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Abstract Given a contact structure on a manifold V together with a support-
ing open book decomposition, Bourgeois gave an explicit construction of a
contact structure on V x T2. We prove that all such structures are universally
tight in dimension 5, independent of whether the original contact manifold is
itself tight or overtwisted. In arbitrary dimensions, we provide obstructions
to the existence of strong symplectic fillings of Bourgeois manifolds. This
gives a broad class of new examples of weakly but not strongly fillable contact
5-manifolds, as well as the first examples of weakly but not strongly fillable
contact structures in all odd dimensions. These obstructions are particular
instances of more general obstructions for S!-invariant contact manifolds. We
also obtain a classification result in arbitrary dimensions, namely that the unit
cotangent bundle of the n-torus has a unique symplectically aspherical strong
filling up to diffeomorphism.
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1 Introduction

In [8], Bourgeois showed that, whenever (V, &) is a contact manifold endowed
with a supporting open book decomposition (which always exist by work of
Giroux [24]), then the manifold V x T? carries a natural contact structure. The
main motivation behind such a construction was the problem of the existence
of contact structures on higher-dimensional manifolds. For instance, it showed
that every odd dimensional torus admits contact structures, a problem that had
been open since Lutz [40] proved that T? is contact, more than 20 years before.

It was not until recently that Borman-Eliashberg-Murphy [6] proved that
contact structures in higher-dimensions actually exist in abundance (i.e. when-
ever the obvious topological obstructions vanish) by generalizing Eliashberg’s
[16] notion of overtwistedness, as well as the h-principle that comes with it,
to higher dimensions. Overtwisted contact manifolds are topological/flexible
in nature, and most of the associated contact-topological invariants (e.g. those
coming from holomorphic curves) simply vanish. As a result, it has become
relevant to find examples of high-dimensional contact structures beyond the
overtwisted ones, which are more geometric/rigid and which potentially have
rich associated invariants. Contact structures which are not overtwisted are
usually referred to as tight.

The construction in [8] actually fits very well in this setting, as it is both
very explicit and yields a very broad class of contact manifolds in arbitrary odd
dimensions, with remarkable properties. For instance, [51] used it to construct
the first examples of high dimensional (closed) contact manifolds admitting a
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Plastikstufe, as defined in [47], which is subsequently equivalent to overtwist-
edness [13,33]. In [10], the authors also used it to construct contact structures
on the product of a contact manifold with the 2-sphere. More recently, Lisi,
Marinkovi¢ and Niederkriiger [38] started the systematic study of the Bour-
geois construction, in particular studying its fillability properties, and in this
paper we continue this line of research.

In what follows we will use the following notation. Given an abstract open
book (X2, ¢) and the associated contact (2n + 1)-manifold O BD(X, ¢),
we denote by BO(X, ¢) the contact manifold obtained via the Bourgeois
construction [8]. Smoothly, BO (X, ¢) = OBD(X, ¢) X T? and we refer to
Section 2 for further details.

Tightness in dimension 5 We begin by addressing the natural question of
whether a given Bourgeois contact structure is tight or overtwisted.

In [38], the authors give examples, in every odd dimension, of an over-
twisted (V, &) such that the associated Bourgeois contact manifold is tight.
Moreover, in [22], it was shown that if V is a 3-manifold with non-zero first
Betti number, then there exists a supporting open book such that the associated
Bourgeois contact structure is (hyper)tight. In this paper, we prove that, at least
in dimension 35, these are particular instances of a more general fact. Namely,
5-dimensional Bourgeois contact structures are rigid, inherently geometric
objects, independently of the rigid or flexible nature of (V, &):

Theorem A (Tightness) For every abstract open book (X2, ¢), the contact
5-manifold BO (X, ¢) is (universally) tight.

Recall that universally tight means that the universal cover is tight. In
particular, universal tightness implies tightness. The fact that 5-dimensional
Bourgeois contact structures are universally tight is a simple consequence of
the fact that they are tight and that finite covers on either factor of the product
again yield Bourgeois contact structures.

While there are many ways of making contact/symplectic manifolds more
flexible (e.g. in dimension 3, by adding a Lutz twist; in any odd dimension, by
taking the connected sum with an overtwisted sphere; or in dimension at least
6, by taking the flexibilization of a Weinstein manifold), Theorem A says that
the Bourgeois construction can be interpreted as a “tightening” procedure.
To our knowledge, there is currently no other procedure with an analogous
property.

Moreover, the above result is sharp with respect to taking branched covers.
Namely, if V is an overtwisted contact 3-manifold (or, more generally, (2n+-1)-
manifold), then branched covers V x X, of V' x T2 are overtwisted; here, X,
is the orientable surface of genus g > 1, seen as a degree g branched cover
of T? over two points, and the branched cover is obtained by product with
the identity on V. The fact that this is true for g big enough follows from the
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results in [49]; that this holds already from g = 2 is moreover a consequence
of an argument of Massot and Niederkriiger, based on ideas from [51] (cf. [48,
Theorem 1.5.1]; the interested reader can also consult [22, Observation 5.9]
for details).

Symplectic fillability Another important problem in contact topology, that
is related to the flexible/rigid classification of contact structures, is that of
characterizing which contact structures admit symplectic fillings. Indeed, one
of the first results of the theory of holomorphic curves is that symplectically
fillable contact manifolds are tight.

Given Theorem A, it is natural to wonder whether Bourgeois contact struc-
tures are (at least weakly) symplectically fillable. While there exist partial
results in this direction [38,42], a complete answer is yet to be found.

In order to find obstructions to strong fillings, we shall prove a more general
statement concerning S!-invariant contact structures on manifolds of the form
V21 xS!. Such a contact structure is determined by a splitting of the base V into
ideal Liouville domains V = V, U V _ glued along a contact manifold N :=
aVy = dV_ (see[25,42] or Section 6 below). The subsets V4 correspond to the
positive resp. negative regions when V is viewed as a convex hypersurface, and
N toits dividing set. With this notation we then have the following homological
and homotopical criteria in the case that the contact structure is strongly fillable.

Theorem B (Fillability of S'-invariant contact structures) Suppose that V" x
S admits a strongly fillable S'-invariant contact structure with induced convex
splitting V.= V. UV _ and let N := 3V, = dV_ be the dividing set, which
we assume to be connected. Let also (W*"2, w) be a strong filling of V x S!
and consider the natural inclusions and induced maps on homology:

N < Vi <> W and Hy(N, Q) =5 H,(Vi.Q) —> H,(W.Q).

Then the second inclusion induces an injection on the image Im (11) in ratio-

nal homology. In particular, if Vi are Weinstein, then the inclusion N — W

induces an injection in rational homology in all degrees strictly less than n.
In the case where W is semi-positive, we also have a surjection

m(V x SN = (W)

of fundamental groups.

Since Bourgeois contact structures are T?-invariant, they are in particular
S'-invariant and one obtains a convex splitting with pieces of the form Vi =
X x D*S'. Then applying Theorem B, we obtain the following result, which
imposes strong topological restrictions on the filling as well as the original
Bourgeois contact manifold:
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Theorem C (Fillability of Bourgeois contact structures) Suppose that a
(2n + 1)-dimensional Bourgeois contact manifold BO (X, @) is strongly sym-
plectically filled by (W, w). Then the natural inclusion of a page into the filling,
given by the composition of inclusions

Y <> OBD(Z,$) x {pt} = BO(Z,¢) = dW — W, (1)

induces an injection in rational homology.

Moreover, the composition of the natural inclusions T? < BO(X, ¢)— W
also induces an injection in rational homology. Lastly, if W is semi-positive,
then we have a surjection (X X T2) — 71 (W).

There are many topological situations where the above criteria can be imme-
diately applied to obstruct strong fillability of certain Bourgeois contact
structures, several of which are described below. We also have:

Remark 1.1 (Monodromy restrictions). The fact that ¥ < W induces an
injection in rational homology implies that the same is true for the natural
inclusion ¥ < OBD(X, ¢), as ¥ — W can be written as the composition
in Eq. (1). What is more, this also implies that ¢, = Id on H,(X; Q), i.e. ¢
lies in the Torelli group: indeed, as X' < OBD(X, ¢) is the composition
Y — Yy — OBD(X, ¢) where X is the mapping torus part of the open
book, one can appeal to the long exact sequence of a mapping torus [26,
Example 2.48] to deduce that ¥ < Xy is injective in rational homology if
and only if ¢, = Id on H,(X; Q).

Remark 1.2 To deal with strong fillings in general, we need to use the polyfold
machinery of Hofer—Wysocki—Zehnder [31] (for the case of closed spheres).
However, this is not necessary if further technical assumptions on the filling
are imposed, e.g. asphericity or semi-positivity.

Homology of aspherical fillings In the case where a Bourgeois manifold is
assumed to admit a symplectically aspherical filling, we obtain the following
significant strengthening of Theorem C, which determines the homology of
any such filling:

Theorem D (Aspherical case) Suppose that a (2n + 1)-dimensional Bour-
geois contact manifold BO (X, ¢) admits a symplectically aspherical filling
(W, ). Then the natural inclusion ¥ x T? < W into the filling induces an
isomorphism in integral homology.

If ¢ is symplectically isotopic to Id, O BD(X, ¢) admits a subcritical Stein
filling. In this case the associated Bourgeois contact manifold admits a Stein
filling according to [38, Theorem A.b]. Moreover, this filling is smoothly of
the form X x T2, where X = X x D? is the subcritical filling of the original
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manifold. Theorem C, as well as Remark 1.1 and Theorem D, then suggest
that perhaps it is always the case that strong fillability for Bourgeois manifolds
implies ¢ = Id (at least smoothly), and that the filling is (again, at least
smoothly) the standard one, in arbitrary dimensions. The fact that the filling
“remembers” both the T2-factor and the page ¥ (at least homologically), as
well as the fact that, in the aspherical case, the homology of the filling is the
expected one are evidence in this direction. In particular, strong fillability for
Bourgeois manifolds might be equivalent to Stein fillability; this is indeed true
in several cases, as discussed below.

Fillability in dimension 5 Examples of weakly but not strongly fillable
contact structures in dimension 3 are well-known. The first examples of such
contact manifolds in higher dimensions were obtained in dimension 5 on man-
ifolds also diffeomorphic to a product of a 3-manifold with a 2-torus cf. [42,
Theorem E]. These examples are associated to contact 3-manifolds arising
from so-called Liouville pairs and and are known to exist only on very specific
3-manifolds (see [42] and references therein). Below, we provide a large class
of new 5-dimensional examples that arise via Bourgeois contact structures.

Indeed, as a first immediate corollary of Theorem C in dimension 5, we
obtain:

Corollary E (Rational homology 3-spheres) Suppose that V. = OBD(X, ¢)
is a 3-dimensional rational homology sphere, i.e. H (V; Q) = 0. Then the
Bourgeois contact manifold BO(X, ¢) is strongly symplectically fillable if
and only if the page ¥ = D? is a disc (and ¢ = 1d), in which case it is
actually Stein fillable and V is S°.

This then yields many examples of weakly but not strongly fillable contact
manifolds in dimension 5. For example Legendrian surgery on any smoothly
non-trivial Legendrian knot in S® gives a Stein fillable contact structure on
a rational homology sphere, smoothly different from the standard 3-sphere.
The corresponding Bourgeois contact structure is weakly fillable by [38, The-
orem A.a] (cf. [42, Example 1.1]).

We now consider the planar case, i.e. the case where the page of the open
book of the original 3-manifold has genus zero. In the 3-dimensional situation,
strong symplectic fillings of contact structures supported by planar open books
exist in abundance, and in fact are in 1-1 correspondence with the factoriza-
tions of the monodromy into products of positive Dehn-twists [57]. Namely,
contact 3-manifolds admitting a supporting open book with planar page and
monodromy a product of positive Dehn twists are (precisely, by [57]) the con-
vex boundaries of symplectic Lefschetz fibrations. In particular, in the planar
case, strong fillability and Stein fillability are equivalent. However, if we apply
the Bourgeois construction to a planar contact 3-manifold, and consider fillings
of the resulting contact 5-manifold, the situation is surprisingly more rigid:
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Theorem F (Planar case) Ler (X2, @) be an abstract open book with X of
genus zero and ¢ a non-trivial product of Dehn twists, all of the same sign.
Then, the contact 5-manifold BO (X, ¢) is weakly but not strongly fillable.

The fact that the examples in Theorem F are weakly fillable follows again
from [38, Theorem A.a] or [42, Example 1.1]; and the fact that the conclusion
also holds for products of all negative Dehn twists, from [38, Theorem B]. In
the particular case of the annulus X = D*S!, whose mapping class group is
generated by the Dehn twist 7 along the zero section, we get BO (D*S!, %)
is strongly fillable if and only if & = 0; see Theorem K below for a higher-
dimensional version.

Note that, in the planar case, the monodromy ¢ is necessarily the identity
in homology of the page, since this is generated by the boundary loops, along
which ¢ is trivial by assumption. In particular, the condition on ¢ given by
Remark 1.1 is not restrictive. However, one can still prove the following, by
applying Theorem C:

Corollary G If X is planar and BO (X, ¢) is strongly fillable, then ¢ lies in
the commutator subgroup of the mapping class group (rel. boundary).

This implies, for instance, that whenever X is a pair of pants (whose mapping
class group is abelian) and BO (X, ¢) is strongly fillable, then ¢ = Id. Note
that whilst mapping class groups of higher genus surfaces are perfect, meaning
that any element can be written as a product of commutators, this is not so in
the planar case. In fact, any non-trivial product of positive Dehn twists will
not lie in the commutator subgroup. This is because any product of positive
Dehn twists gives a non-trivial positive braid after identifying all but one
appropriately chosen boundary component to (marked) points, and positive
braids survive in the abelianization of the mapping class group of the marked
disk, which is infinite cyclic (cf. [18, p. 252]). In particular, one can then
deduce Theorem F from Corollary G via this observation.

Fillability in higher dimensions As a further consequence of Theorem C
we also obtain the following, which gives a plethora of weakly but not strongly
fillable contact structures in arbitrary dimensions.

Corollary H (Stabilizations) Let OBD(X, ¢) be a (2n — 1)-dimensional
contact manifold, and let OBD(X,, ¢+) be obtained by a single posi-
tive stabilization. Then the Bourgeois manifold BO (X, ¢4.) is not strongly
symplectically fillable. In particular, if O BD(X, ¢) is weakly fillable, then
BO (X, ¢4) is weakly but not strongly fillable.

The fact that such manifolds are not subcritically Stein fillable was already
observed in [38, Corollary 1.4] and hence the above can be viewed as a sig-
nificant strengthening of this. As a consequence we obtain the first known
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examples of weakly but not strongly fillable contact structures in all dimen-
sions.
See Theorems J and K below for more concrete examples.

Tight but non-fillable contact 5-folds Recall that an almost contact struc-
ture on V2"*! is a hyperplane field £ equipped with a complex structure
J: & — &.On a 3-manifold, this simply reduces to the data of a homotopy
class of oriented 2-plane fields. Using Eliashberg’s classification of over-
twisted contact structures in dimension 3 [17], we can represent any almost
contact structure on a 3-manifold by an overtwisted contact structure, which
is supported by an open book by Giroux [24]. If we perform a single positive
stabilization, the contact structure is unchanged up to isotopy, and hence the
almost contact structure is also unchanged up to homotopy. Applying Corol-
lary H to the stabilized open book, and combining with Theorem A, we then
conclude:

Corollary I For an almost contact structure (M3, n) on a closed 3-manifold,
there exists a universally tight but not strongly fillable contact structure on
M x T? which is homotopic to the product almost contact structure n @ TT?.

We remark that the contact structure in Corollary I can sometimes be weakly
fillable (e.g. in the case where the monodromy of the planar open book is a
product of all negative Dehn twists, for which we do not need to positively
stabilize; cf. Theorem F).

Special higher-dimensional examples We also consider fillings for certain
specific examples of higher dimensional Bourgeois contact manifolds.

The family BO(D*S", t¥) We first consider the case of BO(D*S", 1),
where 7 is the Dehn—Seidel twist on D*S", and as a special case of Corollary H,
or alternatively as a direct consequence of Theorem C, we give a negative
answer to [38, Question 1.6]:

Theorem J The Bourgeois contact manifold BO(D*S", t) is weakly but not
strongly symplectically fillable.

More generally, from Theorem C one easily obtains that the Bourgeois contact
manifold B O (D*S", t*) is not symplectically fillable for most values of k and
n:

Theorem K Forn > 1, define the subset

BOFill(n) = {k €Z:BOD*S", ") is stronglyﬁllable} )
Then BOFill(n) is a subgroup of Z. Denoting a generator by ky(n), we
moreover have the following: if n is odd, then ko(n) = 0, i.e. BOFill(n) is

the trivial group, and if n is even, then ko(n) is even.
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Remark 1.3 The fact that kg(n) is even if n is, also is related to the fact that the
Dehn-Seidel twist has finite order as a smooth map in this case; see [34] for
the precise orders. We remark that it is conceivable that BO Fill(n) is always
the trivial group, which would be a stronger result, although the group itself
would no longer be interesting.

On the other hand, the contact manifolds BO (D*S", t¥) admit weak fillings
for every k € Z [38, Theorem A.a]. We then obtain infinitely many weakly
but not strongly fillable examples from this family alone; cf. Theorem J.

Unit cotangent bundle of T" We determine the diffeomorphism type of the
strong symplectically aspherical fillings of the unit cotangent bundle S*T" of
T" for n > 2 with its standard contact structure &4, induced by the restriction
of the standard Liouville form A4 on the unit disc cotangent bundle D*T” to
its boundary S*T".

In fact, (S*T", &;;4) is none other than BO(D*T"2,1d) To see this first
observe that the contact manifold O BD(D*T"~2, Id) is the convex boundary
of the subcritical Stein manifold

W = D*S! x ... x D*S! xD?.

n—2 times

Then according to [38, Theorem A.b], BO(T*T"2,1d) is then the convex
boundary of the Stein manifold <]_[:’:_12 D*Sl) x D*T? = D*T", with its split
Stein structure, which is just the standard one.

We then prove the following uniqueness result, which is a strengthening of
Theorem D for the case of S*T":

Theorem L. The contact manifold (S*T", &4), n > 3, has a unique strong
symplectically aspherical filling up to diffeomorphism.

Theorem L is a smooth higher-dimensional version of a result by Wendl
[57, Theorem 4] who classified symplectic fillings of S*T? up to symplectic
deformation, which in turn generalized a weaker homeomorphism classifica-
tion of Stipsicz [53, Theorem 1.6]. In dimension 5 (i.e. n = 3), Theorem F and
Theorem L then give a complete smooth characterization of symplectically
aspherical strong fillings for the Bourgeois contact S-manifolds associated to
any open book with page D*S!; i.e. the only strongly fillable case is the triv-
ial monodromy case, in which case the filling is smoothly unique. Note that,
according to [38], all examples with page D*S' are weakly fillable.

Remark 1.4 Theorem L has also been independently obtained by Geiges—
Kwon-Zehmisch [20]. While our original proof made use of punctured
holomorphic curves, the current one uses now closed holomorphic spheres,

@ Springer



J. Bowden et al.

BOE, Y- @)

(Cw,)

BOE,Y) BO(=,®)

Fig. 1 The pseudo-Liouville cobordism (C, wc) given in Theorem 3.1

as kindly suggested to us by a referee in order to simplify the arguments.
Hence it now follows a similar line of argument as the proof in [20].

QOutline of the proofs For convenience of the reader, we outline the main
arguments of the proofs of Theorems A, C and L.

TIGHTNESS IN DIMENSION 5 The proof of Theorem A involves some geo-
metric group theory and hyperbolic geometry as well as some holomorphic
curve techniques.

The first ingredient is the construction of a strong symplectic cobordism
between Bourgeois contact structures; this is done in Section 3.1. More pre-
cisely, Theorem 3.1 is a “stabilized” version of the analogous result for open
books, which was proven (independently) in [2,35]; see Figure 1. We point
out that, while the symplectic form on the strong cobordism of Theorem 3.1
is exact, the Liouville vector field associated to the global primitive is not
inwards pointing along the negative ends. We shall refer to a strong symplec-
tic cobordism with an exact symplectic form as pseudo-Liouville.

For “most” cases of surfaces (the rest are dealt with case by case), standard
results from low-dimensional topology then allow one to write any monodromy
as a composition such that the contact structures on the negative ends of the
cobordism in Figure 1 are hypertight; see Corollary 4.1. Then, a standard appli-
cation of the holomorphic curve machinery a-la [1,28,47] gives a holomorphic
plane in the symplectization of one of the negative ends starting with a Bishop
family associated to a Plastikstufe in the positive end. While bubbles are ruled
out by exactness, holomorphic caps at the negative ends are excluded via the
explicit properties of the cobordism (C, wc) (see Theorem 3.1 for a precise
statement) and via the specific Reeb dynamics at the negative ends; this is a
subtle point. Now, the existence of such holomorphic plane contradicts hyper-
tightness of each connected component of the concave boundary (C, wc), thus
concluding the proof.

OBSTRUCTIONS TO FILLABILITY IN ARBITRARY DIMENSIONS The proof
of Theorem B is mostly based on holomorphic curve techniques.
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We first attach the symplectic cobordism as in [42, Section 6.1] to the original
contact manifold to obtain a symplectic fibration over 3V, with S? as fiber;
see Lemma 6.1. This cobordism can be seen as the attaching of a symplectic
handle, having two distinguished symplectic co-cores Cx..

In the presence of a strong symplectic filling W, after attaching such a
symplectic cobordism and obtaining a “capped” filling W, with boundary
a fibration over a contact manifold with symplectic sphere fibers, we obtain
an induced moduli space M of closed holomorphic spheres which “probes”
the original filling W. A key point is that each of the two co-cores C+ of the
relevant handle of the capping are J-invariant, and every curve in the moduli
space intersects it precisely once, by positivity of intersections. The same is
true after considering the Gromov compactification M obtained by adding
nodal curves.

Assuming that there is a cycle o in dC4, which is non-trivial in C4+ and
bounds a relative cycle b in the filling, this allows one to “pull-back™ b to
the moduli space, and push it to a relative cycle in the co-core bounding the
original o, thus contradicting the non-triviality of o in C+. Such pull-backs
can be achieved via the theory of pseudo-cycles in the case that W is semi-
positive; in general, we appeal to polyfold theory [31] as, for example, in [42,
Section 7.2]. In other words, the homology of the co-core must then survive
in the filling.

TOPOLOGY OF ASPHERICAL FILLINGS The proof of Theorem D relies on
the fact that the moduli space considered above is automatically compact (see
Proposition 7.1). One can then puncture the spheres by removing their inter-
section with (small open neighbourhoods of) the co-cores, obtaining a moduli
space of cylinders. Since each cylinder retracts onto any of its boundary com-
ponents, this moduli space also admits a retraction to a piece of its boundary,
along which the evaluation map is a diffeomorphism. Using a pull-push argu-
ment as in the proof of Theorem B, one obtains the desired isomorphism in
homology.

In the case of S*T" applying some standard algebraic topology, one can
then prove that any symplectically apherical filling W is in fact homotopy
equivalent to D*T". Then, using the s-cobordism theorem as in [3, Section 8],
one concludes that W is diffeomorphic to D*T". For this final step it is essential
that the fundamental group of S*T” is abelian.

2 The Bourgeois construction
Consider a closed, oriented, connected smooth manifold V#*~! and an open

book decomposition (B, #), together with a defining map @ : V — D? having
each z € int(D?) as regular value. Here, B C V is a closed codimension-2
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submanifold, § = &/ |®| : V\B — Sl is a fiber bundle, and @ is such that
®-1(0) = B.

A 1-form « on V is said to be adapted to @ if it induces a contact structure
on the regular fibers of @ and if do is symplectic on the fibers of 6 = @/ |D|.
In particular, if £ is a contact structure on V supported by (B, 0), in the sense
of [24], then (by definition) there is such a pair (¢, @) with « defining &.

Theorem 2.1 (Bourgeois [8]) Consider an open book decomposition (B, 6)
of V2"~ represented by a map & = (1, d2): V — R? as above, and let o
be a 1-form adapted to @. Then, B := o + @1dq1 — P2dqa is a contact form
on M = V x T2, where (91, g2) are coordinates on T2,

The contact form g on M = V x T? will be called a Bourgeois form associated
to (a, @) in the following.

Remark 2.1 The contact structure on M = V x T? defined by B is actually
independent, up to isotopy, on the pair (&, @) defining the contact open book
(B, 6) on V. This can easily be seen in the case where n = 2, i.e. V is 3-
dimensional, using the contractibility of the space of symplectic forms on the
2-dimensional page. In the higher dimensional setting, this is discussed in
detail in [38, Section 2 and Appendix], using the reinterpretation of contact
open books in terms of ideal Liouville structures [25].

Remark 2.2 The contact structure determined by a Bourgeois contact form is
stable up to contactomorphism under finite covers of the torus factor. Indeed,
up to precomposing by an automorphism of T, any such cover is of the form

(g1, q2) —> (kq1, q2) -

Pulling back gives a contact form By = o + k®1dq; — P2dg> and a straight-
forward calculation shows that linear interpolation gives a family of contact
forms.

Abstract open books and Bourgeois contact structures For the proof of
Theorem A, it is also useful to interpret the Bourgeois construction in abstract
terms. We briefly recall here the construction in order to fix some notation.
The reader can consult for instance [19, Section 7.3] for further details.

Consider a Liouville domain (X2"~2, 1), together with an exact symplecto-
morphism ¥ of (X, dA) (i.e. y*A = A — dh, for some smooth / : ¥ — RY),
fixing pointwise a neighborhood of the boundary B := 9X'. One can then
consider the mapping torus X'y, of (X, ), and the abstract open book

Vsy = (BxD*UXy) /~ )
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where ~ identifies (p,0) € (B x D?) with [p,0] € 3Xy. One can also
construct a fiberwise Liouville form Ay on the mapping torus mp: Xy —
S! of (X, ¢). For large K > 0 the form ax = Kn[{d@ + Ay 18 contact
on Xy . Moreover, it can be extended to a contact form on all of Vx y by
hi(r)Ap + ha(r)d® on B x D2, for a well chosen pair of functions (h1, h3),
and Agp = A|p.

We denote the resulting contact form on Vy y by a5 . The contact mani-
fold (Vx v, ker(ax y)) will also be called an abstract contact open book, and
denoted simply with O BD(X, yr). Sometimes, we will also use the contact
formay y.

We point out that there is a well defined map @5 y: Vy y — D? given by
extending the projection to the circle on Xy, by setting

Ps ylpxp2(p,1,0) = p(r)e'? e D?,

for some non-decreasing function p satisfying p(r) = r near O and p(r) = 1
near r = 1. Notice also that . y is adapted to @5 y (as defined above).

We then denote by By y the Bourgeois form on My y = Vs, x T2
associated to (ax,y, @) as in Theorem 2.1, and by &5 y the contact structure
it defines. Finally we let BO(X, ¥) := (Mx y, &5 y).

Hypertightness for Bourgeois Contact Forms In the following sections,
we will need a hypertightness criterion for o x y . We first give a definition:
Let (V x T2, £) be a contact manifold, and B any subset of the set of closed
Reeb orbits of a contact form . We say that 8 has T?-trivial Reeb dynamics
concentrated in B if the image of every closed Reeb orbit not in 5 under the
projection V x T? — T2 is homotopically non-trivial.

A straightforward computation gives:

Observation 2.2 [7, Section 10.2] (cf. [22, Corollary 6.3]). The Bourgeois
contact form By y for &x y has T2-trivial Reeb dynamics concentrated in the
set B consisting of the submanifolds yg x {q} C V x T2, forall g € T? and all
v closed Reeb orbit of (B, ax y|p). If the binding (B, o x y|g) of the natural
open book of Vx y admits no Reeb orbits that are contractible in V. y, then
the Bourgeois contact structure &y y, is hypertight.

Notice that, in the 3-dimensional case, Observation 2.2 implies that, if the
binding consists of a collection of loops each having infinite order in 7 (V),
then the associated Bourgeois contact structure is hypertight.

We point out that we will not make use of Observation 2.2 in the proof of
Theorem A, as we will apply it directly on a another contact form, which still
defines the Bourgeois contact structure up to isotopy (see Lemma 5.1 below).

A supporting spinal open book decomposition We now present a geo-
metric way of understanding the Bourgeois construction, via SOBDs (see also
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Section 6 for an alternative SOBD). The notion of an SOBD, introduced in
[39] in dimension 3 (see also [46, Appendix B] for a version in arbitrary
dimensions), comes from the observation that an open book decomposition
can be thought of as two fibrations glued together: the neighbourhood of the
binding is a contact fibration over the 2-disc, while the mapping torus piece
is a Liouville fibration over the circle. More generally, an SOBD consists of a
contact fibration over a general Liouville domain, glued to a Liouville fibra-
tion over a contact manifold. The first fibration is called the spine; the second
one, the paper. The base of the spine (the vertebrae) has boundary the base
of the paper; the fibers of the paper are called the pages. The two fibrations
are glued together along an interface region, which for our purposes we will
think as a trivial product of a piece of the vertebrae (a collar neighbourhood
of its boundary) and the contact fiber of the spine, and hence can be given the
structure of both types of fibrations.

Let us see how this works in the case of Bourgeois manifolds. Consider
b =y y = pe'? = (pcos(9), psin(d)), a defining map for V. = Vyz y =
OBD(X, y), together with the Giroux form o« = ay y and the associated
Bourgeois form 8 = Bx . Let0 = @/|®[: V\ B — S! be the open book
coordinate. From Eq. 2, we obtain a decomposition

M=V xT? =B x D*T*U ¥y x T?,

where we identify D*T? = D2 xT? via q1, p1,q2, p2) = (p1, — P2, 41, q2).

We denote by Mg := B x D*T2, which we call the spine, and Mp =
Xy x T2, the paper. We also have the interface region M; = B X [—e€, €] X T3,
corresponding to the region where Mg and M p glue together. Observe that we
have fibrations

ns: Mg — D*T?, 7p: Mp — S*T? = T3,

where the monodromy of 7p coincides with ¥ along the cotangent S!-
direction, and is trivial along T2. The map 7 has contact fibers and Liouville
base, whereas 7 p has contact base and Liouville fibers. The interface region
is a trivial product and hence fibers over B or over a collar neighbourhood of
dD*T? inside D*T?2. This is then an SOBD for M. Observe that the fibers of
7 p, the pages of the SOBD, coincide with the pages of the OBD for V. One
may also view the SOBD as a fibration 7p : M\B — S! x T2, where we
define the binding of the SOBD as B = B x {0} x T? ¢ B x D? x T? = Mj.
This fibration has fibers which symplectically are copies of the Liouville com-
pletion of the page X', and has monodromy v along the first factor, and trivial
monodromy along the second.
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The Bourgeois contact structure § = &y y is “supported” by the SOBD
described above, in a sense which we now describe. Via the identification
D*T? — D? x T? above, up to isotopy of contact forms, we have

Blmsg\m; = A + Agea,

where Ag;q = p1dq1 + padgqs is the standard Liouville form on D*T?2. In
other words, B\ M, 1s a split contact form, having a Liouville and a contact
summand. Note also that on Mg\ M| the Reeb vector field Rg of B agrees with
Rp over the binding 13, and is transverse to the pages away from it. Similarly,
up to isotopy

Blmp\m; = Ay + Asra,

where o5;g = cos(0)dqy + sin(8)dg; is the standard contact form on T3,
and so splits into a Liouville summand and a contact summand. In particular,
the restriction of df to the pages of the SOBD is a positive symplectic form,
and the Reeb vector field is transverse to the pages, agreeing with that of
o5rg and so tangent to the T2 factor. In other words, the contact structure,
the contact form, as well as the Reeb dynamics of 8 are “compatible” with
the underlying geometric decomposition. This interpretation also allows us to
reobtain Observation 2.2.

Remark 2.3 The observation that Bourgeois contact manifolds are supported
by the above SOBD, in the sense described above, should be attributed to Sam
Lisi.

3 A cobordism of Bourgeois manifolds

We describe a strong (actually, pseudo-Liouville) cobordism between Bour-
geois contact manifolds with the same page. Its purpose is to relate the
Bourgeois manifold coming from two different monodromies to the one com-
ing from their composition, and it will be used in the proof of Theorem A.

3.1 From disjoint union to composition of monodromies

Let (X¥2"2,d)) be a Liouville manifold, and let ¢ be an exact symplec-
tomorphism relative to the boundary. Notice that the boundary (B, Ap) =
(0%, Alagx) can naturally be seen as the “binding” submanifold of the associ-
ated open book. For each g € T?, we also let B, be B x {q} C Vg ¢ X T2 =
My 4.

The aim of this section is to give a proof of the following result (recall Figure

1):
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Theorem 3.1 There is a smooth cobordism C from Mx; y | | Mx g t0 M s yop.
This cobordism is smoothly a product Co x T2, where Cq is a smooth cobordism
from Vs y | | Vs ¢ to Vs yop. Moreover, there is a symplectic form wc on C
which satisfies the following properties:

1. wc admitslocal Liouville forms A4 and »— near M s yop and Mx y | | Mx ¢
respectively, satisfying:

(@) Ay restricts on My yop to the Bourgeois contact form Bx yog,

(b) A_ restricts on My y LM 5 4 to the Bourgeois contact forms Bx y and
Bx.p respectively; in particular, A has (on each connected component)
T2-trivial Reeb dynamics concentrated in { Bg}gem;

2. wc admits a global primitive v which coincides with A4 at the convex
boundary and such that vIBq = k_qu foreach By C My y LIMs 4.

Item 1 means in particular that (C, wc) is a strong symplectic cobordism
with convex boundary BO(X, ¢ o ) and concave boundary BO (X, ¢) U
BO(X, ). Notice however that we do not claim that the global 1-form v in
Item 2 defines a contact structure at the concave boundary; in other words, the
cobordism we give is not claimed to be Liouville, but just pseudo-Liouville
(as defined in the introduction). Lastly, we point out that Theorem 3.1 can be
thought of as a “stabilized” version of [2, Proposition 8.3] and [35, Theorem 1];
in fact, smoothly (but not symplectically), the cobordism C is just the product
of the cobordism from [2,35] with T2. For the reader’s convenience, we start by
giving a topological description of the cobordism C as obtained by gluing two
“cobordisms with corners”, Cpo; and C,p, and then describe the symplectic
structures on these pieces in more detail.

A topological description of C Let P be the pair of pants, i.e. the surface
of genus 0 and with 3 boundary components. We view P as embedded in
R? as the (closed) disc D of radius 1 with two smaller (open) disjoint discs
D_ 1 and D_ 5, both of radius € and centered at —1/2 and +1/2 respectively,
removed from it. In cobordisms terms, P is seen as a smooth cobordism with
concave boundary dD_ 1 L1 dD_ » and convex boundary 0D .

Consider then the fiber bundle =g : E — P, with fiber the page X, over
the pair of pants P, where the monodromies along the two negative boundary
components are given by ¢ and i respectively, and by their composition along
the positive one. This can be realized for instance as follows: consider y; and
2 disjoint arcs in P joining respectively dD_ j and dD_ 5 to d D, then cut
X x P along ¥ x y and X' X y; and glue them back respectively via ¢ x Id,,
and ¥ x Id,,.

The desired “bottom piece” Cp,; of C is then the cobordism with corners
E x T2, which inherits a fibration 7 = 7g x idr2 ¢ Cpor = P x T2; cf.
Figure 2. Notice that Cj,; has the following distinguished boundary pieces:
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Fig. 2 Topological picture of Cp,y

OM:BX x T

Fig.3 Topological picture of the cobordism (with corners) Crop C B x [0, +00) x RZxT2.In
the proof of Theorem 3.1, R2 x T2 becomes T*T2 and [0, 4-00) x B becomes the symplectization
of B

e 3.+Cp,; given by the preimage by 7 of 3D, x T? and dD_ jLUdD_ 5 x T2,
respectively;
e 30Cpor given by dCp,; \ 1 (@ P x T?).

Furthermore, since ¢ and 4 are both identity near d X', one simply has that
30Cpor = 0% x P x T2

The “top piece” Cypp of C is given as follows. Consider P C R? as a
subset of {0} x R?> c R3. Letalso Sy, S_j and S_ ; be three hemispheres in
[0, +00) x R? centered respectively at 0, —1/2 and +1/2, and of radius 1, €
and e respectively. Then, P together with these three hemispheres bounds a
compact region R C R3 with piece-wise smooth boundary. The desired C top
is then just given by C;pp = B X R x T?, where B = 3 X; cf. Figure 3. As
was the case with Cj,,, the manifold Cy,), also has the distinguished boundary
pieces:

® 0, Cp givenby B x S x T?;
® 0_Cpp givenby B x (S_1US_») x T2,
e 99Cop givenby B x P x T2.

The desired cobordism C is then topologically just obtained by gluing C;,p
with Cper along 99Crop = B X P X T2 and 39Cppr = B x P x T? (via the
natural identification).
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We now proceed to discuss the symplectic side of the construction, i.e.
to give a detailed proof of Theorem 3.1. We will follow closely, with some
adaptations, the proof given in [35].

A toroidal pair of pants cobordism in dimension In order to make the
topological sketch above into a detailed proof taking care of the symplectic
data, we need to utilise a symplectic counterpart of the product of the pair
of pants P and T? which has the right structure at the boundary. In other
words, we want a strong 4-dimensional symplectic cobordism with concave
end (S*T2, &5;4) U (S*T2, &) and convex end (S*T2, £5,4), and having the
topology of P x T2. To this end, consider the unit disc cotangent bundle D*T?
of T2, together with its standard symplectic structure wg;q = dAg g, Where
in coordinates Ag;g = p1dq1 + padqa is the standard Liouville form. To be
precise, we need to work with scalar multiples K ;4 and K Agg, where K is
a positive real constant that will be determined later on in the proof. We also
denote by X the Liouville vector field p1d,, + p20,.

Consider the submanifold D*T? of D*T? made of those covectors of norm
less than a certain € < 1/10, and denote by ji : D;"T2 — D*T? the sym-
plectomorphisms

Jx
(p1, 41, P2, q2) V> (p1 £ 1/2, q1, p2, q2).
For ease of notation, we consider the inclusion
j=J-Uj: (DIT?, Kwga) U (DIT?, Kwga) — (DT, Kwga).

Then, the desired cobordismis (Q, wg) := (D*T? \j(D;"JI‘z), K wg:q). Topo-
logically this is just a product of the torus with a pair of pants P C R? in the
(p1, p2)-plane.

The Liouville field on a neighbourhood of the convex boundary is just given
by X, whereas the one near the concave boundary is given by j, X, which is
the vector field (py F 1/2)9,, + p29p, on the image of j respectively.

Lastly, we consider an auxiliary smooth function f: T*T? — R, which
depends only on p1, p2, and satisfies:

1. f=p}+ pjonT*T?\ D*T?,
2. f=(p1F1/2)*+ p% on the image of ji respectively,
3. €2 < f < 1 on the interior of Q.

Notice that Item 1 implies in particular that df (X) > 0 in a neighborhood
of 3(D*T?). Similarly, Item 2 implies that df (j,X) > O on the image of j,
except on j ({0} x T? L {0} x T?), where it vanishes.

Description of the symplectic cobordism Consider the bottom piece Cp,;
as in the topological sketch above. We now view Cj,; as a fiber bundle with
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fibers X over Q = P xT? C T*T?, and want to prove that it admits a fiberwise
Liouville form A9 which agrees with e’Ag near B x Q C Cp,;. Here, e’ Ap is
the normal form of A on X' on a sufficiently small neighborhood (-4, 0] x B,
with ¢t € (=46, 0], of its contact boundary B given by the (globally defined)
Liouville vector field Y for A, which is outwards pointing along the boundary
dX = B of the page X

Recall that Cp,; is obtained from ¥ x T*T?2 by a cut and paste procedure
along X x (y; Uyp,) x T2, as described in the topological sketch above. Recall
also that ¢ and ¢ are exact symplectomorphisms of the page (X, 1), equal
to the identity on a neighborhood of B; let then &1 and Ay be respectively
the functions on X, constant near the boundary, such that ¢*A = A — dh,
and Y¥*A = A — dhy. Taking normal coordinates r; € (—e¢, €) to y; inside
P, one can then consider smooth cutoff functions p; : (—¢, &) — [0, 1] equal
to O near ;, = —e& and to 1 near r; = 0. It then follows that, in the cut and
paste procedure to obtain Cpy; from X' x T*T2, the form » — d (pihi) on
X x (P \ (y1 Up)) x T? glues well under the identifications ¢ x Id,, and
Y x 1dy, along X x y; x T? and ¥ x y» x T? respectively. The result is
hence a fiberwise Liouville form Ag on the fiber bundle 7 : Cp,; — Q, which
is equal to e’ Ap near B x Q as the h;’s are constant there.

We also point out that, for very large K >> 0, the form £2 = dAg+ K7 *dAgq
on the total space Cpo of w: Cpoy — Q is an exact symplectic form with
primitive v = Ag + Km*\Ay4. Here, abusing notation sightly, we let Ay
denote the restriction of the canonical 1-form under the inclusion Q C T*T?2.
This then gives the desired symplectic structure on Cp,y; it only remains to
describe the symplectic form on Cy).

For this, let T be a function on [0, co) vanishing at 0 with all its derivatives,
and strictly monotone increasing on (0, o0). We then identify the C;,), of the
topological sketch above with the following set:

Ciop = {(t.b. p.q) €[0,00) x B x T*T* | 1()> + f(p.q)* > €7,
) +1pl* <1} .

The advantage of this identification is that Cy,), inherits a natural Liouville
structure e’ A g + K A4 from the symplectization ([0, 00) x B, d(e'Ap)) and
the cotangent structure (T*TZ, Astd)-

Now, Cpr and Cy,p, can be naturally glued along the subsets B x Q C 9Cpoy
and {t = 0} = {0} x B x Q C Cyyp (corresponding to dyCrop and doCpoy
in the topological sketch). What is more, this gluing is compatible with the
symplectic form 2 = dig + Ka*dAgg on Cpyr and d(e'Ap) + KdAgq On
Ctop. We thus obtain a symplectic cobordism (C, wc), and we now proceed
to check that it satisfies the required properties. We will only do this for the
negative ends, as the case of the positive end is entirely analogous.
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Proof of Theorem 3.1 Notice first that by construction C = Cq x T? is topo-
logically a product. Furthermore, each boundary component of C determine
T2-stabilised open books, which we think of as supporting SOBD’s for the
Bourgeois contact structures. Moreover, these SOBD’s coincide, at least topo-
logically, with those used to define the Bourgeois contact structure. From a
symplectic point of view, we point out that the fiberwise Liouville form Ay on
Cpor — Q glues well to the 1-form ¢’ A on Ciop inherited from the ambient
space [0, 00) x B x T*T? to give a global 1-form denoted o, which is a
pullback of a form on Cy.

We now describe the primitives near the boundary in the bottom part Cp,;.
Consider the primitive j, A4 of the standard symplectic form near the concave
boundary of Q, which in coordinates is just pidqg1 + p2dg2 F 1/2dq;. The
Liouville vector field Z associated to the local primitive A_ = Ag+ K jxAgrq 1S
then defined on a neighborhood of the negative boundary components d_ Cp,,
of Cpor. More precisely, an explicit computation shows that the vector field
Z is, in the explicit pre-glued version X' x (P \ (y1 U y2)) X T2 of Cpor,
just Y + Y + j.X + X', where Y is the Liouville form associated to A on
X, Y’ is the di-dual of pdh (hence tangent to the X factor), and X’ is the
dAgq-dual of %hdp; here we define p to be p;, respectively on each of the
two negative ends. Hence, the vector field X’ is tangent to the second factor
of ¥ x (P \ (y1 Uy)) x T2, and has no dp component, using cotangent
coordinates (p, q) € T*T2. In particular, the projection of Z on Cp,s to Q
via the fiber bundle map has the same 9, component as j, X near d_ Q, and is
hence transverse to it and inwards pointing.

Now, via the natural (orientation preserving) diffeomorphisms

S! x T? — §*T* c DIT? 3
(¢, x,y) = (p1 = —cos(p) £1/2,q1 = x, p» = sin(g), g2 = y),
where Sé is the circle in R? of radius €, the restriction of the associated Liouville
form on Cp,; to the boundary is naturally pulled back to the Bourgeois contact
form on the paper region of the SOBD, for a suitable choice of adapted contact

form o and open book map @ (cf. Remark 2.1).

In the top part Cy,), of the cobordism the Liouville vector field is just the
linear combination d; + rd,, where r is the radial parameter |p F 1/2] at the
respective boundary components. This is then also transverse to the boundary.

By parametrizing the interior hemispherical caps using the canonical coor-
dinates coming from the cotangent bundle of the torus, we obtain the following
coordinate description on Cygp:

o= eVl g 4 K(p) F 1/2)dq1 + Kpadgs .
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Now, via the (orientation preserving) diffeomorphisms
D? x T2 — DIT?

(r,o,x,y) = (p1 = —rcos(p) £ 1/2,q1 = x, pr = rsin(p), g2 = y),

naturally extending Eq. (3), where Dg is here the disc in R? centered at the
origin of radius €, A_ then pulls back on each negative boundary component of
Ciop to the Bourgeois contact form as in Theorem 2.1, for a suitable choice of
adapted contact form « and open book map @, which can be taken compatible
with that coming from the bottom boundary part. This concludes the proof of
Item 1b.

Finally, notice that there is a global Liouville primitive v for wc defined on
all C, given by gluing Ao + K7 *Agg on Cpoy = E X T2 and e'Ap + KXgtaq
on Cypp C [0, +00) X B X T*T2. By looking at the explicit expression for
A_ along Cy,), we see that v coincides with A _ on the subsets of the form B,
defined before the statement of Theorem 3.1. Indeed, these are given by B, =
B x{xi} x{q},wherexy = (t =€, p1 = £1/2, pop =0) € [0, +00) x R? is
the “origin” in the hemispheres S_ 1, S_ »,1i.e. the points of S_ | and S_ > with
maximal ¢ value. There, we just have A_|Bq = el = leq. This concludes
the proof. O

4 Factorizing the monodromy

Let X denote a connected orientable surface with boundary. We will denote
the mapping class group as M C G ('), which is defined to be the set of isotopy
classes of orientation preserving diffeomorphisms of X'; note that we do not
require these diffeomorphisms to fix the boundary components. This group is
naturally isomorphic to the group of isotopy classes of diffeomorphisms of
the corresponding punctured surface. One may also consider MCG (X, 0X)
of mapping classes fixing the boundary, and there is a natural forgetful map
MCG(X,0X) - MCG(X) whose kernel is generated by boundary parallel
Dehn twists.

We will refer to a surface as sporadic if it is either a disc, an annulus or a pair
of pants. These cases correspond to the mapping class group being virtually
abelian. The aim of this section is to prove the following:

Lemma 4.1 (Factorization Lemma) Let ¢ € MCG(X,0X) for a non-
sporadic surface X. Then ¢ can be factored as ¢ = ¢1 o ¢, where, for
each i = 1,2, ¢; is such that each connected component of the binding of
Vi := OBD(X, ¢;) has infinite order in w(V;).

A direct consequence of Lemma 4.1 and Observation 2.2 is the following:
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Corollary 4.1 Let ¢ be a mapping class of a compact, orientable, non-
sporadic surface X with boundary. Then ¢ can be factored as ¢ = ¢1o¢o, with
b1, P2 such that the Bourgeois contact manifolds BO (X, ¢1) and BO (X, ¢»)
are hypertight.

In order to prove Lemma 4.1, we start by recalling some results from geo-
metric group theory and 3-dimensional hyperbolic geometry in Sections 4.1
and 4.2 respectively. The proof is then given in Section 4.3.

4.1 Dynamics of pseudo-Anosovs acting on the curve graph

Let X denote a compact, connected orientable surface (possibly with bound-
ary). We recall that, by the Nielsen—Thurston classification theorem (see for
instance [18, Theorem 13.2]), every element in MCG(X) or MCG(X,0X)
is either pseudo-Anosov, reducible or of finite order. This characterization
can also be extracted from the associated action on the curve graph, denoted
C(X). This is the graph whose vertices are isotopy classes of essential, non
boundary-parallel, simple closed curves on X so that there is an edge between
two vertices if the corresponding curves can be made disjoint via isotopy.
Endowing the edges to have length 1 we thus obtain a metric space on which
the mapping class group acts via isometries.

The curve graph was famously shown to be §-hyperbolic in the sense of
Gromov by Masur-Minsky [43] in the case that X' is neither the torus nor
sporadic, which has many important implications. In particular, one has the
following alternative description using this action that is again due to Masur-
Minsky [43, Theorem 4.6].

Theorem 4.1 (Masur-Minsky) Let ¢ # Id be an arbitrary mapping class
on a non-sporadic compact, orientable, surface X with non-empty boundary.
Then, we have the following trichotomy:

e (Finite Order): The action of ¢ on C(X) has finite orbits, but no fixed point.

e (Reducible): ¢ has a fixed point in C(X).

e (Pseudo-Anosov): ¢ has no finite orbits and in fact acts hyperbolically on
C(2).

In the following we will use some basic facts about Gromov-hyperbolic spaces
and their boundaries at infinity, which can for example be found in the book
of Bridson—Haefliger [11, Chapter 9].

We now collect some basic consequences of the fact that a pseudo-Anosov
mapping class f acts hyperbolically on the curve graph. First we note that, for
any choice of isotopy class o, which corresponds to a vertex in the curve graph
X = C(X), the bi-infinite orbit 8 = (f"(«))nez is a quasi-geodesic. More-
over, such a quasi-geodesic determines two distinct points p4+ on the Gromov
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boundary d X of the curve graph, which correspond to the fixed points of the
induced action on the boundary and form a repelling/attracting pair. Finally,
the action on the boundary has north-south dynamics. More precisely, for any
neighbourhoods Uy around p1 € 00X there is some (large) N so that

V(@ X \U_) C Uy and £V 000X \ Us) C U_.

In fact, this north-south dynamics can also be seen using half spaces associated
to the quasi-geodesic § = (f"(«))nez, as described presently. First of all the
nearest point projection I1g : X — B, mapping an arbitrary point to a point
in B which is nearest to it, is well-defined in the coarse sense, meaning that
any two nearest point projections are a uniformly bounded distance apart. We
fix such a choice from now on; what follows is independent of this choice up
to constants. We decompose 8 = (f"(«))n<o U (f"(@))n>0 = B+ U B into
two (quasi-)rays and define half spaces

Hy =T (Bs).

Taking closures in X U 0 X, the north-south dynamics implies that

()" (H+) = prand () f7" (H-) = p-.

n>0 n>0

For convenience we write Wiv = f*N (H.). Note that Wiv is precisely the
preimage of { /" («) },>n under the projection and similarly for W2 In partic-
ular, WfrV and WM are disjoint for all N, M > 1. Moreover, these half spaces
satisfy the following property:

Lemma 4.2 There is a constant C = C(8, o), depending only on the hyper-
bolicity constant § and the choice of curve o, such that every geodesic joining
a point 7 € Wiv fo its nearest point projection lies in Wi’fc.

Proof We refer to Figure 4 for this proof. Let z € WJ]FV have nearest point
projection f%(a) and let [z, f¥(a)] be a geodesic path from z to fL(a).
Assume that the nearest point projection f~ "(@) of some x € [z, ()] sits
outside Wiv_c, iee N <N-C.

As (f"(a)), is a quasi-geodesic, there is some C’ > 0 so that, for any
N—C < M < N,thereisapoint p on the geodesic segment [fN/ (@), fE(a)]
which s at distance C’ from fM («). Now, by the §-slim property applied to the
geodesic triangle {x, f N’ (o), fL ()}, thereis a point y either on the geodesic
segment [x, f N ,(oz)] oron [x, L («)] with distance at most § from p. Hence,
y is also at distance at most C’ + § from M («).
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Fig. 4 The triangle in the proof of Lemma 4.

Now, let us assume that y € [x, fN, (a0)]. Then, it follows that [y, fN/ ()]
has length at most C’+§, otherwise there would be a piecewise geodesic from x
to f™ (&) shorter than the geodesic segment [x, fV ()], contradicting the fact
that £V '(a) is the nearest point projection of x. But then the geodesic triangle
{y, fN (@), fM(«)} violates the triangle inequality if C is taken big enough
(this value only depends on § and ¢, and not on the point y), as the two sides
containing y are both of length at most C’ 4§, while the side [ /¥ , (@), fM(a)]
has length growing linearly in M — N’ > C.

If y € [x, fL ()], the analogous argument shows that the geodesic triangle
(v, fL (@), fM(«)} violates the triangle inequality if C is big enough. This
then proves the proposition, provided C = C(§, «) is taken to be large. O

We now prove the following, which only uses facts about the dynamics of
isometries acting hyperbolically on §-hyperbolic spaces. We are very thankful
to Sebastian Hensel for pointing this out to us.

Proposition 4.1 Let ¢ be a fixed mapping class on a non-sporadic compact,
orientable, surface X with non-empty boundary. Then, there exists a pseudo-
Anosov map f such that, for sufficiently large k, the mapping class f*¢ e
MCG(X, 0X) is pseudo-Anosov.

Proof Let ¢ be our given mapping class. We first claim that there is a pseudo-
Anosov map f whose set of fixed points {g. } at infinity is mapped to a disjoint
set under ¢. To see this, first recall that, since X' is non-sporadic, there exist at
least two pseudo-Anosov mapping classes y, n € MCG (X, 0 X') with disjoint
sets of fixed points at infinity {p!_} and { pl}l. Now, if for instance ¢ mapped
the stable fixed point pi € 30X of ¥ to its unstable fixed point p” (the other
case is similar), then we can consider the conjugate f = y Ny ~V for large N

1 This follows, for example, from the fact that the action on the boundary of the curve complex
is WPD in the sense of [4, Proposition 6].
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Fig. 5 The quadrilateral in the proof of Proposition 4.1

so that both fixed points g+ of f lie in a small neighbourhood of the attracting
fixed point pi of y, which is then mapped under ¢ to a small neighbourhood
of pz. In particular, the set {¢(g+)} is disjoint from {g+} as claimed.

Consider now such a pseudo-Anosov f, and let Wiv = fEN(Hy) asin the
notation described before the statement of Proposition 4.1. Note that these sub-
sets are defined with respect to some a priori fixed quasi-geodesic ( f" («))nez.
Observe that, in view of our assumption on f, we can use the north-south
dynamics to assume that both d)‘l(WiV ) and q&(WJ]rv ) are disjoint from wh,
for all large N > 0. In particular, for any given (large) M we can take k so
that g = f*¢ satisfies

ge(WYy c w3,

Now suppose g is not pseudo-Anosov. In particular, up to taking powers,
it has a fixed point, say «’. We claim that such a fixed point must belong to
Wiv . Assume not. Then consider the geodesic joining ' to fN+M (). This
has one end point fixed by gi, while the other gets mapped to gy (fN 1M (a)) €
Wf+3M under gi. Joining gk(fN+M(oz)) by a geodesic to its nearest point
projection f%(a), where L > N + 3M, we obtain a geodesic quadrilateral
with vertices gr (fN T (@), fE(a), FNTM (), o that has two sides of equal
length D = d(o/, fN+M(@)) at the vertex «’. See Figure 5.

Then by the §-slim triangle condition applied twice, the stability of quasi-
geodesics and Lemma 4.2, we find a point y on one of the sides containing o’
that has distance at most K = C'(8, o) +28 from fN+2M (&) where C’(8, «) is
the uniform constant coming from quasi-geodesic stability that in turn depends
only on § and «. Moreover, we have (using that M is large) that y splits the
geodesic it lies on into subarcs each of length at least 2K, and hence of length at
most D —2K . This is also represented in Figure 5. Then the triangle inequality
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-2 2K’

f'\toc)\ o )

<C'
Fig. 6 The triangle {o’, fN,(Ot), FNTZIM ()} (Here, recall that K/ = C' + §)

implies that
d@, fN*2M (@) < d(@, N ™M (a)).

Now let fV '(a) be the nearest point projection of o’ to the quasi-geodesic
B = (f™(a))nez so that N < N by the assumption that ¢’ does not belong
to Wiv . We argue now as above. First apply the é-slim triangle condition
to the geodesic triangle with vertices fN+2M (), fN () and o/, as well as
the stability of quasi-geodesics to find a point y on the geodesic segments
[FNT2M (), '] or [fN/(oc), a'] that is distance at most K/ = C'(8, o) + &
to the point f N+M () (see Figure 6). Then using that M is large, so that the
distance from f¥tM(q) to fNT2M (@) resp. £V (@) is larger than 2K’, we
deduce that y divides the geodesic segment it lies on into segments of length
at least 2K’, and hence of length at most D — 2K'. Thus we find a (piecewise
geodesic) path joining o’ to f¥ M («) of length strictly less than

D' =d@, fN() <d@, fN*M () <d@, MM (@)).

This is a contradiction to the fact that £V "() was a nearest point projection
and we conclude that &’ € WY .

A similar argument (using g, I= ¢! f* instead of g and, for any j € Z,
o 'o f_j () and ¢_1(W£) instead of fj () and Wi respectively) shows
that any fixed point must also satisfy ' € ¢~ (W/).

This however contradicts the fact that the two sets Wi’ and ¢~ (WD) are
disjoint. Thus no power of g can have fixed points in X = C(X') and, in view
of Theorem 4.1, we deduce that g is pseudo-Anosov for all sufficiently large
k. O
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Remark 4.1 One could also deduce Proposition 4.1 as a consequence of results
of Bestvina—Fujiwara cf. [5, Theorem 1.1]. In particular, for non-sporadic sur-
faces, they constructed unbounded quasi-morphisms 4 on MCG (X, 0 X') that
are bounded on the stabilizer of any essential simple closed curve. Moreover,
one can assume that /1 is homogeneous under (positive) powers, so that z then
vanishes on all reducible classes. Consider any f so that 2(f) # 0. Then
given any reducible class ¢, it follows from the quasi-morphism property that
h(fk¢p) # 0 for any sufficiently large k and hence f¥¢ cannot be reducible
or of finite order by the properties of /.

4.2 Some hyperbolic geometry

We recall the following theorem on hyperbolic mapping tori due to Thurston
[56]:

Theorem 4.2 (Thurston [56]) Let X' be a compact, orientable surface with
boundary and negative Euler characteristic. If ¢ is a pseudo-Anosov map on
X, then the interior of the associated mapping torus has a complete hyperbolic
structure of finite volume.

We will also need another result due to Thurston on Dehn fillings of hyper-
bolic manifolds; an introductory account, as well as a detailed proof, can be
found for instance in [41, Chapter 15]. For the readers’ ease, we give here a
statement of such a theorem which is adapted to the specific setting in which
we will apply it.

Let N be an orientable 3-manifold with boundary d N a finite union 77U- - - U
T, of 2-dimensional tori. For eachi = 1, ..., ¢, let also m;, [; be generators
of m1(T;). For any c-tuple s = (s1,...,S.) of Dehn filling parameters, i.e.
of pairs s; = (p;, g;) of coprime integers, one can consider the compact
(boundary-less) 3-manifold N y;;; obtained by Dehn filling the boundary tori
with parameters s = (s, ..., S.); more explicitly, for each i = 1,...,c,
a solid torus P; := D? x S! is glued to N via the (unique up to isotopy)
gluing map d0P; — T; sending a meridian of d P; to a curve in the class
pim; + qil; € m(T;).

Theorem 4.3 (Thurston [55]) In the setting described above, suppose more-
over that the interior of N admits a complete hyperbolic metric of finite volume.
Then, there is a compact set K C R? such that, if every Dehn filling param-
eter s; is in R? \ K, the closed 3-manifold N y;;; obtained by Dehn filling N
with parameters s = (s1, ..., S¢) admits a finite-volume complete hyperbolic
structure g. Moreover; the cores of the filling solid tori are closed geodesics

of (Nriit, 8hyp)-
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Notice that since each s; is a pair of coprime integers, the theorem implies
that one can ensure that a Dehn filling is hyperbolic by excluding finitely many
values for each slope s;.

Remark 4.2 Since the fundamental group of a closed hyperbolic manifold is
torsion-free and its closed geodesics are all non-contractible, the cores of the
Dehn filling tori will have infinite order in w1 (N f;;7).

4.3 Proof of the Factorization Lemma

Proof (Factorization Lemma) Let f be a pseudo Anosov map on X' as in
Proposition 4.1. According to Proposition 4.1, f¥¢ is pseudo Anosov on X
for sufficiently large k. We then write ¢ = F o G, where

F=f* G=frg,

where both are pseudo Anosov for £k >> 0. By Theorem 4.2, the interiors of
the mapping tori associated to (X, F') and (X, G) carry complete hyperbolic
structures.

Let y1,..., yn be the components of the boundary 0X. For each i =
1, ..., n, we then denote by ¢; a curve in X which is parallel to y; and con-
tained in the interior ¥; we can assume, up to isotopy, that they are pairwise
disjoint. We also denote by 11, ..., 7, the corresponding right-handed Dehn
twists, and 7 := T1...Ty.

Observe that t" = 1] ... 1, for every r € Z, since the ¢;’s are disjoint.

Let ¢1 := Ft" and ¢p := t7"G. It is easy to check that the 3-
manifolds OBD(X, ¢1) and OBD(X, ¢,) correspond to Dehn fillings of,
respectively, the mapping tori Xr and X with respect to Dehn filling
parameters s(r) = (s;(r),...,s,(r)) and t(r) = (t1(r), ..., t,(r)) such
that |s; (r)|, |t;(r)] > 4+oo foreachi = 1,...,n as r — —+oo. Thus, for
sufficiently large r, the hyperbolic Dehn filling Theorem 4.3 implies that
OBD(X, ¢1) and OBD(X, ¢;) carry hyperbolic structures and that the bind-
ing components (which coincide with the cores of the Dehn filling tori) are
geodesics. In particular the latter have infinite order in the fundamental group
(see Remark 4.2). In other words, we have found the desired decomposition
¢ = @1 o ¢ as posited in Lemma 4.1. |

5 Proof of tightness in dimension 5

The aim of this section is to prove Theorem A on tightness of the Bourgeois
contact structures in dimension 5. For this, we use the following lemma, which
is an analogue of the well-known fact that the convex end of a Liouville
cobordism with hypertight concave end must be tight [1,28]:
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Lemma 5.1 Suppose the connected components of the bindings of O BD (X2, ¢)
and OBD(X?,v) have infinite order in the corresponding fundamental
groups. Then, BO (X, ¢ o) is tight.

Proof Let (C, wc) be the symplectic cobordism as in Theorem 3.1. According
to Observation 2.2, Item 1b of Theorem 3.1 and our hypothesison O BD (X, ¢)
and OBD(X, vr), the Reeb flow of A_|3¢_ has no contractible periodic orbits.
We now show that this implies that BO (X, ¢ o 1) is tight.

We assume by contradiction that its convex boundary BO(X, ¢ o i) is
overtwisted. According to [6], this implies the existence of an embedded Plas-
tikstufe PS, as defined in [47]. Up to attaching a topologically trivial Liouville
cobordism to (C, wc) along its positive end, we may then assume that the
induced contact form at the positive end is (a positive multiple of) a contact
form a pg which is “adapted” to PS, i.e. it has the normal form described in
[47, Proposition 4] near its core.

Attaching a cobordism at the negative ends using the local Liouville vector
fields associated to A_, we obtain the negative Liouville completion C of
A_, with a symplectic form w¢ which coincides with d(e’A_) at the negative
ends. We now apply the following standard argument. Take an @¢-compatible
almost complex structure J, extending the local model of [47], and cylindrical
in the cylindrical ends. We have a Bishop family of Fredholm regular J-
holomorphic discs in C with totally real boundary, stemming from the core
of the Plastikstufe. Analogously to [47, Proposition 10], one can check that
the exactness of the symplectic form near the positive end, and hence near the
Plastikstufe, provides uniform bounds on the Hofer energy, defined as in [58,
Page 115]. Provided that we rule out boundary bubbling, sphere bubbling and
the appearance of symplectic caps, by standard bubbling analysis as in [1,28]
we can then obtain a finite energy plane in the negative ends. Note that there is
no boundary bubbling, as shown in [47], nor sphere bubbling, by exactness of
the symplectic form. We shall need to rule out holomorphic caps, and this can
be dong as follows (notice that this is not automatic from standard arguments,
since (C, w¢) is only pseudo-Liouville).

Assume the existence of a J-holomorphic cap ¢, considered as a map from
Cto C. The Hofer energy bounds on the Bishop family provide a periodic Reeb
orbit of the Reeb flow of A_, to which c is negatively asymptotic. Now as y is
nullhomotopicin C, projecting to T? via the globally defined projection, we see
that the image of y in T? is also nullhomotopic. We conclude by Theorem 3.1
that the Reeb orbit y must be a binding component B,,. R

We now argue that such a cap cannot exist. To this end we let 75: C — C
be a (smooth) map that collapses the ends of the completed cobordism onto
the boundary, depends only on the f-coordinate (monotonically) and is the
identity on C away from a small §-neighbourhood of 9C.
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Following [9, Section 6] we consider the w-energy of a holomorphic plane

C
where @5 = 7§ wc is the 2-form which is explicitly given by

d)u,_ on [O, OO) X 8+C
ws =y nfwoc onC
dir_ on (—00,0] x 9_C.

In fact the resulting forms are all cohomologous relative to the ends for any
8 > 0 so that the precise value is irrelevant. Taking a limit as § N\ 0, we obtain
the (piecewise) description of the w-energy of [9].

As the almost complex structure is cylindrical on the ends, it is easy to
check that E(c) is non-negative, and strictly positive if ¢ is not completely
contained in an end. In particular, given the assumption that all Reeb orbits
have infinite order in the fundamental group of the negative end, we deduce
that the holomorphic cap cannot lie completely in the negative cylindrical end,
and hence E,(c) > 0.

By Item 2 of Theorem 3.1, there is a primitive v of w¢ on the initial cobor-
dism that is positive along binding components. We remark that this primitive
will not be of the form d(e’A_) near the negative end, as the cobordism is
only pseudo-Liouville. Pulling back under the map s that collapses each end
in turn gives a primitive for @s that naturally extends to the compactification
given by adding {oo} x M4, since it is invariant under positive translations in
the ¢-direction. We denote the resulting primitive for ws by V.

Then integrating the exact form ws = d v along the holomorphic cap ¢, and
using Stokes’ theorem, we obtain:

0</55=/ v<0
c -y

and this contradiction finishes the proof. O
We can now proceed to the proof of Theorem A:

Proof (Theorem A) We start by proving tightness in the “generic” case of non-
sporadic page 2. We then deal with sporadic pages on a case by case basis.
Lastly, we explain how to deduce universal tightness by the proof of tightness.

Case 1: non-sporadic ¥ By Lemma 4.1 we may factorise the monodromy
¢ = ¢1 o ¢, where the components of the bindings in O BD(X, ¢1) and
OBD(X, ¢>) have infinite order. Then, according to Lemma 5.1, we conclude
that BO(X, ¢) is tight.
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Case 2: X is a disc In this case, the monodromy ¢ is necessarily isotopic to
the identity. In other words, the resulting contact 3-manifold is (S, &;;4) and
the open book structure is the one induced by the subcritical Stein-filling D*.
According to [38, Theorem A.(b)], the associated Bourgeois contact structure
is Stein fillable, and hence tight.

Case 3: X' is an annulus The mapping class group of the annulus is gener-
ated by a single positive Dehn twist around the core circle. If the monodromy is
a non-negative power of such generator, then the resulting contact 3-manifold
is Stein fillable; then, according to [42, Example 1.1], the associated Bourgeois
contact structure is weakly fillable, and hence tight. If the power is negative,
according to [38, Theorem B], the Bourgeois contact structure associated to
OBD(X, ¢) is contactomorphic to that associated to OBD(X, ¢~ 1), so we
obtain tightness for this case.

Case 4: X is a pair of pants For simplicity, enumerate from 1 to 3 the con-
nected components of 0 X'. Fori = 1, 2, 3, let t; be a positive Dehn twist along
the i-th connected component of 9 X; these give generators for the abelian map-
ping class group of the pair of pants (cf. [18, Section 3.6.4]). Thus we can write
¢ = 1:1 07:2 o‘L’ . We then set T := 1] 0 77 0 73 and, for any N € N.o,

we can decompose ¢ as ¢ = F o G, with F := ¢ o N — l_[?=1 TiNJral and
G:=1tN= ]_[?:1 tl._N . We then use the following result:

Lemma 5.2 If N > 0is big enough, each binding component of OBD (X, F)
is of infinite order in w1 (OBD (X, F)). The same is true for OBD(X, G).

Using Lemmas 5.1 and 5.2, we conclude that BO (X, ¢) is tight, as desired. It’s
then only left to prove Lemma 5.2 in order to conclude the proof of tightness
in the case of a pair of pants:

Proof (Lemma 5.2) We deal only with the case of O BD (X, F); the proof for
the manifold O BD(X, G) is completely analogous.

We first point out that, as explained in detail for instance in [50, Section 3],
the manifold O BD(X, F) can be seen as obtained by Dehn surgery on the total
space of S? x S! — S? along three S!-fibers, with coefficients r; := S +a
foreachi = 1, 2, 3. In other words, O BD (X, F) is the Seifert manifold l

{0, (01,0); (N +ay, —=1), (N +az, —1), (N + a3, —1)} .

Moreover, the orbit space O of the Seifert fibration of OBD(X, F) is a 2-
dimensional orbifold, with underlying topological surface S?, and the binding
B of OBD(X, F) consists of a union of fibers of the Seifert fibration.

We recall that there is a notion of orbifold Euler characteristic x,rp for
orbifolds that behaves multiplicatively under finite covers of orbifolds. In our
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special case of the base orbifold B of the Seifert fibered space OBD(X, F),
we have

3

3
1 1
or 0) = Sz— 1 = —1—= .
Xorb(0) = x(57) E(+N+ai) iE:1N+ai

i=1

Fromnowon,let N > Obesobigthat x,,,(0) < 0.Inparticular, OBD(X, F)
is finitely covered by a circle bundle X over a hyperbolic surface S, in such
a way that fibers of X — § are mapped to fibers of OBD(X, F) — O (see
[52] for instance). Now, S being hyperbolic, the fibers of X are of infinite order
in m1(X). As X covers OBD(X, F) in a compatible way with their Seifert
bundle structures, it follows the fibers of O BD (X, F), hence its binding too,
are of infinite order in its fundamental group, as desired. O

Universal tightness Note that all the above arguments remain valid for the
pull-back under any finite cover of V x T? induced by a finite cover of the
first factor. Since finite covers over the second factor do not change the contact
structure up to contactomorphism (cf. Remark 2.2), such covers also preserve
tightness. Now any finite cover is itself covered by a composition of covers of
the respective factors. Consequently, the contact structure remains tight under
any finite cover on the first factor. Since the fundamental group of any closed
3-manifold is residually finite (cf. [27]) sois w1 (V X T2) and hence tightness
on finite covers is equivalent to tightness on the universal cover of V x T? and
universal tightness follows. This concludes the proof of Theorem A. O

6 Obstructions to symplectic fillability

In this section we describe a general capping construction for S!-invariant
contact structures by applying the handle attachments of Massot-Niederkriiger-
Wendl [42], and use it to give new obstructions to symplectic fillability in all
dimensions.

6.1 Sl-invariant contact structures in terms of Giroux domains

As discussed in [15, Section 6] any Sl-invariant contact structure induces
a decomposition into so called “ideal Liouville domains™ as defined in [42,
Section 5]. We now describe how this decomposition arises. First of all we
recall:

Definition 6.1 (Giroux [25]) An ideal Liouville domain (V, w) is a domain
V with an exact symplectic form » defined on the interior of W that admits
a primitive A, satisfying the following condition: for each (and hence any)
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function u: V. — Rs¢ with regular level set 0V = {u = 0}, the form uA
extends smoothly to V inducing a contact form on V.

Notice that, by [25, Proposition 2], at the boundary of any ideal Liouville
domain (V, w) there is a contact structure & which is well defined, i.e. only
depending on w. Moreover, according to [25, Example 8], the complement of
the dividing set of a convex hypersurface in a contact manifold is a disjoint
union of ideal Liouville domains (the orientation of each of which can either
correspond or be opposite to that induced by the ambient orientation and the
transverse contact vector field on the hypersurface).

Now, given an ideal Liouville domain (V, @), one can consider the associ-
ated Giroux domain as defined in [42, Section 5.3], namely the contact manifold
(V x S!, ker(udt 4+ ul)); this is well defined in the sense that, up to isotopy
relative boundary, it only depends on w and not on the function u# nor the
primitive A.

We now consider an S'-invariant contact structure on a product V x S!.
Note that the hypersurfaces V x {pt} are convex in the sense of Giroux [23],
i.e. transverse to the contact vector field 9y, where 6 € S!. Now, according to
what we pointed out above, this determines a decomposition V = V, UV _
with V., V_ ideal Liouville domains (where on V_ the ideal symplectic form
is negative), where Vi is the set where 9y is positively/negatively tranverse
to the contact structure. Moreover, by Sl-invariance, the contact structure on
V x Sl is just obtained by gluing the two Giroux domains V. xS! and V_ x S!
associated to V. and V _ respectively along their common boundary N x S!,
with N := 3V, = 9V _, the dividing set, along which 3y is tangent to the
contact structure.

A capping cobordism Let now W2"*2 be a hypothetical strong symplectic
filling of V x S!. The aim of this subsection is to attach a symplectic cobordism
on top of W which, near its positive boundary, splits as the product of a
symplectic S? and portion of the symplectization of 3V, where V = V, UV _
is the decomposition in Liouville domains of the convex hypersurface { pt} x V
in the S!-invariant contact manifold V x S! = dW. In order to achieve this,
we use the symplectic cobordism described in [42, Section 6].

First, we describe what the cobordism should look like topologically (i.e.
without specifying the symplectic form or dealing with details such as corner
smoothings), as also done in [42, Section 6.1] in their analogous setting. For
this, it is more convenient to see V x S! as obtained as the union V; x S' U
[—8, 8]x N xSUV_xS!, as explained above. Now, the cobordism is obtained
by attaching V4 x D3 on top of Vi x S! ¢ V x S! (and smoothing corners),
where the latter is seen as the positive boundary of the trivial cobordism [0, 1] x
V x S!. The positive boundary component of the resulting cobordism is then
just N x S?. Notice also that there are distinguished submanifolds Cy :=
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Vi x {0} C V4 x D? in this capping cobordism, with the property that, once
removed, the cobordism deformation retracts onto the negative boundary.

Now that the topological picture has been described explicitly, we need to
argue that the cobordism has a symplectic structure suited to our needs. In fact,
this is precisely the content of [42, Section 6], where the smoothing procedure
and the symplectic structure are described with great care. We hence refer the
reader to that paper for details, and limit ourselves to stating the properties of
the cobordism that we will need below.

Lemma 6.1 There is a symplectic cobordism (C, wc) with negative (i.e. con-
cave) contact boundary 3_C =V x S' and weakly convex positive boundary

3,C =N x S?

where N = 0V. Moreover, there is a tubular neighborhood (—3§,0] x 0,C
such that wc is of the form d(e'ay) + ws, where t € (=8, 0] and

e wg is an area form on S?,
e «y is a contact form on N.

Lastly, there are symplectic submanifolds C, diffeomorphic to Vi, such that
C \ C4 deformation retracts onto its negative boundary, and such that C
intersect transversely, positively and in exactly one point, each symplectic
sphere in the previously described neighborhood of the positive boundary
04+C.

In what follows, we denote by W, the result of stacking (C, wc) on top of
the strong symplectic filling W along the common boundary V x S!.

A moduli space of spheres in the capped filling We now consider a mod-
uli space of pseudo-holomorphic spheres in W,,. The setup and properties
needed are essentially the same as those discussed in [42, Section 7.2]. For
this reason, we limit ourselves to describing the situation and stating the nec-
essary properties here, and refer the reader to [42] for further details. Note
however that in their situation the positive boundary of the capped filling has
two connected components, one of contact convex type and the other of stable
Hamiltonian type, which leads to a contradiction; in our setting, we instead
end up with one boundary component.

Now according to Lemma 6.1, the boundary d W4, has a collar neighbor-
hood in W¢,), so that the symplectic form is split and of the following form:

((=8,01 x N x S%, d(e'a) + ws) , wheret € (=8, 0].

Hence, one can find an almost complex structure J compatible with the sym-
plectic structure which, on this neighborhood, splits as a direct sum of an almost
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complex structure Jg on the 2-sphere and some J, on the symplectization fac-
tor ((—e, 0] x N, d(e'a)). In particular, for any point (¢, g) € (—e,0] x N,
the sphere

Urg: S? - (—€,0] x N x §?

yr(t,q,y)

is J-holomorphic. Moreover, as the co-cores C1 from Lemma 6.1 are sym-
plectic submanifolds of W, one can choose such a J in such a way that C+
are J-invariant in (We,p, J); we hence assume this is the case. Lastly, in the
complement of a neighborhood of W, UC UC_, the J can then be chosen
to be generic, so that every simple holomorphic sphere intersecting said region
is regular.

We also have regularity near the boundary, which is proved in [42, Page 334]
in a completely analogous setting:

Lemma 6.2 (Fredholm Regularity) The spheres u, 4 are Fredholm regular
and have Fredholm index dim(X) = 2n.

One can then consider the connected component of the moduli space M of
J-holomorphic spheres in W4, containing the pseudo-holomorphic spheres
us 4. We let M denote the corresponding marked moduli space on which there
is a naturally defined evaluation map ev: M, — Wc,,. Lastly, we denote
by M, M, the Gromov compactification of M, M, respectively; abusing
notation slightly, we also continue to denote the evaluation map on the com-
pactification by ev: M, — Weap.

Now, we have the following important uniqueness property near the bound-
ary, which can also be proven exactly as in [42, Pages 334 and 335]:

Lemma 6.3 (Local Uniqueness) For sufficiently small € > 0, any curve u in
the moduli space M, that intersects the collar N' =(—¢€,0] x N x S? is a
reparametrization of one of the spheres u; 4.

In particular, M, ﬂ* are smooth manifolds near their boundary, and the
restriction evy of ev: M, — Weap to a (sufficiently small) neighborhood
of M, is a diffeomorphism onto a neighborhood of 0Weqp. We also have
a diffeomorphism dM = N. It follows that each of the curves in M has to
be simple, as they intersect each co-core geometrically once by positivity of
intersections together with uniqueness near the boundary (as the latter implies
that intersections cannot escape at the boundary).
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Nodal stratification: Semi-positive case In this case the moduli space M is
a stratified space 2 (cf. [45, Section 6.5]):

G=M"cM c...cM cM =M.

Here, M’ consists of nodal configurations of spheres which have at least i
nodes, and the interior int(M"), consists of nodal configurations with precisely

i nodes. For our choice of J, the top open stratum M = int(MM ") is a smooth
2n-dimensional manifold consisting of simply covered spheres. The elements

of the i-th stratum int(M') contain main sphere components, which intersect
atleast one of the J-invariant co-cores C+ at most once and so are again simply
covered, while the rest are possibly multiply covered bubbles which intersect

no co-cores. By the Uniqueness Lemma 6.3, no element in ﬂi touches the
boundary of Wy, fori > 1.

Similar remarks hold for the marked moduli space, which is a stratified
space

—ntl - —1 =0
=M, cM,C---CM,CM,=M,,
and the forgetful map respects the stratification.
The semi-positive assumption implies that the dimension of the image of

M., under the evaluation map is ar most 2n +2 — 2i, in the sense of [45, Sec.

6.5]. More precisely, the image under the evaluation map of M; is covered
by the images of underlying moduli spaces of simple stable maps, each of
which is actually a smooth manifold for generic choice of almost complex
structure. With a slight abuse of language, we shall occasionally say that the

corresponding unmarked piece M’ has dimension at most 2n — 2i.
Remark 6.1 Since the semipositivity condition is automatically satisfied for
every 6-dimensional symplectic manifold (see e.g. [45, Section 6.4]), in this

case the evaluation map on the marked moduli space determines a pseudo-cycle
on W, (see e.g. [45, Section 6.5]).

6.2 Proof of Theorem B

We are now ready to give a proof of Theorem B from the Introduction, i.e. of the
fact that the inclusion of N = d V4 induces an injection in rational homology

2 In this paper, by stratifed space, we will mean a filtration §§ = M”"H cM"cC-.-C
MY = M of a compact topological space M, where the interior int(M?) of each M is called

the i-th stratum, and the closure of each stratum satisfies M' = | J j=i M.
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for classes that survive in V1. We prove this first in the semi-positive setting,
which uses the more standard language of pseudo-cycles as documented for
instance in [45, Section 6.5]. Then, we prove the result in the general case
using the polyfold technology developed by Hofer—Wysocki—Zehnder in the
Gromov-Witten case in [31].

Proof of Theorem B in the semi-positive case We start by fixing some nota-
tion. Let i” be inclusion

N =N x {pt} <> dWeqp = N x S?

for pt a point in the equator of S?. We also let i denote the composition of i’
with dWq, <> Wegp. (Notice that i (N) in fact lives in 0W C W)

By Lemma 6.1, we have that each element in the moduli space M intersects
each co-core Cy transversely in a single point. Taking the intersection of a
curve with the co-core Cy then gives a continuous map It M — Cy,
which, by uniqueness of the u, ,’s near the boundary N x S? of Weap, is a
diffeomorphism near dC.

Define now the maps Z and f4 so that the following diagram is commu-
tative:

4

Here, j is the natural inclusion M, C M, and 7 is the map forgetting the
marked point. (Recall also that ev is a diffeomorphism near the boundary, by
the local uniqueness Lemma 6.3.) Moreover, by the explicit definitions of i’
and Z%, the map f= is actually homotopic to the natural inclusion of N = 9V
into C+ >~ V1. We lastly note that, because we are in the semi-positive case,
the evaluation map gives a pseudo-cycle representing a relative fundamental
class that we denote [M.].

Recall that the statement of Theorem B claims that the natural composition
Vi~ Vax{pt) — dW = V xS! < W induces an injective map on rational
homology once restricted to image((/+)+), where I+ : N = dV4 < Vi isthe
natural injection, and (/1) is the corresponding map in rational homology. In
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order to prove this, it is enough (and in fact stronger) to prove in fact that the
same conclusion holds for the composition Vi < W < W,,,. We hence
aim at proving the property for this last map then.

Notice that one can find a deformation retraction of W, minus slight push-
offs of C+ onto W which pushes the co-cores C+ to Vi x {pt} C VxS! = aW.
In particular, in order to prove statement of Theorem B it is enough to prove the
following: given a class z € Hy(N; Q) such that ( f1+)4(z) # 0in H,(C+; Q),
theniy(z) # 0in Hy(Weqp; Q). By looking at its contrapositive, we hence need
to prove that, if ix(z) = 0 in Hy(Wegp; Q), then (f1)«(z) = 0in Hy(Cx; Q)
as well.

Let then (f1)«[0o] € H(C4; Q) be non-trivial, where o is rational cycle in
N, such that ix[0] = 0in H(Wc,p,; Q). We then write o = 9b as a boundary
in Wegp.

In the ideal case that all spaces and cycles are actually smooth manifolds one
could simply finish the proof as follows. After a small perturbation to ensure
transversality, the preimage ev ™! (b) in M, is a chain with boundary ev~! (o).
As evj is a diffeomorphism and o (seen in W) lies in its image, this implies
that (Z1)«(ev—!(b)) has boundary o in C4, thus proving that (f1)«[c] =0
in H,(C+; Q). However, since M., is not in general a manifold, we need rely
on pseudo-cycles, as follows.

We first claim that the map (ev, Zy): My — Wegp X er isa (2n + 2)-
dimensional pseudo-cycle. Indeed, the closure of the image of (ev, Z,) is the
image of the compactified moduli space M, on which the map (ev, Zy) is
continuous. Moreover, the image of the nodal set /Vi for both maps agrees
with the image of the space ﬂ; of underlying simple curves. As ﬂi consists
of components of dimension < 2n by semi-positivity, this gives the claim.

Now, one can perturb b (relative to its boundary) so that b x C becomes
weakly transverse to the pseudo-cycle (ev, Z,), in the sense of [45, Defini-
tion 6.5.10]. Strictly speaking, in order to apply their definition to our setting,
the cycles b and o, would need to be represented by embedded submanifolds
(up to integer multiples). This will however only be true for (relative) cycles in
degree < n. In the general case they can be represented, according to a result
of Thom [54], by smooth maps from manifolds, possibly with boundary, to
the target space. This being said, all the considerations in [45, Section 6.5],
including the definition of weakly transverse and the proposition that we use
below, carry on with the same proof to this more general setting. To ease the
notation, we will however omit the explicit mention of these maps representing
o, b.

According to (a relative version of) [45, Proposition 6.5.17], the restriction
of Z, to ev ™1 () gives arelative pseudo-cycle on C . (Here ev~1(b) should be
interpreted as the preimage of the diagonal under the map (b, ev) : Bx M, —
W x W in the case the the representing map 5: B — W is not a submanifold.)
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Moreover, the relative pseudo-cycle Z, (ev— (b)) is a weak representative of a
relative homology class (see [45, Discussion after Lemma 6.5.6]). Finally, as
ev is a diffeomorphism near the boundary, the boundary of the relative pseudo-
cycle Z, (ev=1(b)) in C is the image of the original homology class [o] via
(fa)x: Ho(X; Q) —» Hi(Cq; Q). Inparticular, (f1)«[o] = 0in H(C+; Q),
as desired.

The statement about surjectivity at the level of the fundamental group fol-
lows, as pointed out to us by a referee, from the fact that bubbling occurs in
codimension 2 for semi-positive fillings, again via a push-pull argument. This
can be carried out by an argument as in the proof of Lemma 2.3 in Ghiggini-
Niederkriiger-Wendl [21], to which we refer the reader for more details. O

We now need to deal with the general setting of possibly non semi-positive
fillings. As in the proof in the semi-positive case above, we have that each
element in the moduli space M intersects each co-core Cx transversely in a
single point. This again gives a map Z : M — C., which, by uniqueness of
the u; 4’s, is a diffeomorphism near the boundary. However, as we are in the
higher dimensional setting, the evaluation map on the marked and compactified
moduli space will not automatically be a pseudo-cycle (e.g. in dimensions
2n 4+ 2 > 8). In order to remedy this, we appeal to the polyfold technology
of Hofer-Wysocki-Zehnder, which has been worked out in full detail in the
Gromov-Witten case (i.e. for closed spheres) in [31]. In particular, before
giving the proof, we need to recall the set up of the polyfold perturbation that
we will use in order to prove our statement. The argument follows closely that
of [42, Section 7.2].

More precisely, we view M, as lying inside a Gromov—Witten polyfold B
[31, Section 2.2, Definition 2.29, Section 3.5] consisting of (not necessarily
holomorphic) stable nodal configurations of spheres with one marked point
and possibly multiple components. It comes with a natural evaluation map
ev : By — W¢yp, which extends the one of M.,.. We view the nonlinear
Cauchy-Riemann operator 97 as a Fredholm section [29, Definition 4.1] of
a strong polyfold bundle £, — B, [31, Definition 2.37, 2.38, Section 3.6]
with zero set 5;1(0) = M,. We also have a forgetful map = : B, — B,
where similarly B is a polyfold containing M, given by forgetting the marked
point, and a strong polyfold bundle £ — B satistying 7*€ = &,, with a
corresponding Fredholm section 8 ; making the obvious diagram commute.

Since the subset MB ={u 4} C M consisting of the spheres in (—e¢, 0] x
dX xS?is transversely cut out, the section 3 7 is in good position [29, Definition
4.12] at the boundary. According to [29, Theorem 4.22], we may introduce an

abstract perturbation p, which is a multivalued section of &, [29, Definition
3.35, Definition 3.43], so that:

] J + p is transverse to the zero section of &,;
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e The perturbed moduli space
M. =@s+»7'0) C B,

is a (2n + 2)-dimensional compact, oriented, weighted branched orbifold
with boundary and corners [29, Section 3.2, Definition 3.22]; and
e The perturbation p is supported away from a closed neighbourhood (in B,)

ofﬂi = n_l(ﬂa).

We then define M* C B to be the image of JVE under the forgetful map
P =7 Iﬂp, which is a perturbation of M. Observe that the last condition

implies that a collar neighbourhood of the boundary of M still consists of

the holomorphic spheres from ﬂa, and local uniqueness still holds.
Moreover, for p sufficiently small, every element in MP will be close to
some element in M, in the Gromov—Hausdorff topology. Hence we can assume
that all elements in M" are transverse to the co-cores and have precisely one
intersection point, as this intersection is purely topological for codimension
reasons. Thus we obtain a well defined and smooth map ZP : M > '\, that

. —9
agrees with Z on M.
We are now in place to prove Theorem B in the non semi-positive case:

Proof of Theorem B in the general case Fix any sufficiently small abstract
perturbation p as described above, and consider the map Ii: M > Cst.
Recall also that in this setting one has a well defined notion of integrating over
the moduli space: we refer to [30,31] for further details. For our purposes it
suffices to use the fact that there is a notion of sc-smooth differential forms [30,
Definition 1.8] in Mf,f, such that Stokes’ theorem holds [30, Theorem 1.11],
as well as a de-Rham cohomology group H} (ME) [30, page 10], such that
said differential forms can be pulled back under the evaluation map. In our
setting, one then has a well-defined notion of degree of a map, which agrees
with the usual notion at the boundary of the moduli space, where smoothness
is built into the construction. We then formally define (relative) homology

H (M2, 000 i= (Hjp (VD))

as the dual (over R) of the de-Rham cohomology group, with the obvious
notions of push-forwards, i.e. as duals of pull-backs.

This allows us to define a shriek map on homology (with real coefficients).
Formally one does this by defining maps on the duals of the associated de Rham
cohomologies via the integration map, as a map ev' : Hy(Weap, OWeap) —
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H, (./\_/li, aﬂ‘j) given via the equation:

ev'(a)(B) = /p ev*PD(a) A B,

M,

where we have first used Poincaré—Lefschetz duality in the target.

The remainder of the argument then goes through exactly as in the semi-
positive setting and the theorem follows in the general case. More precisely,
consider a rational cycle o in N that is sent to O via the map induced in
homology by the inclusioni: N — W/, » as defined in Eq. (4). Consider Mﬁ,
together with the perturbed intersection map (Ii)*. Then, if i«[o] is boundary
of ahomology class bin W, one can take its shriek ev'(b), seen as an element
in the dual (HJp (ﬂ‘j))*, and push it, via the map induced in the dual of the
cohomology by 7P, to a class ¢ in the dual (Hj,(C1))*. By Poincaré duality
on C4, we now have that ¢ can be seen as a class in H,(C+; Q). Moreover, as
ev at the boundary is actually a smooth map and, moreover, a diffeomorphism,
we have dc = (f+)«(0). But this means that (f1).[o] = 0 in H,(C+; Q),
thus concluding the proof as in the semi-positive case. m|

Remark 6.2 As an alternative to the above argument, one could appeal to the
following. According to [32, Remark 15.8] (cf. also [44]) any compact oriented
weighted branched orbifold admits a rational relative fundamental class. This
then suffices to replicate the argument from the semi-positive case just using
continuity of the maps, without the need to talk about sc-smoothness. Note,
however, that our definition of relative homology bypasses the existence of
this relative fundamental class.

6.3 The case of Bourgeois structures

Let BO(X, ¢) be the Bourgeois manifold obtained from the abstract contact
open book (X, ¢). Denote more precisely 8 = o + @1dx — ®,dy the contact
form on M x T? as in Section 2, where (x, y) are coordinates on T2, @ =
(@1, P2): M — R? is a (properly chosen) function describing the open book
decomposition M = OBD(X, ¢) and « is a contact form on M supported by
it.

Now, the vector field 9y, corresponding to the second factor of T? =S }C xS ;

of M x T? is contact. In particular, as described more generally in Section 6.1
for S'-equivariant contact structures, each hypersurface M x S}C X {yo} is con-
vex, and has hence a natural splitting as V. U V _ as union of ideal Liouville
domains. In fact, V4 are smoothly just given by the product of half of the
open book OBD (X, ¢) with S}C, ie. X x D*S}C with corners smoothened.
The Bourgeois contact manifold is then nothing else than the gluing of the two
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Giroux domains V. x S; and V_ x S; along their boundary. (This decompo-
sition is also explicitly described in [15, Section 5.3], without the use of this
terminology.)

Remark 6.3 Since Bourgeois contact structures are T>-invariant and we are
free to choose any coordinate system (x, y) on the T2 factor, we can assume
that S}C represents any primitive homology class in H1 (T2, Z). This observation
will be needed below in proving part of Theorem C, namely that T? injects in
integer homology in the filling W.

We are now ready to prove Theorem C.

Proof of Theorem C Since the inclusion of X' C VL = N into VL = ¥ x
D*S! is homotopic to the inclusion of a fiber, it is injective on homology
and the injectivity of the map induced by X' < W on rational homology
follows directly from Theorem B. Likewise, in the case of semi-positive filling,
surjectivity at the level of fundamental groups of the inclusion X' x T? < W
also follows directly from Theorem B.

Furthermore, Theorem B in fact also implies that the inclusion of the S!-
factor is injective in rational homology. Now taking S! to represent an arbitrary
(primitive) class in homology (c. f. Remark 6.3), we can then conclude that
the whole first homology group H;(T?; Q) injects in H;(W; Q). Further-
more, the statement that H, (TZ; Q) injects into H,(W; Q) is equivalent to
the dual statement that the inclusion induces a surjection on cohomology
H*(W,Q) — H*(T?; Q) by the Universal Coefficient Theorem. Using the
cup-product structure on H *(T2; Q), this follows from the injectivity in Hi,
concluding the proof. O

6.4 Applications to fillability

We now prove those corollaries of Theorem C that have been stated without
proof in the Introduction. We start with Corollary E on the equivalence of
strong symplectic and Stein fillability for Bourgeois manifolds associated to
rational homology 3-spheres:

Proof of Corollary E If V. = OBD(X, ¢) is a rational homology 3-sphere,
any inclusion of X in the 3-manifold V as a page of the given open book
is null homologous with coefficients Q. In particular, Theorem C tells that
BO (X, ¢) cannot be strongly fillable whenever H{(X'; Q) is non-trivial, i.e.
whenever X' is not a disc. On the other hand, we know by [38, Theorem A.(b)]
that BO(D?,1d) is Stein fillable. O

We now prove Theorem F, which states that Bourgeois 5-manifolds associ-
ated to 3-dimensional open books with planar pages and monodromies given
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by products of Dehn twists all of the same sign are weakly but not strongly
symplectically fillable.

Proof of Theorem F By [38, Theorems A.(a) and B] these contact structures
are weakly fillable and, hence, it suffices to prove that these are not strongly
fillable. According to Theorem C, it is hence enough to prove that the first
Betti number of the manifold b1 (O BD(X, ¢)) is strictly smaller than that of
the page b1 (%) = #9X — 1. This can be seen as follows. Since for ¥ = D?,
the monodromy is necessarily trivial, we may assume that #0% > 2. We
can then attach b;(X) — 1 > 0 discs to X, in order to cap all but 2 of its
boundary components; as ¢ is a product of Dehn twist of all the same signs,
this can moreover be done in such a way that the resulting monodromy fﬁ\ in
the resulting annular page Y =DSlisa power K of the positive Dehn
twist 7, with K > 0.

Moreover, this 2-dimensional 2-handle attachment on the page can be
realized by attaching a 4-dimensional 2-handle on the boundary component
OBD(X, ¢) x {1} of athickening O BD(X, ¢) x [0, 1], along neighborhoods,
of the form S! x D2, of all but 2 binding components. The resulting positive
boundary of these b;(X) — 1 handle attachments is just O BD(D*S!, 1K)
where 7 is a Dehn twist and K > 0 as above. This manifold is then a
Lens space and hence has b1 = 0. Since attaching a 4-dimensional 2-handle
reduces the first Betti number at the boundary by at most one, we deduce that
b1(OBD(X, ¢)) < b1(X) — 1, as desired. O

Now, we give a proof of Corollary G, i.e. that if X' is a planar surface and
BO(X, ¢) is strongly fillable, then ¢ lies in the commutator subgroup of the
relative mapping class group:

Proof of Corollary G We identify the pure braid group with the mapping class
group of the punctured surface obtained by collapsing all but one boundary
component of X' to a puncture. It is well known that abelianization of the pure
braid group on n-strands is the free abelian group generated by ("51) Dehn
twists around pairs of punctures, where n = #9 X' is the number of boundary
components (see for instance [18, Chapter 9 and page 264]).

Also, the kernel of the map on mapping class groups induced by the col-
lapsing map described above is generated by the n boundary parallel Dehn
twists (see [18, Theorem 3.18 and Proposition 3.19]). Hence the abelianiza-
tion of MCG (X, 0X) is generated by n boundary parallel Dehn twists and
("gl) Dehn twists about pairs of boundary components different from a dis-

tinguished one; in total, it is hence generated by () = n + (" 51) Dehn twists
and has rank at most (3).

Denote by f]\i’ j the annulus obtained by capping off all but 2 boundary
components y;, y; of X'. Doing so for each pair of i, j withi # j, one obtains
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a homomorphism

MCG(2.0%) — [[MCG(Z; ;. i Uy)) =20, (5)
i)

given by extending the element in the mapping class group of X relative
0 X as Id over the caps. It is easily seen that this homomorphism is surjective.
Moreover, by the explicit description of the (’;) generators for the abelianization
of MCG(X, 0X) above, it induces an injective homomorphism after taking
the abelianization. In particular, the map in Eq. (5) induces an isomorphism
after abelianizing.

Hence, if the monodromy is not in the commutator subgroup, it is mapped
to a non-trivial element in Z ), and so it is non-trivial in M CG(fI»O, jos Yip Y
Vj,) = Z after capping off all but 2 well-chosen boundary components
Yio» Vjo Of the page. We then deduce as in the proof of Theorem F that
b1 (OBD(X, ¢)) < b1(X), and we conclude the argument by appealing to
Theorem C. m|

We now prove Corollary H about the fillability of Bourgeois structures
arising from open books which are positive stabilizations.

Proof of Corollary H The abstract positive stabilization OBD (X, ¢) of a
contact open book O BD (X, ¢) = (M, &) can be interpreted as the open book
on M#S*+! given by the Murasugi sum of O BD(X, ¢) on M with the open
book OBD(D*S", 1) = (S, &sta), where T is the positive Dehn-Seidel
twist. More precisely, from the explicit construction of Murasugi sum (see
for instance [12, Proposition 2.6]), one can see that the additional Lagrangian
sphere S created in the stabilized page X is actually contained in the contact
ball D+t = §2"+1\ D, where D is the small Darboux ball taken out of
the S>"*! factor to build the connected sum M#S*'*!. Hence, S is null-

homologous in M#S?**! = M. In particular, as S is not null-homologous
(by construction) in X4, Theorem C gives that BO (X, ¢+) is not strongly
fillable. O

We now give a proof of Theorem K on the fillability of BO(D*S", t*), of
which Theorem J in the case k = 1 is an immediate consequence:

Proof of Theorem K Itfollows from Theorem 3.1 and [38, Theorems A.(b) and B]
that BO Fill(n) is a subgroup of Z. It is hence necessarily cyclic.

According to Theorem C, in order to determine the generator of BO Fill(n) <
Z, it then suffices to check for which k > 1 the homology of the page injects in
Xkn = OBD(D*S", rk). According to [37, Proposition 4.10], for n, k > 1
the manifold X} , is actually the (2n + 1)-dimensional Brieskorn manifold
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X (2,...,2,k). An explicit computation via Mayer—Vietoris, using the Hee-
gaard splitting associated to the open book, gives the following: if n is odd, then
Hy (X n; Z) = Zy for every k and so it vanishes over Q; and H, (X% ,; Z) = 0
if n is even, and k > 1 is odd. We then see that kg(n) is even. Our method is
inconclusive for n and k > 2 both even, since we have H, (X ,; Q) = Q, gen-
erated by the zero section of the page. Indeed, if k is such that t* is smoothly
isotopic to Id, then X} , = S" x sl = 20, as smooth manifolds, hence the
conclusion of Theorem C clearly holds, and we obtain no obstruction (accord-
ing to [34], cf. [14,36], for arbitrary even n > 2, t is known to have finite
order as a smooth map). Alternatively, for odd 7, one may observe that ¥ acts
non-trivially in homology if k # 0 (by the Picard—Lefschetz formula), thus
Remark 1.1 allows to conclude; however, T2 is homologically trivial if 7 is
even, so this argument is inconclusive as well. m|

7 Symplectically aspherical fillings of Bourgeois Contact Manifolds

Let W be a symplectically aspherical strong symplectic filling of BO (X, ¢).
The goal of this section is to prove Theorem D and Theorem L from the
Introduction.

The symplectic manifold W.,, resulting from the handle attachment
described in Lemma 6.1 then has boundary of the form N x S?, where N
is the contact boundary of X' x D*S}C (smoothened at the corners). More pre-
cisely, in a neighborhood (—8, 0] x N x S? of the boundary, the symplectic
structure has normal form d(e’a) + wg, with a a contact form on N and wg
an area form on S?.

We thus obtain a moduli space M consisting of holomorphic spheres
inside We), arising from the S?-factor at the boundary. Under the asphericity
assumption it turns out that there are no nodal degenerations in the Gromov
compactification and we thus obtain:

Proposition 7.1 M is a compact oriented smooth manifold (with boundary).

Proof As the filling W is symplectically aspherical, there cannot be any nodal
curve in M which has one closed sphere component not intersecting either of
the co-cores. Hence, the only nodal degeneration that could a priori occur is
one separating a regular sphere in the moduli space in multiple spheres, each
intersecting at least one co-core. However, this would imply, after puncturing
the spheres at their intersection points with the co-cores, that one of the S!-
factors in the T2-factor of W = OBD(X, ¢) x T? is null-homologous in
W. (Here, we use the fact that removing the co-cores from W, results in
a manifold which deformation retracts onto W.) This would then contradict
Theorem C, so that no nodal degenerations are possible, as desired. m|
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A moduli space of punctured curves As in Section 6, we can consider the
marked moduli space M, obtained by adding a marked point to the domains,
which comes equipped with an evaluation map ev : M, — Wy, and a
forgetful map 7 : M, — M.

We now consider a punctured version of the compact marked moduli space
M. More precisely, as each sphere in M intersects the co-cores C positively
and transversely in exactly one point, we may remove from each sphere in
M, small disc-like neighborhoods around its intersection with the two co-
cores of Lemma 6.1. This results in a (compact) marked moduli space M
of (compact) cylinders. Moreover, this has a natural fibration structure 7 over
M€ := M induced by the forgetful map M, — M, and an evaluation map
ev: M — W, where we see here W, minus a small tubular neighborhood
of the co-cores as naturally diffeomorphic to W. Because of the foliation
property of the moduli space of spheres M near 0 W, the evaluation map
of the cylindrical counterpart M is a diffeomorphism from a neighborhood of
the vertical boundary 8, M¢ := 7~ (3 M) to a neighborhood of N x D*S! ¢
BO(X,¢) = oW inside W, where N is the boundary of V4 = X x D*S}c
with corners smoothened as in the description in the beginning of Section 6.3.
Hence, the evaluation map has in particular degree 1.

What is more, it also sends the horizontal boundary 05 M¢ := dM¢ \ 9, M¢
into a small neighbourhood of the co-cores minus the co-cores themselves, i.e.
into Ns(C+)\ C+. Inparticular, each cylinder in M has boundary components
which have a natural sign &+ according to where they are mapped to via ev; this
gives a partition 9, MS = 9,7 MS L 3, M. We further note that the image of
each of these components retracts onto the piece Vi x S'of BO(X, ¢p) = W
in the decomposition induced by the S'-invariant perspective (cf. Section 6.1).

Homology of aspherical fillings We now prove that the inclusion of each
VixS'= X x D*S' x S! ~ ¥ x S! x S! into an aspherical filling induces
an isomorphism in integral homology.

Proof of Theorem D Recall that Lefschetz duality states that the cap product
with the fundamental class living in the top degree homology relative to the
boundary induces an isomorphism between relative cohomology groups and
homology groups (with proper degree shifting). Hence, since the evaluation
map ev of M has degree 1, naturality of the cap product implies that it induces
a surjection on homology with Z-coefficients. Next, note that the inclusion
ahng — M(¢ induces a homotopy equivalence, as each cylinder can be
smoothly collapsed to either of its boundary components. Now, the image
of B}TM@ under ev can be homotoped into Vi x S!. Then, one can do the
following: given any homology class in W, one can pull it back to the moduli
space, homotope it to the positive boundary 8; M€, and finally map it near
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Vi x S! via ev. We hence obtain surjectivity of the inclusion Vi x S' < W
as stated in Theorem D.

For injectivity, we note that the inclusion of X' x 3, (D*S) x S; CaVix S;
into V. x S; is a homotopy equivalence, where 8. (D*S!) denotes the positive
boundary component of D*S'. Hence any non-trivial homology class [¢] # 0
in V; x S! is represented by a class in 8V, x S!, along which the evaluation
map is a diffeomorphism. Thus if ¢ = db were the boundary of a singular
chain, we could pull back, after perturbing the evaluation map (relative to
the horizontal boundary), and then push the resulting chain b = ev~'b into
8; M. Pushing forward by ev we would obtain that ¢ is a boundary of ev,b
in V. x S!, which is a contradiction. The case of V_ is completely analogous.

Finally observe that the inclusion of X' x 0 (D*S}C) X S; into 0 W is precisely

the inclusion of ¥ x T? < OBD(X, ¢) x T2, concluding the proof. O

7.1 Symplectically aspherical fillings of S*T"

In this section, we consider (S*T”, &;4), the unit cotangent bundle of T”",
for n > 2, with its standard Stein fillable contact structure, and we prove
Theorem L from the Introduction.

The Bourgeois contact manifold given by BO(D*T"~2,1d) is contacto-
morphic to the contact boundary of D*T"=2 x D*T?2 by [38, Theorem A.(b)],
which can in turn be identified with the boundary of the unit cotangent bundle
of the n-torus namely (S*T", &,). In particular, &4 is an Sl-invariant contact
structure, with respect to the second S!-factor of the Bourgeois torus T2,

Symplectically aspherical fillings of S*T”: homotopy type Recall that
S*T" = BO(D*T"2,1d). According to the S'-invariant picture as in Sec-
tion 6.1, this gives a decomposition

S*T" =V, xS'UV_ xS,

where V4 are smoothly given by D*T"~2 x D*S!,i.e. D*T"~! (up to rounding
corners). Denote then by jg: T" < S*T” the inclusion given by the compo-
sition of inclusions T <> D*T"~! x S! < §*T”", where the first injection
is just induced by the zero section T"~! — D*T"~1.

We next use the following result in order to conclude that the given aspherical
filling (W, w) is homotopy equivalent to D*T".

Proposition 7.2 Let j: T" < W be given by the composition of jo defined
above and the natural inclusion S*T" = W into W. Consider also a lift j of
J to the universal covers R" and W. Then:

1. Hy(W;Z) = Z and Hy(W; Z) = {0} for k > 0,
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2. jx: m(T") — w1 (W) is an isomorphism.

According to [26, Section 4.2, Exercise 12]), this then implies that the inclu-
sion j, and hence the inclusion of its (trivial) normal bundle D*T", induces a
homotopy equivalence, as desired.

Remark 7.1 We point out that, as opposed to the simply connected case, it is
not in general true that a map inducing an isomorphism on fundamental group
and isomorphisms on homology is a homotopy equivalence. This is the reason
why we need to consider the universal cover in Proposition 7.2.

Proof (Proposition 7.2) We consider the moduli space of punctured curves
and its evaluation map M¢ — W considered as in the proof of Theorem D.
Since the evaluation map ev of M¢ has degree 1, it induces a surjection on
1. Moreover, recall that the moduli space retracts onto its positive boundary,
which is mapped onto a neighborhood of the positive component, that in this
setting is just D*T"~1 x {+1} x S!. Arguing as in the proof of Theorem D,
one concludes that j: T" < W also induces a surjection on fundamental
group. In particular, we deduce that the fundamental group of the filling is
abelian. The fact that j is H,-injective follows from Theorem D; as 7 (T")
and j, (1 (T")) = w1 (W) are abelian, this immediately implies that j is also
m1-injective. _

The only thing left to prove is hence that the map j on the universal cover
also induces an isomorphism in H,. Injectivity follows trivially from the fact
that the universal cover of T" is contractible. We then prove surjectivity.

In order to do so, we first make the following observations. All holomorphic
curves in M€ naturally lift to maps from the plane to the universal cover W of
W.This gives a corresponding smooth moduli space M of infinite holomorphic
strips in W ~t0gethgr with its marked version M, equipped with an evaluation
map év: M, — W. One can check that the map év is proper and has degree
1 (using cohomology with compact supports), since the diffeomorphism on
the vertical boundary 9, Mg of Mg induced by ev lifts to a diffeomorphism
from a subset of the boundary of M, to a subset of the boundary of w.
Notice now that M., deformation retracts onto its positive horizontal boundary
8; M., defined as the lift of 8; M, i.e. as the union of all the lifts of the
positive boundaries of the cylinders in M¢. As j is anisomorphism in 1, using
standard covering space arguments, one can check that this set is mapped, via
the lifted evaluation map, to a lift D*R"! x R of the piece D*T"~! x S! of
oW C Wt W. ~

Using this setup, we can now prove that any homology class in W comes
from D*R"*~! x R, which then concludes the proof of Proposition 7.2. More
precisely, consider a class x € Hi(W, Z), for k > 1. (The case k = 0 simply
follows from the fact that W is connected.) As M, is an orientable manifold
(with boundary) and év has degree 1, there is a well defined év' (x) in Hy (M)
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such that é0,€0' (x) = x, where év' is given, geometrically, by perturbing év
to be transverse to a cycle representlng x and taking its prelmage Now, as
M* retracts onto E)h /\/l*, év'(x) can be homotoped to Bh /\/l* In particular,
X = é0,60' (x) is homologous in w toacycleo in ev(a M*) = D*R" 1 xR.
As the latter is contractible, [0 ], and so x, is null-homologous in W, as desired.

O

Symplectically aspherical fillings of S*T": diffeomorphism type Once the
homotopy type is understood, the diffeomorphism type can be determined
using the s-cobordism theorem. The argument below is just an adaptation of
[3, Sections 5 and 8] to our setting. We thus give a sketch of the proof, referring
to the proofs of the technical statements in [3]; for the readers’ ease, we also
adopt their notations.

We start by describing the spaces involved in the argument. Let Wj be the
result of attaching a topologically trivial cobordism [0, 1] x S*T" to W along
its boundary My := S*T" = {0} x $*T".

Recall from the previous subsection that we have a natural inclusion
jo: T" — OW = S*T". As jo(T") has trivial normal bundle in W, there
is a (smooth) copy of Wy := D*T" which is entirely contained in the cobor-
dism [0, 1] x S*T". Let then X := W; \ Wy and M, := 0Wj; notice that
0X = M; U (—My). The aim is now to prove that X is diffeomorphic to a
cylinder [0, 1] x S*T", so that W is actually diffeomorphic to Wy, as desired.

As explained in [3, Lemmas 5.1 and 5.2], the fact that W is homotopy
equivalent to D*T" implies that the inclusions My, M| — X induce iso-
morphisms on 71 and on H,. Moreover, as S*T" is a simple space (i.e. the
action of its w; on every homotopy group is trivial), arguing exactly as in
[3, Lemmas 8.1 and 8.2] one can show that My, M| — X actually induce
isomorphisms on all homotopy groups. This proves that X is an h-cobordism
between Mg and M.

Now, as My = S*T", the Whitehead group Wh(sr;(Mp)) vanishes, so that
the Whitehead torsion of the inclusion My < X is necessarily zero. The
s-cobordism theorem then tells that X is diffeomorphic to [0, 1] x S*T", as
desired.

8 Further discussion and open questions

Our results are, together with [38], among the first steps in understanding the
nature of the contact structures given by Bourgeois’ construction, and several
open questions remain. Firstly:

Question 8.1 Are Bourgeois contact structures tight in all odd dimensions?
Moreover, is every Bourgeois contact structure weakly fillable, at least in
dimension 5?7
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It is an important problem to understand more precisely the dependence of
the Bourgeois structure on the starting open book decomposition. By a direct
consequence of their definition, all Bourgeois contact structures are contact
deformations of the almost contact structure &y @ TT? (i.e. the endpoint 7;
of a path (1;):¢[0,1] of hyperplane fields starting at no = &y @ TT? and such
that n; is contact for ¢ > 0). One can then construct, as in [42, Example 1.1],
weak cobordisms between BO (X, ¢) and BO (X', ¢') forany OBD(X’, ¢')
and O BD (X, ¢) supporting the same contact structure. What’s more, besides
sharing the formal homotopy class, Theorem A in this paper shows in particular
that the tight vs overtwisted classification type of any 5-dimensional BO (X, ¢)
is independent of the open book.

On the other hand, in [7, Corollaries 10.6 and 10.8], Bourgeois used cylin-
drical contact homology, with respect to noncontractible homotopy classes of
Reeb orbits, in order to distinguish infinitely many Bourgeois contact man-
ifolds arising from open books supporting the standard contact structure on
S3; and similarly for T2. Further instances of different open books supporting
the same contact structure that induce non-contactomorphic Bourgeois con-
tact manifolds can be found in [38, Example 1.5]; in the same spirit, other
examples also come from Theorem C proved above.

Question 8.2 Can we find further contactomorphisms of Bourgeois contact
manifolds, beyond the inversion of the monodromy from [38]? More ambi-
tiously, can we classify the contactomorphism type of all the Bourgeois contact
manifolds arising from some fixed contact structure, especially via rigid holo-
morphic curves invariants?

In general, Theorem C imposes strong constraints on the monodromy. This
suggests the following:

Question 8.3 If BO(X, ¢) is strongly fillable, is ¢ (at least smoothly) trivial?
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