Neuron

Real-time linear prediction of simultaneous and
independent movements of two finger groups using
an intracortical brain-machine interface

Graphical abstract Authors
SoiKi D 3 Samuel R. Nason, Matthew J. Mender,
PIKING ecoding
Activity Alex K. Vaskov, ..., Theodore A. Kung,

Parag G. Patil, Cynthia A. Chestek

Finger positions — v
Manipulandum
Control

Brain Correspondence
Control cchestek@umich.edu

In brief

Nason et al. present a real-time brain-
machine interface for controlling the
simultaneous and independent
movements of two groups of fingers in
nonhuman primates. These techniques
can be used to restore naturalistic control
of paralyzed hands and enable a deeper
\ ' understanding of how motor cortex

/ \ represents dexterous finger behaviors.

Highlights
e Simultaneous and independent brain-machine interface
control of two finger groups

e Cortical tuning between manipulandum and brain-machine
interface use is consistent

e Linear decoders can predict untrained finger movements

e Cortical units simultaneously encode multiple kinematic
dimensions

Nason et al., 2021, Neuron 109, 3164-3177
October 6, 2021 © 2021 Elsevier Inc. 35
https://doi.org/10.1016/j.neuron.2021.08.009 & CellPress



mailto:cchestek@umich.�edu
https://doi.org/10.1016/j.neuron.2021.08.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuron.2021.08.009&domain=pdf

¢? CellPress

Neuron

Real-time linear prediction of simultaneous
and independent movements of two finger groups

using an intracortical brain-

machine interface

Samuel R. Nason,! Matthew J. Mender,! Alex K. Vaskov,? Matthew S. Willsey,-® Nishant Ganesh Kumar,*
Theodore A. Kung,* Parag G. Patil,"-3-5¢ and Cynthia A. Chestek'-2.6.7,8.*

1Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

2Robotics Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA

3Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, USA

4Section of Plastic Surgery, Department of Surgery, University of Michigan, Ann Arbor, Ml 48109, USA

SDepartment of Neurology, University of Michigan Medical School, Ann Arbor, Ml 48109, USA

SNeuroscience Graduate Program, University of Michigan, Ann Arbor, Ml 48109, USA

“Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, USA

8Lead contact
*Correspondence: cchestek@umich.edu
https://doi.org/10.1016/j.neuron.2021.08.009

SUMMARY

Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity
brain-machine interfaces are unable to reproduce control of individuated finger movements. Here, for the first
time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes
intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individ-
uates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain
control, the ReFIT Kalman filter could predict individuated finger group movements with high performance.
Next, training ridge regression decoders with individual movements was sufficient to predict untrained com-
bined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related
cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions.
Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-

dimensional tasks with the performance levels required for naturalistic neural prostheses.

INTRODUCTION

Neural prostheses have the potential to return independence to
many people with neurological disorders or injuries. In human
clinical trials, laboratories have restored use of computers,
self-feeding, and prosthetic hands using implants to translate
electrophysiological signals into user intent (Ajiboye et al,
2017; Memberg et al., 2014; Nuyujukian et al., 2016; Pandarinath
etal., 2017; Wodlinger et al., 2015). Of greatest interest to people
with cervical-level spinal cord injury is the return of hand and arm
function (Anderson, 2004). Although this has motivated many
groups to study neural prostheses for hand control, only a few
have been translated to use with people, and none have been
translated to full-time use outside of the laboratory. Functional
electrical stimulation provides an avenue for outputting the inten-
tions of the user to their natural limbs (Kilgore et al., 1989, 2008;
Memberg et al., 2014; Smith et al., 2005), with commercial solu-
tions already in existence, such as the FreeHand System. Unfor-
tunately, they typically rely on some external motion or myoelec-
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tric commands from residual functional muscles, which require
learning and are generally unnatural to use.

This has driven many groups to use brain-machine interfaces
to extract hand prosthesis control signals from a more natural
source. In humans, various studies have attempted to charac-
terize the relationship between finger movements and electro-
corticography activity (Chestek et al., 2013; Hotson et al,
2016; Kubanek et al., 2009). However, that relationship was
insufficiently strong to enable quick classifications or fully
dexterous continuous movements. Some groups have used
intracortical microelectrodes in monkeys to record activity pat-
terns on the order of single neurons to investigate a more con-
crete connection between these patterns and finger behaviors
(Baker et al., 2009; Mollazadeh et al., 2011). These studies sug-
gest that such a relationship, reliant on intracortical recordings,
is stronger than with electrocorticography, but classification of
which finger is moving by itself does not provide enough under-
standing of that relationship to predict the quality of continuous
control.
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The ability to precisely control the positions (individuated
placements of the hand degrees of freedom) of all individual fin-
gers is a key characteristic of dexterous hand use in primates. As
such, many groups have attempted to relate many, if not all 27,
degrees of freedom (DoFs) within the hand to neural activity dur-
ing reach-to-grasp tasks offline by continuously predicting hand
posture (combined arrangements of different hand DoFs; Aggar-
wal et al., 2013; Bansal et al., 2011; Okorokova et al., 2020; Var-
gas-Irwin et al., 2010). These studies found that continuously
predicting postures exceeded the performance of predicting
the movement velocities, which contrasts with brain-machine
interface studies for arm reaches. Additionally, although these
studies showed very high offline correlation between firing rates
and behaviors for many of those DoFs, most, if not all, of the
DoFs presented showed highly correlated trajectories and may
not have truly been independent. This makes it unclear how
well this neural activity corresponds to those DoFs individually
or if all the DoFs are moving so similarly that anything with a
similar time course will correlate well. Further, without evaluating
online control of individual DoFs, the applicability to intuitive and
naturalistic neural prostheses is uncertain.

Dexterous hand use in primates and humans has two classes
of movement: prehensile (for grasping objects; Napier, 1956;
Santello et al., 1998) and non-prehensile (for manipulating ob-
jects). While all of these studies have made great strides toward
the ability to predict the intended movements of the hand, which
has a clear importance toward the goal of returning hand func-
tion to those without it, they have focused almost exclusively
on prehensile movements (Napier, 1956; Santello et al., 1998).
There is a substantial gap in the literature surrounding the neural
representation of continuous non-prehensile movements and
whether that representation can be leveraged in a brain-machine
interface. One study trained a primate to use a joystick to control
non-prehensile movements of a virtual hand, eventually using an
online decoder to move the virtual hand online (Rouse, 2016).
However, it remains unclear how much of the brain control de-
pended on the monkey’s intentions to perform non-prehensile
hand movements or whether the monkey continued to think
about its arm mapped to the virtual hand as the control system
for the task.

Generally, the algorithms for online control of neural prosthe-
ses assume linear relationships between primary motor cortex
neural activity and either the position and velocity or expected
muscle activations of prosthetic movements. Variants of Kalman
filters (Ajiboye et al., 2017; Gilja et al., 2012; Malik et al., 2011; Wu
et al., 2004), ridge regressions (Collinger et al., 2013; Mulliken
et al., 2008; Wodlinger et al., 2015), and Wiener filters (Ethier
et al., 2012; Koyama et al., 2010; Sachs et al., 2016) have been
used to control arms, hands, and fingers online. Linear online de-
coders are promising candidates for an out-of-laboratory clinical
neural prosthesis because of their computational simplicity and
high prediction performance. However, with limited quantities
of recording electrodes, covariances between nearby neural sig-
nals, and increasing numbers of DoFs required for finger control,
linear decoders may be unable to accommodate multiple inde-
pendent DoFs.

It has been noted by several groups that the same neurons can
covary with substantially different behaviors, which could make
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the prediction of finger movements particularly difficult. For
example, primary motor cortex can simultaneously encode infor-
mation about upper extremities, fingers, and speech, indepen-
dent of body laterality (Cross et al., 2020; Diedrichsen et al.,
2013; Heming et al., 2019; Jorge et al., 2020; Stavisky et al.,
2019, 2020; Willett et al., 2020). As tasks increase in complexity,
linear models may be unable to discriminate between neural
states without sampling greater quantities of relevant neurons.
Therefore, it is valuable to characterize the limits of linear models
in discriminating neural states with truly simultaneous movement
of independent DoFs.

Here, we show, for the first time, fine, independent, and simul-
taneous online control of two systematically individuated groups
of fingers within one hand to acquire two targets, one each for
the index finger and the middle-ring-small (MRS) fingers, in a
non-prehensile task using linear Kalman filters and an intracort-
ical brain-machine interface in nonhuman primates. With inten-
tion-based retraining of the Kalman filters, we find that online
brain control improves significantly. Then, we find that the
magnitude of individual neural activations to particular non-pre-
hensile movements, whether they correspond to movements of
one group or combined movements of both groups, can be
well predicted by the weighted sums of the most similar move-
ments. This suggests that neural representations of continuous,
non-prehensile finger movements are related by linear combina-
tions of similar movements, enabling us to accurately predict un-
trained finger movements offline using ridge regression. Finally,
we characterize the similarity between postural and movement
tuning of cortical spiking activity to fingers to find that the
preferred movement direction is rarely associated with the
preferred posture, regardless of the beginning posture.

RESULTS

Linear two-finger decoding in real time

We first sought to validate that linear decoder models could indi-
viduate two systematically separated finger dimensions moving
independently and often simultaneously throughout their entire
ranges of motion. To do so, we trained two adult, male, able-
bodied rhesus macaques, monkeys N and W, to perform a
two-target two-finger task by using a manipulandum (Vaskov
et al., 2018). The manipulandum consisted of two flat surfaces,
one for each finger group, where each surface was free to rotate
about a hinge at the metacarpophalangeal joints and was sized
according to the finger group being used to push it (index versus
MRS). This task is illustrated in Figure 1A, with a drawing of the
manipulandum included. Although the monkeys were presented
with two one-dimensional targets, they can be visualized as one
two-dimensional target in a two-dimensional space of percent-
age of index flexion versus percentage of MRS flexion, as shown
in Figure 1B, without making any assumptions about cortical
representations of these finger groups. For real-time decoding,
targets were presented in a center-out style, in which every other
target presented was located at rest. Non-rest targets were
pseudo-randomly chosen from the postures in Figure 1B, and
then a magnitude of movement was pseudo-randomly chosen
between +20%, +30%, or +40% flexion or extension from rest.
These movement magnitudes can be imagined by further flexing
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Figure 1. Experimental description

(A) The monkey was seated in front of a screen
displaying a virtual hand with his left hand placed in
a manipulandum. Positions of the index and MRS
finger groups were measured by the manipu-
landum (right side of A) synchronously with the
neural activity. The position measurements or the
decoded finger positions were used to actuate
the virtual hand, depending on the stage of the
experiment. Targets were pseudo-randomly pre-
sented in a center-out pattern based on the pos-
tures in (B) or in a pattern where target positions
were pseudo-randomly placed along each finger’s
dimension, but not separated by more than 50% of
the range.

(B) Two-dimensional space for visualizing the
hand movements. Postures shown are at +30%
compared to rest, which is at 50% between full
flexion and full extension. |, index finger group; M,
MRS finger group; F, flexion; E, extension; R, rest.
(C) An example tuning curve from monkey N illus-
trating an SBP channel tuned to index extension

Monkey W

[«2)

and MRS flexion movements. Error bars represent

$ Individual Movement . . L
mean + standard deviation. Asterisks indicate

$ Combined Movement

N

N

MRS Flexion (%)
Activity (z-score)

. et
B 23
S
B

significant difference from the average activity
across the experiment (two-sided two-sample
Kolmogorov-Smirnov test, p < 0.001, corrected for
false discovery rate).

(D) Photographs of monkey W’s and monkey N’s
intracortical Utah microelectrode array implants.
Both implants were in right hemisphere. The
asterisk indicates arrays used in this study. A,
anterior; L, lateral; CS, central sulcus.
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each posture as shown in Figure 1B, which is shown in Table S1,
and are realized on the vertical axes in Figures 2A and 2B and
Figures 3A and 3B. This resulted in 19 total target combinations
without index extension + MRS flexion (IE+MF; see Table 1 for all
abbreviations) and index flexion + MRS extension (IF+ME) pos-
tures (3 magnitudes for 6 different postures with a central rest
target; see STAR Methods). During the task, we synchronously
recorded neural activity using 96 channels of implanted Utah sil-
icon microelectrode arrays (Blackrock Microsystems, Salt Lake
City, UT, USA) from the hand area of primary motor cortex in
each monkey (implant photographs in Figure 1D). Each experi-
mental day, we collected a training dataset in which the monkey
controlled the virtual hand using the manipulandum while syn-
chronously recording 300-1,000 Hz spiking band power (SBP).
We have previously shown that SBP is well correlated with the
firing rate of the largest amplitude single unit or units on an elec-
trode and typically results in higher decoding performance than
threshold crossing rate (Nason et al., 2020). Then, we trained a
Kalman filter as detailed in STAR Methods to predict fingertip ve-
locities in real time and tested it in closed loop by actuating the
virtual hand according to the predictions.

We found that the monkeys could successfully control the
movements of both finger groups independently in real time us-
ing a linear Kalman filter. Figures 2A and 2B show predicted
finger traces from monkeys N and W using the SBP Kalman fil-
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ter, respectively. The sections of predic-

tions displayed were chosen specifically
to show a wide variety of targets. These traces demonstrate
that the monkeys could individuate the two fingers indepen-
dently with smooth and controlled effort using the brain-ma-
chine interface. Figure 2C shows the closed-loop statistics for
the two-finger SBP Kalman filter. Regarding path efficiency,
monkey N’s paths to targets were 61% efficient on average,
less than the average of 76% efficiency when controlling the
virtual hand using the manipulandum. Monkey W acquired tar-
gets with an average efficiency of 53% using the decoder, also
less than the average of 63% efficiency when using the manip-
ulandum. With respect to acquisition time, monkey N reached
the target in an average 0.98 s with an average orbiting time
of 0.86 s, greater than the average 0.51 s time to target and
0.35 s average orbiting time in manipulandum control. Monkey
W achieved an average 1.3 s time to target with a 1.0 s average
orbiting time using the Kalman filter, also higher than the
average 0.79 s time to target and 0.65 s orbiting time when us-
ing the manipulandum. For completeness, Figure S2 illustrates
the same for threshold-crossing rate rather than SBP for mon-
key N.

Out of interest for applications to brain-machine interfaces,
we attempted to maximize closed-loop, two-finger decoding
performance using the state-of-the-art recalibrated feedback
intention-trained (ReFIT) Kalman filter (RFKF; Gilja et al.,
2012; Vaskov et al., 2018). The RFKF training procedure
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Figure 2. Two-finger closed-loop Kalman
05 filter decodes using spiking band power
(SBP)
50 (A and B) Example closed-loop prediction traces
from monkeys N (A) and W (B) using the standard
Kalman filter. Targets are represented by the
dashed boxes, internally colored to indicate the
targeted finger with a border color representing
whether the trial was acquired successfully (green,
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(C) Statistics for all closed-loop two-finger Kalman
filter trials for monkeys N (left) and W (right). The
red lines indicate the means, which are numerically
displayed above each set of data, along with
standard deviation. The statistic for each trial is
represented by one dot in each plot, split into
columns per monkey. Succ Rate, the percentage
of total trials that were successfully acquired in
time; Path Eff, path efficiency.
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occurs following the monkey’s usage of the original Kalman
filter. It assumes that the neurons controlling the Kalman fil-
ter’s predictions represented the intention of the monkey to
optimally bring the fingers to the targets, regardless of the di-
rections of the predictions. Then, after reorienting predictions
to match the presumed intentions of the monkey, the linear
model is retrained. As discussed in STAR Methods, the two
interpretations of our finger task result in two frameworks for
retraining: rotation of the net velocity in two-dimensional
finger space to back-calculate each finger’s intended velocity
(similar to the original ReFIT method) or independent negation
of each finger’s velocity if it is moving away from the target.
The statistics comparing these two methods and a third
combining both are shown in Figure 3D for monkey N.
Ultimately, there were few statistical differences between the
recalibration methods (p values for the following order of com-
parisons: rotation and negation, negation and both, rotation
and both; p=0.34, p=0.72, p=0.62 for path efficiency
comparisons; p=0.013,p=0.80, p=0.064 for time to target
comparisons; p=0.0044,p=0.036, p=0.81 for orbiting time
comparisons; two-tailed two-sample t test).

For monkey N, the RFKF made a substantial improvement in
decode performance over the standard Kalman filter. Figure 3A
shows closed-loop prediction traces from monkey N using the
SBP RFKF. In comparison to the Kalman filter, monkey N’s
RFKFs significantly improved prediction performance (68%
versus 61% path efficiency, 0.73 s versus 0.99 s time to target,
0.28 s versus 0.86 s orbiting time, all significant with p < 0.001,
two-tailed two-sample t test). Additionally, the predictions are
less oscillatory when attempting to stop on a target, and when
it is oscillating, the amplitude is generally smaller than the stan-
dard SBP Kalman filter, aligning with what was previously re-

ported (Gilja et al., 2012, 2015; Vaskov
et al., 2018). To showcase this, Video S1
presents median performance from mon-
key N’s usage of the SBP RFKF in real
time with a general comparison to manipulandum control. Video
S3 presents exemplary performance of the SBP RFKF including
the IE+MF and IF+ME postures.

For monkey W, the RFKF did not improve performance over
the standard Kalman filter (54% versus 53% path efficiency,
p = 0.12, 1.23 s versus 1.3 s time to target, p = 0.069, 1.17 s
versus 1.0 s orbiting time, p = 0.013, two-tailed two-sample t
test; Video S2).

To explain this result, we analyzed the consistency of each
monkey’s SBP channels between the three modes of controlling
the virtual hand: manipulandum control, Kalman filter control us-
ing SBP, and RFKF control using SBP. After Z scoring the SBP
used to generate all of the data in Figure 2 and Figure 3, we re-
computed three linear regression matrices: one between SBP
and the finger kinematics during manipulandum control, the sec-
ond between SBP and the intention-corrected finger kinematics
during Kalman filter control, and the third between SBP and the
intention-corrected finger kinematics during RFKF control. From
the regression coefficients trained for velocity, we estimated the
preferred direction of each normalized SBP channel based on
the vector [Cpy, Churs] for coefficients C and channel n. Fig-
ure 4A illustrates the preferred directions for the three manipula-
ndum control channels with the highest magnitudes in each
monkey. These illustrative channels demonstrate that the chan-
nels that are most impactful for predicting kinematics do not
substantially change their encoding preferences between ma-
nipulandum control and brain control modes (Figures 4B and
4C). For monkey W, however, there is small variation in the tuning
preferences, which may have impacted his capability of using
the RFKF to exceed the performance of the Kalman filter. We
believe these variations are the direct result of substantially lower
motivation to perform the task compared to that of monkey N.
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Figure 3. Two-finger closed-loop ReFIT Kalman filter decodes

(A-B) Example closed-loop prediction traces from monkeys N (A) and W (B) using the ReFIT Kalman filter. Targets are represented by the dashed boxes, internally
colored to indicate the targeted finger. |, index finger group; M, MRS finger group. The mean path efficiency of the trials displayed is presented at the bottom right.
(C) Statistics for all closed-loop two-finger ReFIT Kalman filter decodes for monkeys N (left) and W (right). The red lines indicate the means, which are numerically
displayed above each set of data, along with standard deviation. The statistic for each trial is represented by one dot in each plot. Succ Rate, the percentage of

total trials that were successfully acquired in time; Path Eff, path efficiency.

(D) Statistics of each type of velocity reorientation for ReFIT training with monkey N (see STAR Methods). N, the velocities for each finger were negated if not
pointing to that finger’s target; R, the velocities were rotated in the two-dimensional finger space toward the target; B, both reorientations were used by
concatenating velocities modified by N and R and repeating the neural activity. Asterisks indicate significance (p <0.01, two-tailed two-sample t test).

Cortical neurons show specificity to individual
contractions
We found it surprising that such a complex hand task could be
captured so well by a linear decoder. To look at whether these
linear relationships hold within individual neurons, we con-
structed tuning curves of individual units across all eight finger
postures at just the +30% magnitude to best guarantee consis-
tent behavior and corresponding cortical activity. On one exclu-
sive and representative day for each monkey, they performed
the center-out task in manipulandum control for at least 30
continuous minutes, while SBP and broadband activity were re-
corded synchronously. The broadband activity was spike sorted
using Offline Sorter (Plexon, Dallas, TX, USA) to extract the firing
rates belonging to sorted units. 388 trials for monkey N and 819
for monkey W were processed. We calculated the mean firing
rate for each type of movement and plotted tuning curves. lllus-
trative tuning curves are displayed in the left plots of Figure S3.
Initially, we characterized the tuning preferences of the 115
sorted units across both monkeys, which are summarized in Ta-
bles S2 and S8. First, in Table S2, regarding specificity of neural
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activation to flexion and extension, we found 42 of the 115 units
showed specificity to one of the finger flexors or finger extensors,
but not the other, suggesting cortical representation of distinct
muscle contractions. Second, in Table S3, regarding specificity
to individuated finger group movements, we found that 27 of
the 115 units showed tuning to only one finger group. Among
the units that showed specificity to one group, there were
approximately equal quantities tuned to movements of the index
and MRS finger groups. Most units showed Gaussian-distrib-
uted firing rates about the mean firing rate for each movement,
with 46 of the 115 units having at least one movement for which
the normalized activations were not normally distributed
(p<0.001, two-sided one-sample Kolmogorov-Smirnov test,
corrected for false discovery rate).

In addition to performing all tuning analyses with the standard
sorted units, we also included tuning analyses using the 300-
1,000 Hz SBP. We have previously shown that filtering spiking
signals in the 300-1,000 Hz band provides a signal that is highly
correlated with the activity of the highest signal-to-noise ratio
(SNR) units on an electrode (Nason et al., 2020). This is
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Table 1. Abbreviations

Description

Abbr. Complete Phrase

SBP Spiking Band Power

MRS Middle/Ring/Small

R Rest

IF Index Flexion

IF+MF Index Flexion +
MRS Flexion

MF MRS Flexion

IE+MF Index Extension +
MRS Flexion

IE Index Extension

IE+ME Index Extension +
MRS Extension

ME MRS Extension

IF+ME Index Flexion +

MRS Extension

Mean-absolute value of the 300-1,000 Hz filtered intracortical voltage
recording

One of the finger dimensions investigated, in which the middle, ring, and
small digits moved together

A posture between flexion and extension where the monkey’s digits were
both in a resting state

A posture in which the index finger group was flexed and the MRS finger
group was at rest

A posture in which both the index and MRS finger groups were flexed

A posture in which the index finger group was at rest and the MRS finger
group was flexed

A posture in which the index finger group was extended and the MRS
finger group was flexed

A posture in which the index finger group was extended and the MRS
finger group was at rest

A posture in which both the index and MRS finger groups were extended

A posture in which the index finger group was at rest and the MRS finger
group was extended

A posture in which the index finger group was flexed and the MRS finger
group was extended

particularly effective for electrodes with low SNRs, as the 300-
1,000 Hz band was found to balance the tradeoff between signal
and noise power (Irwin et al., 2016). Therefore, we constructed
tuning curves from this band that enabled us to perform the
same analyses on sharper tuning curves from primarily multiunit
electrode recordings. This resulted in more sources of unit activ-
ity than the limited quantities of sortable units on a Utah micro-
electrode array. As such, we obtained nearly 40% more tuned
neural features, from 59 of 115 tuned sorted units to 82 of 192
tuned SBP channels, though there may be substantial overlap
in information content between sorted units and SBP. In an anec-
dotal investigation, we also found that the cross-correlation of
SBP features is greater than that of sorted units, likely because
of the similarity in background noise (biological in the form of
low-amplitude neural spikes but possibly also thermal in origin;
Lempka et al., 2011). However, the effect of this appears minute,
as the tuning curves for these channels that are included in the
left plots of each pair in Figure S3, as well as in Tables S2 and
S8, showcase similar preferences to sorted units. Most channels
showed specificity to one muscle group and one finger group,
with more representation of MRS movements than index move-
ments in monkey N and vice versa in monkey W. Lastly, similar to
the sorted units, almost all SBP channels showed Gaussian-
distributed power levels about their respective means for all
movements across all trials (14 of 192 channels were not nor-
mally distributed, p<0.001, two-sided one-sample Kolmo-
gorov-Smirnov test, corrected for false discovery rate).

Finger-tuned neural activity is linear
To investigate how the neural activity relates to similar finger
movements, we began with a classical cosine tuning analysis.

Of the 92 tuned sorted units and 148 tuned SBP channels, 60
and 94, respectively, had significantly correlated sinusoidal fits
(p<0.05, Pearson’s correlation, corrected for false discovery
rate). While sinusoidal tuning of a neuron to two-dimensional
movements of a single limb may be reasonable (Georgopoulos
et al., 1982), it may not be fundamental (Todorov, 2000), so the
same rationale may not apply to movements of multiple limbs
or, in our case, fingers. We have demonstrated that a linear Kal-
man filter enables online separation and individuation of two
finger dimensions, so we sought to characterize the goodness
of fit of several linear models.

First, we visually analyzed some tuning curves (like those in
Figure 1C and Figure S3) and noticed that the neural activity
for any particular movement appeared to have a similar activa-
tion level for the most similar movements (the closest move-
ments as plotted in Figures 1B and 1C). This motivated us to
calculate how well the neural activity for each movement could
linearly predict the neural activity for each additional movement,
independent of any cosine fits (see STAR Methods). Figure 5 il-
lustrates this, where the activity on each grid’s vertical axis is re-
gressed from all of the other activities as indicated on the hori-
zontal axis. In these grids, more yellow (or blue) cells indicate
greater (or more negative) regression coefficients for the activ-
ities on the horizontal axis to predict the activity on the vertical
axis. Generally, we found that the activity corresponding to
most movements could be strongly predicted by the activity of
its most related movements (the yellow off-diagonal bands
with substantial significance asterisks). For example, the SBP
activity corresponding to monkey N’s MRS-only flexion (MF)
can be predicted significantly by the activities corresponding
to IE+MF and index & MRS flexion (IF+MF). This suggests a
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number of potential linear models that explain the relationships
between similar behaviors of different finger groups, three of
which are investigated in Figures S3 and S4. Overall, this sug-
gests that cortical units represent the combined movements of
multiple finger groups in a similar way to how those same units
represent the individual movements of those finger groups.
However, the optimal combinations of similar movements
require that their contributions not necessarily be weighted
equally (as illustrated in Figure 5 and Figure S5), explaining
why the average model in Figure S4 failed to significantly predict
any tuning curves.

Linear models generalize to predict untrained finger
movements

From a decoding perspective, the similarity in neural activations
between individual and combined movements may shed some
light on the training data requirements for a high-performance,
multidimensional hand neural prosthesis. Specifically for our
two-finger task, in addition to addressing the linearity of neural
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movements of the index or MRS finger
groups and used the trained algorithm to
decode the combined movements of the index and MRS finger
groups and vice versa. Figure 6 illustrates the averaged pre-
dicted traces from spilit training for all trials of a given movement
overlaid on the averaged predicted traces for that same move-
ment using a decoder trained on all trials with cross-validation.
Both monkeys’ traces show that the split-trained decodes
mostly overlay the full-trained decodes, which suggests that
finger individuation information in the population’s neural activity
is preserved across movements, even for untrained behaviors.
However, there are differences during some of the predictions
(greater than a one-sided 95% confidence interval of a bootstrap
analysis on the errors). Differences in these predicted traces
align with the results found during the tuning curve analyses,
where the neural activity of particular movements requires un-
equal contributions of the component movements. As such, by
the assumption of linearity, there should be some loss in perfor-
mance associated with testing on untrained behaviors, which is
shown in Figure 6. Numerically, for the two monkeys ordered as
(N, W), the split-trained SBP decoders achieved (90.5%, 82.4%)
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of the variance accounted for (VAF) by the full-trained SBP
decoder and (95.1%, 90.9%) of the correlation coefficient of
the full-trained SBP decoder. For the sorted unit decoders (Fig-
ure S6), the monkeys achieved (85.9%, 82.7%) of the VAF by the
full-trained sorted unit decoder and (92.7%, 90.9%) of the corre-
lation coefficient of the full-trained sorted unit decoder. We
included the full set of averaged decodes for the eight move-
ments using sorted units for both monkeys in Figure S6. To avoid
any confounds from averaged traces, we also included plots of
the individual trials’ decodes used to calculate the averages in
Figures S7 and S8.

Misaligned postural and movement tuning in finger-
related cortical units
It has been well described previously that finger postures can be
predicted online from cortical units better than their movements
(Aggarwal et al., 2013; Bansal et al., 2011; Okorokova et al.,
2020; Vargas-Irwin et al., 2010), but our brain-machine interface
used in Figure 2 and Figure 3 demonstrated high prediction per-
formance for movements, not postures. This raises an intriguing
question related to how finger-related cortical processing cir-
cuits and units simultaneously represent movement and posture.
Here, we provide a brief investigation into the similarity between
cortical tuning to finger postures and cortical tuning to finger
movements within our two-dimensional task.

Toincrease the range of postures the monkey explored ata va-
riety of velocities, we modified the center-out task to be random-
ized, as illustrated in Figure 1A. In this random task, the starting

(11/40 normalized SBP channels with
the highest trained linear regression
weights for monkey N and 18/40 for mon-
key W were significantly different in
preferred direction, 1,000-iteration bootstrap, p < 0.01, corrected
for false discovery rate). Of those that were significantly different
(four examples in Figure 7A), the preferred movement visually ap-
peared similar, indicating that any significant differences in
preferred movement are likely to be small.

To compare movement tuning with postural tuning, Figure 7B
overlays the movement tuning curve on a two-dimensional
postural tuning surface, where each two-dimensional point is
colored based on the mean activity of that channel when the
finger groups were stationary at the indicated posture. In those
examples, many show alignments between the preferred move-
ment direction (black line out from center) and the preferred
postural direction (white line out from center), but surprisingly,
most do not show such alignment. Figures 7C and 7D present
some statistics for the 40 normalized SBP channels with the
highest trained regression weights for each monkey. 28 of mon-
key N’s 40 channels and 14 of monkey W’s 40 channels had a
difference between the preferred posture and preferred move-
ment greater than 30°, despite the distributions of differences
appearing normal about 0°. Furthermore, 31 of monkey N’s 40
channels and 19 of monkey W’s 40 channels had significantly
different preferred directions between posture and movement
(1,000-iteration bootstrap, p <0.01, corrected for false discovery
rate), affirming misalignment in the preferred posture and the
preferred movement direction of a given cortical unit.

Investigating these example postural tuning surfaces further
suggests that the strongest cortical representation of the pos-
tures occurs at the limits of the range of motion. To characterize
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this, for each of the same 40 channels from each monkey, we
calculated two differences: the first between the maximum activ-
ity across all postures and the activity at rest and the second be-
tween the activity at rest and the minimum activity across all pos-
tures. Figure 7E illustrates these differences, indicating that
resting activity is much closer to the minimum than the maximum
activity across all postures (p<0.01, one-sided two-sample t
test). This outcome suggests that cortical SBP channels are
generally positively tuned toward their preferred posture and
increase in activity as a posture changes from a resting state
toward its maximum magnitude. This outcome is further empha-
sized in Figure 7F, which plots the smoothed electromyographic
activity recorded from bipolar intramuscular electrodes within
monkey N’s forearm across all postures for each finger group.
These traces are generally maximized at the edges of the range
of motion with lower activity levels near 50% flexion, suggesting
that our estimated resting posture is relatively close to the mon-
key’s true resting posture.

DISCUSSION
Modern hand neural prostheses have not yet been able to repro-

duce individuated finger movements across their entire ranges of
motion. Here, we demonstrated that a linear Kalman filter with or
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weights per input channel with the prior
decoder models. To address how this
complex task can be explained with a
linear decoder, we found that the neural
activity of any particular movement can be reliably predicted
from the activity of its related movements via a weighted sum,
providing an explanation for our high-performance linear decod-
ing model. We validated this claim by showing that combined
finger group movements can be predicted with a decoder model
trained on individual finger group movements and vice versa.
Only a slight performance loss was realized when comparing
predictions of decoders trained on the full set of behaviors and
decoders trained only on trials representing individual or com-
bined finger movements. Finally, using our non-prehensile task
allowed us to begin to uncover how cortical neural activity simul-
taneously encodes information about postures and changing
postures, suggesting that preferred movement directions and
preferred postures are frequently misaligned.

The complexity of our two-dimensional task proposes inter-
esting questions regarding the interpretations and intentions of
the monkeys performing it. By analyzing the tuning preferences
of cortical spiking activity during manipulandum, Kalman filter,
and RFKF control modes, it seems that cortical spiking activity
was very consistent between all three. Any changes in decoder
weights can likely be attributed to differences in the training
data between control methods rather than neurons altering their
tuning. Additionally, we proposed two frameworks for retraining
linear Kalman filters based on the monkeys’ intentions, one

-0.1 0.6 13
Time (s)
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Figure 7. Comparison between postural and movement tunings of SBP during the random task with manipulandum control

Dashed traces in all plots represent zero Z score.

(A) Tuning curves for three channels from each monkey. Asterisks indicate significant differences in preferred direction determined via 1,000-iteration bootstrap,
p<0.01, corrected for false discovery rate.

(B) Movement tuning overlaid on postural tuning. The color at each location, or posture, is the SBP activity for the channel above extracted from the target holding
period (i.e., at zero velocity). The white line represents the preferred postural direction. The solid black trace represents that channel’s SBP activity for movements
in each direction, smoothed across 10% of the trials. The black scale bar represents 0.5 Z score and the black line from center indicates the preferred movement
direction.

(C-E) Statistics of the plots in (B) for the 40 most impactful channels to a linear regression decoder. (C) Comparison between preferred movement and postural
directions. Each line represents one channel. (D) Difference in angle between the preferred movement and postural directions. Each dot represents one channel.
The width of the violin at each angle difference indicates smoothed relative density. n.s., not significant; s., significant with p <0.01, corrected for false discovery
rate. (E) Magnitude of difference between the maximum or minimum activity across all postures and rest. The numbers on top represent the median difference.
Asterisks indicate statistical difference, p <0.01, one-sided two-sample t test.

(F) Eight channels of Z scored electromyography across all postures during the hold periods.

assuming each finger is its own task for two total objectives and While others have found that decoding continuous postures

the other assuming both fingers belong to one two-dimensional
task. While both improved decoding performance substantially,
neither strongly outperformed the other despite making clearly
different assumptions about the monkeys’ interpretations of
the task. As such, we think these data suggest two possible
truths: the nuances of intention-based recalibration methods
for the prediction of continuous two-finger movements will not
significantly impact performance, or the optimal recalibration
scheme for multiple finger movements remains unknown.

of the hand achieves greater performance than decoding the
movements (Aggarwal et al., 2013; Bansal et al., 2011; Okoro-
kova et al., 2020; Vargas-Irwin et al., 2010), we were nonetheless
able to achieve high performance by decoding the movements
directly. The non-prehensile task explored here enabled us to
begin to uncover the relationship between posture and move-
ment representations in single cortical units. We surprisingly
found that a unit’s preferred posture is not necessarily related
to that unit’s preferred movement direction. From a decoding
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perspective, we hypothesize that this could explain the high-
performance control the monkeys achieved using the Kalman fil-
ters. If the SBP activity can simultaneously represent movement
along one behavioral dimension and posture along an orthog-
onal behavioral dimension, even simple decoders like linear re-
gressions can parse each channel to provide two pieces of help-
ful information. Substantial additional work will be necessary
to make such conclusions, particularly because the implants
used in our study heavily under-sample cortical populations.

After determining that we could predict the level of cortical acti-
vation during combined movements as weighted sums of the
activations during individual movements, independent of any
cosine fits, we validated this finding by predicting untrained,
combined finger movements using linear regressions trained
only on individual finger movements. We did not expect the posi-
tions predicted by the split decoder and the positions predicted
by the full decoder to be so similar, which they were in many
cases. We propose a few potential explanations. First, this could
be attributed to using behaviors of different amplitudes (+20%, +
30%, and = 40% from rest, see behavioral task in STAR Methods)
for each direction, such that when plotting just the middle ampli-
tude, the differences in predictions were negligible. Second,
since the tuning curves showed graded activations to several
related movements, combinations of the contributions from
different units and SBP channels may be sufficient to predict
movements of greater magnitude. Third, finger-related neural ac-
tivity may have a minor nonlinearity, either between units and SBP
channels or with its relationship to the behavior, which has been
reported previously (Naufel et al., 2019).

Our real-time decoding results suggest that linear models can
accurately fit the movements of two independent fingers across
their full ranges of motion from cortical spiking activity. Our pre-
vious study originally suggested that this may require nonlinear
models (Vaskov et al., 2018). However, at that time, the monkeys
had not been trained to voluntarily individuate their finger move-
ments in manipulandum control mode and were not penalized for
making undesired movements. In this manuscript, the monkeys
received substantial additional training without using the brain-
machine interface and with the necessary penalties for incorrect
movements to voluntarily individuate their fingers, indicating that
linear models are sufficient for fitting such movements. Linear
decoding of individuated finger movements has major implica-
tions for clinical neural prostheses. It has been previously sug-
gested by unconstrained finger movements that primary motor
cortex linearly predicts movements of the hand and fingers in
monkeys (Aggarwal et al., 2013; Ethier et al., 2012; Kirsch
et al., 2014; Okorokova et al., 2020) and humans (Ajiboye
et al., 2017; Wodlinger et al., 2015) when many of the DoFs
may move along very similar trajectories. Our results extend
these to show that linear models can accurately predict the
movements of two well-separated and independent finger
DoFs across their continuous ranges of motion. On the front of
individuation, some other groups have demonstrated that intra-
cortical arrays can classify movements of individuated digits in
humans (Bouton et al., 2016; Jorge et al., 2020). Our methods
and results, taking advantage of able-bodied primates and the
precise tracking of finger movements with the manipulandum,
bring the state-of-the-art in finger individuation from discrete de-
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coding to the realm of continuous decoding. Finger-related neu-
ral activity in primary motor cortex recorded with human-grade
Utah microelectrode arrays can be sufficient to individuate at
least two systematically separate DoFs using linear models.
Further, linear individuation of two DoFs within the hand, as
shown here, suggests the possibility of linear models sufficiently
individuating more of the 27 DoFs within the hand, as has been
hinted for low-magnitude movements (Kirsch et al., 2014).

To close the gap between the capabilities of hand neural
prostheses and the natural hand, further work is needed to
completely characterize the cortical representation of non-pre-
hensile movements as well as how cortex manages movements
that are simultaneously prehensile and non-prehensile (i.e., play-
ing a guitar or rapidly solving a puzzle cube). Co-contraction of
finger-related muscles makes characterizing the relationship be-
tween motor cortex activity and muscle activity difficult (Hager-
Ross and Schieber, 2000; Lang and Schieber, 2004). While we
have briefly investigated how cortical spiking activity and the
electromyography of finger muscles corresponds to our primarily
kinematic non-prehensile task, further investigation is required to
uncover the impact variable forces have on the relationships
characterized here. Usage of the thumb is particularly central
to this question, which will be difficult to address with macaques
because of the restricted functionality of their thumbs compared
to those of humans.

In terms of clinical viability of a neural prosthesis, where usage
outside of a laboratory, hospital, or rehabilitation environment is
the ultimate goal, the computational simplicity and generality of
linear models make them promising solutions. Decoders such as
the Kalman filter, Wiener filter, or ridge regression (Collinger
et al., 2013; Ethier et al., 2012; Malik et al., 2011) require surpris-
ingly few computations per iteration, opening the possibility of
implementation on portable or implantable devices. Additionally,
our results suggesting that the activities of individual movements
can be linearly combined into the activities of more complex
movements hint that decoders may not need to be trained on
the full suite of behaviors that they will be used to predict.
Instead, training decoders on orthogonal behaviors that span
the full behavioral space (such as a center-out task), with repre-
sentative neural activity, may be all that is required. This may cut
the 5-10 min of decoder training time drastically, potentially
streamlining the daily calibration of an outside-of-laboratory
neural prosthesis. Generally, the results presented here suggest
that naturalistic hand and finger neural prostheses with many
DoFs may be close to clinical translation using simple linear
decoder models and simple training procedures.

Though the results presented here show that linear decoding
models can predict the movements of individuated fingers with
high performance, the decoders were unable to achieve the level
of precision and control of the able-bodied hand. This is despite
the monkeys partially moving their fingers during brain control
mode, hypothetically to assist with controlling the virtual fingers.
To bridge that gap, decoders may need to account for a
nonlinear relationship between cortical activity and behavior.
Several nonlinear neural networks have been tested for brain-
machine interfaces (Hosman et al., 2019; Pandarinath et al.,
2018), though few have transitioned to testing online. An early
online recurrent neural network (Sussillo et al., 2012) showed
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that neural architectures have promise in online decoding. How-
ever, because of the heavy computational requirements of neural
networks per online prediction update, they must be optimized
and significantly compressed before being considered for out-
of-laboratory, portable, and implantable brain-machine inter-
faces. For example, the online recurrent neural network pre-
sented previously (Sussillo et al., 2012) required an estimated
144,000 to 225,000 multiplication operations per prediction up-
date for their two-dimensional center-out arm reaches task,
which is substantially more than the 505 multiplication opera-
tions required by a two-dimensional steady-state Kalman filter
similar to what was used in this work (Malik et al., 2011). There-
fore, it is valuable to characterize the limits of linear models in
discriminating neural states with truly simultaneous movement
of independent DoFs, as was presented with fingers in this work.

Importantly, the finger-related neural tuning models give
insight into how primary motor cortex may represent the activity
of a variety of related movements. Most neural units presented in
this study did not show nonlinear specificity to one movement
but did show graded tuning to several related movements. In
fact, most of the tuning curves fit the classical cosine tuning
model demonstrated for arm reaches (Georgopoulos et al.,
1982) and finger movements (Georgopoulos et al., 1999).
Despite directional tuning with arm reaches fitting logically (the
angles and magnitudes of movement can all be referenced to
one limb in a radial task), we do not believe cosine tuning can
represent the movements of multiple fingers. The physiological
assumptions are broken by our task with two independent finger
dimensions that have their own relatively independent muscles.
Our task employs what are essentially two limbs (or fingers)
traversing their own spaces with any given neuron capable of be-
ing tuned to both limbs, making musculoskeletal models seem
like the more relevant explanation for the underlying neural activ-
ity (Todorov, 2000). While it is intuitive to conclude that the cosine
tuning model expands to our two-finger task, we think our
regression models (linear regression [LR] and linear regression
with opposition [LRO] above) better explain how neurons can
simultaneously encode movements of multiple independent
limbs, though further investigation is required to investigate the
role of sensory feedback in these consistent and linear
relationships.

This raises a major question: how far can this weighted-
average model be extended as we consider more DoFs? Consid-
ering the addition of the thumb, which is critical to hand use in pri-
mates and humans, the regressions may simply require fitting the
new similar movements (i.e., thumb flexion in the case of predict-
ing IF+MF+ thumb flexion). Further investigation will be required
to determine whether the regression model will hold in this case,
as perhaps the addition of DoFs will require an exponentially
increasing number of required component movements. For
example, for IF+MF+thumb flexion, perhaps all of IF, MF, thumb
flexion, IF+MF, IF+thumb flexion, and MF+thumb flexion may be
required for accurate activity prediction. On the surface, these
conclusions may appear to contrast with previous findings that
cortical units strongly represent muscular synergies within the
hand during awake use and during cortical microstimulation
(Overduin et al., 2014, 2015; Saleh et al., 2010). We hypothesize
that our findings complement this literature, where the shortcom-
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ings of our linear models (i.e., reduced performance when pre-
dicting combined finger movements with a model trained on indi-
vidual movements) could possibly be better addressed with
synergistic modeling. An alternative hypothesis is that the linear
relationships we found between finger dimensions may arise
from an alternative operating mode of cortex during non-prehen-
sile movements, which may require more focused control to
execute. In both instances, further work will be necessary to
compare independent versus synergistic cortical models related
to finger movements (Kirsch et al., 2014; Mollazadeh et al., 2014).
In our work and those just mentioned, it is clear that finger-
related cortical units often encode information about multiple
digits. Several groups have investigated how neurons tuned to
multiple behaviors respond to tasks requiring those behaviors
for different extremities and across various species (Cross
et al., 2020; Diedrichsen et al., 2013; Heming et al., 2019; Jorge
et al., 2020; Stavisky et al., 2019, 2020; Willett et al., 2020). One
way to explain this is that the neural activity underlying separate
and combined behaviors can be explained by multiple orthog-
onal subspaces. Here, we have evidence to suggest that linear
models can effectively combine at least two finger subspaces
that are substantially related. Provided sufficient quantities of
neurons representing those subspaces, we think compound
movements may continue to be well represented by linear com-
binations of their component subspaces, up to the full dimen-
sionality of the hand and beyond to the entire motor system.
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STARXMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

Data to reproduce analyses and figures Original data https://doi.org/10.7302/jnkz-az17

Experimental models: Organisms/strains

Macaca Mulatta World Primates, Inc. (Miami, FL, USA) N/A

Software and algorithms

MATLAB R2012b and R2018a The Mathworks, Inc. https://www.mathworks.com/products/
matlab.html

Simulink/xPC Target 2012b The Mathworks, Inc. https://www.mathworks.com/products/
simulink-real-time.html

Code to reproduce analyses and figures Original code https://doi.org/10.7302/jnkz-az17

Other

Cerebus Neural Signal Processor Blackrock Microsystems, LLC. https://www.blackrockmicro.com/

products/#data-acquisition-systems

Utah microelectrode arrays Blackrock Microsystems, LLC. https://www.blackrockmicro.com/
products/#electrodes

RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Cynthia
Chestek (cchestek@umich.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
o Asubset of the data used in this study can be found online as of the date of publication (https://doi.org/10.7302/jnkz-az17). Due
to the size of the complete set of data, additional data used in this study will be shared by the lead contact upon reasonable
request.
® All original code has been deposited at https://doi.org/10.7302/jnkz-az17 and is publicly available as of the date of publication.
DOls are listed in the key resources table.
® Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nonhuman primates
All procedures were approved by the University of Michigan Institutional Animal Care and Use Committee.

All experiments were conducted with two monkeys (male, macaca mulatta). Monkey N was age 7 to 8 years and weighed between
12.7 and 16.8kg (weight range due to the extended COVID-19-related experiment break) during the period of data collection. Monkey
W was age 8 years and weighed between 13.1 and 14.1kg during the period of data collection. The subjects were fed a standard
laboratory animal diet with supplemental fresh fruits and vegetables. When possible, the animals were pair-housed, and were always
provided frequent access to a variety of enrichment, including food puzzles, chewing toys, and television.

METHOD DETAILS
Implants

We implanted two male rhesus macaques (monkey N age 7 to 8, monkey W age 8 at the time of data collection), with Utah micro-
electrode arrays (Blackrock Microsystems, Salt Lake City, UT, USA) in the hand area of primary motor cortex, as described previously
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(Irwin et al., 2017; Vaskov et al., 2018). Pictures of the implants are illustrated in Figure 1D. Only motor cortex arrays were used in this
study. Monkey N’s motor cortex arrays are two 64-channel arrays, explaining why they are smaller in area than his sensory array.
Monkey N was between 117 days and 708 days post-cortical implant for all data analyzed. Monkey W was between 78 days and
100 days post-cortical implant for all data analyzed.

In a separate surgery, we implanted monkey N with chronic bipolar intramuscular electromyography recording electrodes (similar
to Permal.oc™ electrodes, Synapse Biomedical, Inc., Oberlin, OH, USA). After induction of anesthesia, the monkey was positioned
supine for easy access to his left arm. A single radial-volar incision was first used to access flexor muscles of the deep and superficial
compartments of the forearm, following which a single dorsal-ulnar incision was used to access the extensor muscles of the forearm.
For each muscle of interest, intra-operative neural stimulation of the muscle was performed to isolate finger-related and wrist-related
actions of interest. Electrodes were secured intramuscularly using non-absorbable monofilament suture at a location in close
proximity to the entry point of the innervating nerve. In instances where on neural stimulation, better isolation of intended muscular
movement occurred at a site distal to the identified neural entry point, an additional electrode was secured at this distal site. Isolated
muscles included the flexor digitorum profundus-index (1x near the nerve entry point, 1x distal near the wrist), flexor digitorum pro-
fundus-MRS (1x), flexor pollicis longus (1x, unused in this study), flexor carpi radialis (1x), flexor carpi ulnaris (1x), extensor digitorum
communis (1x), extensor indicis proprius (1x), extensor carpi radialis brevis (1x), and extensor pollicis longus (1x, unused in this
study). After all electrodes were secured to the muscles of interest, electrode wires were tunneled proximally to the upper arm using
an incision on the posterior upper arm, posterior to the elbow, ensuring sufficient redundancy and laxity on the lengths of the wires to
account for motion at the elbow. An additional interscapular incision was used as an exit site for the tunneled wires which were then
connected to the standard PermaLoc™ connector. All incisions were closed in a layered fashion using absorbable sutures. Following
the implantation of these electromyography recording electrodes, the monkey persistently wore a Primate jacket (Lomir Biomedical,
Inc., Malone, NY, USA). Monkey N was 36 days post-arm-implant for all electromyography data analyzed.

Feature extraction
All processing was done in MATLAB versions 2012b or 2018a (Mathworks, Natick, MA, USA), except where noted.

Threshold crossing rates were processed and synchronized in real-time during the experiments (see the subsequent section for a
description of data flow). We configured the Cerebus neural signal processor (Blackrock Microsystems) to extract voltage snippets
that crossed a —4.5 times the root-mean-square (RMS) threshold, customized to each channel. Then, these waveforms were
streamed to a computer running xPC Target version 2012b (Mathworks), which logged the source channel of each spike and the
time of each spike’s arrival relative to all other real-time experimental information. Both monkeys had 96 channels of threshold
crossing rate data analyzed, though for closed-loop decoding, channels were masked to those that were not clearly disconnected
and had contained morphological spikes during the experiment or at some time in the past (see SBP section below for reasoning).

We also extracted sorted unit firing rates for offline analyses. We imported the relevant broadband (0.1Hz — 7.5kHz sampled at 30kSps)
recordings into Offline Sorter version 3.3.5 (Plexon, Dallas, TX, USA). Then, we high-pass filtered the recordings with a 4-pole Butterworth
filter with a cutoff frequency set to 250Hz. To sort clear units, we used the threshold level determined during the experiment by the Cer-
ebus at —4.5RMS, then eliminated clearly artifactual threshold crossings. Then, we sorted the remaining spikes crossing the threshold
individually and in combination with principal component analysis, clusters as determined by k-means or Gaussian mixture model clus-
tering (as implemented in Offline Sorter), and visual inspection. The spike timings of each sorted unit were then re-synchronized with the
experimental data offline. After all sorting, monkey N had 47 units and monkey W had 68 sorted units.

Spiking band power was also acquired in real-time by the same experimental system as threshold crossing rates. We configured
the Cerebus to band-pass filter the raw signals to 300-1,000Hz using the Digital Filter Editor feature included in the Central Software
Suite version 6.5.4 (Blackrock Microsystems), then sampled at 2kSps for SBP. The continuous data was streamed to the computer
running XxPC Target, which took the magnitude of the incoming data, summed all magnitudes acquired in each 1ms iteration, and
stored the 1ms sums as well as the quantity of samples received each 1ms synchronized with all other real-time experimental infor-
mation. This allowed offline and online binning of the neural activity with 1ms precision. As with threshold crossing rate, we masked
channels for closed-loop decoding to those that were not clearly disconnected and had contained morphological spikes during the
experiment or at some time in the past, as SBP could possibly extract firing rates of low-SNR units remaining represented on such
channels (Nason et al., 2020).

Experimental setup

The experimental apparatus used for these experiments is the same as described previously (Irwin et al., 2017; Nason et al., 2020;
Vaskov et al., 2018). Briefly, the monkeys’ Utah arrays were connected to the patient cable (Blackrock Microsystems) and raw 0.1Hz-
7.5kHz unfiltered broadband activity at 30kSps, 300-1,000Hz activity at 2kSps, and threshold crossings at a —4.5RMS threshold
were extracted from the neural recordings by the Cerebus for storage. The 2kSps and threshold crossing features were streamed
to the xPC Target computer in real-time via a User Datagram Protocol packet structure. The xPC Target computer coordinated
several components of the experiments. It binned threshold crossings and SBP in customizable bin sizes, coordinated target pre-
sentation, acquired measured finger group positions from one flex sensor per group (FS-L-0073-103-ST, Spectra Symbol, Salt
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Lake City, UT, USA), and transmitted finger positions along with target locations to an additional computer simulating movements of a
virtual monkey hand (MusculoSkeletal Modeling Software) (Davoodi et al., 2007). Task parameters, states, and neural features were
stored in real-time for later offline analysis.

Behavioral task

We trained monkeys N and W to acquire virtual targets with virtual fingers by moving their physical fingers in a more complex version
of the two-finger task we published previously (Nason et al., 2020). During all sessions, the monkeys sat in a shielded chamber with
their arms fixed at their sides flexed at 90 degrees at the elbow, resting on a table. The monkeys had their left hands placed in the
manipulandum described previously (Vaskov et al., 2018). Each monkey sat in front of a computer monitor displaying the virtual hand
model and targets described previously. The monkeys were trained to move one finger group independent of another finger group.
Monkey N preferred to perform the task with his index finger individuated from his MRS fingers, but monkey W preferred his index and
middle fingers to be individuated from his ring and small fingers. The fingers of the virtual hand were split into an index finger group
and a MRS finger group for both monkeys, where the fingers of each group moved together. Monkey N’s index finger actuated the
virtual index finger and his MRS fingers actuated the virtual MRS fingers. In monkey W’s case, the movements of his index and middle
finger actuated the virtual index finger while the movements of his ring and small fingers actuated the virtual MRS fingers. We later
validated anecdotally that there was no impact on performance due to the mismatch between monkey W’s preferred finger split and
the split of the virtual fingers by training monkey W to split his fingers in the same way as monkey N (index and MRS) and the vir-
tual hand.

Each trial began with one spherical target appearing along the one-dimensional movement arc of each finger group, for a total of
two simultaneous targets. Each target occupied 15% of the full arc of motion of the virtual fingers, except where indicated otherwise.
Targets were presented in one of two patterns.

The first pattern represents a classical center-out-and-back pattern when viewed from the two-dimensional behavioral space illus-
trated in Figure 1B (Georgopoulos et al., 1982). Every other target was presented at a rest position, 50% between full flexion and full
extension. The non-rest targets were pseudo-randomly selected from the postures in Figure 1B and a magnitude of movement was
pseudo-randomly chosen (+20%, +30%, or +40% from rest). IE+MF and IF+ME postures did not have a +40% movement magni-
tude, as that was too far of a split in the finger groups to be performed reliably.

The second pattern represents random targets by pseudo-randomly placing targets for each finger group. First, a pseudo-random
finger separation fsep was generated between —50% and +50% of the range of motion of each finger group. Then, a pseudo-random
central position cpos was generated in the range of abs(fsep)/2 to 1-abs(fsep)/2. The index finger group was given a target at
cpos+fsep/2 and the MRS finger group was given a target at cpos—fsep/2.

The presentation order of the targets was random, though the same order was repeated across sets of trials. Approximately one
year after data collection, several experiments with a true-random order of the targets validated no change in performance, including
Video S8. For a successful trial, the monkey was required to move the virtual fingers into their respective targets and remain there for
752ms continuously in manipulandum control or 502ms continuously in brain control, except where otherwise noted. The additional
2ms was an artifact of a minor but long-standing bug that required targets be held for 2ms longer than requested. Upon successful
trial completion, the monkeys received a juice reward. Closed-loop decoding experiments used center-out target patterns without
the IE+MF and IF+ME posture styles, as the data was collected prior to conception of those postures. At a later time, we trained and
tested a ReFIT Kalman filter on the full set of targets in the center-out style (including the IE+MF and IF+ME targets). Video S3
validates that monkey N maintained high-performance despite the addition of these two posture styles. Tuning analyses used
both center-out target patterns and random target patterns.

Neural activity normalization

All of our tuning analyses used normalized neural activity. For each sorted unit or SBP channel, we computed the mean, standard
deviation, and root-mean-square activity level across the entire experiment in 300ms bins. Then, we eliminated all trials that were
not center-to-out (unless the analysis used the random target pattern), that were unsuccessful, or had a duration longer than
3.0 s for monkey N, indicating possible distraction, struggle, or other factors that may confound tuning analyses.

For each trial, we estimated the onset of native movements by the following procedure. First, for all finger groups that were not in
the target at the beginning of the trial (which could happen in the random target pattern), we found each finger group’s main move-
ment time, calculated as the first point in time at which the finger group passed 20% of the distance from its starting position to its
ending position. Then, we found each finger group’s movement onset time, calculated as the point in time of the maximum jerk, or
maximum change in acceleration, for each finger group prior to that group’s main movement. The trial’s movement onset time was
selected as the earliest movement onset time across the active finger groups, where an active finger group is one which starts outside
of its corresponding target. For trials in which all finger groups had starting positions within their corresponding targets, all finger
groups were considered active. We found this procedure matched estimated movement onsets visually well for nearly all observed
trials.

Given the movement onset, then for each included trial, we extracted the activity for each sorted unit or SBP channel from the
period of time that maximized tuning depth for each analysis for each monkey, as the analyses depended on representative tuning
curves. In all cases, we analyzed 300ms of activity about movement onset with a starting time between —100 to +100ms relative to
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movement onset. The specific starting times used for each analysis are detailed in that analysis’ methods section below. We then
normalized these measurements by subtracting the unit’s or SBP channel’s mean then dividing by the standard deviation. This results
in one normalized level of activity for each unit or SBP channel for each trial.

Computation of true and predicted tuning curves

We calculated tuning curves for each monkey using one isolated experiment during which monkey N performed 2,130 and monkey W
performed 1,836 manipulandum control trials of the center-out-and-back task, with monkey W performing the task with targets en-
compassing 16.5% of the range of motion of each finger group. We eliminated trials that were not center-to-out, that were unsuc-
cessful, and, for monkey N only, that had a duration longer than 3.0 s, then calculated the mean activity for each movement direction.
For each monkey, we selected a start time relative to movement onset for the 300ms analysis window that maximized the tuning
depth, measured as the difference between maximum and minimum mean activities across all movements. We found this start
time to be 50ms after movement onset for monkey N and 100ms prior to movement onset for monkey W. Then, we further eliminated
all trials that had movement onset times less than the analysis window’s start time, leaving 1,025 trials for monkey N and 819 trials for
monkey W. All of these trials were used for the ridge regression analyses (see section below), while only trials in which the monkeys
moved their fingers + 30% from rest were used for tuning analyses to guarantee consistency in behavior and ideally consistency in
neural activity (all of monkey W’s trials were + 30% from rest). We did not use the + 40% trials as we did not offer + 40% targets for the
IE+MF nor the IF+ME postures due to difficulty of acquisition, leaving + 30% the greatest magnitude of movement with targets pre-
sented for all postures.

To compute sinusoidal tuning curves, we first fit the amplitude, phase, and offset by linear regression as was done by others (Ches-
tek et al., 2007). However, we found that this resulted in few sinusoidal tuning curves that correlated significantly with the measured
tuning curves (26 of 148 modulated SBP channels and 31 of 92 modulated sorted units were significantly correlated). We anecdotally
found this was a result of the period of the optimal tuning curves being unequal to 360 degrees. Therefore, to better represent sinu-
soidal tuning curves, we fit the amplitude, period, phase, and offset by using MATLAB 2018a’s fminsearch function minimizing the
total squared error over a maximum 1,000,000 iterations. These tuning curves yielded the results included above.

We tested three models of predicting the trial-averaged firing rates of all units corresponding to some movement given the trial-
averaged activity of the units for other movements. The first naively assumes that the firing rates corresponding to one movement
is the average of the firing rates of its component movements (i.e., the activity of IF+MF is the average of the activity of IF and the
activity of MF). The second and third assume that the firing rate n of some movement m is a weighted sum of the firing rates corre-
sponding to the other movements along with some constant offset cy. This can be modeled by the following linear equation for one
channel with an arbitrary kK number of movements:

Nm = Co+ Z Ccin;

ie [1k],i#m

Let np, , be the firing rate from neural unit u for movement m. Then N, is the vector of firing rates from all neural units corresponding to
movement m and Np is the training data matrix containing firing rates from all neural units corresponding to all of the movements that
are not movement m:

nm,1
Nm— Nm2
N1 N2t 0 Nme11 Nmsin

Np=|mz Nz - Nm_12 Nperz o 1

As such, we can solve for the vector of coefficients for one movement m by solving the following linear regression equation using the
data given by all valid units:

Crm = NI (NoNE) "N

The three models we tested assumed that np,, is composed of some amounts of its component movements, which are n,,,_1 and np, , 1
in this formulation. The first model (Avg) assumes n, is the average of n,,_y and np, . 1, requiring no regression to learn weights, as
illustrated in Equation 1 below:

_Nm—1+Nmaq

Ny = 5 (Equation 1)
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The second model (LR) assumed that ny, is composed of some learned weighted amounts of np,_1, nm 41, and a learned offset, as
illustrated in Equation 2 below

Nm = Cm_1'Nm_1+Cm+1 - Nm+1+Co (Equation 2)

where c; are weights learned by regression. Finally, the third model (LRO) assumed that np, is composed of some learned weighted
amounts of np,_1, Nm 41, a learned offset, and the firing rates corresponding to the opposite movement (included as a regression
method due to the weak yellow diagonal four diagonals off of the main diagonal in the grids of Figure 5), as illustrated in Equation 3
below:

Nm =Cm-1Nm-1+Cms1 Nmi1+CmiaNmia+Co (Equation 3)

where cp, . 4 is the weight learned for the opposite movement, in this case +4 due to there being eight movement directions in our
center-out task. We performed these same procedures using SBP in place of the firing rates.

We predicted the neural activity for each movement based on the two regression models with leave-one-out cross-validation on
the neural features. The cross-validated linear models for predicting sorted unit activity were trained only on the other sorted units
within each monkey. The same was done for SBP channels. Sorted units and SBP channels that had no significantly tuned move-
ments according to a two-sample two-tailed Kolmogorov-Smirnov test (p>0.001) and sorted units with mean firing rates under
2Hz were excluded from analyses. This left a total of 148 SBP channels (92 from monkey N and 56 from monkey W) and 92 sorted
units (35 from monkey N and 57 from monkey W). Significance of the predicted tuning curves was determined using the p values
associated with correlation against the null hypothesis that a predicted tuning curve was not significantly correlated with its measured
tuning curve, corrected for false discovery rate.

Computation of movement and postural tuning

We calculated movement and postural tuning curves for monkey N using one isolated manipulandum-control experiment and for
monkey W using two isolated manipulandum-control experiments across two consecutive days. After eliminating unsuccessful trials,
we found that analysis window start times of 100ms after movement onset for monkey N and Oms after movement onset for monkey
W optimized tuning depth. Eliminating trials with movement onset times less than each monkey’s analysis start time resulted in 1,353
center-out trials and 870 random trials for monkey N and 452 center-out trials and 352 random trials for monkey W.

To compare center-out and random tuning curves, we computed the preferred direction of each channel during each task via the
following procedure. First, we normalized each channel’s SBP activity across each set of trials in 100ms bins, then we computed the
Kalman filter observational model (the C matrix in the section below) for each task. We used the coefficients trained for each finger
group’s velocity to estimate each channel’s preferred movement direction within each task, then found the difference in angle be-
tween the preferred movement directions. To determine significance, we performed a bootstrap analysis similar to that performed
previously (Chestek et al., 2007). Briefly, we took the normalized SBP activity from each task computed before, then resampled equal
quantities of samples from the center-out and the random set of trials twice. We trained two Kalman filter observational models and
calculated each channel’s difference in preferred movement direction between the two trained models. We performed this procedure
1,000 times to estimate the null difference distribution for each SBP channel, then calculated the p value of each channel’s true dif-
ference in preferred movement direction between center-out and random tasks based on those distributions. We performed false-
discovery rate corrections across the 80 channels with the largest velocity coefficients across monkeys, 40 from each.

The postural tuning surfaces were computed from the normalized SBP activity during the target acquisition periods. For monkey N,
the activity was extracted from 252ms to 752ms after onset of the target acquisition period. For monkey W’s center-out trials, the
activity was extracted from 102ms to 302ms after onset of the target acquisition period (which was 302ms in duration), and for
his random trials, the activity was extracted from 252ms to 502ms after onset of the target acquisition period. These time periods
were chosen based on the task parameters to maximize the amount of SBP activity analyzed but keep the true finger velocities near-
estto 0. We sorted all trials into postural bins of width 10%, ranging from 0% to 100% flexion of each finger group, based on the mean
posture of each trial during the same analysis periods detailed above. Each channel’s SBP activity was averaged across all trials
belonging to each postural bin, generating the postural tuning surface. The generated postural tuning surfaces were plotted using
MATLAB’s pcolor function and linearly interpolated between neighboring postures. The preferred postural direction for each channel
was calculated from the Kalman filter observational model’s two trained coefficients for finger position.

To determine if the preferred postural direction was significantly different from the preferred movement direction, we performed a
1,000 iteration bootstrap analysis similar to what was detailed previously. Instead of computing preferred postural and movement
directions from two different resamples of the random task data, the bootstrap preferred postural and movement directions were
computed from the same set of resampled data to estimate the null difference distribution.

Decoding of neural activity
We executed two different algorithms to predict finger movements from neural activity.
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Closed-loop Kalman filtering

First, to assess neural prosthetic performance in application, we gave the monkeys visual feedback of the decoders’ outputs during
the behavioral task. For each closed-loop experimental session, the monkeys began by completing at least 350 trials with the virtual
hand controlled directly by the movements of the manipulandum. The monkeys were required to acquire and hold the targets for
752ms continuously for a successful trial with a 10 s trial timeout. The behavioral data (i.e., one-dimensional positions per finger
group) were measured synchronously with the non-normalized neural features by the xPC Target computer. Then, we trained a
standard position/velocity Kalman filter on this data binned at 32ms (which we found superior to other tested bin sizes), as described
previously (Irwin et al., 2017), using MATLAB version 2012b (Mathworks). For predictions of two finger dimensions, the Kalman filter
assumed a kinematic state of one position and one velocity for each group:

P
P MRS
Xt = V/

Vurs
I

The Kalman filter predicts the state at each timestep based on an optimal combination of two different predictions. The first is a
prediction made based on the state of the previous timestep, and the second is a prediction made based on a comparison between
the measured neural activity and that predicted by the predicted kinematics of the current timestep. This can be summarized by the
following equations:

Xtit-1 = AXi_1

Xt = )?t\m + Ke(y: — C)?t\m)

where y; is a vector of neural features at the current time step, K; is the Kalman gain balancing how much the neural activity should
contribute to the final prediction, A is the state transition matrix, and C is a linear regression trained to convert kinematics to neural
features. Training of these matrices was performed as described previously (Irwin et al., 2017) but extended to account for both index
and MRS. The A matrix was fit to take the following form:

1 0 1 0 0
010 1 0
A = O 0 AVI V, AVMRS V, O
00 A ViVurs A VivrsVirs 0
0 0O 1

After training the standard Kalman filter, we computed the Kalman filter’s predictions in real-time to actuate the virtual hand inde-
pendent of the monkeys’ physical movements. For successful acquisition, the monkeys were required to acquire and hold the targets
for 502ms continuously with a 10 s trial timeout. The positions displayed with the virtual fingers were computed by adding the pre-
dicted velocity to the previous time step’s predicted position, with an initial position taken as the true position of the fingers at the time
the Kalman filter began running. Monkey N executed some brain control trials with his physical fingers restricted from movement and
others without restriction. Monkey W did not have his finger movements restricted during brain control mode. Both monkeys used
both the standard Kalman filter and the dual-stage training ReFIT Kalman filter. To train the ReFIT Kalman filters, the monkeys used
the standard Kalman filter in closed-loop for at least 250 trials with their fingers unrestricted. Then, we used one of three intention-
training paradigms to train the ReFIT Kalman filter.

1. The first is a two-dimensional form of the ReFIT Kalman filter we previously proposed (Vaskov et al., 2018), where we negated
the incorrectly predicted one-dimensional velocity for each finger and set the velocities of fingers within their targets to zero
before recomputing the regression matrices. This option assumes the monkey viewed the task as two separate one-dimen-
sional problems and is highly related to the visual cues.

2. The second training method is very similar to the original ReFIT Kalman filter training method (Gilja et al., 2012). In the two-
dimensional behavioral space illustrated in Figure 1B, we rotated the net two-dimensional velocity toward the target’s center
for every trial and calculated the component index and MRS velocities from the net velocity. This option assumes the monkey
viewed the task as one two-dimensional problem and is highly related to our two-dimensional space in which the two one-
dimensional targets are mapped to one two-dimensional target.
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3. The third training method combines the first two. We concatenated the recalibrated predictions from each method to create a
2nxd predictions matrix, where n is the number of timesteps in the training data and d is the dimensionality of the behavior (5in
this case). Then, we concatenated one copy of the nxf neural feature matrix (f being the number of features) to match the size
of the first dimension of the predictions matrix to recompute the regressions. This option assumes the monkey viewed the task
as some combination of two one-dimensional tasks and one-two dimensional task, which reflects some of the behavior seenin
Figure S1.

After training the ReFIT Kalman filter, we again computed the predictions in real-time using the new model and delivered visual
feedback of the predictions to the monkey by actuating the virtual hand.

We additionally sought to validate that inclusion of the IF+ME and IE+MF posture styles did not result in poor closed-loop control
performance. Video S8 illustrates exemplary but near typical performance from monkey N using the ReFIT Kalman filter (type 2)
trained and tested on the center-out task including IF+ME and IE+MF targets. The differences between the ReFIT Kalman filter
used in Video S3 and the ReFIT Kalman filter described previously are that the sum of the previous time step’s predicted position
and the current time step’s predicted velocity was used to update the positions of the virtual fingers as well as the positions in
the Kalman state, there were 0 bins of lag included online (Irwin et al., 2017), and during ReFIT retraining the velocities were zeroed
when inside the target.

Stability of trained Kalman filter parameters

To compare the least-squares regression parameters that best represent the neural activity in each type of virtual hand control (ma-
nipulandum, Kalman filter, and RFKF), we computed preferred movement directions for each SBP channel. First, we normalized the
SBP activity during each control method, then computed the regression weights that would transform the kinematic measurements
into normalized SBP activity. In the cases of the Kalman filter and RFKF, the predicted kinematics were intention-corrected via rota-
tion (type 2) as described in the previous section prior to regressing. The preferred movement directions for each SBP channel under
each control method were extracted from the index and MRS velocity regression parameters.

Open-loop ridge regression

When trying to gauge the generalization of linear models to untrained finger behaviors, we used ridge regression (with a regularization
term 2 = 0.001) to predict continuous finger positions as it does not depend on iteration for continued stability. The neural activity was
binned every 100ms and 10 total bins were used per feature: one for the current time step and one for each of the previous 9 time-
steps for a total 1 s of neural data. Neural activity from before each trial’s beginning was assumed to be 0 for sorted units and each
channel’s root-mean-square value for SBP, as had been done previously (Chestek et al., 2007).

After sorting all trials as previously described, we split them into two sets: individual and combined finger group movements. Then,
we trained a regression model on one set and tested on the other. Additionally, we performed 10-fold cross-validation on the full data-
set to gauge information loss without training on the full set of behaviors. To compare these, we performed a 100,000 iteration boot-
strap analysis on the errors between the two decodes for all time points in each experiment. Then, if the error for any averaged sample
was greater than the upper one-sided 95% confidence interval resulting from the bootstrap analysis, the split decode was deemed
significantly different from the full decode. Correlation coefficients were computed as Pearson’s r between the predicted and
measured behavior, and variances accounted for were computed according to the following equation:

VAF = (1 Var(y_y))

var(y)

where y is the measured ground truth behavior, y is the predicted behavior, and VAF is the variance of y accounted for by y. The
variance accounted for percentages, as written in the results, were taken as the ratio between the variance accounted for by the
split-trained decoders divided by the variance accounted for by the full-trained decoder, multiplied by 100. The same computation
was executed for the correlation coefficient ratios.

Performance metrics
To evaluate performance, we used four metrics. First, success rate was computed as a percentage of the total number of trials for
which the monkeys successfully acquired each trial’s targets before the trial timed out (10 s).

Second, path efficiency was computed as the straight-line distance between the starting position and the nearest point in the target
in two-dimensional space (Figure 1B) divided by the total distance that was traveled in two-dimensional space until the first instance
both finger groups were simultaneously in their respective targets. We implemented this metric to estimate the efficiency of all move-
ments, though it could be used to assess the simultaneity of combined finger group movements. We have included Figure S1 to
indicate the average behavioral trajectories in two-dimensional space and demonstrate how simultaneous were the monkeys’
multi-finger movements. Trials in which both finger groups were never in their respective targets simultaneously were given a
path efficiency of 0%. Trials where the starting positions were inside the targets and successful trials immediately following failed
trials were excluded from path efficiency analyses to avoid artificially increasing path efficiency.
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Third, time to target was computed as the total time between a trial’'s beginning and the first instance both finger groups were
simultaneously in their respective targets. Trials in which both finger groups never simultaneously reached their respective targets
were given a time to target equal to the trial timeout period (10 s). Successful trials immediately following a failure and trials where
all finger groups began inside their respective targets were excluded from time to target analyses to avoid artificially decreasing
mean time to target.

Fourth, orbiting time was computed as the time between the first instance both finger groups were simultaneously in their respec-
tive targets and the end of the trial, minus the hold time. Orbiting time is a measure of the stopping ability of a controller, where the
optimal orbiting time of 0 s means the target was acquired and held beginning with the first instance both fingers were in their respec-
tive targets. To avoid artificially lowering the mean orbit time, unsuccessful trials that had a corresponding time to target later than 9 s
into the trial were excluded from orbiting time analyses. Trials that did not have an instance where both finger groups were simulta-
neously in their respective targets, trials immediately following failed trials, or trials where the starting positions were inside the targets
were also excluded from orbiting time analyses as these types of trials could artificially decrease the mean orbiting time.

We opted to exclude the hold time from the calculations so that the computed metrics better represented the time taken to reach
the targets. Note that we required the monkey to hold targets for longer time periods when in manipulandum control mode so that
there would be sufficient representation of neural data corresponding to stopping when training the online decoder.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for closed-loop decoding experiments (Linear Two-Finger Decoding in Real-Time in the Results section) used a
two-sided two-sample t test between trial statistics in MATLAB with significance level p <0.001. Statistical analysis for determining
the normality of neural activations for finger movements (Cortical Neurons Show Specificity to Individual Contractions in the Results
section) used a two-sided one-sample Kolmogorov-Smirnov test in MATLAB with a significance level p <0.001, corrected for false
discovery rate. Statistical analysis for determining movement tuning (Finger-Tuned Neural Activity Is Linear in the Results section)
used a two-sided two-sample Kolmogorov-Smirnov test compared to the mean activity across the experiment in MATLAB with sig-
nificance level p <0.001, corrected for false discovery rate. Statistical analysis for fitting cosine and regression tuning curves to
measured tuning curves (Finger-Tuned Neural Activity Is Linear in the Results section) used the p-values associated with Pearson’s
correlation computed in MATLAB with a significance level p <0.05, corrected for false discovery rate. Statistical analysis for deter-
mining differences between the split-data decoders and the full-data decoders (Linear Models Generalize to Predict Untrained Finger
Movements in the Results section) used a 100,000 iteration bootstrap analysis on the errors between the two decoders in MATLAB
with a significance level of greater than a one-sided 95% confidence interval. Statistical analysis for determining differences in tuning
curves between the center-out and random tasks (Misaligned Postural and Movement Tuning in Finger-Related Cortical Units in the
Results section) used a 1,000 iteration bootstrap analysis on the preferred directions for each channel determined via regression with
a significance level of p <0.01, corrected for false discovery rate among the 40 most-strongly-tuned channels across both monkeys
(80 total). Statistical analysis for determining differences between preferred posture and preferred movement direction (Misaligned
Postural and Movement Tuning in Finger-Related Cortical Units in the Results section) used a 1,000 iteration bootstrap analysis on
the preferred postures and movement directions for each channel determined via regression with a significance level of p < 0.01,
corrected for false discovery rate. Statistical analysis for determining differences between maximal and minimal posture-related ac-
tivations of channels (Misaligned Postural and Movement Tuning in Finger-Related Cortical Units in the Results section) used a one-
sided two-sample t test with a significance level of p <0.01.
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Supplementary Figure 1. Averaged example behaviors for each monkey (N left, W right),
related to STAR Methods. Each two-dimensional trace is plotted as MRS flexion percentage
versus index flexion percentage, in the same space as Figure 1B. Targets are the dashed boxes,
color coordinated to the traces corresponding to attempts to acquire that target. The letters to the
top left of each target detail the movement type in the two-dimensional space, and the numbers
to the top right indicate the number of trials used to obtain each averaged trace. The behaviors to
generate this figure were from the same data sets upon which the tuning analyses were
performed. Note that most trajectories are directed towards the targets as if this were one two-
dimensional task, but the IF+ME and IE+MF trajectories for both monkeys and the extension
trajectories for monkey W suggest the monkeys may have viewed the task as two one-
dimensional tasks.



Supplementary Table 1. Illustrations of all center-out postures, ordered according to
Figure 1. “Online” refers to use in online brain-machine interface experiments (Figures 2, 3, and
4). “Tuning” refers to use in neural tuning analyses (Figures 5, 6, and 7).

Posture +20% from Rest | +30% from Rest | +40% from Rest | Relevant Analyses

Online
Index Flexion
(IF) Tuning
Index Flexion + Online
MRS Flexion
(IF+MF) ; Tuning
MRS Flexion e é Online
(MF) ‘ Tuning
Index Extension N/A (split too far
+ MRS Flexion for reliable Tuning
(IE+MF) performance)
Index Extension Online
(IE) ; Tuning
Index Extension Online
+ MRS Extension
(IE+ME) : Tuning
MRS Extension * Online
(ME) , Tuning
Index Flexion + N/A (split too far
MRS Extension for reliable Tuning
(IF+ME) , performance)

Online
Rest (R) N/A N/A

Tuning
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Supplementary Figure 2. Two-finger closed-loop Kalman filter decode using threshold
crossing rates, related to Figure 2. (A) Example closed-loop prediction traces from monkey N
using the standard Kalman filter. Targets are represented by the dashed boxes, internally colored
to indicate the targeted finger with a border color representing whether the trial was acquired
successfully. “I” means the index finger group and “MRS” means the middle/ring/small finger
group. The mean path efficiency of the trials displayed is presented at the bottom right. (B)
Statistics for all closed-loop two-finger threshold crossing rate Kalman filter decodes. The red
lines indicate the means, which are numerically displayed above each set of data. The statistic
for each trial is represented by one dot in each plot. “Succ Rate” means the percentage of total

trials that were successfully acquired in time and “Path Eff’ means the two-dimensional path
efficiency.
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Supplementary Table 3. Summary of neural feature tunings to flexion versus extension, related

to STAR Methods.

Muscular Group
Monkey Feature Qty Untuned
Flexion Extension Opposed Multiple
N SuU 47 4 2 12 22 7
SBP 96 2 12 33 33 16
W SuU 68 36 0 5 18 9
SBP 96 32 1 2 26 35

The quantity (Qty) column indicates the total number of sources for each feature. SU means sorted
units, SBP means spiking band power. Classifications were determined by p < 0.001 with a two-tailed
two-sample Kolmogorov-Smirnov test between movement types. Opposed tunings showed activity
levels different from baseline during movements where the two finger groups moved in opposite
directions (IF+ME or IE+MF). Multiple tunings showed activity levels different from baseline for more
than half but not all of the movements, indicating activation but perhaps not specificity. Decisions were
made from 388 monkey N trials and 819 monkey W ftrials.

Supplementary Table 2. Summary of neural feature tunings to index versus MRS group
movements, related to STAR Methods.

Finger Group
Monkey Feature Qty Untuned
Index MRS Both Multiple

N SuU 47 2 2 14 22 7
SBP 96 0 6 41 33 16
SuU 68 10 13 18 18 9

w
SBP 96 22 6 7 26 35

The quantity (Qty) column indicates the total number of sources for each feature. SU means sorted
units, SBP means spiking band power. Classifications were determined by p < 0.001 with a two-tailed
two-sample Kolmogorov-Smirnov test between movement types. Here, multiple tunings showed activity
levels different from baseline for more than half but not all of the movements, indicating activation but
perhaps not specificity. Decisions were made from 388 monkey N trials and 819 monkey W ftrials.
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Supplementary Figure 3. Exemplary tuning curves and linear predictability of the activity,
related to Figure 5. The text above each pair of plots first indicates the tuning preference of a
sorted unit or SBP channel, followed by the subject from which the activity was recorded, then
the feature type. I&M suggests preference to both the index and MRS groups. The left plot of
each pair displays the true tuning curve of the given sorted unit or SBP channel. The large dot
and error bars represent the mean and standard deviation for the peri-movement activities across
all trials of each type of movement. The smaller dots represent the peri-movement activity for
each trial of each type of movement. Asterisks indicate significant difference from the unit's or
channel’'s mean activity, or zero z-score, across the experiment (two-sided two-sample
Kolmogorov-Smirnov test, p < 0.001, corrected for false discovery rate). Individual group
movements are plotted in blue, combined group movements are plotted in orange. The right plot
of each pair displays the mean activity for each movement (copied from the left plot in asterisks)
as well as the predictions of the activity for each movement. For example, for IF in C, the black
asterisk is the mean dot copied from the left hand plot, the red circle (Avg) is the average of the
asterisks for IF+MF and IF+ME, the blue circle (LR) is the weighted sum of the asterisks for IF+MF
and IF+ME, and the yellow circle (LRO) is the weighted sums of the asterisks for IF+MF, IF+ME,
and IE. Pearson’s correlation coefficients between the predictions and the true activity are
displayed in each plot.
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Supplementary Figure 4. Statistics of the linearity in tuning curves, related to Figure 5.
Sorted units and SBP channels from monkeys N and W that had at least one movement
significantly different from the average activity and an average firing rate greater than 2Hz (for
sorted units) are included in analysis. The first column represents results from averaging the
neighbors, and the second and third columns represent results from linearly regressing the
neighbors without and with the opposite movement, respectively. (A) Histogram of the correlation
coefficients (Pearson’s r) between the predicted tuning curves and the actual tuning curves. The
histogram is limited to the 0.5-1 range as we found this range of tuning curves to be visually linear.
The dotted line with the attached number indicates the cutoff for significance after correction for
false discovery rate. n.s. means not significant, s. means significant with p < 0.05. Significance
was determined based on the null hypothesis that a particular predicted tuning curve did not
significantly correlate with the true tuning curve. (B) Scatter plots of the predicted activity vs. the
true activity for each movement. Blue dots represent individual group movements and orange
dots represent combined group movements. The solid line is unity, where the predicted activity
would equal the true activity. The dashed line is fit to the data.
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Supplementary Figure 5. Regression coefficients to predict the neural activity associated
with certain movements from the activity of others, related to Figure 5. Each point is labelled
with the movement whose activity would be predicted by the activity of other movements with (x,
y) position indicating the trained coefficients of neighboring movements and color indicating the
coefficient of the opposition movement. | — index finger group, M — MRS finger group, F — flexion,
E — extension. (A, B) Coefficients for regressions under the assumption that the activity of a
movement is a weighted sum of the activities of its neighbors for monkeys N and W, respectively.
(C, D) Coefficients for regressions under the assumption that the activity of a movement is a
weighted sum of the activities of its neighbors and the opposite movement for monkeys N and W,
respectively. Points are colored based on the best-fit coefficient by which to multiply the opposite

movement.
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Supplementary Figure 6. Offline ridge regression decoding for sorted units, trained on
either individual or combined finger group movements, related to Figure 6. The central trace
is the average predicted behavior from all trials of the indicated movement and the shaded region
is the standard deviation, all aligned in time by the movement onset (vertical gray line). Individual
finger group movements (the two left columns of plots) were decoded using a regression model
trained on combined finger group movements (the right two columns of plots), and vice versa for
the combined finger group movements. These are represented by the “Split Decode” dashed
traces. The “Full Decode” solid line traces represent the average decode given the full dataset to
train the regression model, with cross-validation. The blue traces correspond to the index group
and the yellow traces correspond to the MRS group. The yellow or blue lines near the top of each
plot indicate significant differences between the two predicted positions based on a bootstrap
analysis on the differences (greater than a one-sided 95% confidence interval).



Individual Individual Combined Combined

Monkey N Monkey W Monkey N Monkey W
100 T - o
B P yd B . . ).<j“
T =
P
oL F IF IF+MF IF+MF
Index = = = Full Decode
MRS e Split Decode
100
[
e
>
@
L
o‘e
100
c
o
E
M)
(T
R
100
c
9
x
(]
T
=X
0 gt IF+ME
-0.1 0.25 0.6 -0.1 0.6 1.3 -041 0.25 06 -01 0.6 1.3
Time (s) Time (s) Time (s) Time (s)

Supplementary Figure 7. Individual trial offline ridge regression decoding of all SBP
channels, trained on either individual or combined finger group movements, related to
Figure 6. The vertical gray line indicates movement onset. Individual finger group movements
(the two left columns of plots) were decoded using a regression model trained on combined finger
group movements (the two right columns of plots), and vice versa for the combined finger group
movements. These are represented by the “Split Decode” dotted traces. The “Full Decode”
dashed traces represent the average decode given the full dataset to train the regression model,
with cross-validation. The blue traces correspond to the index group and the yellow traces
correspond to the MRS group.
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Supplementary Figure 8. Individual trial offline ridge regression decoding of all sorted
units, trained on either individual or combined finger group movements, related to Figure
6. The vertical gray line indicates movement onset. Individual finger group movements (the two
left columns of plots) were decoded using a regression model trained on combined finger group
movements (the two right columns of plots), and vice versa for the combined finger group
movements. These are represented by the “Split Decode” dotted traces. The “Full Decode”
dashed traces represent the average decode given the full dataset to train the regression model,
with cross-validation. The blue traces correspond to the index group and the yellow traces
correspond to the MRS group.
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