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SUMMARY
Modern brain-machine interfaces can return function to people with paralysis, but current upper extremity
brain-machine interfaces are unable to reproduce control of individuated fingermovements. Here, for the first
time, we present a real-time, high-speed, linear brain-machine interface in nonhuman primates that utilizes
intracortical neural signals to bridge this gap. We created a non-prehensile task that systematically individ-
uates two finger groups, the index finger and the middle-ring-small fingers combined. During online brain
control, the ReFIT Kalman filter could predict individuated finger group movements with high performance.
Next, training ridge regression decoders with individual movements was sufficient to predict untrained com-
bined movements and vice versa. Finally, we compared the postural and movement tuning of finger-related
cortical activity to find that individual cortical units simultaneously encode multiple behavioral dimensions.
Our results suggest that linear decoders may be sufficient for brain-machine interfaces to execute high-
dimensional tasks with the performance levels required for naturalistic neural prostheses.
INTRODUCTION

Neural prostheses have the potential to return independence to

many people with neurological disorders or injuries. In human

clinical trials, laboratories have restored use of computers,

self-feeding, and prosthetic hands using implants to translate

electrophysiological signals into user intent (Ajiboye et al.,

2017; Memberg et al., 2014; Nuyujukian et al., 2016; Pandarinath

et al., 2017;Wodlinger et al., 2015). Of greatest interest to people

with cervical-level spinal cord injury is the return of hand and arm

function (Anderson, 2004). Although this has motivated many

groups to study neural prostheses for hand control, only a few

have been translated to use with people, and none have been

translated to full-time use outside of the laboratory. Functional

electrical stimulation provides an avenue for outputting the inten-

tions of the user to their natural limbs (Kilgore et al., 1989, 2008;

Memberg et al., 2014; Smith et al., 2005), with commercial solu-

tions already in existence, such as the FreeHand System. Unfor-

tunately, they typically rely on some external motion or myoelec-
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tric commands from residual functional muscles, which require

learning and are generally unnatural to use.

This has driven many groups to use brain-machine interfaces

to extract hand prosthesis control signals from a more natural

source. In humans, various studies have attempted to charac-

terize the relationship between finger movements and electro-

corticography activity (Chestek et al., 2013; Hotson et al.,

2016; Kubánek et al., 2009). However, that relationship was

insufficiently strong to enable quick classifications or fully

dexterous continuous movements. Some groups have used

intracortical microelectrodes in monkeys to record activity pat-

terns on the order of single neurons to investigate a more con-

crete connection between these patterns and finger behaviors

(Baker et al., 2009; Mollazadeh et al., 2011). These studies sug-

gest that such a relationship, reliant on intracortical recordings,

is stronger than with electrocorticography, but classification of

which finger is moving by itself does not provide enough under-

standing of that relationship to predict the quality of continuous

control.
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The ability to precisely control the positions (individuated

placements of the hand degrees of freedom) of all individual fin-

gers is a key characteristic of dexterous hand use in primates. As

such, many groups have attempted to relate many, if not all 27,

degrees of freedom (DoFs) within the hand to neural activity dur-

ing reach-to-grasp tasks offline by continuously predicting hand

posture (combined arrangements of different hand DoFs; Aggar-

wal et al., 2013; Bansal et al., 2011; Okorokova et al., 2020; Var-

gas-Irwin et al., 2010). These studies found that continuously

predicting postures exceeded the performance of predicting

the movement velocities, which contrasts with brain-machine

interface studies for arm reaches. Additionally, although these

studies showed very high offline correlation between firing rates

and behaviors for many of those DoFs, most, if not all, of the

DoFs presented showed highly correlated trajectories and may

not have truly been independent. This makes it unclear how

well this neural activity corresponds to those DoFs individually

or if all the DoFs are moving so similarly that anything with a

similar time course will correlate well. Further, without evaluating

online control of individual DoFs, the applicability to intuitive and

naturalistic neural prostheses is uncertain.

Dexterous hand use in primates and humans has two classes

of movement: prehensile (for grasping objects; Napier, 1956;

Santello et al., 1998) and non-prehensile (for manipulating ob-

jects). While all of these studies have made great strides toward

the ability to predict the intended movements of the hand, which

has a clear importance toward the goal of returning hand func-

tion to those without it, they have focused almost exclusively

on prehensile movements (Napier, 1956; Santello et al., 1998).

There is a substantial gap in the literature surrounding the neural

representation of continuous non-prehensile movements and

whether that representation can be leveraged in a brain-machine

interface. One study trained a primate to use a joystick to control

non-prehensile movements of a virtual hand, eventually using an

online decoder to move the virtual hand online (Rouse, 2016).

However, it remains unclear how much of the brain control de-

pended on the monkey’s intentions to perform non-prehensile

hand movements or whether the monkey continued to think

about its arm mapped to the virtual hand as the control system

for the task.

Generally, the algorithms for online control of neural prosthe-

ses assume linear relationships between primary motor cortex

neural activity and either the position and velocity or expected

muscle activations of prosthetic movements. Variants of Kalman

filters (Ajiboye et al., 2017; Gilja et al., 2012;Malik et al., 2011;Wu

et al., 2004), ridge regressions (Collinger et al., 2013; Mulliken

et al., 2008; Wodlinger et al., 2015), and Wiener filters (Ethier

et al., 2012; Koyama et al., 2010; Sachs et al., 2016) have been

used to control arms, hands, and fingers online. Linear online de-

coders are promising candidates for an out-of-laboratory clinical

neural prosthesis because of their computational simplicity and

high prediction performance. However, with limited quantities

of recording electrodes, covariances between nearby neural sig-

nals, and increasing numbers of DoFs required for finger control,

linear decoders may be unable to accommodate multiple inde-

pendent DoFs.

It has been noted by several groups that the same neurons can

covary with substantially different behaviors, which could make
the prediction of finger movements particularly difficult. For

example, primarymotor cortex can simultaneously encode infor-

mation about upper extremities, fingers, and speech, indepen-

dent of body laterality (Cross et al., 2020; Diedrichsen et al.,

2013; Heming et al., 2019; Jorge et al., 2020; Stavisky et al.,

2019, 2020; Willett et al., 2020). As tasks increase in complexity,

linear models may be unable to discriminate between neural

states without sampling greater quantities of relevant neurons.

Therefore, it is valuable to characterize the limits of linear models

in discriminating neural states with truly simultaneousmovement

of independent DoFs.

Here, we show, for the first time, fine, independent, and simul-

taneous online control of two systematically individuated groups

of fingers within one hand to acquire two targets, one each for

the index finger and the middle-ring-small (MRS) fingers, in a

non-prehensile task using linear Kalman filters and an intracort-

ical brain-machine interface in nonhuman primates. With inten-

tion-based retraining of the Kalman filters, we find that online

brain control improves significantly. Then, we find that the

magnitude of individual neural activations to particular non-pre-

hensile movements, whether they correspond to movements of

one group or combined movements of both groups, can be

well predicted by the weighted sums of the most similar move-

ments. This suggests that neural representations of continuous,

non-prehensile finger movements are related by linear combina-

tions of similar movements, enabling us to accurately predict un-

trained finger movements offline using ridge regression. Finally,

we characterize the similarity between postural and movement

tuning of cortical spiking activity to fingers to find that the

preferred movement direction is rarely associated with the

preferred posture, regardless of the beginning posture.

RESULTS

Linear two-finger decoding in real time
We first sought to validate that linear decoder models could indi-

viduate two systematically separated finger dimensions moving

independently and often simultaneously throughout their entire

ranges of motion. To do so, we trained two adult, male, able-

bodied rhesus macaques, monkeys N and W, to perform a

two-target two-finger task by using a manipulandum (Vaskov

et al., 2018). The manipulandum consisted of two flat surfaces,

one for each finger group, where each surface was free to rotate

about a hinge at the metacarpophalangeal joints and was sized

according to the finger group being used to push it (index versus

MRS). This task is illustrated in Figure 1A, with a drawing of the

manipulandum included. Although the monkeys were presented

with two one-dimensional targets, they can be visualized as one

two-dimensional target in a two-dimensional space of percent-

age of index flexion versus percentage of MRS flexion, as shown

in Figure 1B, without making any assumptions about cortical

representations of these finger groups. For real-time decoding,

targets were presented in a center-out style, in which every other

target presented was located at rest. Non-rest targets were

pseudo-randomly chosen from the postures in Figure 1B, and

then a magnitude of movement was pseudo-randomly chosen

between +20%, +30%, or +40% flexion or extension from rest.

These movement magnitudes can be imagined by further flexing
Neuron 109, 3164–3177, October 6, 2021 3165



Figure 1. Experimental description

(A) The monkey was seated in front of a screen

displaying a virtual handwith his left hand placed in

a manipulandum. Positions of the index and MRS

finger groups were measured by the manipu-

landum (right side of A) synchronously with the

neural activity. The position measurements or the

decoded finger positions were used to actuate

the virtual hand, depending on the stage of the

experiment. Targets were pseudo-randomly pre-

sented in a center-out pattern based on the pos-

tures in (B) or in a pattern where target positions

were pseudo-randomly placed along each finger’s

dimension, but not separated bymore than 50% of

the range.

(B) Two-dimensional space for visualizing the

hand movements. Postures shown are at +30%

compared to rest, which is at 50% between full

flexion and full extension. I, index finger group; M,

MRS finger group; F, flexion; E, extension; R, rest.

(C) An example tuning curve from monkey N illus-

trating an SBP channel tuned to index extension

and MRS flexion movements. Error bars represent

mean ± standard deviation. Asterisks indicate

significant difference from the average activity

across the experiment (two-sided two-sample

Kolmogorov-Smirnov test, p < 0.001, corrected for

false discovery rate).

(D) Photographs of monkey W’s and monkey N’s

intracortical Utah microelectrode array implants.

Both implants were in right hemisphere. The

asterisk indicates arrays used in this study. A,

anterior; L, lateral; CS, central sulcus.
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each posture as shown in Figure 1B, which is shown in Table S1,

and are realized on the vertical axes in Figures 2A and 2B and

Figures 3A and 3B. This resulted in 19 total target combinations

without index extension +MRS flexion (IE+MF; see Table 1 for all

abbreviations) and index flexion + MRS extension (IF+ME) pos-

tures (3 magnitudes for 6 different postures with a central rest

target; see STAR Methods). During the task, we synchronously

recorded neural activity using 96 channels of implanted Utah sil-

icon microelectrode arrays (Blackrock Microsystems, Salt Lake

City, UT, USA) from the hand area of primary motor cortex in

each monkey (implant photographs in Figure 1D). Each experi-

mental day, we collected a training dataset in which the monkey

controlled the virtual hand using the manipulandum while syn-

chronously recording 300–1,000 Hz spiking band power (SBP).

We have previously shown that SBP is well correlated with the

firing rate of the largest amplitude single unit or units on an elec-

trode and typically results in higher decoding performance than

threshold crossing rate (Nason et al., 2020). Then, we trained a

Kalman filter as detailed in STARMethods to predict fingertip ve-

locities in real time and tested it in closed loop by actuating the

virtual hand according to the predictions.

We found that the monkeys could successfully control the

movements of both finger groups independently in real time us-

ing a linear Kalman filter. Figures 2A and 2B show predicted

finger traces from monkeys N and W using the SBP Kalman fil-
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ter, respectively. The sections of predic-

tions displayed were chosen specifically
to show a wide variety of targets. These traces demonstrate

that the monkeys could individuate the two fingers indepen-

dently with smooth and controlled effort using the brain-ma-

chine interface. Figure 2C shows the closed-loop statistics for

the two-finger SBP Kalman filter. Regarding path efficiency,

monkey N’s paths to targets were 61% efficient on average,

less than the average of 76% efficiency when controlling the

virtual hand using the manipulandum. Monkey W acquired tar-

gets with an average efficiency of 53% using the decoder, also

less than the average of 63% efficiency when using the manip-

ulandum. With respect to acquisition time, monkey N reached

the target in an average 0.98 s with an average orbiting time

of 0.86 s, greater than the average 0.51 s time to target and

0.35 s average orbiting time in manipulandum control. Monkey

W achieved an average 1.3 s time to target with a 1.0 s average

orbiting time using the Kalman filter, also higher than the

average 0.79 s time to target and 0.65 s orbiting time when us-

ing the manipulandum. For completeness, Figure S2 illustrates

the same for threshold-crossing rate rather than SBP for mon-

key N.

Out of interest for applications to brain-machine interfaces,

we attempted to maximize closed-loop, two-finger decoding

performance using the state-of-the-art recalibrated feedback

intention-trained (ReFIT) Kalman filter (RFKF; Gilja et al.,

2012; Vaskov et al., 2018). The RFKF training procedure



Figure 2. Two-finger closed-loop Kalman

filter decodes using spiking band power

(SBP)

(A and B) Example closed-loop prediction traces

from monkeys N (A) and W (B) using the standard

Kalman filter. Targets are represented by the

dashed boxes, internally colored to indicate the

targeted finger with a border color representing

whether the trial was acquired successfully (green,

red if not). I, index finger group; M, MRS finger

group. The mean path efficiency of the trials dis-

played in each window is presented at the top

right.

(C) Statistics for all closed-loop two-finger Kalman

filter trials for monkeys N (left) and W (right). The

red lines indicate the means, which are numerically

displayed above each set of data, along with

standard deviation. The statistic for each trial is

represented by one dot in each plot, split into

columns per monkey. Succ Rate, the percentage

of total trials that were successfully acquired in

time; Path Eff, path efficiency.
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occurs following the monkey’s usage of the original Kalman

filter. It assumes that the neurons controlling the Kalman fil-

ter’s predictions represented the intention of the monkey to

optimally bring the fingers to the targets, regardless of the di-

rections of the predictions. Then, after reorienting predictions

to match the presumed intentions of the monkey, the linear

model is retrained. As discussed in STAR Methods, the two

interpretations of our finger task result in two frameworks for

retraining: rotation of the net velocity in two-dimensional

finger space to back-calculate each finger’s intended velocity

(similar to the original ReFIT method) or independent negation

of each finger’s velocity if it is moving away from the target.

The statistics comparing these two methods and a third

combining both are shown in Figure 3D for monkey N.

Ultimately, there were few statistical differences between the

recalibration methods (p values for the following order of com-

parisons: rotation and negation, negation and both, rotation

and both; p= 0:34; p= 0:72; p= 0:62 for path efficiency

comparisons; p= 0:013;p= 0:80; p= 0:064 for time to target

comparisons; p= 0:0044;p= 0:036; p= 0:81 for orbiting time

comparisons; two-tailed two-sample t test).

For monkey N, the RFKF made a substantial improvement in

decode performance over the standard Kalman filter. Figure 3A

shows closed-loop prediction traces from monkey N using the

SBP RFKF. In comparison to the Kalman filter, monkey N’s

RFKFs significantly improved prediction performance (68%

versus 61% path efficiency, 0.73 s versus 0.99 s time to target,

0.28 s versus 0.86 s orbiting time, all significant with p< 0:001,

two-tailed two-sample t test). Additionally, the predictions are

less oscillatory when attempting to stop on a target, and when

it is oscillating, the amplitude is generally smaller than the stan-

dard SBP Kalman filter, aligning with what was previously re-
Neu
ported (Gilja et al., 2012, 2015; Vaskov

et al., 2018). To showcase this, Video S1

presents median performance from mon-

key N’s usage of the SBP RFKF in real
time with a general comparison to manipulandum control. Video

S3 presents exemplary performance of the SBP RFKF including

the IE+MF and IF+ME postures.

For monkey W, the RFKF did not improve performance over

the standard Kalman filter (54% versus 53% path efficiency,

p = 0:12, 1.23 s versus 1.3 s time to target, p = 0:069, 1.17 s

versus 1.0 s orbiting time, p = 0:013, two-tailed two-sample t

test; Video S2).

To explain this result, we analyzed the consistency of each

monkey’s SBP channels between the three modes of controlling

the virtual hand: manipulandum control, Kalman filter control us-

ing SBP, and RFKF control using SBP. After Z scoring the SBP

used to generate all of the data in Figure 2 and Figure 3, we re-

computed three linear regression matrices: one between SBP

and the finger kinematics during manipulandum control, the sec-

ond between SBP and the intention-corrected finger kinematics

during Kalman filter control, and the third between SBP and the

intention-corrected finger kinematics during RFKF control. From

the regression coefficients trained for velocity, we estimated the

preferred direction of each normalized SBP channel based on

the vector ½Cn;I; Cn;MRS� for coefficients C and channel n. Fig-

ure 4A illustrates the preferred directions for the three manipula-

ndum control channels with the highest magnitudes in each

monkey. These illustrative channels demonstrate that the chan-

nels that are most impactful for predicting kinematics do not

substantially change their encoding preferences between ma-

nipulandum control and brain control modes (Figures 4B and

4C). FormonkeyW, however, there is small variation in the tuning

preferences, which may have impacted his capability of using

the RFKF to exceed the performance of the Kalman filter. We

believe these variations are the direct result of substantially lower

motivation to perform the task compared to that of monkey N.
ron 109, 3164–3177, October 6, 2021 3167



Figure 3. Two-finger closed-loop ReFIT Kalman filter decodes
(A– B) Example closed-loop prediction traces frommonkeys N (A) andW (B) using the ReFIT Kalman filter. Targets are represented by the dashed boxes, internally

colored to indicate the targeted finger. I, index finger group; M,MRS finger group. Themean path efficiency of the trials displayed is presented at the bottom right.

(C) Statistics for all closed-loop two-finger ReFIT Kalman filter decodes for monkeys N (left) andW (right). The red lines indicate the means, which are numerically

displayed above each set of data, along with standard deviation. The statistic for each trial is represented by one dot in each plot. Succ Rate, the percentage of

total trials that were successfully acquired in time; Path Eff, path efficiency.

(D) Statistics of each type of velocity reorientation for ReFIT training with monkey N (see STAR Methods). N, the velocities for each finger were negated if not

pointing to that finger’s target; R, the velocities were rotated in the two-dimensional finger space toward the target; B, both reorientations were used by

concatenating velocities modified by N and R and repeating the neural activity. Asterisks indicate significance (p< 0:01, two-tailed two-sample t test).
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Cortical neurons show specificity to individual
contractions
We found it surprising that such a complex hand task could be

captured so well by a linear decoder. To look at whether these

linear relationships hold within individual neurons, we con-

structed tuning curves of individual units across all eight finger

postures at just the +30% magnitude to best guarantee consis-

tent behavior and corresponding cortical activity. On one exclu-

sive and representative day for each monkey, they performed

the center-out task in manipulandum control for at least 30

continuous minutes, while SBP and broadband activity were re-

corded synchronously. The broadband activity was spike sorted

using Offline Sorter (Plexon, Dallas, TX, USA) to extract the firing

rates belonging to sorted units. 388 trials for monkey N and 819

for monkey W were processed. We calculated the mean firing

rate for each type of movement and plotted tuning curves. Illus-

trative tuning curves are displayed in the left plots of Figure S3.

Initially, we characterized the tuning preferences of the 115

sorted units across both monkeys, which are summarized in Ta-

bles S2 and S3. First, in Table S2, regarding specificity of neural
3168 Neuron 109, 3164–3177, October 6, 2021
activation to flexion and extension, we found 42 of the 115 units

showed specificity to one of the finger flexors or finger extensors,

but not the other, suggesting cortical representation of distinct

muscle contractions. Second, in Table S3, regarding specificity

to individuated finger group movements, we found that 27 of

the 115 units showed tuning to only one finger group. Among

the units that showed specificity to one group, there were

approximately equal quantities tuned to movements of the index

and MRS finger groups. Most units showed Gaussian-distrib-

uted firing rates about the mean firing rate for each movement,

with 46 of the 115 units having at least one movement for which

the normalized activations were not normally distributed

(p< 0:001, two-sided one-sample Kolmogorov-Smirnov test,

corrected for false discovery rate).

In addition to performing all tuning analyses with the standard

sorted units, we also included tuning analyses using the 300–

1,000 Hz SBP. We have previously shown that filtering spiking

signals in the 300–1,000 Hz band provides a signal that is highly

correlated with the activity of the highest signal-to-noise ratio

(SNR) units on an electrode (Nason et al., 2020). This is



Table 1. Abbreviations

Abbr. Complete Phrase Description

SBP Spiking Band Power Mean-absolute value of the 300–1,000 Hz filtered intracortical voltage

recording

MRS Middle/Ring/Small One of the finger dimensions investigated, in which the middle, ring, and

small digits moved together

R Rest A posture between flexion and extension where the monkey’s digits were

both in a resting state

IF Index Flexion A posture in which the index finger group was flexed and the MRS finger

group was at rest

IF+MF Index Flexion +

MRS Flexion

A posture in which both the index and MRS finger groups were flexed

MF MRS Flexion A posture in which the index finger group was at rest and the MRS finger

group was flexed

IE+MF Index Extension +

MRS Flexion

A posture in which the index finger group was extended and the MRS

finger group was flexed

IE Index Extension A posture in which the index finger group was extended and the MRS

finger group was at rest

IE+ME Index Extension +

MRS Extension

A posture in which both the index and MRS finger groups were extended

ME MRS Extension A posture in which the index finger group was at rest and the MRS finger

group was extended

IF+ME Index Flexion +

MRS Extension

A posture in which the index finger group was flexed and the MRS finger

group was extended
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particularly effective for electrodes with low SNRs, as the 300–

1,000 Hz band was found to balance the tradeoff between signal

and noise power (Irwin et al., 2016). Therefore, we constructed

tuning curves from this band that enabled us to perform the

same analyses on sharper tuning curves from primarily multiunit

electrode recordings. This resulted in more sources of unit activ-

ity than the limited quantities of sortable units on a Utah micro-

electrode array. As such, we obtained nearly 40% more tuned

neural features, from 59 of 115 tuned sorted units to 82 of 192

tuned SBP channels, though there may be substantial overlap

in information content between sorted units and SBP. In an anec-

dotal investigation, we also found that the cross-correlation of

SBP features is greater than that of sorted units, likely because

of the similarity in background noise (biological in the form of

low-amplitude neural spikes but possibly also thermal in origin;

Lempka et al., 2011). However, the effect of this appears minute,

as the tuning curves for these channels that are included in the

left plots of each pair in Figure S3, as well as in Tables S2 and

S3, showcase similar preferences to sorted units. Most channels

showed specificity to one muscle group and one finger group,

with more representation of MRS movements than index move-

ments inmonkey N and vice versa inmonkeyW. Lastly, similar to

the sorted units, almost all SBP channels showed Gaussian-

distributed power levels about their respective means for all

movements across all trials (14 of 192 channels were not nor-

mally distributed, p< 0:001, two-sided one-sample Kolmo-

gorov-Smirnov test, corrected for false discovery rate).

Finger-tuned neural activity is linear
To investigate how the neural activity relates to similar finger

movements, we began with a classical cosine tuning analysis.
Of the 92 tuned sorted units and 148 tuned SBP channels, 60

and 94, respectively, had significantly correlated sinusoidal fits

(p< 0:05, Pearson’s correlation, corrected for false discovery

rate). While sinusoidal tuning of a neuron to two-dimensional

movements of a single limb may be reasonable (Georgopoulos

et al., 1982), it may not be fundamental (Todorov, 2000), so the

same rationale may not apply to movements of multiple limbs

or, in our case, fingers. We have demonstrated that a linear Kal-

man filter enables online separation and individuation of two

finger dimensions, so we sought to characterize the goodness

of fit of several linear models.

First, we visually analyzed some tuning curves (like those in

Figure 1C and Figure S3) and noticed that the neural activity

for any particular movement appeared to have a similar activa-

tion level for the most similar movements (the closest move-

ments as plotted in Figures 1B and 1C). This motivated us to

calculate how well the neural activity for each movement could

linearly predict the neural activity for each additional movement,

independent of any cosine fits (see STAR Methods). Figure 5 il-

lustrates this, where the activity on each grid’s vertical axis is re-

gressed from all of the other activities as indicated on the hori-

zontal axis. In these grids, more yellow (or blue) cells indicate

greater (or more negative) regression coefficients for the activ-

ities on the horizontal axis to predict the activity on the vertical

axis. Generally, we found that the activity corresponding to

most movements could be strongly predicted by the activity of

its most related movements (the yellow off-diagonal bands

with substantial significance asterisks). For example, the SBP

activity corresponding to monkey N’s MRS-only flexion (MF)

can be predicted significantly by the activities corresponding

to IE+MF and index & MRS flexion (IF+MF). This suggests a
Neuron 109, 3164–3177, October 6, 2021 3169



Figure 4. Analysis of changes in SBP chan-

nel tuning through different stages of online

virtual hand control

(A) Preferred directions for the three normalized

SBP channels with the highest manipulandum

control magnitude on one day for each monkey.

Solid arrows with square markers are the preferred

direction and magnitude for each channel during

manipulandum control (Manip.), dashed arrows

with asterisk markers are the same during Kalman

filter control (KF), and dotted arrows with circle

markers are the same during ReFIT Kalman filter

control (RF).

(B and C) Changes in preferred direction (B) and

magnitude (C) of the 5 highest-magnitude manip-

ulandum control channels for each of the 6 days for

each monkey.
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number of potential linear models that explain the relationships

between similar behaviors of different finger groups, three of

which are investigated in Figures S3 and S4. Overall, this sug-

gests that cortical units represent the combined movements of

multiple finger groups in a similar way to how those same units

represent the individual movements of those finger groups.

However, the optimal combinations of similar movements

require that their contributions not necessarily be weighted

equally (as illustrated in Figure 5 and Figure S5), explaining

why the average model in Figure S4 failed to significantly predict

any tuning curves.

Linear models generalize to predict untrained finger
movements
From a decoding perspective, the similarity in neural activations

between individual and combined movements may shed some

light on the training data requirements for a high-performance,

multidimensional hand neural prosthesis. Specifically for our

two-finger task, in addition to addressing the linearity of neural
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activity, might a decoder model need to

be trained on both individual and com-

bined finger group movements, or is the

neural activity for one of the types of

movements sufficient to generate amodel

that encompasses both?

To answer that question, we split the tri-

als (1,018 from monkey N and 819 from

monkey W) into two subsets: one repre-

senting only individual finger groupmove-

ments and the other only combined

movements of both finger groups. Then,

we trained linear regressions with ridge

regularization on each set of trials to pre-

dict finger positions using exclusively

sorted units or SBP and tested them on

the corresponding sorted units or SBP of

the untrained set of trials. For example,

we first trained regressions on individual

movements of the index or MRS finger

groups and used the trained algorithm to
decode the combined movements of the index and MRS finger

groups and vice versa. Figure 6 illustrates the averaged pre-

dicted traces from split training for all trials of a given movement

overlaid on the averaged predicted traces for that same move-

ment using a decoder trained on all trials with cross-validation.

Both monkeys’ traces show that the split-trained decodes

mostly overlay the full-trained decodes, which suggests that

finger individuation information in the population’s neural activity

is preserved across movements, even for untrained behaviors.

However, there are differences during some of the predictions

(greater than a one-sided 95% confidence interval of a bootstrap

analysis on the errors). Differences in these predicted traces

align with the results found during the tuning curve analyses,

where the neural activity of particular movements requires un-

equal contributions of the component movements. As such, by

the assumption of linearity, there should be some loss in perfor-

mance associated with testing on untrained behaviors, which is

shown in Figure 6. Numerically, for the two monkeys ordered as

(N, W), the split-trained SBP decoders achieved (90.5%, 82.4%)



Figure 5. Predictability of the activity of

each movement from the activities of other

movements

The top and bottom rows of axes represent mon-

keys N and W, respectively, and the left and right

columns of axes represent SBP and sorted unit

results, respectively. A cell in each set of axes is

colored based on the predictor’s regression co-

efficient (horizontal axis) when predicting the ac-

tivity of a movement (vertical axis). Asterisks indi-

cate statistical significance (based on each

coefficient’s t score, p< 0:001).
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of the variance accounted for (VAF) by the full-trained SBP

decoder and (95.1%, 90.9%) of the correlation coefficient of

the full-trained SBP decoder. For the sorted unit decoders (Fig-

ure S6), the monkeys achieved (85.9%, 82.7%) of the VAF by the

full-trained sorted unit decoder and (92.7%, 90.9%) of the corre-

lation coefficient of the full-trained sorted unit decoder. We

included the full set of averaged decodes for the eight move-

ments using sorted units for bothmonkeys in Figure S6. To avoid

any confounds from averaged traces, we also included plots of

the individual trials’ decodes used to calculate the averages in

Figures S7 and S8.

Misaligned postural and movement tuning in finger-
related cortical units
It has been well described previously that finger postures can be

predicted online from cortical units better than their movements

(Aggarwal et al., 2013; Bansal et al., 2011; Okorokova et al.,

2020; Vargas-Irwin et al., 2010), but our brain-machine interface

used in Figure 2 and Figure 3 demonstrated high prediction per-

formance for movements, not postures. This raises an intriguing

question related to how finger-related cortical processing cir-

cuits and units simultaneously representmovement and posture.

Here, we provide a brief investigation into the similarity between

cortical tuning to finger postures and cortical tuning to finger

movements within our two-dimensional task.

To increase the range of postures themonkey explored at a va-

riety of velocities, wemodified the center-out task to be random-

ized, as illustrated in Figure 1A. In this random task, the starting
Neu
and ending target postures for each trial

were randomly determined along the

ranges of motion of each finger group,

not exceeding a separation of 50% of

the range of motion. On 1 exclusive day

for monkey N and across 2 consecutive

days for monkey W, we compared the

SBP movement tuning curves between

the center-out and random tasks, with ex-

amples shown in Figure 7A.We found that

many of the movement preferences did

not substantially change between tasks

(11/40 normalized SBP channels with

the highest trained linear regression

weights for monkey N and 18/40 for mon-

key W were significantly different in
preferred direction, 1,000-iteration bootstrap, p< 0:01, corrected

for false discovery rate). Of those that were significantly different

(four examples in Figure 7A), the preferredmovement visually ap-

peared similar, indicating that any significant differences in

preferred movement are likely to be small.

To compare movement tuning with postural tuning, Figure 7B

overlays the movement tuning curve on a two-dimensional

postural tuning surface, where each two-dimensional point is

colored based on the mean activity of that channel when the

finger groups were stationary at the indicated posture. In those

examples, many show alignments between the preferred move-

ment direction (black line out from center) and the preferred

postural direction (white line out from center), but surprisingly,

most do not show such alignment. Figures 7C and 7D present

some statistics for the 40 normalized SBP channels with the

highest trained regression weights for each monkey. 28 of mon-

key N’s 40 channels and 14 of monkey W’s 40 channels had a

difference between the preferred posture and preferred move-

ment greater than 30�, despite the distributions of differences

appearing normal about 0�. Furthermore, 31 of monkey N’s 40

channels and 19 of monkey W’s 40 channels had significantly

different preferred directions between posture and movement

(1,000-iteration bootstrap, p< 0:01, corrected for false discovery

rate), affirming misalignment in the preferred posture and the

preferred movement direction of a given cortical unit.

Investigating these example postural tuning surfaces further

suggests that the strongest cortical representation of the pos-

tures occurs at the limits of the range of motion. To characterize
ron 109, 3164–3177, October 6, 2021 3171



Figure 6. Offline ridge regression decoding

of all SBP channels, trained on either indi-

vidual or combined finger groupmovements

The central traces with shaded regions are the

average predicted behavior from all trials of the

indicated movement ± standard deviation, aligned

in time by movement onset (vertical gray line). In-

dividual movements (two left columns) were de-

coded using a regression trained on combined

movements (right two columns), and vice versa for

combined movements (Split Decode – dashed

traces). The ‘‘Full Decode’’ solid traces represent

the average decode given the full dataset to train

the regression, with cross-validation. Blue traces

correspond to the index group and yellow traces

correspond to the MRS group. The yellow or blue

lines near the top of each plot indicate significant

differences between the mean predicted positions

based on a bootstrap analysis of the differences

(>95% one-sided confidence interval).
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this, for each of the same 40 channels from each monkey, we

calculated two differences: the first between themaximum activ-

ity across all postures and the activity at rest and the second be-

tween the activity at rest and theminimum activity across all pos-

tures. Figure 7E illustrates these differences, indicating that

resting activity is much closer to theminimum than themaximum

activity across all postures (p< 0:01, one-sided two-sample t

test). This outcome suggests that cortical SBP channels are

generally positively tuned toward their preferred posture and

increase in activity as a posture changes from a resting state

toward its maximummagnitude. This outcome is further empha-

sized in Figure 7F, which plots the smoothed electromyographic

activity recorded from bipolar intramuscular electrodes within

monkey N’s forearm across all postures for each finger group.

These traces are generally maximized at the edges of the range

of motion with lower activity levels near 50% flexion, suggesting

that our estimated resting posture is relatively close to the mon-

key’s true resting posture.

DISCUSSION

Modern hand neural prostheses have not yet been able to repro-

duce individuated fingermovements across their entire ranges of

motion. Here, we demonstrated that a linear Kalman filter with or
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without intention retraining is adept at

decoding individuated, non-prehensile

movements of an index finger and a

MRS finger group in real time with high

performance, given sufficient number of

tuned units. We then showed that both

monkeys could maintain or substantially

improve their control performance using

the RFKF, which trained consistent

weights per input channel with the prior

decoder models. To address how this

complex task can be explained with a

linear decoder, we found that the neural
activity of any particular movement can be reliably predicted

from the activity of its related movements via a weighted sum,

providing an explanation for our high-performance linear decod-

ing model. We validated this claim by showing that combined

finger group movements can be predicted with a decoder model

trained on individual finger group movements and vice versa.

Only a slight performance loss was realized when comparing

predictions of decoders trained on the full set of behaviors and

decoders trained only on trials representing individual or com-

bined finger movements. Finally, using our non-prehensile task

allowed us to begin to uncover how cortical neural activity simul-

taneously encodes information about postures and changing

postures, suggesting that preferred movement directions and

preferred postures are frequently misaligned.

The complexity of our two-dimensional task proposes inter-

esting questions regarding the interpretations and intentions of

the monkeys performing it. By analyzing the tuning preferences

of cortical spiking activity during manipulandum, Kalman filter,

and RFKF control modes, it seems that cortical spiking activity

was very consistent between all three. Any changes in decoder

weights can likely be attributed to differences in the training

data between control methods rather than neurons altering their

tuning. Additionally, we proposed two frameworks for retraining

linear Kalman filters based on the monkeys’ intentions, one



Figure 7. Comparison between postural and movement tunings of SBP during the random task with manipulandum control

Dashed traces in all plots represent zero Z score.

(A) Tuning curves for three channels from each monkey. Asterisks indicate significant differences in preferred direction determined via 1,000-iteration bootstrap,

p< 0:01, corrected for false discovery rate.

(B) Movement tuning overlaid on postural tuning. The color at each location, or posture, is the SBP activity for the channel above extracted from the target holding

period (i.e., at zero velocity). The white line represents the preferred postural direction. The solid black trace represents that channel’s SBP activity formovements

in each direction, smoothed across 10% of the trials. The black scale bar represents 0.5 Z score and the black line from center indicates the preferred movement

direction.

(C–E) Statistics of the plots in (B) for the 40 most impactful channels to a linear regression decoder. (C) Comparison between preferred movement and postural

directions. Each line represents one channel. (D) Difference in angle between the preferred movement and postural directions. Each dot represents one channel.

The width of the violin at each angle difference indicates smoothed relative density. n.s., not significant; s., significant with p< 0:01, corrected for false discovery

rate. (E) Magnitude of difference between the maximum or minimum activity across all postures and rest. The numbers on top represent the median difference.

Asterisks indicate statistical difference, p< 0:01, one-sided two-sample t test.

(F) Eight channels of Z scored electromyography across all postures during the hold periods.
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assuming each finger is its own task for two total objectives and

the other assuming both fingers belong to one two-dimensional

task. While both improved decoding performance substantially,

neither strongly outperformed the other despite making clearly

different assumptions about the monkeys’ interpretations of

the task. As such, we think these data suggest two possible

truths: the nuances of intention-based recalibration methods

for the prediction of continuous two-finger movements will not

significantly impact performance, or the optimal recalibration

scheme for multiple finger movements remains unknown.
While others have found that decoding continuous postures

of the hand achieves greater performance than decoding the

movements (Aggarwal et al., 2013; Bansal et al., 2011; Okoro-

kova et al., 2020; Vargas-Irwin et al., 2010), we were nonetheless

able to achieve high performance by decoding the movements

directly. The non-prehensile task explored here enabled us to

begin to uncover the relationship between posture and move-

ment representations in single cortical units. We surprisingly

found that a unit’s preferred posture is not necessarily related

to that unit’s preferred movement direction. From a decoding
Neuron 109, 3164–3177, October 6, 2021 3173
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perspective, we hypothesize that this could explain the high-

performance control the monkeys achieved using the Kalman fil-

ters. If the SBP activity can simultaneously represent movement

along one behavioral dimension and posture along an orthog-

onal behavioral dimension, even simple decoders like linear re-

gressions can parse each channel to provide two pieces of help-

ful information. Substantial additional work will be necessary

to make such conclusions, particularly because the implants

used in our study heavily under-sample cortical populations.

After determining thatwecouldpredict the level of cortical acti-

vation during combined movements as weighted sums of the

activations during individual movements, independent of any

cosine fits, we validated this finding by predicting untrained,

combined finger movements using linear regressions trained

only on individual finger movements. We did not expect the posi-

tions predicted by the split decoder and the positions predicted

by the full decoder to be so similar, which they were in many

cases. We propose a few potential explanations. First, this could

be attributed to using behaviors of different amplitudes (±20%, ±

30%, and±40% from rest, seebehavioral task in STARMethods)

for each direction, such that when plotting just the middle ampli-

tude, the differences in predictions were negligible. Second,

since the tuning curves showed graded activations to several

related movements, combinations of the contributions from

different units and SBP channels may be sufficient to predict

movements of greatermagnitude. Third, finger-related neural ac-

tivitymayhaveaminor nonlinearity, either betweenunits andSBP

channels or with its relationship to the behavior, which has been

reported previously (Naufel et al., 2019).

Our real-time decoding results suggest that linear models can

accurately fit the movements of two independent fingers across

their full ranges of motion from cortical spiking activity. Our pre-

vious study originally suggested that this may require nonlinear

models (Vaskov et al., 2018). However, at that time, themonkeys

had not been trained to voluntarily individuate their finger move-

ments inmanipulandum controlmode andwere not penalized for

making undesired movements. In this manuscript, the monkeys

received substantial additional training without using the brain-

machine interface and with the necessary penalties for incorrect

movements to voluntarily individuate their fingers, indicating that

linear models are sufficient for fitting such movements. Linear

decoding of individuated finger movements has major implica-

tions for clinical neural prostheses. It has been previously sug-

gested by unconstrained finger movements that primary motor

cortex linearly predicts movements of the hand and fingers in

monkeys (Aggarwal et al., 2013; Ethier et al., 2012; Kirsch

et al., 2014; Okorokova et al., 2020) and humans (Ajiboye

et al., 2017; Wodlinger et al., 2015) when many of the DoFs

may move along very similar trajectories. Our results extend

these to show that linear models can accurately predict the

movements of two well-separated and independent finger

DoFs across their continuous ranges of motion. On the front of

individuation, some other groups have demonstrated that intra-

cortical arrays can classify movements of individuated digits in

humans (Bouton et al., 2016; Jorge et al., 2020). Our methods

and results, taking advantage of able-bodied primates and the

precise tracking of finger movements with the manipulandum,

bring the state-of-the-art in finger individuation from discrete de-
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coding to the realm of continuous decoding. Finger-related neu-

ral activity in primary motor cortex recorded with human-grade

Utah microelectrode arrays can be sufficient to individuate at

least two systematically separate DoFs using linear models.

Further, linear individuation of two DoFs within the hand, as

shown here, suggests the possibility of linear models sufficiently

individuating more of the 27 DoFs within the hand, as has been

hinted for low-magnitude movements (Kirsch et al., 2014).

To close the gap between the capabilities of hand neural

prostheses and the natural hand, further work is needed to

completely characterize the cortical representation of non-pre-

hensile movements as well as how cortex manages movements

that are simultaneously prehensile and non-prehensile (i.e., play-

ing a guitar or rapidly solving a puzzle cube). Co-contraction of

finger-related muscles makes characterizing the relationship be-

tween motor cortex activity and muscle activity difficult (H€ager-

Ross and Schieber, 2000; Lang and Schieber, 2004). While we

have briefly investigated how cortical spiking activity and the

electromyography of fingermuscles corresponds to our primarily

kinematic non-prehensile task, further investigation is required to

uncover the impact variable forces have on the relationships

characterized here. Usage of the thumb is particularly central

to this question, which will be difficult to address with macaques

because of the restricted functionality of their thumbs compared

to those of humans.

In terms of clinical viability of a neural prosthesis, where usage

outside of a laboratory, hospital, or rehabilitation environment is

the ultimate goal, the computational simplicity and generality of

linear models make them promising solutions. Decoders such as

the Kalman filter, Wiener filter, or ridge regression (Collinger

et al., 2013; Ethier et al., 2012; Malik et al., 2011) require surpris-

ingly few computations per iteration, opening the possibility of

implementation on portable or implantable devices. Additionally,

our results suggesting that the activities of individual movements

can be linearly combined into the activities of more complex

movements hint that decoders may not need to be trained on

the full suite of behaviors that they will be used to predict.

Instead, training decoders on orthogonal behaviors that span

the full behavioral space (such as a center-out task), with repre-

sentative neural activity, may be all that is required. This may cut

the 5–10 min of decoder training time drastically, potentially

streamlining the daily calibration of an outside-of-laboratory

neural prosthesis. Generally, the results presented here suggest

that naturalistic hand and finger neural prostheses with many

DoFs may be close to clinical translation using simple linear

decoder models and simple training procedures.

Though the results presented here show that linear decoding

models can predict the movements of individuated fingers with

high performance, the decoders were unable to achieve the level

of precision and control of the able-bodied hand. This is despite

the monkeys partially moving their fingers during brain control

mode, hypothetically to assist with controlling the virtual fingers.

To bridge that gap, decoders may need to account for a

nonlinear relationship between cortical activity and behavior.

Several nonlinear neural networks have been tested for brain-

machine interfaces (Hosman et al., 2019; Pandarinath et al.,

2018), though few have transitioned to testing online. An early

online recurrent neural network (Sussillo et al., 2012) showed
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that neural architectures have promise in online decoding. How-

ever, because of the heavy computational requirements of neural

networks per online prediction update, they must be optimized

and significantly compressed before being considered for out-

of-laboratory, portable, and implantable brain-machine inter-

faces. For example, the online recurrent neural network pre-

sented previously (Sussillo et al., 2012) required an estimated

144,000 to 225,000 multiplication operations per prediction up-

date for their two-dimensional center-out arm reaches task,

which is substantially more than the 505 multiplication opera-

tions required by a two-dimensional steady-state Kalman filter

similar to what was used in this work (Malik et al., 2011). There-

fore, it is valuable to characterize the limits of linear models in

discriminating neural states with truly simultaneous movement

of independent DoFs, as was presented with fingers in this work.

Importantly, the finger-related neural tuning models give

insight into how primary motor cortex may represent the activity

of a variety of relatedmovements. Most neural units presented in

this study did not show nonlinear specificity to one movement

but did show graded tuning to several related movements. In

fact, most of the tuning curves fit the classical cosine tuning

model demonstrated for arm reaches (Georgopoulos et al.,

1982) and finger movements (Georgopoulos et al., 1999).

Despite directional tuning with arm reaches fitting logically (the

angles and magnitudes of movement can all be referenced to

one limb in a radial task), we do not believe cosine tuning can

represent the movements of multiple fingers. The physiological

assumptions are broken by our task with two independent finger

dimensions that have their own relatively independent muscles.

Our task employs what are essentially two limbs (or fingers)

traversing their own spaceswith any given neuron capable of be-

ing tuned to both limbs, making musculoskeletal models seem

like the more relevant explanation for the underlying neural activ-

ity (Todorov, 2000).While it is intuitive to conclude that the cosine

tuning model expands to our two-finger task, we think our

regression models (linear regression [LR] and linear regression

with opposition [LRO] above) better explain how neurons can

simultaneously encode movements of multiple independent

limbs, though further investigation is required to investigate the

role of sensory feedback in these consistent and linear

relationships.

This raises a major question: how far can this weighted-

averagemodel be extended aswe considermoreDoFs?Consid-

ering the addition of the thumb,which is critical to hand use in pri-

mates and humans, the regressionsmay simply require fitting the

new similar movements (i.e., thumb flexion in the case of predict-

ing IF+MF+ thumb flexion). Further investigation will be required

to determine whether the regression model will hold in this case,

as perhaps the addition of DoFs will require an exponentially

increasing number of required component movements. For

example, for IF+MF+thumb flexion, perhaps all of IF, MF, thumb

flexion, IF+MF, IF+thumb flexion, and MF+thumb flexion may be

required for accurate activity prediction. On the surface, these

conclusions may appear to contrast with previous findings that

cortical units strongly represent muscular synergies within the

hand during awake use and during cortical microstimulation

(Overduin et al., 2014, 2015; Saleh et al., 2010). We hypothesize

that our findings complement this literature, where the shortcom-
ings of our linear models (i.e., reduced performance when pre-

dicting combined fingermovements with amodel trained on indi-

vidual movements) could possibly be better addressed with

synergistic modeling. An alternative hypothesis is that the linear

relationships we found between finger dimensions may arise

from an alternative operating mode of cortex during non-prehen-

sile movements, which may require more focused control to

execute. In both instances, further work will be necessary to

compare independent versus synergistic cortical models related

to fingermovements (Kirsch et al., 2014;Mollazadeh et al., 2014).

In our work and those just mentioned, it is clear that finger-

related cortical units often encode information about multiple

digits. Several groups have investigated how neurons tuned to

multiple behaviors respond to tasks requiring those behaviors

for different extremities and across various species (Cross

et al., 2020; Diedrichsen et al., 2013; Heming et al., 2019; Jorge

et al., 2020; Stavisky et al., 2019, 2020; Willett et al., 2020). One

way to explain this is that the neural activity underlying separate

and combined behaviors can be explained by multiple orthog-

onal subspaces. Here, we have evidence to suggest that linear

models can effectively combine at least two finger subspaces

that are substantially related. Provided sufficient quantities of

neurons representing those subspaces, we think compound

movements may continue to be well represented by linear com-

binations of their component subspaces, up to the full dimen-

sionality of the hand and beyond to the entire motor system.
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Deposited data

Data to reproduce analyses and figures Original data https://doi.org/10.7302/jnkz-az17

Experimental models: Organisms/strains

Macaca Mulatta World Primates, Inc. (Miami, FL, USA) N/A

Software and algorithms

MATLAB R2012b and R2018a The Mathworks, Inc. https://www.mathworks.com/products/

matlab.html

Simulink/xPC Target 2012b The Mathworks, Inc. https://www.mathworks.com/products/

simulink-real-time.html

Code to reproduce analyses and figures Original code https://doi.org/10.7302/jnkz-az17

Other

Cerebus Neural Signal Processor Blackrock Microsystems, LLC. https://www.blackrockmicro.com/

products/#data-acquisition-systems

Utah microelectrode arrays Blackrock Microsystems, LLC. https://www.blackrockmicro.com/

products/#electrodes
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Cynthia

Chestek (cchestek@umich.edu).

Materials availability
This study did not generate new unique reagents.

Data and code availability
d A subset of the data used in this study can be found online as of the date of publication (https://doi.org/10.7302/jnkz-az17). Due

to the size of the complete set of data, additional data used in this study will be shared by the lead contact upon reasonable

request.

d All original code has been deposited at https://doi.org/10.7302/jnkz-az17 and is publicly available as of the date of publication.

DOIs are listed in the key resources table.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Nonhuman primates
All procedures were approved by the University of Michigan Institutional Animal Care and Use Committee.

All experiments were conducted with two monkeys (male,macaca mulatta). Monkey N was age 7 to 8 years and weighed between

12.7 and 16.8kg (weight range due to the extendedCOVID-19-related experiment break) during the period of data collection. Monkey

W was age 8 years and weighed between 13.1 and 14.1kg during the period of data collection. The subjects were fed a standard

laboratory animal diet with supplemental fresh fruits and vegetables. When possible, the animals were pair-housed, and were always

provided frequent access to a variety of enrichment, including food puzzles, chewing toys, and television.

METHOD DETAILS

Implants
We implanted two male rhesus macaques (monkey N age 7 to 8, monkey W age 8 at the time of data collection), with Utah micro-

electrode arrays (BlackrockMicrosystems, Salt Lake City, UT, USA) in the hand area of primarymotor cortex, as described previously
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(Irwin et al., 2017; Vaskov et al., 2018). Pictures of the implants are illustrated in Figure 1D. Only motor cortex arrays were used in this

study. Monkey N’s motor cortex arrays are two 64-channel arrays, explaining why they are smaller in area than his sensory array.

Monkey N was between 117 days and 708 days post-cortical implant for all data analyzed. Monkey W was between 78 days and

100 days post-cortical implant for all data analyzed.

In a separate surgery, we implanted monkey N with chronic bipolar intramuscular electromyography recording electrodes (similar

to PermaLocTM electrodes, Synapse Biomedical, Inc., Oberlin, OH, USA). After induction of anesthesia, the monkey was positioned

supine for easy access to his left arm. A single radial-volar incision was first used to access flexor muscles of the deep and superficial

compartments of the forearm, following which a single dorsal-ulnar incision was used to access the extensor muscles of the forearm.

For eachmuscle of interest, intra-operative neural stimulation of the muscle was performed to isolate finger-related and wrist-related

actions of interest. Electrodes were secured intramuscularly using non-absorbable monofilament suture at a location in close

proximity to the entry point of the innervating nerve. In instances where on neural stimulation, better isolation of intended muscular

movement occurred at a site distal to the identified neural entry point, an additional electrode was secured at this distal site. Isolated

muscles included the flexor digitorum profundus-index (1x near the nerve entry point, 1x distal near the wrist), flexor digitorum pro-

fundus-MRS (1x), flexor pollicis longus (1x, unused in this study), flexor carpi radialis (1x), flexor carpi ulnaris (1x), extensor digitorum

communis (1x), extensor indicis proprius (1x), extensor carpi radialis brevis (1x), and extensor pollicis longus (1x, unused in this

study). After all electrodes were secured to the muscles of interest, electrode wires were tunneled proximally to the upper arm using

an incision on the posterior upper arm, posterior to the elbow, ensuring sufficient redundancy and laxity on the lengths of the wires to

account for motion at the elbow. An additional interscapular incision was used as an exit site for the tunneled wires which were then

connected to the standard PermaLocTM connector. All incisions were closed in a layered fashion using absorbable sutures. Following

the implantation of these electromyography recording electrodes, the monkey persistently wore a Primate jacket (Lomir Biomedical,

Inc., Malone, NY, USA). Monkey N was 36 days post-arm-implant for all electromyography data analyzed.

Feature extraction
All processing was done in MATLAB versions 2012b or 2018a (Mathworks, Natick, MA, USA), except where noted.

Threshold crossing rates were processed and synchronized in real-time during the experiments (see the subsequent section for a

description of data flow). We configured the Cerebus neural signal processor (Blackrock Microsystems) to extract voltage snippets

that crossed a �4.5 times the root-mean-square (RMS) threshold, customized to each channel. Then, these waveforms were

streamed to a computer running xPC Target version 2012b (Mathworks), which logged the source channel of each spike and the

time of each spike’s arrival relative to all other real-time experimental information. Both monkeys had 96 channels of threshold

crossing rate data analyzed, though for closed-loop decoding, channels were masked to those that were not clearly disconnected

and had contained morphological spikes during the experiment or at some time in the past (see SBP section below for reasoning).

Wealsoextracted sortedunit firing rates for offlineanalyses.We imported the relevant broadband (0.1Hz – 7.5kHzsampled at 30kSps)

recordings intoOfflineSorter version3.3.5 (Plexon,Dallas, TX,USA). Then,wehigh-passfiltered the recordingswitha4-poleButterworth

filter with a cutoff frequency set to 250Hz. To sort clear units, we used the threshold level determined during the experiment by the Cer-

ebus at�4.5RMS, then eliminated clearly artifactual threshold crossings. Then, we sorted the remaining spikes crossing the threshold

individually and in combination with principal component analysis, clusters as determined by k-means or Gaussianmixture model clus-

tering (as implemented inOffline Sorter), and visual inspection. The spike timings of each sorted unit were then re-synchronized with the

experimental data offline. After all sorting, monkey N had 47 units and monkey W had 68 sorted units.

Spiking band power was also acquired in real-time by the same experimental system as threshold crossing rates. We configured

the Cerebus to band-pass filter the raw signals to 300-1,000Hz using the Digital Filter Editor feature included in the Central Software

Suite version 6.5.4 (Blackrock Microsystems), then sampled at 2kSps for SBP. The continuous data was streamed to the computer

running xPC Target, which took the magnitude of the incoming data, summed all magnitudes acquired in each 1ms iteration, and

stored the 1ms sums as well as the quantity of samples received each 1ms synchronized with all other real-time experimental infor-

mation. This allowed offline and online binning of the neural activity with 1ms precision. As with threshold crossing rate, we masked

channels for closed-loop decoding to those that were not clearly disconnected and had contained morphological spikes during the

experiment or at some time in the past, as SBP could possibly extract firing rates of low-SNR units remaining represented on such

channels (Nason et al., 2020).

Experimental setup
The experimental apparatus used for these experiments is the same as described previously (Irwin et al., 2017; Nason et al., 2020;

Vaskov et al., 2018). Briefly, themonkeys’ Utah arrays were connected to the patient cable (BlackrockMicrosystems) and raw 0.1Hz-

7.5kHz unfiltered broadband activity at 30kSps, 300-1,000Hz activity at 2kSps, and threshold crossings at a �4.5RMS threshold

were extracted from the neural recordings by the Cerebus for storage. The 2kSps and threshold crossing features were streamed

to the xPC Target computer in real-time via a User Datagram Protocol packet structure. The xPC Target computer coordinated

several components of the experiments. It binned threshold crossings and SBP in customizable bin sizes, coordinated target pre-

sentation, acquired measured finger group positions from one flex sensor per group (FS-L-0073-103-ST, Spectra Symbol, Salt
Neuron 109, 3164–3177.e1–e8, October 6, 2021 e2
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Lake City, UT, USA), and transmitted finger positions alongwith target locations to an additional computer simulatingmovements of a

virtual monkey hand (MusculoSkeletal Modeling Software) (Davoodi et al., 2007). Task parameters, states, and neural features were

stored in real-time for later offline analysis.

Behavioral task
We trained monkeys N andW to acquire virtual targets with virtual fingers by moving their physical fingers in a more complex version

of the two-finger task we published previously (Nason et al., 2020). During all sessions, the monkeys sat in a shielded chamber with

their arms fixed at their sides flexed at 90 degrees at the elbow, resting on a table. The monkeys had their left hands placed in the

manipulandum described previously (Vaskov et al., 2018). Each monkey sat in front of a computer monitor displaying the virtual hand

model and targets described previously. The monkeys were trained to move one finger group independent of another finger group.

Monkey N preferred to perform the taskwith his index finger individuated from hisMRS fingers, butmonkeyWpreferred his index and

middle fingers to be individuated from his ring and small fingers. The fingers of the virtual hand were split into an index finger group

and a MRS finger group for both monkeys, where the fingers of each group moved together. Monkey N’s index finger actuated the

virtual index finger and hisMRS fingers actuated the virtual MRS fingers. InmonkeyW’s case, themovements of his index andmiddle

finger actuated the virtual index finger while the movements of his ring and small fingers actuated the virtual MRS fingers. We later

validated anecdotally that there was no impact on performance due to the mismatch between monkey W’s preferred finger split and

the split of the virtual fingers by training monkey W to split his fingers in the same way as monkey N (index and MRS) and the vir-

tual hand.

Each trial began with one spherical target appearing along the one-dimensional movement arc of each finger group, for a total of

two simultaneous targets. Each target occupied 15% of the full arc of motion of the virtual fingers, except where indicated otherwise.

Targets were presented in one of two patterns.

The first pattern represents a classical center-out-and-back pattern when viewed from the two-dimensional behavioral space illus-

trated in Figure 1B (Georgopoulos et al., 1982). Every other target was presented at a rest position, 50% between full flexion and full

extension. The non-rest targets were pseudo-randomly selected from the postures in Figure 1B and a magnitude of movement was

pseudo-randomly chosen (+20%, +30%, or +40% from rest). IE+MF and IF+ME postures did not have a +40% movement magni-

tude, as that was too far of a split in the finger groups to be performed reliably.

The second pattern represents random targets by pseudo-randomly placing targets for each finger group. First, a pseudo-random

finger separation fsepwas generated between�50%and +50%of the range of motion of each finger group. Then, a pseudo-random

central position cpos was generated in the range of abs(fsep)/2 to 1-abs(fsep)/2. The index finger group was given a target at

cpos+fsep/2 and the MRS finger group was given a target at cpos–fsep/2.

The presentation order of the targets was random, though the same order was repeated across sets of trials. Approximately one

year after data collection, several experiments with a true-random order of the targets validated no change in performance, including

Video S3. For a successful trial, the monkey was required to move the virtual fingers into their respective targets and remain there for

752ms continuously in manipulandum control or 502ms continuously in brain control, except where otherwise noted. The additional

2ms was an artifact of a minor but long-standing bug that required targets be held for 2ms longer than requested. Upon successful

trial completion, the monkeys received a juice reward. Closed-loop decoding experiments used center-out target patterns without

the IE+MF and IF+ME posture styles, as the data was collected prior to conception of those postures. At a later time, we trained and

tested a ReFIT Kalman filter on the full set of targets in the center-out style (including the IE+MF and IF+ME targets). Video S3

validates that monkey N maintained high-performance despite the addition of these two posture styles. Tuning analyses used

both center-out target patterns and random target patterns.

Neural activity normalization
All of our tuning analyses used normalized neural activity. For each sorted unit or SBP channel, we computed the mean, standard

deviation, and root-mean-square activity level across the entire experiment in 300ms bins. Then, we eliminated all trials that were

not center-to-out (unless the analysis used the random target pattern), that were unsuccessful, or had a duration longer than

3.0 s for monkey N, indicating possible distraction, struggle, or other factors that may confound tuning analyses.

For each trial, we estimated the onset of native movements by the following procedure. First, for all finger groups that were not in

the target at the beginning of the trial (which could happen in the random target pattern), we found each finger group’s main move-

ment time, calculated as the first point in time at which the finger group passed 20% of the distance from its starting position to its

ending position. Then, we found each finger group’s movement onset time, calculated as the point in time of the maximum jerk, or

maximum change in acceleration, for each finger group prior to that group’s main movement. The trial’s movement onset time was

selected as the earliest movement onset time across the active finger groups, where an active finger group is onewhich starts outside

of its corresponding target. For trials in which all finger groups had starting positions within their corresponding targets, all finger

groups were considered active. We found this procedure matched estimated movement onsets visually well for nearly all observed

trials.

Given the movement onset, then for each included trial, we extracted the activity for each sorted unit or SBP channel from the

period of time that maximized tuning depth for each analysis for each monkey, as the analyses depended on representative tuning

curves. In all cases, we analyzed 300ms of activity about movement onset with a starting time between �100 to +100ms relative to
e3 Neuron 109, 3164–3177.e1–e8, October 6, 2021
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movement onset. The specific starting times used for each analysis are detailed in that analysis’ methods section below. We then

normalized thesemeasurements by subtracting the unit’s or SBP channel’smean then dividing by the standard deviation. This results

in one normalized level of activity for each unit or SBP channel for each trial.

Computation of true and predicted tuning curves
Wecalculated tuning curves for eachmonkey using one isolated experiment during whichmonkey N performed 2,130 andmonkeyW

performed 1,836 manipulandum control trials of the center-out-and-back task, with monkey W performing the task with targets en-

compassing 16.5% of the range of motion of each finger group. We eliminated trials that were not center-to-out, that were unsuc-

cessful, and, for monkey N only, that had a duration longer than 3.0 s, then calculated themean activity for eachmovement direction.

For each monkey, we selected a start time relative to movement onset for the 300ms analysis window that maximized the tuning

depth, measured as the difference between maximum and minimum mean activities across all movements. We found this start

time to be 50ms after movement onset for monkey N and 100ms prior to movement onset for monkeyW. Then, we further eliminated

all trials that hadmovement onset times less than the analysis window’s start time, leaving 1,025 trials for monkey N and 819 trials for

monkey W. All of these trials were used for the ridge regression analyses (see section below), while only trials in which the monkeys

moved their fingers ± 30% from rest were used for tuning analyses to guarantee consistency in behavior and ideally consistency in

neural activity (all of monkeyW’s trials were ± 30% from rest). We did not use the ± 40% trials as we did not offer ± 40% targets for the

IE+MF nor the IF+ME postures due to difficulty of acquisition, leaving ± 30% the greatest magnitude of movement with targets pre-

sented for all postures.

To compute sinusoidal tuning curves, we first fit the amplitude, phase, and offset by linear regression aswas done by others (Ches-

tek et al., 2007). However, we found that this resulted in few sinusoidal tuning curves that correlated significantly with the measured

tuning curves (26 of 148modulated SBP channels and 31 of 92modulated sorted units were significantly correlated). We anecdotally

found this was a result of the period of the optimal tuning curves being unequal to 360 degrees. Therefore, to better represent sinu-

soidal tuning curves, we fit the amplitude, period, phase, and offset by using MATLAB 2018a’s fminsearch function minimizing the

total squared error over a maximum 1,000,000 iterations. These tuning curves yielded the results included above.

We tested three models of predicting the trial-averaged firing rates of all units corresponding to some movement given the trial-

averaged activity of the units for other movements. The first naively assumes that the firing rates corresponding to one movement

is the average of the firing rates of its component movements (i.e., the activity of IF+MF is the average of the activity of IF and the

activity of MF). The second and third assume that the firing rate n of some movement m is a weighted sum of the firing rates corre-

sponding to the other movements along with some constant offset c0. This can be modeled by the following linear equation for one

channel with an arbitrary k number of movements:

nm = c0 +
X

i˛½1;k�;ism

cini

Let nm;u be the firing rate from neural unit u for movementm. ThenNm is the vector of firing rates from all neural units corresponding to

movementm andND is the training data matrix containing firing rates from all neural units corresponding to all of the movements that

are not movement m:

Nm =

2664 nm;1

nm;2

«

3775
ND =

2664 n1;1 n2;1 / nm�1;1 nm+ 1;1 / 1
n1;2 n2;2 / nm�1;2 nm+ 1;2 / 1
« « / « « 1 «

3775
As such, we can solve for the vector of coefficients for one movementm by solving the following linear regression equation using the

data given by all valid units:

Cm = NT
D

�
NDN

T
D

��1
Nm

The threemodels we tested assumed that nm is composed of some amounts of its component movements, which are nm�1 and nm+ 1

in this formulation. The first model (Avg) assumes nm is the average of nm�1 and nm+1, requiring no regression to learn weights, as

illustrated in Equation 1 below:

nm =
nm�1 + nm+ 1

2
(Equation 1)
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The second model (LR) assumed that nm is composed of some learned weighted amounts of nm�1, nm+1, and a learned offset, as

illustrated in Equation 2 below

nm = cm�1$nm�1 + cm+1$nm+ 1 + c0 (Equation 2)

where ci are weights learned by regression. Finally, the third model (LRO) assumed that nm is composed of some learned weighted

amounts of nm�1, nm+ 1, a learned offset, and the firing rates corresponding to the opposite movement (included as a regression

method due to the weak yellow diagonal four diagonals off of the main diagonal in the grids of Figure 5), as illustrated in Equation 3

below:

nm = cm�1$nm�1 + cm+ 1$nm+ 1 + cm+ 4$nm+ 4 + c0 (Equation 3)

where cm+ 4 is the weight learned for the opposite movement, in this case + 4 due to there being eight movement directions in our

center-out task. We performed these same procedures using SBP in place of the firing rates.

We predicted the neural activity for each movement based on the two regression models with leave-one-out cross-validation on

the neural features. The cross-validated linear models for predicting sorted unit activity were trained only on the other sorted units

within each monkey. The same was done for SBP channels. Sorted units and SBP channels that had no significantly tuned move-

ments according to a two-sample two-tailed Kolmogorov-Smirnov test (p>0:001) and sorted units with mean firing rates under

2Hz were excluded from analyses. This left a total of 148 SBP channels (92 from monkey N and 56 from monkey W) and 92 sorted

units (35 from monkey N and 57 from monkey W). Significance of the predicted tuning curves was determined using the p values

associatedwith correlation against the null hypothesis that a predicted tuning curvewas not significantly correlatedwith itsmeasured

tuning curve, corrected for false discovery rate.

Computation of movement and postural tuning
We calculated movement and postural tuning curves for monkey N using one isolated manipulandum-control experiment and for

monkeyWusing two isolatedmanipulandum-control experiments across two consecutive days. After eliminating unsuccessful trials,

we found that analysis window start times of 100ms after movement onset for monkey N and 0ms after movement onset for monkey

W optimized tuning depth. Eliminating trials with movement onset times less than eachmonkey’s analysis start time resulted in 1,353

center-out trials and 870 random trials for monkey N and 452 center-out trials and 352 random trials for monkey W.

To compare center-out and random tuning curves, we computed the preferred direction of each channel during each task via the

following procedure. First, we normalized each channel’s SBP activity across each set of trials in 100ms bins, then we computed the

Kalman filter observational model (the C matrix in the section below) for each task. We used the coefficients trained for each finger

group’s velocity to estimate each channel’s preferred movement direction within each task, then found the difference in angle be-

tween the preferred movement directions. To determine significance, we performed a bootstrap analysis similar to that performed

previously (Chestek et al., 2007). Briefly, we took the normalized SBP activity from each task computed before, then resampled equal

quantities of samples from the center-out and the random set of trials twice. We trained two Kalman filter observational models and

calculated each channel’s difference in preferredmovement direction between the two trainedmodels. We performed this procedure

1,000 times to estimate the null difference distribution for each SBP channel, then calculated the p value of each channel’s true dif-

ference in preferred movement direction between center-out and random tasks based on those distributions. We performed false-

discovery rate corrections across the 80 channels with the largest velocity coefficients across monkeys, 40 from each.

The postural tuning surfaces were computed from the normalized SBP activity during the target acquisition periods. For monkey N,

the activity was extracted from 252ms to 752ms after onset of the target acquisition period. For monkey W’s center-out trials, the

activity was extracted from 102ms to 302ms after onset of the target acquisition period (which was 302ms in duration), and for

his random trials, the activity was extracted from 252ms to 502ms after onset of the target acquisition period. These time periods

were chosen based on the task parameters to maximize the amount of SBP activity analyzed but keep the true finger velocities near-

est to 0.We sorted all trials into postural bins of width 10%, ranging from 0% to 100%flexion of each finger group, based on themean

posture of each trial during the same analysis periods detailed above. Each channel’s SBP activity was averaged across all trials

belonging to each postural bin, generating the postural tuning surface. The generated postural tuning surfaces were plotted using

MATLAB’s pcolor function and linearly interpolated between neighboring postures. The preferred postural direction for each channel

was calculated from the Kalman filter observational model’s two trained coefficients for finger position.

To determine if the preferred postural direction was significantly different from the preferred movement direction, we performed a

1,000 iteration bootstrap analysis similar to what was detailed previously. Instead of computing preferred postural and movement

directions from two different resamples of the random task data, the bootstrap preferred postural and movement directions were

computed from the same set of resampled data to estimate the null difference distribution.

Decoding of neural activity
We executed two different algorithms to predict finger movements from neural activity.
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Closed-loop Kalman filtering
First, to assess neural prosthetic performance in application, we gave the monkeys visual feedback of the decoders’ outputs during

the behavioral task. For each closed-loop experimental session, the monkeys began by completing at least 350 trials with the virtual

hand controlled directly by the movements of the manipulandum. The monkeys were required to acquire and hold the targets for

752ms continuously for a successful trial with a 10 s trial timeout. The behavioral data (i.e., one-dimensional positions per finger

group) were measured synchronously with the non-normalized neural features by the xPC Target computer. Then, we trained a

standard position/velocity Kalman filter on this data binned at 32ms (which we found superior to other tested bin sizes), as described

previously (Irwin et al., 2017), using MATLAB version 2012b (Mathworks). For predictions of two finger dimensions, the Kalman filter

assumed a kinematic state of one position and one velocity for each group:

xt =

2666666664
PI

PMRS

VI

VMRS

I

3777777775
The Kalman filter predicts the state at each timestep based on an optimal combination of two different predictions. The first is a

prediction made based on the state of the previous timestep, and the second is a prediction made based on a comparison between

the measured neural activity and that predicted by the predicted kinematics of the current timestep. This can be summarized by the

following equations: bxtjt�1 = Abxt�1
bxt = bxtjt�1 + Ktðyt �Cbxtjt�1Þ
where yt is a vector of neural features at the current time step, Kt is the Kalman gain balancing how much the neural activity should

contribute to the final prediction, A is the state transition matrix, and C is a linear regression trained to convert kinematics to neural

features. Training of thesematrices was performed as described previously (Irwin et al., 2017) but extended to account for both index

and MRS. The A matrix was fit to take the following form:

A =

2666666664
1 0 1 0 0
0 1 0 1 0
0 0 AVIVI

AVMRSVI
0

0 0 AVIVMRS
AVMRSVMRS

0
0 0 0 0 1

3777777775
After training the standard Kalman filter, we computed the Kalman filter’s predictions in real-time to actuate the virtual hand inde-

pendent of themonkeys’ physical movements. For successful acquisition, themonkeys were required to acquire and hold the targets

for 502ms continuously with a 10 s trial timeout. The positions displayed with the virtual fingers were computed by adding the pre-

dicted velocity to the previous time step’s predicted position, with an initial position taken as the true position of the fingers at the time

the Kalman filter began running. Monkey N executed some brain control trials with his physical fingers restricted frommovement and

others without restriction. Monkey W did not have his finger movements restricted during brain control mode. Both monkeys used

both the standard Kalman filter and the dual-stage training ReFIT Kalman filter. To train the ReFIT Kalman filters, the monkeys used

the standard Kalman filter in closed-loop for at least 250 trials with their fingers unrestricted. Then, we used one of three intention-

training paradigms to train the ReFIT Kalman filter.

1. The first is a two-dimensional form of the ReFIT Kalman filter we previously proposed (Vaskov et al., 2018), where we negated

the incorrectly predicted one-dimensional velocity for each finger and set the velocities of fingers within their targets to zero

before recomputing the regression matrices. This option assumes the monkey viewed the task as two separate one-dimen-

sional problems and is highly related to the visual cues.

2. The second training method is very similar to the original ReFIT Kalman filter training method (Gilja et al., 2012). In the two-

dimensional behavioral space illustrated in Figure 1B, we rotated the net two-dimensional velocity toward the target’s center

for every trial and calculated the component index and MRS velocities from the net velocity. This option assumes the monkey

viewed the task as one two-dimensional problem and is highly related to our two-dimensional space in which the two one-

dimensional targets are mapped to one two-dimensional target.
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3. The third training method combines the first two. We concatenated the recalibrated predictions from each method to create a

2n3d predictionsmatrix, where n is the number of timesteps in the training data and d is the dimensionality of the behavior (5 in

this case). Then, we concatenated one copy of the n3f neural feature matrix (f being the number of features) to match the size

of the first dimension of the predictions matrix to recompute the regressions. This option assumes the monkey viewed the task

as some combination of two one-dimensional tasks and one-two dimensional task, which reflects some of the behavior seen in

Figure S1.

After training the ReFIT Kalman filter, we again computed the predictions in real-time using the new model and delivered visual

feedback of the predictions to the monkey by actuating the virtual hand.

We additionally sought to validate that inclusion of the IF+ME and IE+MF posture styles did not result in poor closed-loop control

performance. Video S3 illustrates exemplary but near typical performance from monkey N using the ReFIT Kalman filter (type 2)

trained and tested on the center-out task including IF+ME and IE+MF targets. The differences between the ReFIT Kalman filter

used in Video S3 and the ReFIT Kalman filter described previously are that the sum of the previous time step’s predicted position

and the current time step’s predicted velocity was used to update the positions of the virtual fingers as well as the positions in

the Kalman state, there were 0 bins of lag included online (Irwin et al., 2017), and during ReFIT retraining the velocities were zeroed

when inside the target.

Stability of trained Kalman filter parameters
To compare the least-squares regression parameters that best represent the neural activity in each type of virtual hand control (ma-

nipulandum, Kalman filter, and RFKF), we computed preferred movement directions for each SBP channel. First, we normalized the

SBP activity during each control method, then computed the regression weights that would transform the kinematic measurements

into normalized SBP activity. In the cases of the Kalman filter and RFKF, the predicted kinematics were intention-corrected via rota-

tion (type 2) as described in the previous section prior to regressing. The preferred movement directions for each SBP channel under

each control method were extracted from the index and MRS velocity regression parameters.

Open-loop ridge regression
When trying to gauge the generalization of linear models to untrained finger behaviors, we used ridge regression (with a regularization

term l = 0:001) to predict continuous finger positions as it does not depend on iteration for continued stability. The neural activity was

binned every 100ms and 10 total bins were used per feature: one for the current time step and one for each of the previous 9 time-

steps for a total 1 s of neural data. Neural activity from before each trial’s beginning was assumed to be 0 for sorted units and each

channel’s root-mean-square value for SBP, as had been done previously (Chestek et al., 2007).

After sorting all trials as previously described, we split them into two sets: individual and combined finger groupmovements. Then,

we trained a regressionmodel on one set and tested on the other. Additionally, we performed 10-fold cross-validation on the full data-

set to gauge information loss without training on the full set of behaviors. To compare these, we performed a 100,000 iteration boot-

strap analysis on the errors between the two decodes for all time points in each experiment. Then, if the error for any averaged sample

was greater than the upper one-sided 95% confidence interval resulting from the bootstrap analysis, the split decode was deemed

significantly different from the full decode. Correlation coefficients were computed as Pearson’s r between the predicted and

measured behavior, and variances accounted for were computed according to the following equation:

VAF =

 
1�

var
�
y � by�

varðyÞ

!

where y is the measured ground truth behavior, by is the predicted behavior, and VAF is the variance of y accounted for by by. The
variance accounted for percentages, as written in the results, were taken as the ratio between the variance accounted for by the

split-trained decoders divided by the variance accounted for by the full-trained decoder, multiplied by 100. The same computation

was executed for the correlation coefficient ratios.

Performance metrics
To evaluate performance, we used four metrics. First, success rate was computed as a percentage of the total number of trials for

which the monkeys successfully acquired each trial’s targets before the trial timed out (10 s).

Second, path efficiencywas computed as the straight-line distance between the starting position and the nearest point in the target

in two-dimensional space (Figure 1B) divided by the total distance that was traveled in two-dimensional space until the first instance

both finger groups were simultaneously in their respective targets. We implemented this metric to estimate the efficiency of all move-

ments, though it could be used to assess the simultaneity of combined finger group movements. We have included Figure S1 to

indicate the average behavioral trajectories in two-dimensional space and demonstrate how simultaneous were the monkeys’

multi-finger movements. Trials in which both finger groups were never in their respective targets simultaneously were given a

path efficiency of 0%. Trials where the starting positions were inside the targets and successful trials immediately following failed

trials were excluded from path efficiency analyses to avoid artificially increasing path efficiency.
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Third, time to target was computed as the total time between a trial’s beginning and the first instance both finger groups were

simultaneously in their respective targets. Trials in which both finger groups never simultaneously reached their respective targets

were given a time to target equal to the trial timeout period (10 s). Successful trials immediately following a failure and trials where

all finger groups began inside their respective targets were excluded from time to target analyses to avoid artificially decreasing

mean time to target.

Fourth, orbiting time was computed as the time between the first instance both finger groups were simultaneously in their respec-

tive targets and the end of the trial, minus the hold time. Orbiting time is a measure of the stopping ability of a controller, where the

optimal orbiting time of 0 smeans the target was acquired and held beginning with the first instance both fingers were in their respec-

tive targets. To avoid artificially lowering themean orbit time, unsuccessful trials that had a corresponding time to target later than 9 s

into the trial were excluded from orbiting time analyses. Trials that did not have an instance where both finger groups were simulta-

neously in their respective targets, trials immediately following failed trials, or trials where the starting positionswere inside the targets

were also excluded from orbiting time analyses as these types of trials could artificially decrease the mean orbiting time.

We opted to exclude the hold time from the calculations so that the computed metrics better represented the time taken to reach

the targets. Note that we required the monkey to hold targets for longer time periods when in manipulandum control mode so that

there would be sufficient representation of neural data corresponding to stopping when training the online decoder.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical analysis for closed-loop decoding experiments (Linear Two-Finger Decoding in Real-Time in the Results section) used a

two-sided two-sample t test between trial statistics in MATLAB with significance level p< 0:001. Statistical analysis for determining

the normality of neural activations for finger movements (Cortical Neurons Show Specificity to Individual Contractions in the Results

section) used a two-sided one-sample Kolmogorov-Smirnov test in MATLAB with a significance level p< 0:001, corrected for false

discovery rate. Statistical analysis for determining movement tuning (Finger-Tuned Neural Activity Is Linear in the Results section)

used a two-sided two-sample Kolmogorov-Smirnov test compared to the mean activity across the experiment in MATLAB with sig-

nificance level p< 0:001, corrected for false discovery rate. Statistical analysis for fitting cosine and regression tuning curves to

measured tuning curves (Finger-Tuned Neural Activity Is Linear in the Results section) used the p-values associated with Pearson’s

correlation computed in MATLAB with a significance level p<0:05, corrected for false discovery rate. Statistical analysis for deter-

mining differences between the split-data decoders and the full-data decoders (LinearModels Generalize to Predict Untrained Finger

Movements in the Results section) used a 100,000 iteration bootstrap analysis on the errors between the two decoders in MATLAB

with a significance level of greater than a one-sided 95% confidence interval. Statistical analysis for determining differences in tuning

curves between the center-out and random tasks (Misaligned Postural and Movement Tuning in Finger-Related Cortical Units in the

Results section) used a 1,000 iteration bootstrap analysis on the preferred directions for each channel determined via regression with

a significance level of p<0:01, corrected for false discovery rate among the 40 most-strongly-tuned channels across both monkeys

(80 total). Statistical analysis for determining differences between preferred posture and preferred movement direction (Misaligned

Postural and Movement Tuning in Finger-Related Cortical Units in the Results section) used a 1,000 iteration bootstrap analysis on

the preferred postures and movement directions for each channel determined via regression with a significance level of p< 0:01,

corrected for false discovery rate. Statistical analysis for determining differences between maximal and minimal posture-related ac-

tivations of channels (Misaligned Postural and Movement Tuning in Finger-Related Cortical Units in the Results section) used a one-

sided two-sample t test with a significance level of p< 0:01.
Neuron 109, 3164–3177.e1–e8, October 6, 2021 e8



Neuron, Volume 109
Supplemental information
Real-time linear prediction of simultaneous

and independent movements of two finger groups

using an intracortical brain-machine interface

Samuel R. Nason, Matthew J. Mender, Alex K. Vaskov, Matthew S.Willsey, Nishant Ganesh
Kumar, Theodore A. Kung, Parag G. Patil, and Cynthia A. Chestek



Supplementary Information

 
  

Supplementary Figure 1. Averaged example behaviors for each monkey (N left, W right), 
related to STAR Methods. Each two-dimensional trace is plotted as MRS flexion percentage 
versus index flexion percentage, in the same space as Figure 1B. Targets are the dashed boxes, 
color coordinated to the traces corresponding to attempts to acquire that target. The letters to the 
top left of each target detail the movement type in the two-dimensional space, and the numbers 
to the top right indicate the number of trials used to obtain each averaged trace. The behaviors to 
generate this figure were from the same data sets upon which the tuning analyses were 
performed. Note that most trajectories are directed towards the targets as if this were one two-
dimensional task, but the IF+ME and IE+MF trajectories for both monkeys and the extension 
trajectories for monkey W suggest the monkeys may have viewed the task as two one-
dimensional tasks. 



Supplementary Table 1. Illustrations of all center-out postures, ordered according to 
Figure 1. “Online” refers to use in online brain-machine interface experiments (Figures 2, 3, and 
4). “Tuning” refers to use in neural tuning analyses (Figures 5, 6, and 7). 

Posture +20% from Rest +30% from Rest +40% from Rest Relevant Analyses 

Index Flexion 
(IF) 

   

Online 
 

Tuning 

Index Flexion + 
MRS Flexion 
(IF+MF) 

   

Online 
 

Tuning 

MRS Flexion 
(MF) 

   

Online 
 

Tuning 

Index Extension 
+ MRS Flexion 
(IE+MF) 

  

N/A (split too far 
for reliable 

performance) 
Tuning 

Index Extension 
(IE) 

   

Online 
 

Tuning 

Index Extension 
+ MRS Extension 
(IE+ME) 

   

Online 
 

Tuning 

MRS Extension 
(ME) 

   

Online 
 

Tuning 

Index Flexion + 
MRS Extension 
(IF+ME) 

  

N/A (split too far 
for reliable 

performance) 
Tuning 

Rest (R) 

 

N/A N/A 
Online 

 
Tuning 



 

 
 

Supplementary Figure 2. Two-finger closed-loop Kalman filter decode using threshold 
crossing rates, related to Figure 2. (A) Example closed-loop prediction traces from monkey N 
using the standard Kalman filter. Targets are represented by the dashed boxes, internally colored 
to indicate the targeted finger with a border color representing whether the trial was acquired 
successfully. “I” means the index finger group and “MRS” means the middle/ring/small finger 
group. The mean path efficiency of the trials displayed is presented at the bottom right. (B) 
Statistics for all closed-loop two-finger threshold crossing rate Kalman filter decodes. The red 
lines indicate the means, which are numerically displayed above each set of data. The statistic 
for each trial is represented by one dot in each plot. “Succ Rate” means the percentage of total 
trials that were successfully acquired in time and “Path Eff” means the two-dimensional path 
efficiency. 



Supplementary Table 2. Summary of neural feature tunings to index versus MRS group 
movements, related to STAR Methods. 

Monkey Feature Qty 
Finger Group 

Untuned 
Index MRS Both Multiple 

N 
SU 47 2 2 14 22 7 

SBP 96 0 6 41 33 16 

W 
SU 68 10 13 18 18 9 

SBP 96 22 6 7 26 35 
The quantity (Qty) column indicates the total number of sources for each feature. SU means sorted 
units, SBP means spiking band power. Classifications were determined by 𝑝 < 0.001 with a two-tailed 
two-sample Kolmogorov-Smirnov test between movement types. Here, multiple tunings showed activity 
levels different from baseline for more than half but not all of the movements, indicating activation but 
perhaps not specificity. Decisions were made from 388 monkey N trials and 819 monkey W trials. 

Supplementary Table 3. Summary of neural feature tunings to flexion versus extension, related 
to STAR Methods. 

Monkey Feature Qty 
Muscular Group 

Untuned 
Flexion Extension Opposed Multiple 

N 
SU 47 4 2 12 22 7 

SBP 96 2 12 33 33 16 

W 
SU 68 36 0 5 18 9 

SBP 96 32 1 2 26 35 
The quantity (Qty) column indicates the total number of sources for each feature. SU means sorted 
units, SBP means spiking band power. Classifications were determined by 𝑝 < 0.001 with a two-tailed 
two-sample Kolmogorov-Smirnov test between movement types. Opposed tunings showed activity 
levels different from baseline during movements where the two finger groups moved in opposite 
directions (IF+ME or IE+MF). Multiple tunings showed activity levels different from baseline for more 
than half but not all of the movements, indicating activation but perhaps not specificity. Decisions were 
made from 388 monkey N trials and 819 monkey W trials. 



 

Supplementary Figure 3. Exemplary tuning curves and linear predictability of the activity, 
related to Figure 5. The text above each pair of plots first indicates the tuning preference of a 
sorted unit or SBP channel, followed by the subject from which the activity was recorded, then 
the feature type. I&M suggests preference to both the index and MRS groups. The left plot of 
each pair displays the true tuning curve of the given sorted unit or SBP channel. The large dot 
and error bars represent the mean and standard deviation for the peri-movement activities across 
all trials of each type of movement. The smaller dots represent the peri-movement activity for 
each trial of each type of movement. Asterisks indicate significant difference from the unit’s or 
channel’s mean activity, or zero z-score, across the experiment (two-sided two-sample 
Kolmogorov-Smirnov test, 𝑝 < 0.001, corrected for false discovery rate). Individual group 
movements are plotted in blue, combined group movements are plotted in orange. The right plot 
of each pair displays the mean activity for each movement (copied from the left plot in asterisks) 
as well as the predictions of the activity for each movement. For example, for IF in C, the black 
asterisk is the mean dot copied from the left hand plot, the red circle (Avg) is the average of the 
asterisks for IF+MF and IF+ME, the blue circle (LR) is the weighted sum of the asterisks for IF+MF 
and IF+ME, and the yellow circle (LRO) is the weighted sums of the asterisks for IF+MF, IF+ME, 
and IE. Pearson’s correlation coefficients between the predictions and the true activity are 
displayed in each plot. 



 

Supplementary Figure 4. Statistics of the linearity in tuning curves, related to Figure 5. 
Sorted units and SBP channels from monkeys N and W that had at least one movement 
significantly different from the average activity and an average firing rate greater than 2Hz (for 
sorted units) are included in analysis. The first column represents results from averaging the 
neighbors, and the second and third columns represent results from linearly regressing the 
neighbors without and with the opposite movement, respectively. (A) Histogram of the correlation 
coefficients (Pearson’s r) between the predicted tuning curves and the actual tuning curves. The 
histogram is limited to the 0.5-1 range as we found this range of tuning curves to be visually linear. 
The dotted line with the attached number indicates the cutoff for significance after correction for 
false discovery rate. n.s. means not significant, s. means significant with 𝑝 < 0.05. Significance 
was determined based on the null hypothesis that a particular predicted tuning curve did not 
significantly correlate with the true tuning curve. (B) Scatter plots of the predicted activity vs. the 
true activity for each movement. Blue dots represent individual group movements and orange 
dots represent combined group movements. The solid line is unity, where the predicted activity 
would equal the true activity. The dashed line is fit to the data. 



 

 

Supplementary Figure 5. Regression coefficients to predict the neural activity associated 
with certain movements from the activity of others, related to Figure 5. Each point is labelled 
with the movement whose activity would be predicted by the activity of other movements with (x, 
y) position indicating the trained coefficients of neighboring movements and color indicating the 
coefficient of the opposition movement. I – index finger group, M – MRS finger group, F – flexion, 
E – extension. (A, B) Coefficients for regressions under the assumption that the activity of a 
movement is a weighted sum of the activities of its neighbors for monkeys N and W, respectively. 
(C, D) Coefficients for regressions under the assumption that the activity of a movement is a 
weighted sum of the activities of its neighbors and the opposite movement for monkeys N and W, 
respectively. Points are colored based on the best-fit coefficient by which to multiply the opposite 
movement. 



 

Supplementary Figure 6. Offline ridge regression decoding for sorted units, trained on 
either individual or combined finger group movements, related to Figure 6. The central trace 
is the average predicted behavior from all trials of the indicated movement and the shaded region 
is the standard deviation, all aligned in time by the movement onset (vertical gray line). Individual 
finger group movements (the two left columns of plots) were decoded using a regression model 
trained on combined finger group movements (the right two columns of plots), and vice versa for 
the combined finger group movements. These are represented by the “Split Decode” dashed 
traces. The “Full Decode” solid line traces represent the average decode given the full dataset to 
train the regression model, with cross-validation. The blue traces correspond to the index group 
and the yellow traces correspond to the MRS group. The yellow or blue lines near the top of each 
plot indicate significant differences between the two predicted positions based on a bootstrap 
analysis on the differences (greater than a one-sided 95% confidence interval). 



 

Supplementary Figure 7. Individual trial offline ridge regression decoding of all SBP 
channels, trained on either individual or combined finger group movements, related to 
Figure 6. The vertical gray line indicates movement onset. Individual finger group movements 
(the two left columns of plots) were decoded using a regression model trained on combined finger 
group movements (the two right columns of plots), and vice versa for the combined finger group 
movements. These are represented by the “Split Decode” dotted traces. The “Full Decode” 
dashed traces represent the average decode given the full dataset to train the regression model, 
with cross-validation. The blue traces correspond to the index group and the yellow traces 
correspond to the MRS group. 



 

 

Supplementary Figure 8. Individual trial offline ridge regression decoding of all sorted 
units, trained on either individual or combined finger group movements, related to Figure 
6. The vertical gray line indicates movement onset. Individual finger group movements (the two 
left columns of plots) were decoded using a regression model trained on combined finger group 
movements (the two right columns of plots), and vice versa for the combined finger group 
movements. These are represented by the “Split Decode” dotted traces. The “Full Decode” 
dashed traces represent the average decode given the full dataset to train the regression model, 
with cross-validation. The blue traces correspond to the index group and the yellow traces 
correspond to the MRS group. 
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