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1. Introduction
KAM theory (after Kolmogrov, Arnol’d, and Moser) states that, under mild non-degene-
racy assumptions, Hamiltonian systems close to integrable have their phase space almost
completely filled by invariant quasi-periodic tori. Starting from three degrees of freedom
for autonomous Hamiltonians the existence of such tori on an energy surface does not
prevent the orbits from circulating between the tori inside the surface. Indeed, it was
conjectured by Arnol’d that a ‘general’ Hamiltonian should have a dense orbit on a
‘general’ energy surface [A]. A large amount of work has been dedicated to proving this
conjecture (giving a precise meaning to the word ‘general’), but the picture is not yet
completely clear, especially when it comes to real analytic Hamiltonians (see for example
[BKZ] and references therein).

In his ICM list of problems [H], Herman asks: Can one find an example of a
C*-Hamiltonian H in a small Ck-neighborhood, k > 2, of Hy = ||r||*/2 such that on
the energy surface {H = 1} the Hamiltonian flow has a dense orbit?
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778 B. Fayad and M. Saprykina

A remarkable result in this direction is due to [KZZ]: they present an example of a
Hamiltonian H of the form H (6, r) = ({r,r)/2) + h(r, 8) € C* with a trajectory dense
in a subset of the energy surface of large measure.

Here we present examples, with a degenerate integrable part, but with even more chaotic
behavior for the perturbed system. Namely, we show that in a class of perturbations of rota-
tors, the generic Hamiltonian is topologically weakly mixing on every energy surface. We
also give examples of perturbed rotators for which the dynamics is diffusive at all times.

We now give the exact definitions of these properties and state our results precisely.

Definition 1.1. (Topological weak mixing) We say that the flow <I>iq is topologically
weakly mixing if there exists a sequence (#,),cN such that for any two open sets A, B on
the same (arbitrarily chosen) energy surface Eg(c) = {(6,r) | H(B, r) = c}, there exists
N = N(A, B) such that <I>t1’;(A) NB#Pforalln > N.

Definition 1.2. (Diffusion at all times) We say that the flow CD;{ exhibits diffusion at all
times if for any open set A C T¢ x R? and any R > 0, there exists T = T (A, R) such that
|71r(d>;,(A))| > R for all t > T. Here 7, denotes the projection onto the r-variables.

Given p > 0, denote by C};’ the space of bounded real functions on R? x R4, that are
Z4-periodic in the first d-vector of components, and can be extended to holomorphic func-
tions on D, = {(0,r) € (C4,C%) | max;{|0,|, |rjl, j =1,...d} < p} as Z<-periodic
with respect to the real part, with the norm || f |, = sup{| (0, r)|, (6,7) € D,}.

Let OZ),S ={fe€Cy|Ilfll, <38} be a neighborhood of zero in the space of analytic
functions with the above norm. This is a Baire space. Fixing p = 1 without loss of
generality, we write || f|| = || f|l1, and Of for Ofa.

THEOREM A. There exists a dense set Y C R?, d > 3, (Y continuum) such that for any
w €Y, forany § > 0, there exists a real analytic function h : T¢ — R, such that h € O,
with the following property: the Hamiltonian flow ®, (0, r) defined by the Hamiltonian

H = (r, ) + h(0)
exhibits diffusion at all times.
By a generic set in this paper we mean a dense G set.

THEOREM B. Foranyd > 3, for a generic v € RY, any § > 0 and generic hy(0), h2(9) €
OY, the flow @', of the Hamiltonian

1
H@,r) = m((”, ) + ha(0))

is topologically weakly mixing.
Note that the energy surface in the statement above is unbounded, which drove us to
treat the topological version of weak mixing rather than the classical notion.

Diffusion at all times shows that the rigidity property of the rotator (convergence of the
dynamics to identity along a subsequence of times) can be destroyed on all energy surfaces
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Topological weak mixing and diffusion at all times 779

by a small perturbation. However, our examples are not topologically mixing, and it would
be very interesting to produce examples that are topologically mixing on energy surfaces.

An interesting question concerns the possibility of similar examples in a neighborhood
of an elliptic equilibrium. If the components of the frequency vector at the equilibrium are
all of the same sign, the energy surfaces are bounded. We hope that the methods of [FS]
can be used to construct smooth examples of topologically weakly mixing Hamiltonians in
this context as well.

From the form of the perturbations of the rotator in Theorems A and B, we can see
that the Hamiltonians that we construct are, in fact, in the closure of Hamiltonians that
are conjugate to the rotator. Just like reparametrizations of linear flows on the torus, or
abelian skew products above them, our constructions can thus be viewed a posteriori as
particular instances of the Approximation by Conjugation (AbC) method [AK], which is
also called the AK-method in reference to Dmitry Anosov and Anatoly Katok who first
introduced it. The method was already used in the Hamiltonian context by Katok in [K2]
to show the existence of integrable degenerate Hamiltonians with some particular Liouville
frequencies and bounded energy surfaces that can be smoothly perturbed to become
ergodic on the energy surfaces. Subsequent constructions that use the AbC method with
several frequencies appeared in [EFK, FS, FF] to discuss the stability of elliptic equilibria
and invariant tori, in particular those with Diophantine frequency vectors. The examples of
[K2] were constructed following the usual AK-method with successive conjugations of a
circle action, which gives C* flows that are rigid in the sense that the dynamics converge
to identity along a subsequence of times. In our constructions, we bypass the smoothness
limitation and the rigidity of the perturbed dynamics by resorting to the reparametrization
technique of translation flows in dimensions larger than 3 used in [F]. This technique
exploits the Liouville phenomenon in several directions [Y] to avoid the Denjoy—Koksma
cancellations that appear in dimension two [K1, Koc].

2. Notation and definitions
To alleviate the notation, we will give the proofs for d = 3 since there is no difference at
all in the proof of the general case.

2.1. General notation.
For a vector r, its components are denoted by r;, j = 1, 2, 3; for a vector ¢ € R3, we
denote its components by ro j, j =1, 2, 3.

e Fora € Rand! > 0, we denote

I(a,]) =a+[0,I] =[a,a+1].

e For a set S in the phase space, let 7, (S) stand for the orthogonal projection of S onto
the space of actions (r-space). In a similar way, introduce notation 7o (S), 7,;(S),
ﬂgj(S) forj=1,...,d.

e When we write that p/q is a rational number or (p/q) € Q, we assume that g € N,
q > 1, p € Z, and the numbers p and g are relatively prime.

o Let w= (w, w, 3) € R be a rationally independent vector. Then, in particu-
lar, w3 # 0, and we can rewrite w = w3((w1/w3), (w2/w3), 1). Without loss of
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780 B. Fayad and M. Saprykina

generality, the constructions are performed under the assumption that w is normalized:
o= (a,a,1).

Denote Ho(0. 1) = (. r) = Y 1_, o;r;.

We use @, (-) to denote the flow map at time 7, defined by the Hamiltonian H.

Fix ¢ € R and consider an energy surface Eg(c) = {(0,r) | H@,r) = c}. In our
constructions, ||[H — Hpl|; is small, so Eg(c) is uniformly close to Epy,(c) = {r |
(r, w) = c} x T3.

2.2. Arithmetic reminders. Yoccoz pairs of frequencies. Denote

lkee|ll = inf |k + p|.
pEZ

For an irrational number « there exists a sequence of rational numbers (py,/g,)n>1, called
the convergents of « such that

llgn—1ll < llke|l| forall k < gy,

and for any n

< (=D)"(gno = pn) = 2.1

qn + qn+1 qn+1 .

Definition 2.1. Let w = (o, &/, 1) € R3 where o and ' are irrational real numbers with
the corresponding sequences of convergents (py, /gn)n=1 and (p),/q;)n>1. We say that o =
(a,a/, 1) eYifforalln =0,..., o0, the denominators of the convergents of « and o',
respectively, satisfy:

e < gl /4, et < gup1/h (2.2)

By [Y], the set Y is non-empty, of cardinality continuum. This is the set of frequencies
used in Theorem A.

2.3. Intervals and rectangles in an energy surface. Here we describe the standard sets
used in the construction. In particular, intervals are defined to be small one-dimensional
curves that lie in a given energy surface and whose projection onto the five-dimensional
space (0, r1, r2) is a linear segment parallel either to the 0; axis or to the 6, axis. The
coordinate r3 is defined by the requirement that the curve lies in the energy surface. More
precisely, we have the following.

e Given sg = (6o, ro) and [ > 0, define the intervals

JW (0,1
={0,r) € I(80,1, 1) x {602} x {603} x {ro1} x {ro2} x R| H(0,r) = H (6o, r0)},
and

T (s0,1)
={0,r) € {001} x (62, 1) x {603} x {ro,1} x {ro2} x R| H(0, r) = H (6o, ro)}.
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Topological weak mixing and diffusion at all times 781

e For any sop = (60, r0), /1 > 0 and l; > 0, define the rectangle

R(s0, 11, o)
={(0,r) € I(6o,1,11) x 1(6p2,l2) x {63} x {ro,1} x {ro2} x R| H(0,r)
= H(6p, r0)}.

As before, the projection of R(6y, ro, l1, [2) onto the space (0, r1, r2) is a flat rectangle
parallel to the (8, 62)-plane; r3 is chosen so that R(6y, ro, [1, [2) C Eg(c).
We say that the size of the rectangle R(0y, ro, l1, [2) is 1] X 5.
e Given n and sg = (6, r9), a box B,(so) C Eg(c) is defined by

1y .
By, (s0) ={(9, r)10j e 1(90,j, ;>, j=1273,
1
rj € 1<r0,j, —), J=12, H(©,r)= H(0:, Vo)}~ (2.3)
n

These sets, having full dimension in Eg(c), will be used as test sets: in particular, to
prove Theorem B, we will show that at certain times ¢,, the image of any rectangle
R, C Eg(c) intersects each box B, C Eg(c). To do so, we need the notion of
stretching.

Definition 2.2. Given positive [, L, and ¢, we say that the flow map <I>§q is
(1,1, L)-stretching if for any interval JV = JW @y, ro, I) with |ro| < L/10 we have

7 (@ (T 1) D [-L, L],
and the map (0, r) — (@’H(Q, r)) is independent of 6, where 6 = (01, 62, 63). Anal-
ogously, we say that the flow map ®/; is (2, [, L)-stretching if for any interval J® =
J @ (8, ro, 1) with |ro| < L/10 we have

Ty (@ (JP)) D [-L, L],
and the map (0, r) — m,, (<I>’H(9, r)) is independent of 6.
3. Proofs of the main theorems

Here we prove the main theorems modulo the technical statements, whose demonstration
is deferred to the next section.

3.1. The construction for Theorem A. Let us fix an arbitrary vector («, o', 1) € Y with
(Pn/qn)n>1 and (p),/q;)n>1 being the corresponding sequences of convergents. Let

hO) == ha(0) = Y _ h,(6), 3.1)
n=1 n=1

hu(0) = e cos 2 (gnt — put3), h,(0) = e~ cos 27 (g, 62 — p,63).
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782 B. Fayad and M. Saprykina

Theorem A follows from the result below.

THEOREM 3.1. For any w € Y, for h as in (3.1), the Hamiltonian flow ®', (0, r) defined
by the Hamiltonian

H = (r,w) + h(0)
exhibits diffusion at all times.

Remark 3.2. This Hamiltonian can be seen as a limit of an Anosov—Katok-type construc-
tion, that is, it has the form

H=1lmH", H"™ =HyoW,o0- oW,
where W; are symplectic analytic coordinate changes.
The proof of Theorem 3.1 relies on the following proposition that is proved in §4.1.

PROPOSITION 3.3. For any w €Y, for h as in (3.1), the Hamiltonian flow CD;,(Q,r)
defined by the Hamiltonian

H=(r,o)+h®)

satisfies for each n:
(a) forallt e [eq’/’, qn+1/4], d>3{ is (1, 1/qn, qn)-stretching;
(b) forallt € [eh,q, /4], DYy is (2, 1/qy, q,)-stretching.

Here we show how this proposition implies Theorem 3.1.

Proof of Theorem 3.1. As the sequences (g,) and (g,) satisfy (2.2), the union of the
intervals |, y[e?", gny1/4]1 U [edn, q, +1/4] contains the half-line ¢ > ¢7V. Proposition
3.3 implies that for each € [e", g,41/4], D, stretches small rectangles in the direction
of r1 with a large factor, and for each ¢ € [en, q, /41 @', stretches small rectangles in
the direction of r;.

Hence, @, exhibits stretching with an increasingly strong factor as r — oo, in at least
one of the two directions r; and r;. This implies the conclusion of Theorem 3.1. O]

3.2. The construction for Theorem B. Consider w = (a, o/, 1), and suppose that there
exist sequences (p,/qn)n>1 and (p,,/q,)n>1 such that

ar<ql, lgua—pal <e M, |gla' — pl| < e . 3.2)

We start by observing that the set S of pairs («, &’) with this assumption contains a generic
set in R2. This implies, of course, that the set of numbers w = (w1, w7, w3) = w3 (@, ', 1)
such that («, @’) € S and w3 € R, is generic in R3.

LEMMA 3.4. There exists a generic (dense Gs) set ScScRr? of pairs (a, ') satisfying

the following: there exist sequences (pn/qn)n>1 and (p),/q,)n=1 of rational numbers such
that estimate (3.2) holds for all n.
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Topological weak mixing and diffusion at all times 783
Proof. We want to describe the set S of pairs («, ') such that for any N there exist p/q
and p'/q’ € Qsuchthatg > N, q’ > ¢*, p, p’ € Z, and
e —plgl < /g, o' —p'Jg'l<e /g .
The set S contains the following set S:

N(UU U U (- 2ee ) (el 2, e))

N>1 q>N peZ q/2q4 p/GZ q q q q q q

which is a countable intersection (in N) of open dense sets. O

Here we present an explicit example of a Hamiltonian whose flow is topologically
weakly mixing. It is easy to see that such examples can be produced arbitrarily close to
Hy. From this, the genericity of Hamiltonians with the weak mixing property is obtained
in the standard way.

Having fixed w € R3 asin (3.2), let

o0
$O) =1+ gne % cos 27 (guth — paths), (3.3)

n=1

and for k,, := q,%, introduce
o0 o0
h©) ==Y ha(0) =) _ h}, ). (34)
n=1 n=1

a(0) = kne™ U cos 2k (gub) — pub3).  h,(6) = e~ cos 2m(ql6r — pl63).

~ ’ 3 / .
Note that because~ hall < ke e2TKn(@ntpn) < q,%e“”qn:qn, assumption q,f <gq,
implies that || Z,Ozil h,(0)]l1 < oo. Clearly, this implies that ||A(6)]|; < oo.

THEOREM 3.5. For w as in (3.2), ¢ as in (3.3), h as in (3.4), the Hamiltonian flow
<I>’ﬁ (8, r) defined by

H= ((r, w) + h(0)) (3.5)

1
¢(0)
is topologically weakly mixing.

More precisely, for t, = eh, n > 1, we have: for any two open sets A and B on the
same energy surface there exists N = N (A, B) such that

d)i%(A) NB#W foralln> N.
Assuming Theorem 3.5, we show how it yields Theorem B.

Proof of Theorem B. 1t follows from classical arguments (cf. [Ha]) that weak mixing for
the flows as in Theorem B holds for a Gs-set of functions (41, h2) € OF (0)2. It is left to
show the density of weak mixing for (41, h2) € OF (0)?2 for a fixed 8. To do this, note that
for any € > 0, both (¢(6) — 1) and h(9) can be chosen e-close to zero in the fixed norm: it
is enough to choose g large enough. Moreover, from the proof of Theorem 3.5 it follows
that the same result holds true if we change ¢ (6) and h(0) by ¢(8) + P(6) € OF(0) and
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784 B. Fayad and M. Saprykina

h@®) + Q) € Of(0) with P and Q trigonometric polynomials. This implies the density
of the weak mixing property. O

The proof of Theorem 3.5 relies on the following two propositions that are proved in
§84.1 and 4.2, respectively.

PROPOSITION 3.6. For w as in (3.2), ¢ as in (3.3), h as in (3.4), H as in (3.5), and
t, = ein, we have:

(a) Cb;’ll is (1, l/qg, qn)-Stretching;

(b) CDII_”} is (2, 1/q,, q,)-stretching.

PROPOSITION 3.7. For w as in (3.2), ¢ as in (3.3), h as in (3.4), the Hamiltonian flow
d>’l_~l (0, r) defined by

(r, w) + h(9))

satisfies for t, = e the following. For any rectangle R, := R (6o, ro, 1/qn, 1/q,) with
lro| < n and any box B, (see notation in §2.3) there exists a rectangle R), C R, of size
l/qfl' X 1/‘13 such that

79 (®(R})) C 79(By).

Proof of Theorem 3.5. Fix R,, and B,, as previously.
By Proposition 3.7, there exists a rectangle R, C R, of size l/qs x 1 /q,% such that

7o (@' (R;)) C 76 (By).
By Proposition 3.6, we can find a rectangle R, C Ry, such that
7 (P (Ry)) C 7 (By).
Hence
@7 (Ry)) C By
and the proof is finished. U

4. Stretching
4.1. Stretching in the action directions.
LEMMA 4.1. Let p/q, (p'/q") € Qand v = (a, &, 1) and ay, by satisfy
el = a, = 4lga—pl, e =by =4lgd —p|
Define
H(O,r) = (r,w) —aq cos 21t (q6; — p83) — by cos 27(q'6r — p'63).
Then the following hold:
(a) foreacht e [aq_l, 1/(4lgo — p|)] the flow map @', is (1,1/q, 2q) stretching;
(b) foreacht € [bq_,l, 1/(4lq'a" — p'D)], the flow map @, is (2, 1/q’, 2q") stretching.

https://doi.org/10.1017/etds.2021.12 Published online by Cambridge University Press



Topological weak mixing and diffusion at all times 785

Proof of Lemma 4.1. The Hamiltonian H defines the following system of equations (we
omit 3 from the considerations):
6 =w,
F1 = —2mqag sin 27 (q6; — pb3), 4.1)
2 = —2mq'by sin 21t (q'02 — p'63).
This system can be integrated explicitly: the solution with initial conditions (6(0), »(0)) =
(6o, ro) satisfies
0 =6+ tw,
ri(t) =cy +
q

a
9% cos 271((qfos — pbos) + 1 (gt — p)).
oa—p “4.2)

/

— qbq/ / / / /
r(t) =cy + m cos 2 ((q'6o2 — p'6o3) +t(qga—p)),

where ¢y is a constant such that 74 (0) = rox, k = 1, 2. Note that r (t) = 7, (CD’H (ro, 60))
is independent of 67, and () = nrz(d>’H(r, 0)) is independent of 6 .

Fix an arbitrary t € [aq_l, 1/(4(ga — p))] and sg = (rg, 6p) with |rg| < ¢g/10, and
consider the interval J( = JM (59, 1/¢), see notation in §2.3. Assume go — p > 0
(the opposite case is similar). There exists a point sT = (01, rg) € J M with 61 =
(0, 602, 60,3) such that

q0," — pboz = —1/4 mod 1.

Then cos 2r (q@fr — pBoz) = 0. Consider the trajectory of the above flow with the initial
condition (0(0), r(0)) = (6™, rp). For the first action component this reads: r(0) = ¢ =
ro,1, which implies

le1] = Iro1] < Irol < g/10.

Assumption ¢ € [aq’l, 1/(4(ga — p))] implies, in particular, (2nt(ga — p)) €

[0, /2]. Using the fact that sin(x) > x /2 for all x € [0, /2], we obtain

qaq
qoe —p
qae —p
As |c1| < /10, we obtain 7, (P, (sT)) > 24.

In the same way, there is a point s~ € J M such that T (QDIH (s7)) < —2q. The result
follows by continuity. U

cos 27 ((q0;" — pbo3) + t (g — p))

sin 2t (qo — p) > mwiqag > 3q.

Here we prove Proposition 3.3 that was used for the proof of Theorem 3.1.

Proof of Proposition 3.3. Let us prove statement (a), the second statement is similar. As
qn/ pn 1s a convergent of o, by (2.1) we have for all n that ¢,,+1 < 1/|gno — pr|. Condition
(2.2) implies that e?" < g,,11/4, so we have

(e, gny1/4] C [, 1/(4lgna — pul)].
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786 B. Fayad and M. Saprykina

Consider H,(0,r) = (r, w) — h,(0) — h},(9), where h,, h), are defined by (3.1). Fix
r =rg with |rg| < ¢g/10. The first component of CDsqn @, ro), that is, r, 1(0, 1o, t) 1=
Ty, (q>3'—1,1 8, rp)), is given by

—4

qne "
(0, 10, 1) = ¢ (0, ro) + ———— 08 27 ((qn1 — Pu63) + 1 (gnet — py))

qn® — Pn
= (0, 1r9) + fn(6,1),

where ¢, (0, ro) is such that 7, 1 (0, ro, 0) = ro. By Lemma 4.1, foreach ¢ € [ ", gp41/4 ]
the flow map ijqn is (1, 1/qy, 2q,) stretching, that is, in any interval J (1)(r0, 6o, 1/q,)
with |rg| < ¢, /10 there are points s = (rg, 87) and s~ = (9, 67) such that

it ) > 20, rai(sT, 1) < —2¢,.
Hence, in particular,
[0 ) = (0T ) = rpa (st 1) — raa(st,0) > 2g, — ¢a/10 = 1.9g,,.

Let us show that for these 7, @', has the same stretching properties as <I>’Hn (with 2g,
replaced by g,). The first component of @', (6, ro), that is, r1 (8, ro, 1) := 7, (P, (0, ro),
is given by the formula

s gre %
ri@,ro, 1) =c(0, rg) + E —qka _— cos 2 ((qrb1 — pk83) + t(qree — pi))
k=1

= 6(67 rO) + Z fk(@, t) = 6(97 rO) + fn(es t) + Cn(g’ t) + Dn(ev t),
k=1

where C,, (0, t) = ZZ;} fu(0, 1), Dy(6,1) = 3 32,1 fx(6, 1), and ¢(8, ro) is a constant
such that 1 (6, g, 0) = r¢1-
Consider C, (0, t). By (2.1), 1/|gxe — pr| < 2qi+1 for all k > 1, so for any 8 we have

n—1

qre _
<4 qre % qis1 < ga/100
k=1

n—1
[Cn(@,1) — Cy(6,0)] <2 —_—
" " 2 ket — pk

k=1

owing to the growth condition on gy.
Now consider D, (¢). By (2.1), for any £ > 1 we have |gxa — pr| < (1/qr+1). Hence,
for any t < g,+1 we have

|Du(0, 1) — Du(8,0)] <t sup |D;,(0,1)]

qke_qk

oo
——— gk — prl <2mqup1 Y qre”® < 1.
qrd — Pk

k=n+1
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This implies that for any rg with |rg| < ¢g/10 we have

rGt ) —rist 0 > £,01, 0 — f,0F, 1) = 1C(0, 1) — Cr (8, 0)]
—|Dy(@,t) — D,(0,0)] > 1.9¢q, —0.01g, — 1 > 1.5¢,.

As, by assumption, |ri(sT, 0)| = |ro| < gn/10, we obtain
r](s+a t) 2 qn~
By the same argument, r{ (s, t) < —g,. Thus, CD;, is (1, 1/qy, gy) stretching. O

In the following, we prove an analog of Proposition 3.3 for the Hamiltonian H of
Theorem 3.5. To begin with, note that our choice of ¢ and /4 implies that the Hamiltonian
system of H has a particularly simple form.

LEMMA 4.2. For w as in (3.2), ¢ as in (3.3), h as in (3.4), the Hamiltonian flow CD;_.I @, r)

defined by
N 1 .
H = ((r, w) + h(0))
#(0)
satisfies
. 1
0 =—ow,
#(0)
27 &
= 20 D an(Cgne™n sin 27 (g1 — pu63) + ke sin 2k (ga61 — pa3)),
n=1
-2 ,
Py = —= N7 gl e~ sin 27 (q,62 — PlL6).
PO) —

where C = H (0, r). We omit the expression for r3 because it is not used in the following.

Proof of Lemma 4.2. Recall that the value of H®O,r) = 1/0@)((r, w) + h(9)) := C is
constant on the solutions of the corresponding system of equations. For j = 1, 2 we have

Pjp= —0g; H, where

. Sl _
U, H = =25 00,6 (r. @) + 1) + 2 3. = == (C 3,0 = ).

Explicit substitution finishes the proof. O

In the next lemma (which is an analog of Lemma 4.1) we study the action components
of the above system in a simplified form: we consider only the nth term in the sums above.
The study of the angle components is postponed to Proposition 3.7.

LEMMA 4.3. Let w = (a, o', 1), where a and o' are irrational. Assume that there exist
rational numbers p/q and p'/q’ satisfying (3.2) with g, and q), replaced by q and ¢,
respectively. Let ¢ (0) : T> — R be a smooth function satisfying 3/4 < |¢(0)| < 2 for all
6 € T3. Denote k = g2, take any C € R with |C| < q'/?, and ry € R? with |ro| < ¢ /10,

https://doi.org/10.1017/etds.2021.12 Published online by Cambridge University Press



788 B. Fayad and M. Saprykina

and let <I>g(90, ro) be the flow of the system

. 1
9 = ——w,
(@)
. -2 —q 2074 s
. = (Cqe= sin 27 (61 — pb3) + k2~ sin 27 (g6 — pb3)), 4.3)
. =2, . ’ /
7y =——q'e ? sin2m(q'0, — p'03)
¢ (©)

with initial conditions CIJ(S)(O(), ro) = (6o, ro). Then fort = e the following hold:
(a) @Y is(1,1/qk, 2q)-stretching;
(b) @ is(2,1/q', 2q")-stretching.

Proof of Lemma 4.3. The proof is analogous to that of Lemma 4.1. The only difference
is that in this case é(t) is not constant. Let us study the rj-component of <I>g(90, r0)
(the analysis of r(¢) is similar). Fix an arbitrary (g, rg) with |rg| < ¢ /10 and let JO =
JD (6o, ro, 1/kq).

As 3/4 < |¢(0)| < 2, the mean value theorem implies that the angle variables satisfy

0(6o;t) =6y +1 £(6p, o,

where 3/4 < |£(9, )] < 2forall 0, t.
Given an initial condition r{ (0, ro, 0) = rg 1, the system defines

que_‘f/
r1(0, ro; 1) = ¢] + ———— cos 2w (g (; 1) — pb3(6; 1))
qa —p

gre™ 1
qa —p

cos 2k (gh1(0; 1) — pb3(0; 1))

i=c1(0,r0) + 810, r0; 1) + 8200, ro; 1),

where c1(0, rp) is the constant such that r{ (6, ro, 0) = ro,1. Note that g2(6o, ro, t) is the
leading term in the above expression. Assume that go — p > 0, the opposite case is
similar. Clearly, there exists a point s* = (81, ro) € JI with 7 = (8,", 602, 6p3) such
that

k(q0;" — pbp3) = —1/4 mod 1.
We show that r1 (67, ro; 1) > 2g.
First consider the term gp. Note that g>(8%,rg,0) =0. For 6(8;1) =67 +

t £(OT; t)w we have

k(@010 1) — p3(0F5 1) = (=1/4+ k10T 1) (g — p)) mod 1.
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’
Then for t = ¢ we have

+ . _ quiq/ 4. +.
g2(0" . roi 1) = cos 27k (q01 (03 1) — po3(0*F: 1)
qo —p
7q/
=% inQrktE©". (e — p))
qoe —p
_ql ,
> axe mitE@F, 1) (qa — p) > qrte = g°.

We used the evident estimate sin(x) > x /2 for x € [0, 7 /2], and
2rktEOF, 1) (qo — p) < dmrke? e = dwge ™ € [0, 7/2].

To estimate the other terms in r1 (67, ro; 1), note that |c; + g1(0F, ro; 0)] = |ro1] <
¢/10. By (4.3), the derivative g1(0%, ro, 1) satisfies |g1(67, ro, 1)| < 2wCq2e 9 <
2rq3e™. For t =e? we have Ag (0T, ro, 1) :=|g1(0F, ro,t) — g1(6F, ro, 0)| <
2ntqze_q/ = 2m¢? and, finally,

r@t, roit) =ci+ 810", ro, 1) + 207, ro, 1)
=ro1 + Ag1(0F, ro. 1) + 207, 10, 1)
> 6207, 1o, 1) — Irol — 18107, ro, ) > ¢° — q/10 — 27 ¢° > 2.

In the same way, there is a point (6, rg) € J D such that the solution r1(0—, ro; t) with
the initial condition r1 (67, ro; 0) = ro1 satisfies r1 (67, ro; eql) < —2q. This implies that
@ is (1, 1/kq, 2q) stretching. In the same way, one verifies that ®% is (2, 1/¢’,24q")
stretching. O

Proof of Proposition 3.6. The proof of Proposition 3.6 follows from Lemma 4.3 exactly
as Proposition 3.3 followed from Lemma 4.1. O

4.2. Stretching in the angle directions. In this section, we prove Proposition 3.7.
Namely, we study the behavior of g (@% ), which is the solution of the equation

. 1
= —o.
@ (0)
As this flow does not depend on r, we fix an arbitrary 7y and omit it from the notations. To
shorten the notation from §2.3, we denote

@y (6o) := 79 (P (r0, 00)),

4.4)

By (0p) := 1o (B, (ro, 60)),
Ry (60, 1, l/) = 1y (R(rg, 6o, [, l/)).

Note that Ry (69, [, 1) is indeed a flat rectangle.

Proof of Proposition 3.7. As () does not depend on the r variables, the restriction of the
flow of H = (1/¢(0))((r, ) + h(6)) onto T3 is the same as that of H = (1/¢(0))(r, w).
We study the latter.
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First observe that, considering the global section {#3 = 0}, one can see the flow of H
to be equivalent to a special flow T/, o) Above the translation T(q q7) ON T? and under a
ceiling function of the form

o
9(0) =1+ gue™ cos 2m(qubh). 4.5)

n=1
The phase space M(y 41y, Of Tta o) is T2 x R with the identification 01,62, s +

@01, 02)) ~ (01 +a, 0, + o, s). These flows were studied in [F] and the proof of the
proposition follows from [F]. For completeness, we sketch the proof here. Observe that, as
proved in Proposition 3.7 of [F], for intervals I, C R of length (1/2 —2/n)q,; ! of the form
lignbi1lll € [1/n, 5 — (1/m)1or lgabrll € [§ + (1/n), 1 — (1/n)], and for m € [ty /2, 21,1,
it holds for some constant C > 0 that for every 0 € I,,
2

M < g, 0 (0)] < Cg?. (4.6)
where ¢, denotes the mth Birkhoff sum of the function ¢. The latter estimate follows
from the very good rational approximation of wi, because (2.1) implies that ||g, 1] <
e~n /4. Now, the left-hand side of (4.6) implies that T’(’;’a,),w(l,, x {62} x {s}), for any
0, € T and any s < C, is a union of more than ,/g, almost vertical strips that follow
the orbit of /, under the base translation T(4q1). As /gy > exp o exp(n), we get that
T(tg’a,)’(p(ln x {62} x {s}) is e=2" dense in the space My o), This fact, plus the right-hand
side of (4.6), together with the fact that there is no shear in the 6, direction (the ceiling
function depends only on 1), imply that for any box By ,, and for any s € R, there exists
arectangle R, of size 1 /q;? x 1 /qg such that

Ttn

(a,a’),(p(R;l X {S}) C BQ,n~

Going back to the original flow on T, this implies the requirement of the proposition. [J
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