s account
[130]) has famously constructed examples of non-reversible Finsler metrics
on Sn,CPn with only finitely many closed geodesics. For instance, the case
of S2 can be described as the round geodesic flow, but on a frame rotating
along the z-axis with irrational angle of rotation (and the metric is arbitrarily
close to the round one); so that the only closed geodesics are the equator in
both directions. This example shows that the general Finsler case is very
different from the Riemannian case, and hence, the Z2-action which allows
to reverse geodesics should be used in a significant way to obtain infinitely
many geodesics.

Another celebrated result in this story is that of Gromoll–Meyer 1969
[58]: if the sequence of Betti numbers of the free loop space LM of M is un-
bounded, then M admits infinitely many geodesics (for any metric). Morse
had previously, in his 1932 book “Calculus of variations in the large” (al-
though unfortunately with mistakes), computed the homology of LM in the
non-degenerate case. For this, one may use a spectral sequence whose terms in
the E1-page consist of the homology of the base (constant loops) and the ho-
mology of each geodesic, endowed with a local coefficient system, and degree
shifted by the Morse index. Note that non-degeneracy is in the Morse–Bott
sense, since we can always reparametrize loops (which we consider unoriented)
via the action of O(2) on S1, and so we see one circle for each orientation in
this homology group. Another ingredient is Bott’s famous iteration formula
for the index [17], which implies that μ(γm) grows linearly with m. When
combined with the homology computation via the above Morse–Bott spec-
tral sequence, one sees that if the set of primitive geodesics is finite, then the
Betti numbers of LM are bounded, and hence the result by Gromoll–Meyer
follows in the non-degenerate case. The degenerate case, roughly speaking, is
obtained by the fact that every degenerate orbit is the limit of a finite num-
ber of non-degenerate ones, and contributes to the homology in a bounded
index window.

This leaves the question of when the sequence of Betti numbers of LM
is unbounded. In [121], Vigué–Poirrier–Sullivan show, via the above result
and algebraic calculations, that if M has finite fundamental group, then the
Betti numbers of LM are unbounded if and only if H∗(M ;Q) requires at
least 2 generators as a ring. Ziller proves this holds for symmetric spaces of
rank > 1 [129]. This covers many cases, but it leaves out many important
ones e.g. Sn,RPn,CPn,HPn, CaP 2.

On the other hand, one can consider the case of a generic metric (or
“bumpy”, i.e., for which all geodesics are non-degenerate). For such a case,
on any manifold with finite fundamental group, Gromov has also shown the
following quantitative estimate: there exist constants a, b, such that N(l) ≥
a
l

∑bl
i=1 bi(LM). Rademacher [112] has shown the existence of infinitely many
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geodesics for bumpy metrics on manifolds with finite fundamental group.
This result builds on work of Klingenberg–Takens [85], Klingenberg [84], who
reduced to the case where all orbits are hyperbolic; and Hingston [64], who
covered the bumpy case for Sn,RPn,CPn,HPn, CaP 2, under the hyperbolic-
orbits-only assumption.

One therefore clearly sees that, while a ”simpler” problem than find-
ing closed orbits in the three-body problem, finding infinitely many closed
geodesics is significantly complicated. This is a problem that has inspired
enormous amounts of work, has spanned most of the 20th century, and still
is not known in the general case. Indeed, it is still an open question whether
any Riemannian metric on a given closed simply connected manifold admits
infinitely many closed geodesics. In particular, it is unknown for Sn, n ≥ 3,
for a general metric.

Remarks on Floer theory, and modern symplectic geometry As we have
seen, symplectic geometry is the geometry of classical mechanics, dealing
with Hamiltonians and their associated evolution equations, and in particu-
lar closed Hamiltonian orbits of period 1. In this context, Arnold [10] pro-
posed his famous conjecture on the minimal number of such orbits for a non-
degenerate Hamiltonian on a closed symplectic manifold M : there should be
at least as many as the sum of the Betti numbers of M . This is naturally
related to the classical Morse inequalities. It is notable that Arnold proposed
this conjecture as a version of the Poincaré–Birkhoff theorem (here, note that
the sum of Betti numbers of the annulus is 2).

It was from this conjecture that one of the cornerstones of the modern
methods of symplectic geometry was introduced; namely, Floer theory. To-
gether with the introduction of holomorphic curves due to Gromov in 1985
[59], these two developments form the building bricks of the symplectician’s
toolkit and daily musings.

The approach of Floer to the Arnold conjecture [38–43] is again based
on the ideas of Morse theory. Indeed, one can view Hamiltonian orbits as
the critical points of a suitable action functional on the loop space, in such
a way that flow-lines correspond to cylinders satisfying an elliptic PDE (the
Floer equation). One defines a differential which counts these solutions, and
the resulting homology theory is actually isomorphic to the Morse homol-
ogy of the underlying manifold, so that the Arnold conjecture follows. Floer
proved it under some technical assumptions, i.e., symplectic asphericity, and
the symplectic Calabi–Yau condition; these have been lifted after work of
several authors (Ono [108], Hofer–Salamon [70], Liu–Tian [89], Fukaya–Ono
[48],. . . ), at least for the case of rational coefficients. The technical details are
very difficult (needing the introduction of virtual techniques) and have been
subject of heated debate. Lifting the result to integer coefficients is subject of
ongoing efforts, most notably due to Abouzaid–Blumberg [2], who, amongst
other results, prove it for every finite field.

As we have seen, a special case of closed Hamiltonian orbits is that
of Reeb orbits in a contact-type level set. Since every contact manifold is
contact-type in some symplectic manifold (i.e., its symplectization), one can
view the problem of finding closed Reeb orbits as an odd-dimensional version
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of the Hamiltonian problem. In this setting, an important statement related
to the Arnold conjecture is the Weinstein conjecture, which claims the ex-
istence of at least one closed Reeb orbit for any contact form on a given
contact manifold. Recalling that geodesic flows are particular cases of Reeb
flows, this includes the statement that every Riemannian metric admits a
closed geodesic (proved by Lusternik–Fet, as mentioned above). In dimension
three, it was established by Taubes [119] (based on Seiberg–Witten theory),
thus culminating a large body of work by several people extending over more
than 2 decades. There are also further striking results in dimension 3, e.g.,
Irie’s results on equidistribution of closed orbits in the generic case [80,81],
or the “2 or infinitely many” dichotomy for torsion contact structures [30].
This dichotomy uses the combination of Brouwer and Frank’s theorem as dis-
cussed above as the fixed-point theorem, and Hutching’s embedded contact
homology (ECH) to find the disk-like global surface of section; and so fits
in well with the basic two-step approach by Poincaré. Irie’s results rely on
the relationship between volume and ECH capacities as proved by Cristofaro-
Gardiner–Hutchings–Ramos [31]. In higher dimensions, though there are sev-
eral partial results (e.g., [9,45,71,72,124]), the Weinstein conjecture is still
open.

While the Arnold conjecture is stated for closed symplectic manifolds,
a natural class of symplectic manifolds with non-empty boundary is that of
Liouville domains. There is an associated Floer theory for such manifolds,
which goes under the name of symplectic homology. The first version of such
theory was due to Floer–Hofer [44], and can be traced to the Ekeland–Hofer
capacities and their relation to early versions of S1-equivariant symplectic
homology2; see also section 5 in [68] for an even previous and non-equivariant
version, called symplectology. There is also a version due to Viterbo [122,
123] (see also [18,28] for more recent versions), who showed that symplectic
homology of a cotangent bundle is the homology of the free loop space of
the base, a bridge between the classical story of finding geodesics, and the
modern Floer-theoretic approach (see also [1,114]).

In the Liouville setting, as opposed to the closed setting, the differ-
ence is that the associated Floer theory recovers not only the homology of
the manifold, but also dynamical data at the contact-type boundary (i.e.,
closed Reeb orbits). Of course, one of the motivations for such a theory is
the Weinstein conjecture, at least for those contact manifolds which bound
a Liouville domain (i.e., Liouville fillable ones). Heuristically, if the symplec-
tic homology is infinite dimensional or zero, then there is at least one orbit
at the boundary (since the homology of the manifold is finite dimensional
and non-zero, although, strictly speaking, here we need consider the case of
“finite-type” Liouville domains; see, e.g., [105] for a nice survey, containing
these and related ideas).

2This was discussed at the opening lectures by Hofer and Floer in Fall 1988 at the sym-
plectic program at the MSRI Berkeley, although unfortunately is written nowhere. Hofer
gave a lecture on capacities and the S1-equivariant symplectic homology at a conference in

Durham in 1989, whose proceedings are published in [33], and contains the non-equivariant
part of the story. I thank Hofer for these clarifications.
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The Arnold conjecture is a statement about fixed points (or 1-periodic
orbits) of Hamiltonian maps, and predicts a finite number of such. On the
other hand, one could want to estimate the number of periodic points (recall
the same situation for the Poincaré–Birkhoff theorem, whose original version
predicted 2 fixed points, although one can also obtain infinitely many pe-
riodic points, as was observed after Birkhoff). The analogous statement for
Hamiltonian or Reeb flows is the Conley conjecture. Roughly speaking, for a
“vast” collection of closed symplectic manifolds, every Hamiltonian map has
infinitely many simple periodic orbits and, moreover, simple periodic orbits
of unbounded minimal period whenever the fixed points are isolated. This
was proved by Ginzburg for closed symplectically aspherical symplectic man-
ifolds in [53] (see [54] and references therein, for a survey and history of the
problem; and [55] for what the author understands is the current state of the
art). One of the key inputs is a special class of critical points introduced by
Hingston, and later called symplectic degenerate maxima/minima (SDM) by
Ginzburg. The presence of an SDM forces the existence of infinitely many
closed orbits (cf. [65,66] for the case of geodesics on S2).

We conclude this section with the following (clearly debatable but rather
convincing from the above story) meta-mathematical claim: the three-body
problem inspired large portions of modern symplectic geometry. In all proba-
bility, it would also be fair to make the same claim for most of the modern
theory of dynamical systems.

Final remark on different approaches Amongst the approaches that we
have discussed (by all means non-exhaustive), we point out that the ad-
vantage of KAM theory (in the pertubative case), when compared to more
abstract approaches via general fixed point theorems, is that in favourable
situations, one can localize periodic (or quasi-periodic) orbits in bounded re-
gions of phase space, and obtain better qualitative information on these. This
is, of course, much more complicated in non-perturbative situations, where
rigorous numerics is usually the preferred approach. See [47] for examples of
return maps on a disk-like global surface of section, obtained numerically, for
the planar problem.

More references A nice basic introduction to the classical KAM theorem
is, e.g., [125]. Another very nice exposition on the basics behind Mather
theory is, e.g., [118]. A beautiful and very detailed account on the three-
body problem and Poincaré’s work are the notes by Chenciner [25]. A very
recent and detailed survey on open questions on geodesics, illustrating the
vastness and richness of their search, is that of Burns and Matveev [22]. I also
based parts of the above brief survey on very nice lectures by Nancy Hingston
given at the summer school ”Current Trends in Symplectic Topology”, July
2019, at the Centre de recherches mathématiques, Université de Montréal,
Canada; where I happened to be in the audience. Of course, this is a classical
story and there are plenty of other sources; see, e.g., Oancea’s much more
detailed account [106] and references therein (as well as the appendix due to
Hrynewicz on the story for S2), with a view towards symplectic geometry.
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6. Contact geometry in the restricted three-body problem

The next result opens up the possibility of using modern techniques from
contact and symplectic geometry on the CR3BP (holomorphic curves, Floer
theory,. . . ). Denote by Σ

E

c and Σ
M

c the bounded components of the Moser-
regularized energy hypersurfaces for the spatial problem and c < H(L1), and
let Σ

E,M

c be the connected sum bounded component, for c ∈ (H(L1),H(L2)).
Similarly, use Σ

E

P,c, Σ
M

P,c and Σ
E,M

P,c for the case of the planar problem.

Theorem K. ([7] (planar problem), [26] (spatial problem)) If c < H(L1), the
Moser-regularized energy hypersurfaces Σ

E

c ,Σ
M

c ,Σ
E

P,c,Σ
M

P,c are all contact-

type. The same holds for Σ
E,M

c ,Σ
E,M

P,c , if c ∈ (H(L1),H(L1) + ε) for suffi-
ciently small ε > 0. As contact manifolds, we have

Σ
E

c
∼= Σ

M

c
∼= (S∗S3, ξstd), if c < H(L1),

Σ
E

P,c
∼= Σ

M

P,c
∼= (S∗S2, ξstd), if c < H(L1),

and

Σ
E,M

c
∼= (S∗S3, ξstd)#(S∗S3, ξstd), if c ∈ (H(L1),H(L1) + ε).

Σ
E,M

P,c
∼= (S∗S2, ξstd)#(S∗S2, ξstd), if c ∈ (H(L1),H(L1) + ε).

In all above cases, the planar problem is a codimension-2 contact submanifold
of the spatial problem. �

Recall that the above just means that there exists a Liouville vector field
which is transverse to the regularized level sets; in fact, this is just the fiber-
wise Liouville vector field q∂q. The regularized level sets, as contact manifolds,
are standard and well known, so not very interesting from a geometrical
perspective. However, their interest lies in the given non-standard dynamics
for the underlying standard geometry. The Hamiltonian dynamics for the
problem now becomes the Reeb dynamics, and the planar problem (from
a dynamical perspective rather than a geometric one) is actually invariant
under the Reeb flow. We will refer as the low-energy range to the interval
(−∞,H(L1) + ε) of energies c for which the above result holds.

Remark 6.1. The contact condition is in fact lost for sufficiently high Jacobi
constant c; see [104].

Remark 6.2. (Weinstein handles) In the above statement, the connected sum
is to be interpreted in the contact category; this amounts to attaching a We-
instein 1-handle to the disjoint union of two copies of (S∗S3, ξstd). Roughly
speaking, this means removing two Darboux balls and identifying their bound-
aries via attaching a 1-handle, which is endowed with the extra structure
of a symplectic form which glues well to the symplectization form of the
standard contact form at the boundary of each ball. The result is a Li-
ouville/Weinstein cobordism having (S∗S3, ξstd)

⊔
(S∗S3, ξstd) at the nega-

tive end, and (S∗S3, ξstd)#(S∗S3, ξstd) at the positive one. Note that here
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the terms positive/negative are relevant: the Liouville vector field is out-
wards/inwards pointing at the corresponding boundary components, respec-
tively, and so these cobordisms are oriented. This is always the local Morse-
theoretical picture for a non-degenerate index 1 critical point of a Hamilton-
ian (as is the case of L1). To learn about Weinstein manifolds, see, e.g., [27];
this source also provides deep connections between this notion and that of
Stein manifolds.

References For a very detailed and well-exposed overview of contact
geometry and holomorphic curves in the planar case of the CR3BP, we refer
to Frauenfelder–van Koert [47]. Indeed, the subject of this book is precisely
the direction outlined in this document, but focused on the planar problem,
and so the reader is specially encouraged to delve in it.

6.1. Non-perturbative methods: holomorphic curves

We now discuss the non-perturbative approach coming from the theory of
holomorphic curves.

Hofer–Wysocki–Zehnder We begin with a definition. A connected com-
pact hypersurface Σ ⊂ R

4 is said to be strictly convex if there exists a domain
W ⊂ R

4 and a smooth function φ : R4 → R satisfying:
(i) (Regularity) Σ = {φ = 0} is a regular level set;
(ii) (Bounded domain) W = {z ∈ R

4 : φ(z) ≤ 0} is bounded and contains
the origin; and

(iii) (Positive-definite Hessian) ∇2φz(h, h) > 0 for z ∈ W and for each non-
zero tangent vector h ∈ TΣ.

In this case, the radial vector field is transverse to Σ, and so Σ is a contact-
type 3-sphere, inheriting a contact form α induced by the standard Liouville
form in R

4.

Remark 6.3. In the planar restricted three-body problem, the values of en-
ergy/mass ratio (c, μ) for which the Levi–Civita regularization is dynamically
convex is called the convexity range. This is implied by strict convexity. See
the following page for a precise definition of dynamical convexity.

In [73], Hofer–Wysocki–Zehnder prove the following:

Theorem L. [73] A strictly convex hypersurface (Σ, α) ⊂ R
4 has either 2 or

infinitely many periodic orbits.

The strategy of the proof is finding a disk-like global surface of section,
and use the combination Brouwer–Franks mentioned as a heuristic above.
The difficulty is precisely finding the section. These are to be thought of as
the (holomorphic) pages of a trivial open book on Σ ∼= S3 = OB(D2,1),
which is adapted to the given Reeb dynamics. The rough idea is as follows.

Consider the symplectization (M,ω) = (R × Σ, d(etα)) of (Σ, α). Its
tangent space splits as TM = ξ ⊕ 〈∂t, Rα〉. A (cylindrical, α-compatible)
almost complex structure is an endomorphism J ∈ End(TM) satisfying:

• J2 = −1 (i.e. J is a “90-degree rotation” at each tangent space);
• J(ξ) = ξ, J(∂t) = Rα;
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• J is R-invariant;
• g = dα(·, J ·) defines a J-invariant Riemannian metric on ξ.

A J-holomorphic plane is then a map

u : (C, i) → (M,J),

intertwining the complex structures, i.e., satisfying the non-linear Cauchy–
Riemann equation

J ◦ du = du ◦ i.

The Hofer-energy of such a plane is the quantity

E(u) = sup
ϕ∈P

∫

C

u∗ωϕ,

where P = {ϕ : R → (0, 1) : ϕ′ ≥ 0} is the set of orientation preserving
diffeomorphisms between R and (0, 1), and ωϕ = d(eϕ(t)α) is a symplectic
form. The choice of J implies that the integrand is point-wise non-negative
and so E(u) ≥ 0. A fundamental property is that non-constant finite energy
J-holomorphic planes are asymptotic to closed Reeb orbits (originally noted
by Hofer in his proof of the Weinstein conjecture for overtwisted contact
3-manifolds):

Proposition 6.4. [69] If E(u) < +∞ and u = (a, v) ∈ R× Σ is non-constant,
then 0 <

∫
v∗dα := T < +∞, and there exists a sequence Rk → +∞, such

that limk→+∞ u(Rke2πit) = γ(tT ), for a closed Reeb orbit γ.

Moreover, under a non-degeneracy condition for γ, the above conver-
gence is exponential and limR→+∞ u(Re2πit) = γ(tT ), limR→+∞ a(Re2πit) =
+∞. A further fundamental property is positivity of intersections; since M is
4-dimensional, generically two planes intersect at a finite number of points,
and if they are holomorphic, the intersection numbers are positive. However,
there is an an obvious drawback: planes are non-compact, and so, the clas-
sical intersection pairing is not homotopy invariant, since intersections can
disappear to infinity. The solution to this issue was provided by Siefring [116],
who, using the very explicit asymptotic behaviour of finite energy planes, de-
fined an intersection pairing with all the desired properties. In particular, it
is homotopy invariant, takes into consideration interior intersections as well
as those “coming from infinity”, and two holomorphic planes have vanishing
Siefring intersection if and only if their images do not intersect at all. More-
over, in such a case, their projections to Σ do not intersect unless their images
coincide. (As the attentive reader might have already noticed, Siefring’s work
is posterior to the above result; but we will ignore this for the purposes of
this rough discussion.)

With these preambles, the main idea for the proof of Theorem L is as
follows. One assumes the existence of a special Reeb orbit γ, in the sense
that is unknotted and linked to every other Reeb orbit (necessary condi-
tions to be the binding of a trivial open book for S3), non-degenerate, has
minimal period, and satisfies μCZ(γ) = 3. Here, we use the Conley–Zehnder
index μCZ , which is roughly speaking a winding number associated with
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the paths of symplectic matrices which are suitably non-degenerate, and is
used to assign to every Reeb orbit γ an integer μCZ(γ) (which depends on
a trivialization of the tangent bundle along a choice of disk bounded by γ;
in the case of S3, where π2(S3) = 0, this is independent on choices). One
then considers the moduli space M of finite energy J-holomorphic planes as-
ymptotic to this Reeb orbit γ, and having vanishing Siefring self-intersection,
modulo the action of R-translation in the image (recall J is R-invariant) and
conformal reparametrizations of the domain C. Its expected dimension is
dim M = μCZ(γ) − 2 = 1, by the Riemann–Roch formula for the Fredholm
index. Moreover, the miraculous 4-dimensional phenomenon of automatic
transversality shows that M is a manifold for any cylindrical J . The prop-
erties of the Siefring pairing imply that the projections of planes in M are
immersed, do not intersect, and provide a local foliation of Σ. A further step
needed in order to get a global foliation is a way to compactify M. This is
provided by Gromov’s compactification (or the SFT compactification), ob-
tained by adding strata of nodal curves and “holomorphic buildings” with
potentially several “floors”; strictly speaking, these a priori are no longer
planes. However, the fact that γ is linked to every other orbit can be used
to show that no extra strata needs to be added to M, and is in fact a priori
compact. The result is that M ∼= S1, and projecting the planes in M to Σ
provides a global foliation of Σ. The leaves of this foliation are the S1-family
of pages of an open book with binding γ, and are in fact global surfaces of
section for the Reeb dynamics.

While the assumption on the existence of γ above might seem far-
fetched, it is implied by dynamical convexity [73, Theorem 1.3]. One says
that (Σ, α) is dynamically convex if μCZ(γ) ≥ 3 for Reeb every orbit γ. This
condition is implied by strict convexity [73, Theorem 3.4]; intuitively, this
implies that there is “enough winding” of the linearized Reeb flow along each
orbit (and so, at the end of the day when the open book is obtained, this con-
dition applied to the binding γ implies that the arising return map extends
to the boundary). The special Reeb orbit is found by first considering the
case of an ellipsoid, in which it is explicitly found, then interpolating to the
dynamically convex case by considering a symplectic cobordism, and finally
using properties of finite energy planes in cobordisms; see Section 4 in [73].

Conclusion The main message to take away from this discussion is that
the global surfaces of section are the (holomorphic) pages of a trivial open
book on Σ ∼= S3 = OB(D2,1), which is a posteriori adapted to the given
Reeb dynamics. The way that this result ties up with the planar CR3BP
is via the Levi–Civita regularization; one says that (μ, c) lies in the convex-
ity range whenever the Levi–Civita regularization is dynamically convex (cf.
Proposition 4.3). The holomorphic open book provided by Hofer–Wysocki–
Zehnder, given suitable symmetries, descends to a rational open book on
the Moser-regularized hypersurface RP 3 (i.e. the pages are disks, but their
boundary is doubly covered). Alternatively, [77, Theorem 1.18] provides an
honest open book with annuli fibers for RP 3 = OB(D∗S1, τ2), adapted to
the planar dynamics. This circle of ideas has also been fruitfully exploited in
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e.g. [74–76]; see [78] for a very nice survey and references therein, especially
for the applications on the planar CR3BP.

7. Holomorphic curve techniques on the spatial CR3BP

In this section, we present some (yet unpublished) results of the author, in
co-authorship with Otto van Koert. The main direction is to generalize the
approach of Poincaré in the planar problem [i.e., Steps (1) and (2) outlined
above] to the spatial problem.

7.1. Step (1): Global hypersurfaces of section

We first state a structural result, which provides the basic architecture and
scaffolding for the problem:

Theorem M. (Moreno–van Koert [98]) Fix a mass ratio μ ∈ (0, 1]. Denote a
connected, bounded component of the regularized, spatial, circular restricted
three-body problem for energy level c by Σc. Then, Σc is of contact-type and
admits a supporting open book decomposition for energies c < H(L1) that is
adapted to the Hamiltonian dynamics. Furthermore, if μ < 1, then there is
ε > 0, such that the same holds for c ∈ (H(L1),H(L1) + ε). The open books
have the following abstract form:

Σc
∼=
{
OB(D∗S2, τ2), if c < H(L1)
OB(D∗S2�D∗S2, τ2

1 ◦ τ2
2 ), if c ∈ (H(L1),H(L1) + ε) and μ < 1.

Here, D
∗S2 is the unit cotangent bundle of the 2-sphere, τ is the positive

Dehn–Seidel twist along the Lagrangian zero section S2 ⊂ D
∗S2, and

D
∗S2�D∗S2 denotes the boundary connected sum of two copies of D∗S2. The

monodromy of the second open book is the composition of the square of the
positive Dehn–Seidel twists along both zero sections (they commute). The
binding is the planar problem ΣP

c
∼= RP 3.

See Fig. 13 for an abstract representation (see also Fig. 14). We wish
to emphasize that Theorem M holds for c in the whole low-energy range. A
heuristical reason is the following: while in the planar case finding the in-
variant subset is non-trivial (the search for the direct and retrograde orbits
indeed has a long history), the invariant subset in the spatial case is imme-
diately obvious; it is the planar problem. The technique of proof does not
rely on holomorphic curves, since one can directly write down the open book
explicitly; it is rather elementary, but the calculations are very involved.

The above result is motivated by the following observation. We consider
a Stark–Zeemaan system satisfying Assumptions (A1) and (A2). In unregu-
larized (or physical) coordinates, we put

Bu := {(�q, �p) ∈ H−1(c) | q3 = p3 = 0},

the planar problem. Its normal bundle is trivial, and we have the following
map to S1:

πu : H−1(c)\Bu −→ S1, (�q, �p) �−→ q3 + ip3
‖q3 + ip3‖ . (7.1)
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Figure 13. The open book for Σc, with c < H(L1), and
the first return map f

We will refer to this map as the physical open book. We consider the angular
1-form

dπu :=
Ωu

p

p23 + q23
,

where

Ωu
p = p3dq3 − q3dp3, (7.2)

is the unregularized numerator. We need to see whether dπu(XH) is non-
negative, and vanishes only along the planar problem.

From Eq. (4.1), we have

dπu(XH) =
p23 + q23

(
g

‖ �q‖3 + 1
q3

∂V1
∂q3

(�q)
)

p23 + q23
. (7.3)

Note that Assumption (A2) implies that ∂V1
∂q3

(�q) = aq3 + O(q23) near
q3 = 0, and so, 1

q3
∂V1
∂q3

(�q) is well defined at q3 = 0. In order for the above
expression to satisfy the required non-negativity condition, we impose the
following:

Assumption. (A3) We assume that the function

F (�q) =
g

‖�q‖3 +
1
q3

∂V1

∂q3
(�q)

is everywhere positive.



   29 Page 56 of 78 A. Moreno

Figure 14. Theorem M admits a physical interpretation:
away from collisions, the orbits of the negligible mass point
intersect the plane containing the primaries transversely.
This is intuitively clear from a physical perspective, and
translates (after regularization) to the fact that the “pages”
{q3 = 0, p3 > 0}, {q3 = 0, p3 < 0} of the “physical” open
book are global hypersurfaces of section outside of the colli-
sion locus. Unfortunately, this does not extend continuously
to the latter, as explained in Fig. 15. The binding is the pla-
nar problem

Note that it suffices that the second summand be non-negative.

Remark 7.1. In the restricted three-body problem, from Eq. (4.5), we obtain

∂V1

∂q3
(�q) = q3

1 − μ

‖�q − �e‖3 ,

and therefore, the corresponding expression in Eq. (7.3) is non-negative, van-
ishing if and only if p3 = q3 = 0.

The obvious problem of the above computation is that it a priori does
not extend to the collision locus, and indeed, it cannot (see Fig. 15). In fact,
one needs to interpolate with the geodesic open book described in Sect. 2.6,
which is well behaved near the collision locus. This creates an interpolation
region where fine estimates are needed, and this is the main difficulty in the
proof; we refer to [98] for the details.

Symmetries Consider the symplectic involution of (R6, dp ∧ dq) given
by

r : (q1, q2, q3, p1, p2, p3) �→ (q1, q2,−q3, p1, p2,−p3).
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Figure 15. For the rotating Kepler problem, there ex-
ist (regularized) collision orbits which are periodic and
“bounce” vertically over a primary, always staying on the re-
gion q3 > 0 (or q3 < 0). We call them the polar orbits. This
means that the “pages” {q3 = 0, p3 > 0}, {q3 = 0, p3 < 0}
are not transverse to the regularized dynamics

We also have the anti-symplectic involutions

ρ1 : (q1, q2, q3, p1, p2, p3) �→ (q1,−q2,−q3,−p1, p2, p3)
ρ2 : (q1, q2, q3, p1, p2, p3) �→ (q1,−q2, q3,−p1, p2,−p3),

satisfying the relations ρ1 ◦ ρ2 = ρ2 ◦ ρ1 = r, and so generating the abelian
group {1, r, ρ1, ρ2} ∼= Z2 ⊕ Z2, which is the natural symmetry group of the
spatial circular restricted three-body problem.

After regularization, the symplectic involution admits the following in-
trinsic description. Consider the smooth reflection R : S3 → S3 along the
equatorial sphere S2 ⊂ S3. Then, r is the physical transformation it induces
on T ∗S3, given by

r : T ∗S3 → T ∗S3

r(q, p) = (R(q), [(dqR)∗]−1(p)).

This map preserves the unit cotangent bundle S∗S3. The maps ρ1, ρ2 also
have regularized versions. The following emphasizes the symmetries present
in our setup:

Proposition 7.2. [98] Let c < H(L1), and consider the symplectic involution
r : S∗S3 → S∗S3. The open book decomposition Σc = OB(D∗S2, τ2) is
symmetric with respect to r, in the sense that

r(Pθ) = Pθ+π, Fix(r) = B = ΣP
c .

Moreover, the anti-symplectic involutions preserve B and satisfy

ρ1(Pθ) = P−θ, ρ2(Pθ) = P−θ+π.
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In particular, ρ1 preserves P0 and Pπ, whereas ρ2 preserves Pπ/2 and P−π/2.

In other words, the open book is compatible with all the symmetry
group Z2 ⊕ Z2.

The return map First, we recall a standard definition. We say that a
symplectomorphism f : (M,ω) → (M,ω) is Hamiltonian if f = φ1

K , where
K : R × M → R is a smooth (time-dependent) Hamiltonian, and φt

K is the
Hamiltonian isotopy it generates. This is defined by φ0

K = id, d
dtφ

t
K = XKt

◦
φt

K , and XHt
is the Hamiltonian vector field of Ht defined via iXHt

ω = −dHt.
Here, we write Kt = K(t, ·).

In the SCR3BP, for c < H(L1), and after fixing a page P = π−1(1) of
the corresponding open book, Theorem M implies the existence of a Poincaré
return map f : int(P ) → int(P ). Moreover, as in Proposition 2.16, we can con-
sider the 2-form ω obtained by restriction to P of dα, where α is the contact
form on Σc for the spatial problem, whose restriction to the binding αP is the
contact form for the planar problem (cf. Fig. 16). Recall that ω is symplectic
only along the interior of P (which may be thought of as an ideal Liouville do-
main). Moreover, we have a smooth identification int(P ) ∼= int(D∗S2), giving
a symplectomorphism G : int(P ) → int(D∗S2) on the interior which extends
smoothly to the boundary B, but its inverse G−1, although continuous at B,
is not differentiable along B since ω becomes degenerate there. After conju-
gating f with G and considering ω̃ = G∗ω, we obtain a symplectomorphism
f̃ := G ◦ f ◦ G−1 : (int(D∗S2), ω̃) → (int(D∗S2), ω̃), where ω̃ is a Liouville
filling of (B,αP ). In particular, ω̃ is non-degenerate at B.

Theorem N. (Moreno–van Koert [98]) For every μ ∈ (0, 1], c < H(L1), the
associated Poincaré return map f extends smoothly to the boundary ∂P , and
in the interior, it is an exact symplectomorphism

f = fc,μ : (int(P ), ω) → (int(P ), ω),

where ω = dα (depending on c, μ). Moreover, f is Hamiltonian in the interior.
After conjugating with G, f̃ extends continuously to the boundary, is

Hamiltonian in the interior, and the Liouville completion of ω̃ is symplecto-
morphic to the standard symplectic form ωstd on T ∗S2.

The fact that f is an exact symplectomorphism follows from Proposition
2.16. The fact that f extends to the boundary is non-trivial, and relies on
second-order estimates near the binding: it suffices to show that the Hamil-
tonian giving the spatial problem is positive definite on the symplectic normal
bundle to the binding. This non-degeneracy condition can be interpreted as a
convexity condition that plays the role, in this setup, of the notion of dynam-
ical convexity due to Hofer–Wysocki–Zehnder [73]. Note that if a continuous
extension exists, then by continuity, it is unique.

The fact that f is Hamiltonian in the interior follows from:
(1) The monodromy of the open book is Hamiltonian (here, the Hamiltonian

is allowed to move the boundary).
(2) The general fact that the return map f is always symplectically iso-

topic to a representative of the monodromy, via a boundary-preserving
isotopy.
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Figure 16. A page of the open book as a symplectic filling
of the planar problem, viewed as a fiber-wise star-shaped
domain in T ∗S2. The geodesic flow corresponds to the unit
cotangent bundle

(3) H1(P ;R) = 0, so that every symplectic isotopy is Hamiltonian.

7.2. Step (2): Fixed-point theory of Hamiltonian twist maps

The periodic points of τ are either boundary periodic points, which give
planar orbits, or interior periodic points which are in 1:1 correspondence
with spatial orbits. We are interested in finding interior periodic points, and
we follow Poincaré’s philosophy to try to find them.

The Hamiltonian twist condition We propose a generalization of the
twist condition introduced by Poincaré, for the Hamiltonian case and for
arbitrary Liouville domains. Let (W,ω = dλ) be a 2n-dimensional Liouville
domain, and consider a Hamiltonian symplectomorphism τ . Let (B, ξ) =
(∂W, ker α) be the contact manifold at the boundary where α = λ|B , and
Rα the Reeb vector field of α. The Liouville vector field Vλ is defined via
iVλ

ω = λ.

Definition 7.3. (Hamiltonian twist map) We say that τ is a Hamiltonian twist
map (with respect to α), if τ is generated by a smooth Hamiltonian H :
R × W → R which satisfies XHt

|B = htRα for some positive and smooth
function h : R × B → R

+.

In particular, Ht|B ≡ const on B, and τ(B) ⊂ B. We have ht =
dHt(Vλ)|B is the derivative of Ht in the Liouville direction Vλ along B,
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which we assume strictly positive. Also, τ |B is the time-1 map of a posi-
tive reparametrization of the Reeb flow on B. But, note that, while the latter
condition is only localized at B, the twist condition is of a global nature, as
it requires global smoothness of the generating Hamiltonian.

Here is a simple example illustrating why the smoothness of the Hamil-
tonian is relevant for the purposes of fixed points:

Example 7.4. (Integrable twist maps) Let M = Sn for n ≥ 1 with the round
metric, and H : T ∗M → R, H(q, p) = 2π|p| (not smooth at the zero section);
φ1

H extends to all of D∗M as the identity. It is a positive reparametrization of
the Reeb flow at S∗M , a full turn of the geodesic flow, and all orbits are fixed
points with fixed period. If we smoothen H near |p| = 0 to K(q, p) = 2πg(|p|),
with g(0) = g′(0) = 0, then τ = φ1

K : D∗M → D
∗M , τ(q, p) = φ

2πg′(|p|)
H (q, p),

is now a Hamiltonian twist map. If g′(|p|) = l/k ∈ Q with l, k coprime,
then τ has a simple k-periodic orbit; therefore, τ has simple interior orbits
of arbitrary large period (cf. [83, p. 350], [102], for the case M = S1).

Remark 7.5. In what follows, we shall appeal to the symplectic homology (or
the Floer homology) of a Liouville domain (W,λ), denoted SH•(W,λ). This
is a homology theory, which keeps track of both dynamical and topological
data; it is, roughly speaking, the homology of a chain complex generated by
critical points of a Morse function on the interior of W , as well as by Reeb
orbits at the boundary ∂W . These are the 1-periodic orbits of an admissible
Hamiltonian, i.e., linear at infinity and C2-small and Morse in the interior.
Formally, one needs to take a direct limit over admissible Hamiltonians whose
slope increases to infinity, so that we capture orbits at the boundary with all
possible periods. The grading in symplectic homology comes from the Conley–
Zehnder index (whenever orbits are non-degenerate); for the degenerate case,
one can also use the Robbin–Salamon index. The details behind its definition
are beyond the scope of this survey; we refer, e.g., to [18,28].

The Hamiltonian twist condition will be used to extend the Hamiltonian
to a Hamiltonian that is admissible for computing symplectic homology. The
extended Hamiltonian can have additional 1-periodic orbits and these, as well
as 1-periodic orbits on the boundary, need be distinguished from the interior
periodic points of τ . We impose the following conditions to do so.

Index growth We consider a suitable index growth condition on the dy-
namics on the boundary, which is satisfied in the three-body problem when-
ever the planar dynamics is strictly convex. This assumption will allow us to
separate boundary and extension orbits from interior ones via the index.

We call a strict contact manifold (Y, ξ = ker α) strongly index-definite
if the contact structure (ξ, dα) admits a symplectic trivialization ε with the
property that

• There are constants c > 0 and d ∈ R, such that for every Reeb chord
γ : [0, T ] → Y of Reeb action T =

∫ T

0
γ∗α, we have

|μRS(γ; ε)| ≥ cT + d,

where μRS is the Robbin–Salamon index [113].
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Index-positivity is defined similarly, where we drop the absolute value.
A variation of this notion was explored in Ustilovsky’s thesis [120]. He im-
posed the additional condition π1(Y ) = 0, so that index-positivity becomes
independent of the choice of trivialization, although the exact constants c and
d still depend on the trivialization ε. The global trivialization is important
when considering extensions of our Hamiltonians, as it allows us to measure
the index growth of potential new orbits. The point in the above definition
is that the index of boundary orbits grows to infinity under iterations of our
return map, and so, these do not contribute to symplectic homology.

A general condition for index-positivity to hold, which is also relevant
for the restricted three-body problem, is the following:

Lemma 7.6. Suppose that (Σ, α) is a strictly convex hypersurface in R
4. Then,

(Σ, α) is strongly index-positive.

Fixed-point theorems We propose the following generalization of the
Poincaré–Birkhoff theorem:

Theorem O. (Moreno–van Koert [99]. Generalized Poincaré–Birkhoff theo-
rem) Suppose that τ is an exact symplectomorphism of a connected Liouville
domain (W,λ), and let α = λ|B. Assume the following:

• (Hamiltonian twist map) τ is a Hamiltonian twist map, where the gen-
erating Hamiltonian is at least C2. In addition, assume all fixed points
of τ are isolated;

• (Index-definiteness) If dim W ≥ 4, then assume c1(W )|π2(W ) = 0, and
(∂W,α) is strongly index-definite;

• (Symplectic homology) SH•(W ) is infinite dimensional.

Then, τ has simple interior periodic points of arbitrarily large (integer) pe-
riod.

Remark 7.7. Let us discuss some aspects of the theorem:
(1) (Grading) We need impose the assumptions c1(W )|π2(W ) = 0 (i.e., W

is symplectic Calabi–Yau) to have a well-defined integer grading on
symplectic homology.

(2) (Surfaces) If W is a surface, then the condition that SH•(W ) is infinite
dimensional just means that W �= D2; for D2, we have SH•(D2) = 0,
and a rotation on D2 gives an obvious counterexample to the conclusion.
In the surface case, the argument simplifies, and one can simply work
with homotopy classes of loops rather than the grading on symplectic
homology. The Hamiltonian twist condition recovers the classical twist
condition for W = D

∗S1, due to orientations, and hence, the above is
clearly a version of the classical Poincaré–Birkhoff theorem.

(3) (Cotangent bundles) The symplectic homology of the cotangent bundle
of a closed manifold is infinite dimensional, due to a result of Viterbo
[122,123] (see also [1,114]), combined, e.g., with a theorem of Gromov
[60, Sec. 1.4]. We have c1(T ∗M) = 0 whenever M is orientable. As for
the existence of a global trivialization of the contact structure (ξ, dλcan),
we note:
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• if Σ is an oriented surface, then S∗Σ admits such a global sym-
plectic trivialization;

• if M3 is an orientable 3-manifold, then S∗M3 also admits such a
global symplectic trivialization;

• symplectic trivializations of the contact structure on (S∗S2, λcan)
are unique up to homotopy.

(4) (Fixed points) If fixed points are non-isolated, then we vacuously obtain
infinitely many of them, although we cannot conclude that their peri-
ods are arbitrarily large; “generically”, one expects finitely many fixed
points.

(5) (Long orbits) If W is a global hypersurface of section for some Reeb
dynamics, with return map τ , interior periodic points with long (integer)
period for τ translates into spatial Reeb orbits with long (real) period.
See Appendix C in [99].

(6) (Katok examples) There are well-known examples due to Katok [82]
of Finsler metrics on spheres with only finitely many simple geodesics,
which are arbitrarily close to the round metric. Moreover, they admit
global hypersurfaces of section with Hamiltonian return maps, for which
the index-definiteness and the condition on symplectic homology both
hold. It follows that the return map does not satisfy the twist condition
for any choice of Hamiltonians.

(7) (Spatial restricted three-body problem) From the above discussion and
[98], we gather: the only standing obstruction for applying the above
result to the spatial restricted three-body problem, in case where the
planar problem is strictly convex, is the Hamiltonian twist condition.
Here, note that symplectic homology is invariant under deformations
of Liouville domains; see, e.g., [15] for a paper with detailed proofs.
This would give a proof of existence of spatial long orbits in the spirit
of Conley [29], which could in principle be collision orbits (these may
be excluded, at least perturbatively, by different methods). Since the
geodesic flow on S2 arises as a limit case (i.e., the Kepler problem), it
should be clear from the discussion on Katok examples that this is a
subtle condition. In [98], we have computed a generating Hamiltonian
for the integrable case of the rotating Kepler problem; it does not satisfy
the twist condition in the spatial case (in the planar case, a Hamiltonian
twist map was essentially found by Poincaré). This does not mean a
priori that there is not another generating Hamiltonian which does, but
this seems rather unlikely and difficult to check.

As a particular case of Theorem O, we state the above result for star-
shaped domains in cotangent bundles, as a case of independent interest (cf.
[61]):

Theorem P. (Moreno–van Koert [99]) Suppose that W is a fiber-wise star-
shaped domain in the Liouville manifold (T ∗M,λcan), where M is simply
connected, orientable and closed, and assume that τ : W → W is a Hamil-
tonian twist map. If the Reeb flow on ∂W is strongly index-positive, and if
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Figure 17. Philosophy: To shed some light on a compli-
cated higher dimensional problem, try first to look at the
shadow that your lantern is producing!

all fixed points of τ are isolated, then τ has simple interior periodic points of
arbitrarily large period.

The above also holds for M = S2, as explained in Remark 7.7 (2). A
difference with [61] is that in this setup, we conclude that periodic points are
interior, to the expense of imposing index-positivity.

7.3. Alternative approach: dynamics on moduli spaces

An alternative approach to that of a fixed-point theorem is the following
construction (see Fig. 17 for the philosophy). We start by recalling that the
page D

∗S2 = LF(D∗S1, τ2
P ) of the open book of Theorem M has a Lefschetz

fibration with genus zero fibers over the 2-disk, with monodromy the Dehn
twist τP (P here is for “planar”, to differentiate from the monodromy τ used
for the spatial case; recall Fig. 8). The main geometric observation for what
follows is: the leaf space M of such fibers (i.e., the moduli space parametrizing
them) is a copy of S3. Indeed, each page D

∗S2 of the open book S2 × S3 =
OB(D∗S2, τ2) is a 2-disk worth of fibers; we moreover have an S1-family of
such pages, all of them sharing the boundary RP 3 (the binding), and such
that their Lefschetz fibration all induce the S1-family of pages of the open
book RP 3 = OB(D∗S1, τ2

P ). It follows that the leaf space carries the trivial
open book M = OB(D2,1) ∼= S3, whose disk-like page corresponds to the
base of the page in S2 ×S3, and whose binding MB is the S1-family of pages
for RP 3. See Figs. 18 and 19.
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Figure 18. The moduli space of curves is a copy of S3 =
OB(D2,1)

Rotating Kepler problem In [98, App. A], we discuss the completely in-
tegrable limit case of the rotating Kepler problem, where μ = 0, and so, there
is only one primary. The return map can be studied explicitly. Geometrically,
this map may be understood via the following proposition (recall Fig. 8):

Proposition 7.8. ([98], Integrable case) In the rotating Kepler problem, the
return map f preserves the annuli fibers of the standard Lefschetz fibration
D

∗S2 = LF(D∗S1, τ2
P ), where it acts as a classical integrable twist map on

regular fibers, and fixes the two (unique) nodal singularities on the singular
fibers.

The two fixed points are the north and south poles of the zero section S2,
and correspond to the two periodic collision orbits bouncing on the primary
(one for each of the half-planes q3 > 0, q3 < 0).

The abstract case We now consider an abstract situation where the pre-
vious argument also holds. Consider a concrete open book decomposition
π : M\B → S1 on a contact 5-manifold (M, ξM ) = OB(P, φ). We assume
that P (abstractly) admits the structure of a 4-dimensional Lefschetz fibra-
tion over D

2 whose fibers are surfaces of genus zero and perhaps several
boundary components. We abstractly write P = LF(F, φF ), where φF is the
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Figure 19. The moduli space M ∼= S3 has two strata: the
open strata M0 consisting of regular fibers, and the nodal
strata M1 consisting of singular fibers

monodromy of the Lefschetz fibration on P (as we have discussed, necessarily
a product of positive Dehn twists on the genus zero surface F ).

Following [3], we will refer to the open book on M as an iterated planar
(IP) open book decomposition, and the contact manifold M as iterated pla-
nar. As observed in [4, Lemma 4.1], a contact 5–manifold is iterated planar
if and only if it admits an open book decomposition supporting the contact
structure, whose binding is planar (i.e., admits a 3-dimensional supporting
open book whose pages have genus zero). In fact, we have B = OB(F, φF ).

We wish to adapt the underlying planar structure to a given Reeb dy-
namics on M (and hence the need to work with concrete open books, rather
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than the abstract version). We then assume that the concrete open book on
M is adapted to the Reeb dynamics of a fixed contact form αM , i.e., αM

is a Giroux form for the open book (whose dynamics we wish to study). In
particular, ωθ := dαM |Pθ

is a symplectic form on Pθ for each θ ∈ S1. There-
fore, (Pθ, ωθ) is a Liouville filling of the binding (B, ξB = ker αB), where
αB = αM |B , for each θ. We will further assume that we have a concrete pla-
nar open book on the 3-manifold B = OB(F, φF ), which is adapted to the
Reeb dynamics of αB and where φF is a product of positive Dehn twists in
the genus zero surface F . We will denote L = ∂F , which is a link in B (the
binding of the open book for B, and Reeb orbits for αB). Given the above
situation, we will say that the Giroux form αM is an IP Giroux form.

This is precisely the situation in the SCR3BP whenever the planar dy-
namics is strictly convex/dynamically convex, as follows from [77, Theorem
1.18], combined with Theorem M above. We now state the general construc-
tion:

Theorem Q. ([100], IP foliation) There is a foliation M of M\L, consisting
of immersed dαM -holomorphic curves whose boundary is L. Away from B,
its elements are arranged as fibers of Lefschetz fibrations πθ : Pθ → D

2
θ,

θ ∈ S1, all of which induce the same fixed concrete open book at B. The πθ

are all generic, i.e., each fiber contains at most a single critical point. We
have M ∼= S3, and it is endowed with the trivial open book whose θ-page is
identified with D

2
θ, and its binding is MB

∼= S1, the family of pages of the
open book at B.

The point here is that the above result is in principle non-perturbative; it
applies whenever there is an adapted open book at B. It should be thought
of as an S1-parametric version of Wendl’s result (Theorem J above), and
as the “correct” higher dimensional analogue of the finite energy foliations
introduced by Hofer–Wysocki–Zehnder for the study of 3-dimensional Reeb
flows. We can further endow the moduli space with extra structure:

Theorem R. ([100], contact and symplectic structures on moduli) The moduli
space M carries a natural contact structure ξM which is supported by the
trivial open book on S3 (and hence it is isotopic to the standard contact
structure ξstd by Giroux correspondence). Moreover, the symplectization form
on R × M associated with any Giroux form αM on M induces a tautological
symplectic form on R × M by leaf-wise integration, which is naturally the
symplectization of a contact form αM for ξM, whose Reeb flow is adapted to
the trivial open book on M.

The contact form can be written down via the following tautological
formula:

(αM)u(v) =
∫

z∈u

αz(v(z))dz,

where u ∈ M, v ∈ TuM = kerDu for Du the linearized CR-operator of u,
and dz = dα|u is an area form along u. The contact structure ξM = ker αM
and the 1-dimensional distribution ker dαM can then be thought of as the
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average of the contact planes ξz, and respectively of ker dαz, for z ∈ u, that
is

ξM =
∫

z∈u

π∗(ξz)dz,

ker dαM =
∫

z∈u

π∗(ker dαz)dz,

where π : M\L → S3 is the quotient map to the leaf space. This means
that the Reeb vector field RM of αM spans the average direction in the
“shadowing cone” Cα = π∗(ker dα) ⊂ TS3.

The holomorphic shadow We define the holomorphic shadow of the Reeb
dynamics of αM on M to be the Reeb dynamics of the associated contact
form αM on S3, provided by Theorem R. The flow of αM can be viewed as a
flow φM ;M

t on M\L which leaves the holomorphic foliation M invariant (i.e.,
it maps holomorphic curves to holomorphic curves). It is the “best approxi-
mation” of the Reeb flow of αM with this property, as its generating vector
field is obtained by reparametrizing the projection of the original Reeb vec-
tor field to the tangent space of M, via a suitable L2-orthogonal projection.
Concretely, we have

RM(u) =
Pu(Rα|u)

(αM)u(Pu(Rα|u))
∈ TuM,

where Pu : W 1,2(Nu) → kerDu denotes the L2-orthogonal projection with
respect to the metric

gu(v, w) =
∫

z∈u

gz(v(z), w(z))dz,

with gz = dαz(·, J ·)+αz ⊗αz + dt ⊗dt, and v, w ∈ W 1,2(Nu) sections of the
normal bundle Nu to u. It may also be viewed as a Reeb flow φS3;M

t on S3,
related to the one on M via a semi-conjugation

M\L M\L

S3 S3

φM;M
t

π π

φS3;M
t

where π is the projection to the leaf space M ∼= S3. We will now focus on
the global properties of the correspondence αM �→ αM.

For F a genus zero surface, let Reeb(F, φF ) denote the collection of
contact forms whose flow is adapted to some concrete planar open book
πB : B\L → S1 on a given 3-manifold B, of abstract form B = OB(F, φF ). It-
eratively, we define Reeb(LF(F, φF ), φ) to be the collection of contact forms
with flow adapted to some concrete IP open book πM : M\B → S1 on a
5-manifold M , of abstract form M = OB(LF(F, φF ), φ), whose restriction
to the binding B = OB(F, φF ) belongs to Reeb(F, φF ). We call elements in
Reeb(LF(F, φF ), φ) IP contact forms, or IP Giroux forms.
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We then have a map

HS : Reeb(LF(F, φF ), φ) → Reeb(D2,1),

given by taking the holomorphic shadow with respect to an auxiliary almost
complex structure J associated with αM . We refer to HS−1(αstd) as the
integrable fiber, where αstd denotes the standard contact form in S3.

Theorem S. ([100] Reeb flow lifting theorem) HS is surjective.

In other words, for some J , we may lift any Reeb flow on S3 adapted to
the trivial open book, as the holomorphic shadow of the Reeb flow of an IP
Giroux form adapted to any choice of concrete IP contact 5-fold. The map
HS is clearly not in general injective, as it forgets dynamical information in
the fibers. While the above lifting procedure is not precisely an extension of
the flow, the above theorem says that Reeb dynamics on an IP contact 5-fold
is at least as complex as Reeb dynamics on the standard contact 3-sphere.
Recalling that the Levi–Civita regularization of the planar restricted three-
body problem (for subcritical energy) gives a Reeb flow on S3; this gives
a concrete “measure” of the complexity of the spatial three-body problem.
Namely, the spatial three-body problem is dynamically at least as complex as
the planar three-body problem.

Somewhat related, we point out that higher dimensional Reeb flows
encode the complexity of all flows on arbitrary compact manifolds (i.e., they
are universal) [24].

Dynamical applications We wish to apply the above results to the
SCR3BP (cf. Fig. 20). We first introduce the following general notion. Con-
sider an IP 5-fold M with an IP Reeb dynamics, endowed with an IP holo-
morphic foliation M as in Theorem Q. Fix a page P in the IP open book of
M , and consider the associated Poincaré return map f : int(P ) → int(P ). A
(spatial) point x ∈ int(P ) is said to be leaf-wise (or fiber-wise) k-recurrent
with respect to M if fk(x) ∈ Mx, where Mx is the leaf of M containing x,
and k ≥ 1. This means that fk(int(Mx)) ∩ int(Mx) �= ∅. This is, roughly
speaking, a symplectic version of the notion of leaf-wise intersection intro-
duced by Moser [101] for the case of the isotropic foliation of a coisotropic
submanifold.

In the integrable case of the rotating Kepler problem, where the mass ra-
tio μ = 0, the holomorphic foliation provided by Theorem Q can be obtained
directly; cf. Proposition 7.8. Denote this “integrable” holomorphic foliation
on S∗S3 by Mint. Since the return map for μ = 0 preserves fibers, every point
is leaf-wise 1-recurrent with respect to Mint. If the mass ratio is sufficiently
small, then the leaves of Mint will still be symplectic with respect to dα,
where α is the corresponding perturbed contact form on the unit cotangent
bundle S∗S3.

We have the following perturbative result:

Theorem T. ([100]) In the SCR3BP, for any choice of page P in the open
book of Theorem M, for any fixed choice of k ≥ 1, for sufficiently small μ
(depending on k), for energy c below the first critical value H(L1(μ)), along
the bounded components of the Hill region, and for every l ≤ k, there exist
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Figure 20. An abstract sketch of the convexity range in
the SCR3BP (shaded), for which the holomorphic shadow is
well defined. We should disclaim that the above is not a plot;
the convexity range is not yet fully understood, although it
contains (perhaps strictly) a region which qualitatively looks
like the above, cf. [5,6]

infinitely many points in int(P ) which are leaf-wise l-recurrent with respect
to Mint.

In simpler words, the spatial three-body problem admits an abundance
of leaf-wise recurrent points, at least in the perturbative regime.

Remark 7.9. The same conclusion holds for arbitrary μ ∈ [0, 1], but suffi-
ciently negative c � 0 (depending on μ and k).

In fact, the conclusion of the Theorem T holds whenever the relevant
return map is sufficiently close to a return map which preserves the leaves of
the holomorphic foliation of Theorem Q (i.e., which coincides with its holo-
morphic shadow on M). It may then be interpreted as a symplectic version
of the main theorem in [101], for two-dimensional symplectic leaves.

8. Conclusion and further discussion

In the above account, we have tried to paint a picture of the relevance of
the three-body problem in the modern mathematical discourse, in the hope
to convince the reader of the richness of material that has ensued from this
concrete problem alone. It has been more than a 100 years since Poincaré’s
work, and this problem is still a benchmark for modern developments.

Concerning the spatial problem, several of its aspects remain vastly un-
explored and poorly understood. We have chosen to focus on the search of
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closed orbits as a starting point, for historical and heuristic reasons, as well
as the fact that we have available techniques in the form of Floer theory.
However, even this part of the story of is far from over, although we seem to
be closing in. On the one hand, Theorem M provides the underlying geomet-
ric structure, and Theorem Q goes further and provides an adapted foliation
which is compatible with the dynamics, and which is intimately related to
the dynamics of the integrable limit case, as stated in Proposition 7.8. The
general guiding question is how we use these underlying structures to extract
dynamical applications. Moreover, one can also write down global hypersur-
faces of section explicitly (see Theorem A in [98]), and this allows to use
numerical methods in a hands-on way, which will certainly shed light on the
problem. We will pursue this in further work.

Inspired by the Poincaré two-step approach, we have obtained a very
general fixed-point theorem in the form of Theorem O. One may attempt
to generalize it in several directions, although at this point, it is perhaps
worth it to do so once one knows it applies to the problem by which it was
inspired. So far, the Hamiltonian twist condition, while simple to state and
rather appealing (specially from the perspective of Floer theory), seems hard
to check in practice and rather restrictive.

The alternative holomorphic approach that we discussed above is also
very appealing from a theoretical perspective, since in principle it allows to
relate a dynamical system on a 5-fold which we wish to understand, to a dy-
namical system on the 3-fold S3 of a type which has been studied much more
extensively. The hope is to “lift” knowledge from the holomorphic shadow
to the original dynamics (entropy, invariant subsets, invariant measures. . . ).
The main difficulty is that the shadow alters the dynamics, perhaps signifi-
cantly, as it involves projecting the vector field to the tangent space of the
moduli space. It is the “best approximation” of the original flow with the
property that it maps a holomorphic annulus to another holomorphic annu-
lus. It also has the disadvantage that it forgets dynamical information in the
vertical directions, i.e., those tangent to the annuli, as well as most of the
interesting dynamical information at the binding B (it is adapted to study
spatial problems rather than planar ones). Observe that, in dimension 3, the
shadow, when seen as a flow on B, is just a reparametrization of the original
one. How much control we may obtain on the difference between the flow
and its shadow, is unclear at the moment. More importantly, the relationship
between closed orbits of the two flows is also not apparent.

On the other hand, one can follow an orbit and keep track of all the
holomorphic annuli it intersects; this gives a path in S3 which is tranverse
to the contact structure and all the pages, and is in fact an orbit of what we
called the shadowing cone. We call the collection of all such paths the trans-
verse shadow. While no longer a flow, it remembers the original dynamics
in a much more reliable way. In [100], we have used this idea (in combina-
tion with Brouwer’s translation theorem) to extract Theorem T above, and
perhaps may be exploited further.
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[54] Ginzburg, V.L., Gürel, B.Z.: The Conley conjecture and beyond. Arnold
Math. J. 1(3), 299–337 (2015)
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