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Abstract

We show that one-dimensional random walks in a quasi-periodic environment with

Liouville frequency generically have an erratic statistical behavior. In the recurrent

case we show that neither quenched nor annealed limit theorems hold and both drift

and variance exhibit wild oscillations, being logarithmic at some times and almost

linear at other times. In the transient case we show that the annealed Central Limit

Theorem fails generically. These results are in stark contrast with the Diophantine

case where the Central Limit Theorem with linear drift and variance was established

by Sinai.
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1 Introduction

1.1 Quasiperiodic random walks

Let C∞(T, (0, 1)) be the set of smooth functions from the standard torus T = R/Z to

(0, 1) (these can be identified with smooth 1-periodic functions from R to (0, 1)). Each

triple (p, α, x), where p ∈ C∞(T, (0, 1)), α ∈ (0, 1) and x ∈ T defines a sequence of

numbers p(j) = p(x + jα) for all j ∈ Z. The sequence (p(j))j∈Z will be called the

quasi-periodic environment defined by (p, α, x), or just environment (p, α, x).

Consider the nearest neighbor random walk (Zt)t∈N on the one dimensional lattice Z,

given by Z0 = 0, and for t ∈ N

Px(Zt+1 = k + 1|Zt = k) = p(x+ kα), Px(Zt+1 = k − 1|Zt = k) = q(x+ kα), (1.1)
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Random walks in a Liouville quasi-periodic environment

where q(x) = 1− p(x), and where we stressed the dependence on x with the notation Px.

Following [25], one can also define a related Markov process (Xt)t∈N on T:

Xt = X0 + Ztα mod 1, X0 = x. (1.2)

When α /∈ Q, we call (Zt)t∈N a one-dimensional random walk in quasi-periodic

environment , or for short a quasi-periodic walk . The behavior of these walks has many

similarities with that of the classical random walks in a random environment, and yet

many differences. We will present the statements in different contexts, in particular,

quenched and annealed limit laws, as defined below.

Definition 1.1. We use the notation Px for the distribution of the paths of (Zt)t∈N

defined in (1.1), when x ∈ T is fixed, and PLeb for the distribution of the paths of (Zt)t∈N

when x is uniformly distributed on T with respect to the Haar measure Leb on T. The

notation Ex is reserved for the expectation under the probability Px, while ELeb is used

for the expectation under PLeb. Similarly, we use the notations Varx and VarLeb to denote

variances for Px and PLeb. The same notations will be used for the distribution of the

paths of (Xt)t∈N defined in (1.2).

Definition 1.2 (Quenched and Annealed limit theorems). Consider a quasi-periodic

environment defined by a triple (p, α, x) where p ∈ C∞(T, (0, 1)), α /∈ Q and x ∈ T, and

let (Zt)t∈N be the random walk defined as in (1.1). When x ∈ T is fixed, we say that the

walk (Zt)t∈N satisfies a quenched limit theorem if there exist sequences (bt(x))t∈N and

(σt(x))t∈N and a proper distribution Dx(·) such that for any z ∈ R

lim
t→∞

Px(Zt − bt(x) < σt(x)z) = Dx(z).

We say that the walk satisfies an annealed limit theorem if there exist sequences

(bt)t∈N and (σt)t∈N and a proper distribution D(·) such that for any z ∈ R

lim
t→∞

PLeb(Zt − bt < σtz) = D(z).

In analogy with the drift of simple random walks, we call bt(x) or bt the drift at time t.

We will see that the notion of symmetry is very important in distinguishing different

types of quasi-periodic walks. Following [25], we adopt the following definition.

Definition 1.3 (Symmetric and asymmetric walks). Given an environment defined by

(p, α, x), we call (Zt)t∈N defined as in (1.1) a symmetric quasi-periodic walk if p satisfies

∫

T

ln p(x)dx =

∫

T

ln q(x)dx. (1.3)

Otherwise we say that the walk is asymmetric. We denote by P ⊂ C∞(T, (0, 1)) the set

of functions satisfying the symmetry condition (1.3), and by Pc = C∞(T, (0, 1)) \ P—the

set of asymmetric walks.

Note that in general, even if p ∈ P, the sequence (p(x+ kα))k∈Z does not exhibit any

symmetry. The effect of the symmetry condition above is the result of the averaging

effect, which comes from the equidistribution of any orbit of an irrational rotation

on the circle. It is a classical fact in dynamical systems that the effectiveness of the

equidistribution of the orbits of an irrational rotation of the circle is determined by the

arithmetic properties of its angle α.

Recall that α ∈ R is said to be Diophantine (denoted α ∈ DC(γ, τ)) if there exists

γ > 0 and τ ≥ 0 such that for any (p, q) ∈ Z×N∗

∣∣∣∣α− p

q

∣∣∣∣ ≥
γ

q2+τ
. (DC)
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Random walks in a Liouville quasi-periodic environment

An irrational real number that is not Diophantine is called Liouville.

An elementary but noticeable fact of number theory is that Liouville numbers form a

dense Gδ set of R, while the Lebesgue measure of this set is zero.

We now introduce a short hand notation that will help simplify the exposition.

Definition 1.4 (Diophantine and Liouville walks). We call (Zt)t∈N defined as in (1.1) with

α ∈ DC a Diophantine walk. If α /∈ Q ∪DC, we call the walk Liouville.

Because the equidistribution of Diophantine rotations is more effective than that of

the Liouville ones, the averaging on the medium due to quasi-periodicity is more effective

in the case of Diophantine quasi-periodic environment. As a result, they behave similarly

to simple random walks, as was established by Sinai in [25]. Namely, they have linear

(possibly null) drift and satisfy the Central Limit Theorem. The precise statements for

Diophantine walks will be recalled in §2.1. By contrast, nothing was known for Liouville

environments beyond the results which hold in any uniquely ergodic environment.

In this paper we study the Liouville case. We show that for any given Liouville α

the walk (Zt)t∈N defined by (1.1) with a generic p ∈ C∞(T, (0, 1)) has a very erratic

statistical behavior. By generic we mean of first category for the C∞ topology. Since a

generic irrational α is Liouville, our results imply the erratic behavior for one-dimensional

random walks in a generic quasi-periodic environment. What we mean by erratic, is that

at different times scales the walk (Zt)t∈N behaves very differently (think of a walk that

drifts almost linearly for a subsequence of times (tn)n∈N, while for another subsequence

(t′n)n∈N it will be localized logarithmically around the origin).

Our main results can be summarized as follows. For symmetric random walks we

show that the following behavior is generic:

• The spread of the walk (as measured, for example, by standard deviation) oscillates

wildly. Sometimes the walk is localized at a logarithmic scale while at other times the

variance grows faster than t1−ε. At the latter scales the walk bypasses both −t1−ε and
t1−ε with probability larger than 0.1.

• The drift of the walk oscillates wildly: sometimes it is larger than t1−ε, sometimes it

is smaller than −t1−ε, sometimes it is of order 1.

• The walk does not satisfy neither an annealed nor a quenched limit theorem: the

set of limit distributions includes the normal distribution as well as a distribution with

atoms.

We will also show that

• A one-dimensional random walk in a generic asymmetric quasi-periodic environment

does not have an annealed limit law.

The precise statements of the results outlined above are contained in §2.2.

Plan of the paper and outline of the proofs. Section 2 contains all the main

statements and a review of related resutls from the literature. Quasi-periodic Diophantine

environments are discussed in §2.1. §2.2 contains the precise statements about Liouville

walks. It turns out that their behavior is quite different from the Diophantine walks, and

is, in fact, quite similar to the walks in a generic deterministic elliptic environment that

we define and discuss in §2.3. The Liouville walks are more erratic than the walks in

independent random environments that we briefly review in §2.5. Several open questions

motivated by the present work are discussed in §2.4.

The main technical tool in the study of one dimensional random walks in a fixed

environment given by transition probabilities pj , j ∈ Z and qj = 1− pj , is the martingale

(3.9). The important quantities that are involved in this martingale, and that determine
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the behavior of the walk, are the sums

Σ(n) =





n∑

j=1

ln qj − ln pj if n ≥ 1,

0, if n = 0,
0∑

j=n+1

ln pj − ln qj if n ≤ −1.

(1.4)

The function n 7→ Σ(n) is known as the potential. A direct inspection shows that if

pj > qj for all j in some interval I ⊂ Z then Σ is decreasing on I, while if qj > pj for all

j ∈ I then Σ is increasing on I. Thus, the guiding intuition is that the walker tends to go

downwards on the graph of Σ and spends a lot of time near local minima of the potential.

The study of the potential plays a crucial role in the study of random walks on Z starting

with the pioneering work of Sinai [24] and it is also central in the present paper.

The reason for the strong difference of behavior between Diophantine and Li-

ouville walks. In the case of quasi-periodic walks defined by some p ∈ C∞(T, (0, 1)) as

in (1.1), both the transition probabilities px,j = p(x+ jα) and the sums Σx(n) defined by

(1.4) are dependent on x ∈ T.

If the walk is symmetric (see (1.3)) and α is Diophantine, the fact that ln(1−p)− ln p is

a smooth coboundary above Rα implies that the sums Σx(n) are bounded, which renders

the Diophantine walk very similar to the simple symmetric random walk (we will come

back to this in §2.1 and we refer the reader to [6, 8] for more details).

A contrario, obtaining various specific behaviors for the sums Σx(n) of a generic

function p ∈ C∞(T, (0, 1)) when α is Liouville, underlies all our findings. Displaying very

different behaviors of Σx(n) at different time scales n and different initial conditions x is

the key behind the erratic behavior of the Liouville walks.

Outline of the proofs. Section 3 contains the necessary preliminaries. To keep the

exposition as clear as possible, we split the analysis of Liouville walks into two separate

parts. In the first part (Sections 4–6) we deal with a fixed environment and describe

several criteria based on the behavior of the potential, that imply various types of

behaviors for the random walk.

In Section 4, we formulate criteria for localization, one-sided drift and two-sided drift

for random walks in a fixed environment. The proofs are given in Section 6; they rely on

auxillary estimates of exit times for random walks in a fixed environment presented in

Section 5.

The second part of the paper (Sections 7–8) deals with quasi-periodic walks. In

Section 7 we prove Theorem 7.1, stating that when α is Liouville, then for a residual set

of symmetric environments, the criteria for localization, one-sided drift and two-sided

drift are satisfied for almost every x ∈ T. In fact, as we mentioned above, the criteria ask

for particular behaviors of the sums Σx(n) at different time scales n and different initial

conditions x. By definition of the criteria, it will be easy to show that the set of p ∈ P for

which these criteria are satisfied contains a countable intersection of countable unions

of open sets. These open sets, are subsets of p ∈ P for which a criterion on Σx(n) holds

for some n and some (not too small) intervals of initial conditions x.

To prove the theorem, we just need to show that the union of these open sets is dense.

For this we start by perturbing any given p ∈ P into a smooth multiplicative coboundary

p̄ above Rα. Then, the main construction is to show that any smooth coboundary p̄ can be

perturbed to p̄+ en(·) ∈ P that satisfies each of the above mentioned criteria at different

scales. This is stated in the main Proposition 7.3. §7.1 contains the reduction of Theorem

7.1 to Proposition 7.3 while the rest of Section 7 is devoted to the proof of Proposition
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7.3. The proof proceeds by a Liouville construction in which we obtain en and prove the

required properties of the ergodic sums as in (1.4) for the function p̄+ en.

Section 8 contains the proofs of all the statements about Liouville walks, including

the asymmetric walks that are treated in §8.6. We note that the proofs in §8.6 do not use

the results of Sections 4–6 so the reader who is only interested in the asymmetric walks

could skip those sections.

In the appendix we give the proof of the results in the generic deterministic elliptic

medium. They are similar, albeit easier because we have more freedom in perturbing

the medium, to the proofs in the Liouville environments.

2 Results

In this section we present our main results about Liouville walks and compare them

with other classes of random walks. We start with a summary on what is known for

Diophantine walks. Then we state our results on Liouville walks. After that we give a

brief list of erratic behaviors of a walk in a generic deterministic elliptic medium. Next,

we ask some natural questions that arise from our results. Finally, we end the section

with a very brief survey of related results in the case of random walks in independent

random media.

2.1 Diophantine walks

In this section we review the known results about quasi-periodic Diophantine walks.

These results show that Diophantine walks are very similar to the simple random walks.

Recall the notations introduced in Definition 1.1. In particular, recall the notation

Pc = C∞(T, (0, 1)) \ P where P is the set of functions satisfying the symmetry condition

(1.3). The following results are known.

Theorem 2.1. ([25, Theorem 1]) (Stationary measure) For α /∈ Q and p ∈ C∞(T, (0, 1))

such that any of the following two conditions holds:

(1) p ∈ Pc,
(2) α is Diophantine,

then there exists a unique probability measure ν on T that is stationary for the

process (Xt)t∈N defined as in (1.2), and this measure is absolutely continuous with

respect to the Haar measure on T. Moreover, for each φ ∈ C0(T,R) and for any x ∈ T

lim
t→∞

Ex(φ(Xt)) = ν(φ).

The precise definition of a stationary measure will be given in §3.1.

For Diophantine frequencies, the walk (Zt)t∈N satisfies the Central Limit Theorem,

as shown by the following two statements. Denote

Φ(z) =

∫ z

−∞

1√
2π
e−u

2/2du. (2.1)

Theorem 2.2. ([1], [25, Equations (15) and (20)]) For α Diophantine and p ∈ C∞(T, (0, 1)),

and the walk (Zt)t∈N defined as in (1.1), there exist v ∈ R and σ > 0 such that for all x

lim
t→∞

Px(Zt − tv < σ
√
tz) = Φ(z). (2.2)

Therefore

lim
t→∞

PLeb(Zt − tv < σ
√
tz) = Φ(z). (2.3)

Moreover v = 0 iff the walk is symmetric.
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Note that Theorem 2.2 shows that the Diophantine walks behave similarly to simple

random walks independently of the starting point on the circle. Namely, they have linear

growth, variance also grows linearly and the limit distribution is Gaussian.

In fact, asymmetric walks (Zt)t∈N for all irrational frequencies, have quenched limits

similar to simple random walks, but with a drift that depends on the starting point.

Theorem 2.3. ([6, Theorem B.2]) For α /∈ Q and p ∈ Pc, and the walk (Zt)t∈N defined as

in (1.1), there exist functions (bt(·))t∈Z and a number σ > 0 such that for any z ∈ R

lim
t→∞

Px(Zt − bt(x) < σ
√
tz) = Φ(z). (2.4)

In case α is Diophantine, we have that for every x, we can take bt(x) = tv where v is

given by Theorem 2.2.

Remark 2.4. A general formula for bt(·) will be recalled in §8.6 (see equation (8.2)).

The results of Theorems 2.1–2.3 have been extended to random walks driven by

rotations of Td, for arbitrary d ∈ N, to random walks with bounded jumps where the

walker can move from x to x+ jα with |j| ≤ L for some L > 1 and to quasi-periodic walks

on the strip, see [3, 6, 7, 8].

2.2 Liouville walks

Theorems 2.1, 2.2 and 2.3 naturally raise the question of what would be the behavior

of a quasi-periodic walk when the driving frequency α is Liouville. The following

statements show that their behavior can indeed be very different from the Diophantine

case.

Recall that P ⊂ C∞(T, (0, 1)) the set of functions satisfying the symmetry condition

(1.3), and Φ(z) is the normal distribution given by (2.1).

Theorem A. For any Liouville α there exists a dense Gδ set R = R(α) ⊂ P, and for each

p ∈ R(α) a set S(p) ⊂ T of full measure with the following property.

Let p ∈ R(α) and x ∈ S(p), and consider a quasi-periodic walk (Zt)t∈N as in (1.1) in

the quasi-periodic environment defined by (p, α, x). Then there exist strictly increasing

sequences of integers (rn)n∈N, (sn)n∈N, (tn)n∈N, and a sequence of positive integers

(εn)n∈N with εn → 0, such that for any ε > 0 and for k sufficiently large we have:

(a) (Localization) For T = rn, it holds

Px

(
max
t≤T

|Zt| > 16(lnT )2
)
< T−2 and Varx(ZT ) < 300(lnT )4; (2.5)

(b) (One-sided positive drift) For T = sn and some µn(x) > T 1−ε, for any z ∈ R, it

holds

∣∣∣∣Px
(
ZT − µn(x)

σn(x)
< z

)
− Φ(z)

∣∣∣∣ < ε,

∣∣∣∣
lnσn(x)

lnT
− 1

2

∣∣∣∣ < ε (2.6)

where σn(x) =
√
Varx(ZT );

(c) (Two-sided drift) For T = tn there exist bn(x), b
′
n(x) ∈ [0.3T 1/5, 0.4T 1/5] and

εn → 0 such that

Px

(
|ZT − bn(x)| < εnT

1/5
)
> 0.1, Px

(
|ZT + b′n(x)| < εnT

1/5
)
> 0.1. (2.7)

Naturally, statement (b) can be modified to provide a one-sided negative drift for the

walks over a subsequence of times.

We will also need a different version of property (b) in order to guarantee the absence

of an annealed limit for the walk. Namely, we need a sequence of times so that property
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(b) holds with uniform drift parameters for a set of positive measure of initial positions

x ∈ T.

Theorem B. For any Liouville α, there exists a dense Gδ set R′ = R′(α) ⊂ P with the

following property.

(a) There exists a strictly increasing sequence of integers (un)n∈N, and sequences

(σn)n∈N, (εn)n∈N with εn → 0, such that for any p ∈ R′(α), for any x ∈ T, the quasi-

periodic random walk (Zt)t∈N as in (1.1) in the environment defined by (p, α, x) satisfies

for each T = un and any z ∈ R:

∣∣∣Px(ZT < σn
√
Tz)− Φ(z)

∣∣∣ < εn. (2.8)

(b) There exists a strictly increasing sequence of integers (vn)n∈N and two sequences

of measurable subsets of T, (In)n∈N, (I ′
n)n∈N with Leb(In) > 0.001 and Leb(I ′

n) > 0.001,

such that for any p ∈ R′(α), for any x ∈ In
⋃ I ′

n there exist µn(x) such that µn(x) > v1−εnn

if x ∈ In and µn(x) < −v1−εnn if x ∈ I ′
n, and such that the following holds.

The quasi-periodic random walk (Zt)t∈N as in (1.1) in the environment defined by

(p, α, x) satisfies for each T = vn and any z ∈ R:

∣∣∣∣Px
(
ZT − µn(x)

σn(x)
< z

)
− Φ(z)

∣∣∣∣ < εn,

∣∣∣∣
lnσn(x)

lnT
− 1

2

∣∣∣∣ < εn, (2.9)

where σn(x) =
√
Varx(ZT ).

Part (a) of Theorem B is based on the fact that for a generic p ∈ P, the quasi-periodic

walk (Zt)t∈N “simulates” (uniformly in x ∈ T) a Diophantine walk for a sequence of times.

The same phenomenon for asymmetric walks is observed in Theorem F. Theorem E

encloses a similar observation, this time for every p ∈ P and for a generic set of α ∈ R.

As a byproduct of our analysis, we will show that the existence of an absolutely

continuous stationary measure (see §3.1 for the precise definition) is incompatible with

the erratic behavior of Theorem A.

Corollary C. If α and p are as in Theorem A, then the process (Xt)t∈N defined by (1.2)

has no absolutely continuous stationary measure on T.

The proof of Corollary C will be given in §8.4. Its statement makes a sharp contrast

with the behaviour for Diophantine walks, described in Proposition 3.1.

Theorems A and B imply that the walk does not satisfy any limit theorems. Let us

give a more precise statement, with Definition 1.2 in mind.

Corollary D. If α and p are as in Theorem A, then for x in a set of full measure the walk

(Zt)t∈N defined by (1.1) in the quasi-periodic environment defined by (p, α, x) has no

quenched limit theorem at x.

If α and p are as in Theorem B, then the walk (Zt)t∈N defined as in (1.1) has no

annealed limit theorem.

Proof. We start with the absence of quenched limit theorems. Consider x for which (b)

and (c) of Theorem A hold. It follows from (b) that if a quenched limit theorem holds,

then the limit distribution should be normal.

On the other hand, let tn be as in (c). Then, since bn(x) + b′n(x) ≥ 0.6t
1
5
n , the nor-

malization has to be at least of order t
1
5
n . Indeed, if the normalization was negligible

compared to t
1
5
n for infinitely many n, then the limit distribution would have to give

weight larger than 0.1 to segments that accumulate at infinity, which is impossible. But if

the normalization is comparable to t
1
5
n or larger, then the limit distribution should give a

probability larger than 0.1 to two intervals, each one having size at most εn. This implies
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that any limit point along the sequence tn has non-trivial atoms, so it cannot be normal,

giving a contradiction.

To show that the walk has no annealed limit, we use Theorem B. From (a) it follows

that if an annealed limit theorem holds, the limit must be the normal distribution.

On the other hand, (b) forces the normalization of any candidate annealed limit

theorem to be of order at least v1−εn for the time vn. Indeed, if the normalization was

negligible compared to v1−εn for infinitely many n, then by (2.9) the limit distribution

should give weight larger than 0.001 to segments that accumulate at infinity, which is

impossible. But if the normalization is comparable to v1−εn or larger, then the CLT (2.9)

would imply that the annealed limit distribution gives a positive mass to an interval

of size v
−1/2+ε
n . This implies that any limit point along the sequence vn has non-trivial

atoms, giving a contradiction with (a). �

Our next result shows that for a generic Liouville frequency, the behavior of the

corresponding walk “simulates” that of a Diophantine one (described by Theorem 2.2)

for long periods of time.

Theorem E. There exists a dense Gδ set A ⊂ R such that for any (α, p) ∈ A × P there

exist sequences (σn)n∈N and (Tn)n∈N, Tn → ∞, such that for any x ∈ T the quasi-periodic

random walk (Zt)t∈N as in (1.1) in the environment defined by (α, p, x) satisfies for any

z ∈ R:

∣∣∣Px(Zt < σn
√
tz)− Φ(z)

∣∣∣ < 1

n
for all t ∈ [Tn, e

Tn ], (2.10)

where Φ(z) is the normal distribution given by (2.1).

Consider t of order Tn. Relation (2.10) implies that σn is necessarily larger than

1/
√
Tn. Therefore, when t is of order e

Tn , we see that the variance is almost linear in t.

Let us turn to the asymmetric quasi-periodic walks. Recall that, by Theorem 2.3, a

quenched CLT (2.4) holds with some function bt(·). Moreover, by Theorem 2.2, in the

Diophantine case there exist bt(·) ≡ tv such that the annealed limit (2.3) holds. To show

that no annealed limit theorem holds in the Liouville case, it suffices to show that the

drift function bt in the quenched limit theorem fluctuates much more than
√
t when we

vary x.

Theorem F. For any Liouville α there exists a dense Gδ set D(α) ⊂ Pc, such that the

walk (Zt)t∈N defined by (1.1) with p ∈ D(α), satisfies the following:

(a) There exists a sequence of integers (sn)n∈N and sequences (bn)n∈N, (σn)n∈N,

(εn)n∈N with εn → 0, such that for T = sn we have for any x ∈ T and any z ∈ R:

∣∣∣Px(ZT − bn < σn
√
tz)− Φ(z)

∣∣∣ < εn. (2.11)

(b) There exists a sequence of integers (tn)n∈N, and sequences (Jn)n∈N and (J ′
n)n∈N

of measurable subsets of T, such that the drift coefficients btn(·) and bsn(·) of the

quenched CLT (2.4) satisfy:

(i) µ(Jn) > 0.8 and µ(J ′
n) > 0.1;

(ii) For x ∈ Jn we have |btn(x)− bn| < tn
1/4, and for x ∈ J ′

n we have btn(x) > bn + tn
0.9.

As a consequence we get:

Corollary G. For α and p as in Theorem F, the walk (Zt)t∈N defined by (1.1) has no

annealed limit.
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Proof. If an annealed limit as in (2.3) holds, then by (a) the limit must be the normal

distribution. On the other hand, properties (i) and (ii) of (b) require that the normalizing

factor at time tn should satisfy σtn > t0.9n . But then we get, again from (i) and (ii),

that the limit distribution must give a mass larger than 0.8 to some point on the line, a

contradiction with (a). �

2.3 Erratic behavior for random walks in generic deterministic elliptic envi-

ronments

In this section, we consider random walks on Z in a fixed generic deterministic

elliptic environment (p(j))j∈Z, that we define as follows.

Definition 2.5 (Deterministic elliptic environments and generic walks). For any ε ∈ (0, 12 ),

we define Eε = {p : Z → [ε, 1− ε]}. We call

E =
⋃

ε>0

Eε (2.12)

the set of deterministic elliptic environments. For every ε > 0, we endow Eε with the

product topology generated by the sets of the form

Wδ,K(p̄) = {p : |p(n)− p̄(n)| < δ for |n| ≤ K}.

A subset Ē of E is called generic if for each ε, Ē ∩ Eε contains a countable intersection

of open dense sets.

For p ∈ E , we let (Z̄t)t∈N be the random walk on Z given by Z̄0 = 0 and

P(Z̄t+1 = k + 1|Z̄t = k) = pk, P(Z̄t+1 = k − 1|Z̄t = k) = qk. (2.13)

We say that a property is satisfied by a generic random walk on Z if it is satisfied by

the walks (2.13) for p in a generic subset of E .
In the definition of generic sets of environments we are allowed to perturb any given

environment outside of a finite set, so we can directly prescribe the asymptotic behavior

of the potential to enforce a desirable behavior of the walk. Hence the erratic behavior

similar to the Liouville walks can be observed for random walks in generic deterministic

elliptic environments. The results are even stronger in the latter case and the proofs are

much easier. Since we could not find these results in the literature, we give the proofs in

the appendix.

The criteria that yield erratic behavior of generic walks that are included in the

appendix are a source of inspiration for the criteria that we use in the Liouville walks

context. However, the latter criteria must be more sophisticated and tailored in a way

that makes it convenient to verify their validity for quasi-periodic Liouville walks.

Theorem 2.6. There exist a generic set Ē ⊂ E such that for each p ∈ Ē , the following

properties are satisfied by the walk (Z̄t)t∈N defined in (2.13):

(a) (Recurrence) The walk is recurrent.

Moreover, there exist strictly increasing sequences rk, sk, tk such that

(b) (Localization) For T = rk

P
(
|Z̄T | > (lnT )2

)
< T−1/2 and Var(Z̄T ) < 2(lnT )4. (2.14)

(c) (One-sided drift) For T = sn and some µn, σn such that

lim inf
n→∞

µn(x)

sn
> 0, lim inf

n→∞
σn(x)√
sn

> 0

we have that for all z
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P

(
Z̄T − µn
σn(x)

< z

)
= Φ(z). (2.15)

(d) (Two-sided drift) For T = tn there exists bn and εn such that lim inf
n→∞

bn
tn

> 0,

lim
n→∞

εn = 0 and

P
(
|Z̄T − bn| < εnbn

)
> 0.1, P

(
|Z̄T + bn| < εnbn

)
> 0.1. (2.16)

As mentioned above, the proof of this theorem involves similar ideas, albeit simpler,

as the ones used to prove the analogous results for Liouville walks. Therefore some

readers may prefer to go through the proofs of Theorem 2.6 before going over the proofs

of the results for the Liouville walks.

We note several interesting consequences of Theorem 2.6.

We say that the walk satisfies a limit theorem if there exist sequences (bt)t∈N and

(σt)t∈N and a proper (that is, not concentrated on a single point) distribution D(·) such
that for any z ∈ R

lim
t→∞

P(Z̄t − bt < σtz) = D(z).

Corollary 2.7. There exist a generic set Ē ⊂ E such that for each p ∈ Ē , the following

properties are satisfied by the walk (Z̄t)t∈N:

(a) lim inf
t→∞

ln |E(Z̄t)|
ln t

= 0, lim sup
t→∞

ln |E(Z̄t)|
ln t

= 1;

lim inf
t→∞

ln(Var(Z̄t))

ln t
= 0, lim sup

t→∞

ln(Var(Z̄t))

ln t
= 2.

(b) (Z̄t)t∈N does not satisfy a limit theorem.

Proof. (a) Follows from parts (b) and (d) of Theorem 2.6.

Part (b) follows exactly as the absence of quenched limit in corollary D follows from

Theorem A. �

2.4 Open questions

We close Section 2 with two open questions about the Liouville one dimensional

walks.

Comparing Theorem 2.1 with Corollary C leads to the following natural question.

Question 2.8. Suppose that the walk is symmetric and α is Liouville. By compactness,

the walk has at least one stationary measure. Is the stationary measure unique? Are

ergodic stationary measures mixing?

We also note that the maximal growth exponent for the variance of a generic walk

obtained in Corollary 2.7(a) is optimal, since the variance of ZT is at least O(1) and at

most T 2. However for Liouville walks we can only show that the variance grows along a

subsequence at a rate that is not slower than T 1−ε, see the discussion after Theorem E.

We believe that the optimal result should be of the same order as for the generic walks.

Thus we formulate

Conjecture 2.9. For generic quasi-periodic symmetric walks, for almost every x

lim sup
T→∞

lnVarx(ZT )

lnT
= 2.
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2.5 Random walks in independent random environments. A brief literature

review

A random environment is defined by a sequence {pn} of random variables. We can

generate it as pn = p(T nω) where T is a map of a space Ω onto itself, and p : Ω → [0, 1]

is a measurable function. It is usually assumed that T preserves a probability measure µ.

The most studied system in this class are iid environments where {pn} are independent

for different n. We consider a random walk in this environment where the walker moves

to the right with probability pn and to the left with probability qn = 1 − pn. The case

where ω is distributed according to µ is called annealed , and the case where ω is fixed

and we wish to obtain the results for µ almost every ω is called quenched . Quasi-periodic

random walks are examples of random walks in random environment.

Since there is a vast literature on this subject, we will just briefly discuss the iid walks

here, referring the readers to [27, Part I] for more information. Let ∆ = E(ln pn − ln qn).

We call the walk symmetric if ∆ = 0 and asymmetric otherwise. Let the walk start at the

origin, and denote by Zt the position of the walker at time t. Here are some results.

According to [26], the walk is recurrent iff it is symmetric. Moreover, if ∆ > 0, then

Zt → +∞ with probability 1, and if ∆ < 0 then Zt → −∞ with probability 1. Surprisingly,

in the transient case the walk can escape to infinity with zero speed or have positive

speed and superdiffusive fluctuations. We also note that, unless the walk satisfies the

classical Central Limit Theorem, there is no quenched limits.1

Thus, the behavior of the random walk in the independent asymmetric environment

can be very different from that of a simple random walk. The difference is even more

startling in the symmetric case where it was shown by Sinai ([24]) that Zt

ln2 t
converges to

a non-trivial limit (the density of the limit distribution is obtained in [17]). The quenched

distribution has even stronger localization properties, namely, most of the time the

walker is localized on the scale O(1) [12]. More precisely, given ε > 0, we can find an

integer N(ε) such that for each n ∈ N, for a set of environments ω of measure more than

1− ε, there is a subset Tt(ω) ⊂ Z of cardinality N(ε) such that Pω(Zt ∈ Tt(ω)) > 1− ε.

This strong localization could be used to show that the symmetric walk does not satisfy a

quenched limit theorem. The fact that the fluctuations of the walk in both annealed and

quenched case are subpolynomial is referred to as Sinai-Golosov localization.

To understand different behaviors in different regimes in the asymmetric case, one

needs a notion of a trap. Informally, a trap is a short segment I where for most of the

sites the drift is pointing in the direction opposite to the one in which the walker is

going. The most convenient way to do this ([24]) is in terms of the potential , defined in

(1.4). Namely, a segment I is a trap if the minimal value of the potential inside I is much

smaller than both boundary values. The creation of traps is our main tool for proving the

localization of the walker in the Liouville case.

3 Preliminaries

3.1 Stationary measures

Here we comment on the relation between our findings and the question of the

existence of absolutely continuous stationary measures for the quasi-periodic walks. We

consider a walk given by a pair (α, p) with α /∈ Q and p ∈ C∞(T, (0, 1)). The associated

process (Xt)t∈N has an absolutely continuous stationary measure with density ρ(·) iff for
Haar a.e. x ∈ T

ρ(x) = p(x− α)ρ(x− α) + q(x+ α)ρ(x+ α). (3.1)

1We refer the readers to [19, 22, 5, 10, 21] for more discussion of the quenched behavior of the walk.
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A direct computation shows that the flux

f(x) = p(x)ρ(x)− q(x+ α)ρ(x+ α)

is constant along the orbit of the rotation and by ergodicity f(x) ≡ f . Now there are two

cases

(I) The walk is not symmetric. We may assume (applying a reflection if necessary)

that ∫
ln p(x)dx >

∫
ln q(x)dx.

In this case we can take (rescaling ρ if necessary) f = 1 so that

ρ(x) =
1

p(x)
+

q(x+ α)

p(x)
ρ(x+ α).

Iterating further one can obtain following [25] a smooth solution2

ρ(x) =
1

p(x)

∞∑

k=0




k∏

j=1

q(x+ jα)

p(x+ jα)


 . (3.2)

(II) The walk is symmetric. In this case using recursive analysis similar to case (I) one

can see that there are no solutions with f 6= 0 (see [25]). In the case f = 0 the equation

reduces to

p(x)ρ(x) = q(x+ α)ρ(x+ α). (3.3)

Introducing

g(x) = q(x)ρ(x),

we see that (3.3) reduces to
q(x)

p(x)
=

g(x)

g(x+ α)
. (3.4)

We call the function p(·) such that (3.4) has a measurable solution g a (multiplica-

tive) coboundary above α, and g its corresponding transfer function3. In conclusion,

we have the following proposition.

Proposition 3.1. (a) ([4, Theorem 3.1], [2, Theorem 1.8]). The Markov chain (Xt)t∈N

defined by (α, p) as in (1.2) has a stationary measure which is absolutely continuous with

respect to the Lebesgue measure iff either the walk is asymmetric or if it is symmetric

and p is a coboundary above α.

(b) ([8, Corollary 6.2]) In the case α ∈ R \Q and p is a coboundary, the walk (Zt)t∈N

defined by (α, p) as in (1.1) satisfies the CLT. That is, there exists a constant D2 > 0 such

that for all x all z

Px
(
Zn ≤ zD

√
n
)
= Φ(z).

Observe that for asymmetric walks, the existence of an absolutely continuous station-

ary measure for (Xt)t∈N, or equivalently the existence of a measurable solution to (3.2),

is behind the validity of the quenched central limit of Theorem 2.3, proved in [6].

We denote by Bα ⊂ P the subset of functions p(·) such that (3.4) has a smooth solution

g. Such p is called smooth (multiplicative) coboundary above α.

For every x ∈ T, denote Σx(0) = 0,

Σx(n) =

{∑n
j=1 ln q(x+ jα)− ln p(x+ jα), n ≥ 1,

∑0
j=n+1 ln p(x+ jα)− ln q(x+ jα), n ≤ −1.

(3.5)

2The convergence of the sum defining the solution ρ is guaranteed by the asymmetry condition and the fact

that α /∈ Q.
3 A coboundary p(·) above α is necessarily symmetric.
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Notice that if p ∈ Bα, then Σx(n) has an easy expression

Σx(n) = ln g(x+ α)− ln g(x+ (n+ 1)α),

where g is as in (3.4). This behavior of Σx(n), as we will see in §3.2, renders the walk

very similar to the simple random walk.

In the symmetric case of Theorem 2.2, a crucial observation is that for α Diophantine,

any smooth p ∈ P is a smooth coboundary above α. As explained in the introduction, the

fact that for a Liouville α, the generic function p ∈ P displays very different behaviors

of Σx(n) at different time scales n and different initial condition x is the key behind the

phenomena described in Theorems A, E, and F and Corollaries C, D and G.

3.2 A fundamental martingale

Until the end of this section we will work with random walks on Z in deterministic

elliptic environments as in Definition 2.5, and study the dependence of the behavior

of such a walk on the potential defined in (1.4). Notice that for a fixed triple (α, p, x),

the quasi-periodic walk defined by (1.1) is equivalent to the walk in a deterministic

environment defined by p(j) = p(x+ jα) for all j ∈ Z.

Recall that we fix a small ε0 ≤ 0.1 and let

Eε0 = {p : Z → [ε0, 1− ε0]}. (3.6)

For p ∈ Eε0 , let q(·) = 1− p(·). Consider the nearest-neighbor random walk (Zt)t∈N on Z

defined by the transition probabilities Z(0) = 0,

P(Zt+1 = j + 1|Zt = j) = p(j), P(Zt+1 = j − 1|Zt = j) = q(j). (3.7)

Denote Σ(0) = 0 and

Σ(n) =





n∑

j=1

ln q(j)− ln p(j), n ≥ 1,

0∑

j=n+1

ln p(j)− ln q(j), n ≤ −1.

(3.8)

For j < k, we use the notation

Σ(j, k) := Σ(k)− Σ(j).

DenoteM(0) = 0,M(1) = 1,

M(n) =





1 +

n−1∑

k=1

k∏

j=1

q(j)

p(j)
, n ≥ 2,

−
0∑

k=n+1

0∏

j=k

p(j)

q(j)
, n ≤ −1.

(3.9)

Notice that

M(n) =





n−1∑

j=0

eΣ(j), n ≥ 1,

−
−1∑

j=n

eΣ(j), n ≤ −1.

It is straightforward that M(Zt) is a martingale under P. The optional stopping

theorem for the martingales implies that if Zt0 = n with a < n < b, and if τ is the
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first time such that Zt0+τ the walk reaches either a or b, thenM(Zmin(|t0+t|,|t0+τ |)) is a
martingale under P. In particular for any a < n < b

P(Zt reaches b before a|Z0 = n) =
M(n)−M(a)

M(b)−M(a)
. (3.10)

(see e.g. [9, Theorem 6.4.6]).

This formula provides a relation between the sums Σ(j, k) and the behavior of the

walk.

We note that (3.10) also holds if a = −∞ or b = +∞ (see e.g. [23, §VII.3]). In

particular,

Zt is recurrent ⇔ lim
n→−∞

M(n) = −∞ and lim
n→+∞

M(n) = +∞, (3.11)

and

P( lim
t→+∞

Zt = +∞) =
M−

M− +M+
where M± = lim

n→±∞
|M(n)|. (3.12)

4 Random walks in a deterministic aperiodic medium. Diffusion

and localization via optional stopping

For a fixed ε0 ≤ 0.1 and E as in (2.12), fix p ∈ E and consider the random walk (Zt)t∈N

defined by (3.7).

In this section we present criteria involving the sums Σ(n) defined in (3.8), that will

be used to guarantee the different behaviors in Theorem A.

Proposition 4.1 below gives a criterion for localization, Proposition 4.2 for one-sided

drift, and Proposition 4.3 for two-sided drift. The proofs of these propositions will be

given in Section 6.

4.1 Localization criterion

We say that p satisfies condition C1(N) if the following two inequalities hold:

Σ(N) > N1/2, (C1a+)
Σ(−N) > N1/2. (C1a−)

Proposition 4.1. If p satisfies condition C1(N), then for T = e
√
N/4 we have

P

(
max
t≤T

|ZT | > 16(lnT )2
)
< T−2 and Var(ZT ) < 300(lnT )4. (Localization)

Condition (C1) means that the origin is a sharp local minimum of the potential, and

as explained in the introduction, it implies that the walker spends a lot of time near the

origin.

4.2 One-sided drift criterion

We say that p satisfies condition C2(N, ε) for ε > 0 if there exist A > 100 and L

satisfying ee
A

< L ≤ Nε2 , N ≤ eL
0.1

, such that the following conditions hold:

Σ(−L) >
√
L; (C2a)

Σ(k, k′) < A for all k, k′ ∈ [−N,N ], k ≤ k′; (C2b)
|p(j + kL)− p(j)| < N−1/ε3 for all (j, k) ∈ [0, L− 1]× [−N/L,N/L]. (C2c)
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Proposition 4.2. If p satisfies condition C2(N, ε) for some ε > 0, then for T = N , there

exist µ > T 1−ε and σ with
∣∣ lnσ
lnT − 1

2

∣∣ < ε such that for every z ∈ R

∣∣∣∣P
(
ZT − µ

σ
< z

)
− Φ(z)

∣∣∣∣ < ε. (One-sided drift)

Conditions (C2(a)) and (C2(c)) imply that on a large segment around the origin, the

potential Σ is decreasing on scale L, while (C2(b)) means that there are no deep wells of

the potential (also known as traps) on smaller scales. Thus, Proposition 4.2 confirms the

heuristic arguments described in the introduction after (1.4).

4.3 Two-sided drift criterion

We say that p satisfies condition C3(N, ε) for ε > 0 if there exist A > 100, ee
A

<

Q < N1/2 and numbers u, v, w±, u′, v′, w′
± such that v, v′ ∈ [0.3, 0.4],

0.225 < u < v − ε < w− < v < w+ < v + ε < 0.5,

0.225 < u′ < v′ − ε < w′
− < v′ < w′

+ < v′ + ε < 0.5,

and

Σ(vN,w+N) > N1/2, Σ(vN,w−N) > N1/2, (C3a)
Σ(−v′N,−w′

−N) > N1/2, Σ(−v′N,−w′
+N) > N1/2,

Σ(k, k′) < A for k, k′ ∈ [−u′N, vN ], k′ ≥ k, (C3b)
Σ(k, k′) < A for k, k′ ∈ [−v′N, uN ], k′ ≤ k,

Σ(k) = Σ̄(k) +B(k), k ∈ [−v′N, vN ], (C3c)

where Σ̄ and B satisfy

|Σ̄(k)− Σ̄(k + lQ)| < Q−1/2 for k ∈ [0, Q], l ∈ [−v′N/Q, vN/Q] (4.1)

and

B(k)

{
= 0 for k ∈ [−u′N, uN ],

≤ 0 for k ∈ [−v′N, vN ].
(4.2)

Figure 1 illustrates the behavior of Σ(k) for k ∈ (−(v′ + ε)N, (v + ε)N) due to (C3).
In the figure we assumed Σ̄ ≡ 0 since (4.1) and (4.2) imply that the effect of Σ̄ is not

important in the behavior of Σ(k).

We note that condition (C3a) implies localization of the walk around the points −v′N
and vN (compare with conditions of Proposition 4.1).

Conditions (C3b±) imply that the random walk starting at zero exits the interval

[−v′N, vN ] before time N5 with probability almost one (see Lemma 5.2 below).

Condition (C3c) compares the walk on [−v′N, vN ] to a Q-periodic walk. This condition,

combined with (C3b±), makes sure that for the random walk starting at zero, both the

probability of reaching −v′N before time N5, and the probability of reaching vN before

time N5, are not too small. Since (C3a) implies localization around −v′N and vN we get

the following.

Proposition 4.3. If p ∈ C3(N, ε), then for any T ∈ [N5, eN
1/4

] we have:

{
P (ZT ∈ [w−N,w+N ]) > 0.1,

P
(
ZT ∈ [−w′

+N,−w′
−N ]

)
> 0.1.

(Two-sided drift)
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Figure 1: A sketch of the graph of Σ(k) under condition C3(N, ε), in which it is assumed that

Σ̄ ≡ 0.

5 Exit time estimates

In this section we derive the key estimates used in the proof of the above propositions

for p ∈ E , see (2.12). Recall the definitions of Σ(n) andM(n) given in (3.8) and (3.9).

5.1 Traps

Lemma 5.1. Suppose that for some N condition (Ca+) holds, i.e.,

Σ(N) >
√
N. (Ca+)

Then for T = e
√
N/2 we have

P(max
t≤T

Zt > N) < exp(−
√
N/2).

In the same way, if

Σ(−N) >
√
N, (Ca−)

then for T = e
√
N/2 we have

P(max
t≤T

Zt < −N) < exp(−
√
N/2).

Moreover, if for some N both (Ca+) and (Ca−) hold, then for T1 = e
√
N/4 we have:

Var(ZT1
) < 300(lnT1)

4.

Proof. Recall the notations and the background material from §3.2. If (Ca+) holds, then
we haveM(N) ≥ e

√
N , and (3.10) implies that

P(Zt visits N before 0|Z0 = 1) =
M(1)−M(0)

M(N)−M(0)
=

1

M(N)

≤ exp
(
−
√
N
)
.

Hence, for L = o(e
√
N ) we have:

P(Zt visits N before visiting 0 L times) ≤ 1−
(
1− e−

√
N
)L

≤ 2L exp
(
−
√
N
)
.

Choosing L = exp(
√
N/2), we obtain:

P

(
max

t≤exp(
√
N/2)

Zt > N

)
< 2 exp(−

√
N/2).

The case of (Ca−) is exactly similar.

Assume now that both (Ca+) and (Ca−) hold. Then for T1 = exp(
√
N/4) we have

N = 16(lnT1)
2, and Var (ZT1

) ≤ E(Z2
T1
) ≤ N2 + 2T 2

1 exp(−
√
N/2) < N2 + 2 < 300(lnT1)

4.

�
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5.2 Exit time in the absence of traps

Let L ∈ N. For an arbitrary choice of k0 ∈ (−L,L), let τ be the first time the walk

that starts at k0 hits L or −L.
Lemma 5.2. Suppose that there exist A > 100 and L satisfying ee

A

< L such that for

each k ∈ [−L,L] either (Cb+) or (Cb−) holds:
Σ(k, k′) < A for all k′ ∈ [−L,L], k′ ≥ k; . (Cb+)
Σ(k, k′) < A for all k′ ∈ [−L,L], k′ ≤ k. (Cb−)

Then there is a constant c > 0 such that for s ∈ {1, 2, 3} we have

E(τ s) ≤ cesAL2s+1. (5.1)

Moreover E(τ) ≥ L and Var(τ) ≥ 1.

Proof. For every k ∈ I = [−L+ 1, L− 1], let ηk be the total time the walker (starting at

0) spends at site k before reaching −L or L. Then τ =
∑

k∈I
ηk. Hence, for any s ∈ N

τ s ≤ Ls
∑

k∈I
ηsk.

Thus, it suffices to show that for s ∈ {1, 2, 3} and for any k ∈ I

E(ηsk) ≤ cesALs.

For k ∈ I, let η̄k be the total time a walker starting at site k spends at site k before

reaching −L or L.

Note that η̄k has geometric distribution with parameter

rk = P(Z starting at k does not return to k before exiting I).

Since E(ηsk) ≤ E(η̄sk), we finish the proof of (5.1) once we prove the following

Claim. If either (Cb+) or (Cb−) holds, we have for every k ∈ I

rk ≥ c

LeA
.

Proof of the Claim. Fix k ∈ [−L,L]. Observe that since the walk is elliptic (p ∈ E), then
there exists c > 0 such that

rk ≥ ε0 max{P(Z visits L before k|Z0 = k + 1),

P(Z visits (−L) before k|Z0 = k − 1)}.
Now, if (Cb+) holds, then (3.10) implies

P(Z visits L before k|Z0 = k + 1) =
M(k + 1)−M(k)

M(L)−M(k)
=

eΣ(k+1)

∑L−1
j=k+1 e

Σ(j)

=
1

1 +
∑L−1
j=k+2 e

Σ(k+1,j)
>

1

LeA
.

In the same way, if (Cb+) holds, then

P(Z visits (−L) before k|Z0 = k − 1) >
1

LeA
,

and the claim is proved. �

Since the walker moves one step at a time, E(τ) ≥ L. The lower bound on the

variance of τ is obvious due to the ellipticity condition on the walk. 2
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6 Proofs of the criteria

In this section, we prove Propositions 4.1–4.3.

Proposition 4.1 follows directly from Lemma 5.1.

Proof of Proposition 4.2. Fix N ∈ N and ε > 0 and A > 100 and L satisfying ee
A

< L ≤
Nε2 , and N ≤ eL

0.1

.

To make the argument easier to follow, we first consider the periodic case, i.e., we

assume that the environment satisfies

p(k + L) = p(k) for any k ∈ Z. (6.1)

If we run the walk starting from 0 and stop it at the time τ when it hits either L or

−L, we get two random variables: τ and U = Zτ (thus, U takes values L or −L). Let us
consider iid copies (τi, Ui) of such pairs. Denote

µ̂ = E(τi), V̂ = E((τi − µ̂)2), γ̂ = E(|τi − µ̂|3).

By Lemma 5.2 we have the following estimates:

L ≤ µ̂ ≤ ceAL3, 1 ≤ V̂ ≤ ce2AL5, γ̂ ≤ ce3AL7. (6.2)

Note that

P(U = L) ≥ 1− e−0.5
√
L

by condition (C2a) (cf. the proof of Lemma 5.1).

ForM ∈ N, denote

ΘM :=

M∑

i=1

τi.

ForM ≤ N2 we have that ZΘM
=

M∑

i=1

Ui satisfies

P (ZΘM
=ML) ≥ (1− e−0.5

√
L)N

2 ≥ 1− e−0.1
√
L, (6.3)

if N is sufficiently large, since N ≤ eL
0.1

.

Define the stopping timeMN as the first integer such thatΘMN
≥ N . By [14, Theorem

1], we have that the “residual lifetime” or “excess over the boundary”, ΘMN
−N satisfies

E(ΘMN
−N) ≤ V̂ /µ̂ ≤ ce2AL4, (6.4)

from (6.2). Since L > ee
A

Markov inequality implies that

P
(
ΘMN

∈ [N,N + L6]
)
≥ 1− 1

L
. (6.5)

Thus, combining (6.3) and (6.4), we get

P
(
|ZN −MNL| ≤ 2L6

)
≥ 1− 2

L
. (6.6)

By the Berry-Esseen theorem for renewal counting processes [13, Theorem 2.7.1]

we have ∣∣∣∣∣∣
P


MN − N

µ̂√
V̂
µ̂3N

< z


− Φ(z)

∣∣∣∣∣∣
< 4

(
γ̂√
V̂

)3√
µ̂

N
<

1

L
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if N (and therefore L since N ≤ eL
0.1

) is sufficiently large. Hence

∣∣∣∣∣∣
P


ZN − LN

µ̂

L
√

V̂
µ̂3N

< z


− Φ(z)

∣∣∣∣∣∣
<

1√
L
. (6.7)

Since L ≤ Nε2 , (6.2) implies that

µ :=
LN

µ̂
>

N

ceAL2
> N1−ε,

and

σ := L

√
V̂

µ̂3
N

satisfies | lnσ/ lnN − 1/2| < ε.

This completes the proof in the periodic case (6.1). Now let the periodicity assumption

(6.1) be replaced by the weaker condition (C2c). In this case we consider a new periodic

environment p̄n, where p̄n = pn for each n ∈ [0, L], and p̄n is periodic with period L. Let

P denote the corresponding probability for the paths of the walk (Z̄t)t∈N defined by p̄. By

(C2c), the conditions (C2a) and (C2b) are valid for (Z̄t)t∈N, thus the CLT limit (6.7) holds

for Z̄N , with the corresponding µ̂, V̂ .

Now, for any path of length N for the walks: (z1, . . . , zN ), zj+1 = zj ± 1, we have from

(C2c) that
∣∣P (Z1=z1, . . . , ZN =zN )− P

(
Z̄1=z1, . . . , Z̄N =zN

)∣∣<N−1/ε2P
(
Z̄1=z1, . . . , Z̄N =zN

)
.

This shows that |µ̂− µ̂| < N−1 and |V̂ − V̂ | < N−1, and also that one can replace Z̄N
by ZN in (6.7). Hence, the general case follows from the periodic one. �

Proof of Proposition 4.3. We divide the proof into three steps.

Step 1. For an arbitrary choice of k ∈ (−v′N, vN), denote by τ the exit time from

(−v′N, vN) (while starting at k). We need to estimate

P(Zt reaches −v′N or vN before time N5|Z0 = k) = P(τ < N5).

By Lemma 5.2, under condition (C3b) there exists c > 0 such that for any k ∈
(−v′N, vN) we have: E(τ) < ceAN3. Then P(τ > N4)N4 < E(τ) < ceAN3, so

P(τ > N4) < ceA/N.

This implies

P(τ > N5) < (ceA/N)N < e−N .

Hence,

P(Zt reaches −v′N or vN before time N5) > 1− e−N .

Step 2. We have the following two inequalities:

P(Zt visits − v′N before visiting vN) ≤ 0.89,

P(Zt visits vN before visiting − v′N) ≤ 0.89.

We prove the first estimate, the second one can be proved similarly. By (3.10)

P(Z visits (−v′N) before visiting vN) =
M(vN)

M(vN)−M(−v′N)
.
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Using (C3c), we get:

M(vN) =

vN∑

j=1

eΣ(j) ≤
vN∑

j=1

eΣ̄(j) ≤
vN/Q+1∑

l=1

Q∑

j=1

eΣ̄(j+(l−1)Q) ≤
(
vN

Q
+ 1

)
M(Q)(1 + 2Q−1/2).

In the same way,

M(uN) =

uN∑

j=1

eΣ(j) =

uN∑

j=1

eΣ̄(j) ≥
uN/Q∑

l=1

Q∑

j=1

eΣ̄(j+(l−1)Q) ≥ uN

Q
M(Q)(1− 2Q−1/2).

Hence

M(vN) ≥M(uN) ≥ uN

Q
M(Q)(1− 2Q−1/2).

Similarly

M(−v′N) ≤M(−u′N) ≤ −
(
u′N

Q
− 1

)
M(Q)(1− 2Q−1/2).

Hence,
M(vN)−M(x)

M(vN)−M(−v′N)
<

v

u+ u′
+ 0.01 <

0.4

0.45
+ 0.01 < 0.89.

Step 3. By Step 1, with probability 1− e−N , the walk starting at 0 reaches either vN or

−vN ′ before time N5. By Step 2, it reaches vN before time N5 with probability larger

than 0.1. The first part of (C3a) states that Σ(vN,w+N) > N1/2 and Σ(vN,w−N) > N1/2.

Under this condition, Lemma 5.1 implies that the walk starting at vN satisfies

P (ZT ∈ [w−N,w+N ]) > 0.1

for all T ∈ [N5, eN
1/4

], which implies the desired result. The same argument holds for

−v′N . �

7 Quasi-periodic environments

In this section we return to the study of quasi-periodic random walks. Fix a Liouville

number α ∈ R \Q and p ∈ P, and for x ∈ T consider the corresponding environment:

p(j) := p(x+ jα),

as well as the random walk (Zt)t∈N on it, defined by (1.1).

It will be convenient to reformulate the main conditions Cj , j = 1, 2, 3, in this new

context. First of all, notice that condition C1 = C1(N) does not depend on ε, while the

other two conditions do. For the uniformity of notations, we formally include an ε in all

the three conditions. We say that

x ∈ Cj(p, N, ε) if and only if p ∈ Cj(N, ε), j = 1, 2, 3.

The goal of this section is to prove the following statement.

Theorem 7.1. For any Liouville α there exists a dense Gδ set R ⊂ P with the following

property: for any p ∈ R, for almost every x ∈ T, there are strictly increasing sequences

of numbers Nj,n, such that for all j = 1, 2, 3, n ∈ N we have

x ∈ Cj(p, Nj,n, 1/n).

By the results of Propositions 4.1–4.3, this will suffice, to prove Theorem A, see §8.1

for details.
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7.1 The Gδ argument

In §3.1 we denoted by Bα ⊂ P the set of (multiplicative) coboundaries, i.e., functions

p̄(x) such that (3.4) has a solution with a smooth transfer function g. We noticed after

formula (3.5) that if p̄ ∈ Bα, then

Σx(n) = ln g(x+ α)− ln g(x+ (n+ 1)α).

In particular, for all n, |Σx(n)| is bounded by a constant independent of n, hence none

of the criteria from the previous section holds for p̄ ∈ Bα. The advantage of coboundaries
however, is that due to the simple formulas for their ergodic sums one can develop

a reasonable perturbation theory and check our criteria for perturbations p̄ of p on

appropriate subsets of T.

Thus, we start by proving that the set of coboundaries are dense in P.
Lemma 7.2. For any α ∈ R \ Q, the set Bα of smooth multiplicative coboundaries is

dense in P for the C∞ topology.

Similarly, any p ∈ C∞(T, (0, 1)) ∩ Pc can be approached in the C∞ topology by p̄ such

that for q̄ = 1− p̄ and some constant c 6= 0, there exists ψ ∈ C∞(T,R) such that

ln q̄(x)− ln p̄(x) = c+ ψ(x+ α)− ψ(x).

Proof. Let α ∈ R \ Q. By truncating the Fourier series of ln(q/p) it is possible to

approximate it in the C∞ topology by coboundaries of the form ψ(·) − ψ(· + α) where

ψ ∈ C∞(T,R). Hence F (·) = g(·)/g(·+ α) where g = eψ can be made arbitrary close to

q/p. Now define p̄ = 1/(1 + F ) and observe that p̄ approximates p and p̄ ∈ Bα.
The case p ∈ C∞(T, (0, 1))∩Pc is treated similarly except that ln(q/p) is approximated

by c+ ψ(·)− ψ(·+ α) with c 6= 0. �

To prove Theorem 7.1, we will construct explicit sequences of functions en, numbers

Nj,n and sets Uj,n such that the following statement holds true:

Proposition 7.3. For any Liouville number α there exists

� A strictly increasing sequence of integers qn,

� An explicit sequence of C∞ functions en satisfying |en|Cn−1 < 1/n (see §7.2.3),

� For every j ∈ {1, 2, 3}, a sequence of numbers Nj,n,

� For every j ∈ {1, 2, 3}, a sequence of sets Uj,n =
⋃

i∈[0,qn−1]

(Ij,n + i/qn) ⊂ T, where

Ij,n is an interval in [0, 1/qn] of size |Ij,n| > 0.01
qn

with the following property. For every p̄ ∈ Bα, for every sufficiently large n

Uj,n ⊂ Cj
(
p̄+ en, Nj,n,

1

n

)
.

Before proving Proposition 7.3 we show how it implies Theorem 7.1.

Proof of Theorem 7.1. Fix a Liouville α ∈ R \Q. Fix any j ∈ {1, 2, 3}. Let Uj,n and Nj,n
be as in Proposition 7.3. Denote

Rj,n = {p ∈ P | Uj,n ⊂ Cj(p, Nj,n, 1/n)}.

By the definitions of the conditions Cj , the sets Rj,n are open. Lemma 7.2 and

Proposition 7.3 show that for any m ∈ N the set
⋃
n≥mRj,n is dense. Hence the set

Rj =
⋂

m∈N

⋃

n≥m
Rj,n
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is a dense Gδ set (in C
r topology for any r ∈ N).

Observe now that for p ∈ Rj there exists a strictly increasing sequence ln such that

p ∈ Rj,ln . Recall that Uj,ln has Lebesgue measure larger than 0.01 for every ln. Moreover,

up to extracting a subsequence we may assume that qln+1
� qln , so that

λ

(
Uj,ln ∩

n−1⋂

i=1

U cj,li

)
≥ 1

2
λ(Uj,ln) · λ

(
n−1⋂

i=1

U cj,li

)
.

Now, an enhanced version of the Borel-Cantelli Lemma (see [15, Chapter IV]) states

that if events Cn are such that for each k ≥ 1

∞∑

n=k

P


Cn

∣∣∣∣∣∣

n−1⋂

j=k

Ccj


 = +∞,

then with probability 1, infinitely many of those events occur. We thus conclude that a.e.

x belongs to infinitely many Uj,ln , thus to infinitely many Cj(p, Nj,ln , 1/n). In conclusion,

the set R =
3⋂

j=1

Rj satisfies the property required in Theorem 7.1. �

The rest of Section 7 is devoted to the proof of Proposition 7.3.

7.2 Perturbation of a smooth coboundary. The main construction

7.2.1 Coboundaries

Given a smooth coboundary p̄ ∈ Bα with a transfer function g(x), forM ∈ N, let Σ̄x(M)

be the ergodic sum of p̄ defined by formula (3.5) with p replaced by p̄. Thus, for all k ≤ k′

and allM ∈ N we denote:

Σ̄x(M) = ln g(x+ α)− ln g(x+ (M + 1)α),

Σ̄x(k, k
′) = ln g(x+ (k + 1)α)− ln g(x+ (k′ + 1)α),

A := ln ‖g‖+ ln ‖1/g‖.

Then,

∀x ∈ T, ∀M ∈ N : |Σ̄x(M)| ≤ A, |Σ̄x(k, k′)| ≤ A,

Moreover, for any smooth coboundary p̄, there exists 0 < κ ≤ 1/2 such that

κ ≤ p̄(x) ≤ 1− κ for all x ∈ T.

Define

K(x) =
1

p̄(x)
+

1

q̄(x)
, (7.1)

and observe that

K(x) ∈ (2, 2/κ].

7.2.2 The sequences qn and Nj,n

Given a Liouville number α ∈ R \Q, let qn be a sequence of integers satisfying

ηn := |qnα| < q−n
n

n , (7.2)

where | · | denotes the closest distance to integers. Moreover, for each n we will need to

choose qn sufficiently large for our arguments to hold.
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Denote the integer closest to qnα by sn. In the constructions below we assume that

qnα > sn for all n. If qnα < sn, the arguments are the same up to a suitable change of

signs.

Denote
Nn :=

[
(qnηn)

−1
]
qn,

N1,n := [Nn/20] , N2,n := qn
5

n , N3,n := Nn,
(7.3)

were [a] stands for the integer part of a.

We make the following useful observation on the combinatorics of the irrational

rotation Rα on the circle. The orbit of any fixed point x of the circle under the rotation by

α onT is essentially distributed in the following way. The points x, x+α, x+2α, . . . x+(qn−
1)α are very close (closer than ηn) to x, x+

pn
qn
, x+2pnqn , . . . x+(qn−1)pnqn . Hence, there will

be one point of this qn piece of orbit in each basic interval [k/qn, (k+1)/qn], k = 0, . . . qn−1.

Moreover, the first return of x to its basic interval will be shifted by ηn. The next return

will thus be shifted by one more ηn. Finally, the orbit x, x+ α, x+ 2α, . . . , x+Nnα will

form an ηn-grid inside each basic interval, and thus in the whole circle.

7.2.3 The functions en

In this section, the names of functions with the shortest period 1 are marked with a tilde,

while 1
qn
-periodic functions have no tilde in their name.

Let ẽn(x) ∈ C∞ be a 1-periodic function satisfying
∫
T
ẽn(x)dx = 0 and such that

ẽn(x) =





sin 8πx for x ∈ [− 1
2 + 1

n2 ,− 3
8 − 1

n2 ] ∪ [− 3
8 + 1

n2 ,− 1
4 − 1

n2 ]∪
[ 14 + 1

n2 ,
3
8 − 1

n2 ] ∪ [ 38 + 1
n2 ,

1
2 − 1

n2 ],

0 for x ∈ [− 1
4 ,

1
4 ],

increasing on the intervals [− 1
2 ,− 1

2 + 1
n2 ], [− 1

4 − 1
n2 ,− 1

4 ], [
1
4 ,

1
4 + 1

n2 ],

[ 12 − 1
n2 ,

1
2 ],

decreasing on the intervals [− 3
8 − 1

n2 ,− 3
8 + 1

n2 ], [
3
8 − 1

n2 ,
3
8 + 1

n2 ],

0 and ∞-flat at x = ± 3
8 .

Observe that ẽn is also flat at ± 1
4 since it is smooth. Figure 2 represents the function ẽn.

The idea is to perturb a given smooth coboundary p̄ by a function of the form

q−nn ẽn(qnx) to produce the desired behavior of the walk. For each n we will choose qn
satisfying (7.2) and sufficiently large. In particular, although the Ck norms of ẽn may

grow fast as n grows, we can still guarantee that ‖q−nn ẽn(qnx)‖Cn−1 < 1
n .

A small problem is that the perturbed function p(x) = p̄(x) + q−nn ẽn(qnx) may not

satisfy the symmetry condition (1.3). Below we modify ẽn(x) in order to assure condition

(1.3) for p. Let ẽ+n (x) and ẽ
−
n (x) be the positive and negative parts of ẽn(x):

ẽ+n (x) =

{
ẽn(x) if ẽn(x) ≥ 0,

0, otherwise,
ẽ−n (x) =

{
−ẽn(x) if ẽn(x) < 0,

0, otherwise.

For δ ∈ [−1, 1], define ẽn,δ(x):

ẽn,δ(x) =

{
ẽn(x) + δẽ+n (x) if δ ∈ [0, 1],

ẽn(x) + δẽ−n (x) if δ ∈ [−1, 0).
(7.4)

Note that, since ẽn is flat at ± 3
8 and ± 1

4 , where it actually changes the sign, the functions

ẽn,δ are also smooth. This is the only reason why we need ẽn to be flat at those points.

The following lemma introduces the function en that will be the main building block

of our construction.
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Figure 2: Graph of ẽn(x). The intervals I1, I2 and I3 are the sets for which the conditions C1, C2

and C3 hold (Lemmas 7.6–7.8).

Lemma 7.4. Given any p̄ ∈ Bα, if qn is sufficiently large, there exists δn ∈ [− 1
n ,

1
n ]

satisfying

pn(x) := p̄(x) + en(x) ∈ P with en(x) = q−nn ẽn,δn(qnx). (7.5)

Proof. In this proof, we will use the notation

en,δ(x) := q−nn ẽn,δ(qnx).

We are looking for δ ∈ [−1/n, 1/n] such that pn(x) satisfies the symmetry condition

(1.3), i.e.,

In,δ :=

∫

T

ln(pn(x))− ln(1− pn(x))dx =

∫

T

ln

(
1 +

en,δ(x)

p̄(x)

)
− ln

(
1− en,δ(x)

1− p̄(x)

)
dx = 0

We will approximate In,δ with

Jn,δ :=

∫

T

en,δ(x)K(x)dx

where K is given by (7.1).

Claim. There exists a constant c > 0 that does not depend on n or δ such that

|In,δ − Jn,δ| < cq−2n
n (7.6)

|Jn,0| < c
1

n2
q−nn (7.7)

For δ > 0, Jn,δ − Jn,0 > cδq−nn (7.8)

For δ < 0, Jn,δ − Jn,0 < −cδq−nn (7.9)

From the continuity of In,δ and Jn,δ in δ, it follows directly from the claim that there

exists δ ∈ (−1/n, 1/n) such that In,δ = 0.

Proof of the Claim. (7.6) follows from the fact that max |en,δ(x)| ≤ 2q−nn . (7.7) follows

from the fact that the average of ẽn is zero and from the fact that K is almost constant

on intervals of size 1/qn. As for (7.8), it follows from the fact that K > 2, and that the

average of ẽ+n is larger than some positive constant independent of n. (7.9) is proved

similarly. 2

Lemma 7.4 is thus proved. �
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7.2.4 The sets Uj,n

Consider the following subintervals of [0, 1]:

I :=

(
− 1

200
,

1

200

)
,

I1 :=
3

8
+ I, I2 :=

5

16
+ I, I3 := I,

I ′1 := −3

8
+ I, I ′2 := − 7

16
+ I,

and let Ij,n = Ij/qn, I
′
j,n = I ′j/qn for j = 1, 2, 3,

Uj,n =

qn−1⋃

k=0

(
Ij,n ∪ I ′j,n +

k

qn

)
, j = 1, 2, U3,n =

qn−1⋃

k=0

I3,n +
k

qn
. (7.10)

Notice the total measure of Uj,n: |Uj,n| = 0.02, and |U3,n| = 0.01.

7.3 Estimates of ergodic sums

Recall that p(x) = p̄(x) + en(x) (see (7.5)), and that Nj,n is defined by (7.3).

For p(·) and p̄(·), we denote by Σx(n) and Σ̄x(n) the potential functions defined in

(3.5).

The next statement represents the sums Σx(M) for a largeM in the form Σx(M) =

Main term(M)+Rest(M). Notice that the Rest(M) may not be small, see (7.14) and

(7.15). Nevertheless, these estimates are sufficient for the proofs in the next subsection.

There we will show that, for certain values of x, the Rest(M) is asymptotically smaller

than the Main term(M) provided thatM and qn are sufficiently large.

Proposition 7.5 (Main technical lemma). Given α ∈ R \ Q and a smooth coboundary

p̄ ∈ Bα, let A, κ, and K(x) be as in §7.2.1, and let K̂ =
∫
T
K(x)dx. Then for all x ∈ T and

allM ∈ [0, Nn] there exist functions R(x,M) and R′(x,M) satisfying

|R(x,M)|, |R′(x,M)| ≤ 4κ−2Mq−2n
n (7.11)

such that

Σx(M) = −
M∑

m=1

en(x+mα)K(x+mα) + Σ̄x(M) +R(x,M), (7.12)

Σx(−M) =

0∑

m=−M+1

en(x+mα)K(x+mα) + Σ̄x(−M) +R′(x,M), (7.13)

where

M∑

m=1

en(x+mα)K(x+mα) = K̂q−nn Nn

∫ qnx+M/Nn

qnx

ẽn,δn(t) dt+Mo
(
q−nn

)
, (7.14)

0∑

m=−M+1

en(x+mα)K(x+mα) = K̂q−nn Nn

∫ qnx

qnx−M/Nn

ẽn,δn(t) dt+Mo
(
q−nn

)
, (7.15)

Moreover,

en(x+mα) ≥ 0 for all m = k, . . . , k′ ⇒ Σx(k, k
′) ≤ Σ̄x(k, k

′) ≤ A (7.16)

en(x+mα) ≤ 0 for all m = k′, . . . , k ⇒ Σx(k, k
′) ≤ Σ̄x(k, k

′) ≤ A. (7.17)
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The statement of this lemma covers several different situations that will be useful in

checking all the conditions Cj .

Proof. Recall the notations: p(x) = p̄(x) + en(x), K = 1
p̄(x) +

1
q̄(x) . Omitting the argument

x, we can write:

ln(1− p)− ln p = ln(1− p̄− en)− ln(p̄+ en) = ln(1− p̄)− ln p̄+ ln(1− en
1− p̄

)

− ln(1 +
en
p̄
) = ln q̄− ln p̄− en

(
1

1− p̄
+

1

p̄

)
+ rn = ln q̄− ln p̄− enK + rn,

where |rn| ≤ 2e2n(q̄
−2 + p̄−2) ≤ ‖K2‖ ≤ 2κ−2. The estimate of |rn| follows from the Taylor

expansion of ln(1 + y) for small y.

Now we estimate Σx(M) for any x ∈ T and anyM > 0:

Σx(M) =

M∑

m=1

ln(qn(x+mα))− ln(pn(x+mα)) = (7.18)

M∑

m=1

ln(q̄(x+mα))− ln(p̄(x+mα))−
M∑

m=1

en(x+mα)K(x+mα) +R(x,M)

and

|R(x,M)| ≤
∣∣∣∣∣

M∑

m=0

e2n(x+mα)
(
q̄−2(x+mα) + p̄−2(x+mα)

)
∣∣∣∣∣ ≤ 4κ−2Mq−2n

n ,

since ‖en‖ ≤ 2q−nn and p̄, q̄ ∈ [κ, 1− κ]. This gives (7.12) and (7.11). The proof of (7.13)

is similar.

Let us prove (7.14). By (7.2) and (7.3), we have ηn = |qnα| < q−n
n

n , and ηn ≈ N−1
n .

By definition, en(x+ α) = q−nn ẽn(qn(x+ α)) = q−nn ẽn(qnx+ ηn). For each j ≤ qn we have:

|en(x+ jα)− en(x)| = q−nn |ẽn(qnx+ jηn)− ẽn(qnx))| ≤ q−nn ηnqnmaxT |ẽ′n(x)| = o(q−nn ),

since ηn = q−n
n

n by (7.2), and ẽn(x) does not depend on qn, see §7.2.3 for the definition

of ẽn(x). Since α is close to pn/qn, we get:

qn∑

m=1

en(x+mα)K(x+mα) = (en(x) + o
(
q−nn

)
)

qn∑

m=1

K(x+mα)

= K̂qn(en(x) + o
(
q−nn

)
).

Hence, forM � qn we have

M∑

m=1

en(x+mα)K(x+mα)=K̂qn

M/qn∑

m=1

en(x+mqnα) +M o(q−nn )

=K̂qnNn

M/qn∑

m=1

en(x+m|qnα|)ηn +M o
(
q−nn

)
=K̂qnNn

∫ x+M/(qnNn)

x

en(t)dt+M o
(
q−nn

)

=K̂q−nn Nn

∫ qnx+M/Nn

qnx

ẽn,δn(t)dt+M o
(
q−nn

)
.

The proof of (7.15) is similar.
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To show (7.16), notice that under the assumption en(x+mα) ≥ 0 for all m = k, . . . , k′

we have for these m that p(x+mα) ≥ p̄(x+mα), hence

Σx(k, k
′) =

k′∑

m=k

ln
q(x+mα)

p(x+mα)
≤

k′∑

m=k

ln
q̄(x+mα)

p̄(x+mα)
= Σ̄x(M) ≤ A.

Estimate (7.17) is proved in the same way. �

7.4 Proof of Proposition 7.3

Lemma 7.6. For n sufficiently large, we have:

U1,n ⊂ C1(p, N1,n).

Proof. Fix x ∈ I1,n (the same argument holds for all x ∈ U1,n). Then qnx lies in an interval

of size 0.01 around the point 3/8. Since ẽn,δn is smaller or equal to sin(8πx) for most of

the above interval, we have that for large n

∫ qnx+1/20

qnx

ẽn(t) ≤
∫ 3/8+0.04

3/8−0.01

sin 8πt < −0.001.

By (7.14) withM = N1,n = Nn/20, we have

N1,n∑

m=1

en(x+mα)K(x+mα) = K̂q−nn N1,n

∫ qnx+1/20

qnx

ẽn,δn(t)dt+N0 o(q
−n
n )

< −0.001K̂q−nn N1,n

Since |R(x,N1,n)| ≤ 4κ−2N1,nq
−2n
n , and κ and A are independent of Nn, we get from

(7.12) for any n sufficiently large:

Σx(N1,n) > 0.001K̂N1,nq
−n
n .

Recall that, by (7.2) and (7.3), Nn is of order qn
n

n and N1,n = [Nn/20]. Therefore,

N1,n ≥ qn
6

n /40 ≥ q6nn , and for sufficiently large qn we have 0.001K̂
√
N1,nq

−n
n ≥ 1. Hence,

Σx(N1,n) > N
1/2
1,n .

Likewise, Σx(−N1,n) > N
1/2
1,n . �

Lemma 7.7. For n sufficiently large, we have:

U2,n ⊂ C2(p, N2,n, 1/n).

Proof. We choose qn and N2,n satisfying (7.2) and (7.3). Let Σ̄x(M) and A be as in § 7.2.1;

recall that A only depends on p̄. Assuming that qn is sufficiently large, we define

L := qn
2

n > ee
A

.

Since N2,n = qn
5

n by (7.3), we have

N2,n = Ln
3

> Ln
2

,

and N2,n ≤ eL
0.1

, as required in C2(p, N2,n,
1
n ).

Let x ∈ I2,n (the same argument holds for all x ∈ U2,n). Then

qnx ∈ [5/16− 0.01, 5/16 + 0.01].
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By the definition of ẽn,δn , for any t ∈ [qnx− 0.001, qnx+ 0.001] it holds that ẽn,δn(t) ≥ 0.5.

Since by (7.3) we have N2,n/Nn < 0.0001, we get from (7.15) withM = L < N2,n

0∑

m=−L+1

en(x+mα)K(x+mα) = K̂q−nn Nn

∫ qnx

qnx−L/Nn

ẽn,δn(t)dt+N0 o(q
−n
n )

≥ K̂0.49Lq−nn .

Then, since K̂ > 2, we conclude from (7.13) and (7.11) that

Σx(−L) > 0.1Lq−nn >
√
L.

This gives (C2a).
To verify (C2b), notice that for x ∈ I2,n and any m ∈ [−N2,n, N2,n] we have

qnx+mqnα ∈ [5/16− 0.02, 5/16 + 0.02]. Thus

en(x+mα) = q−nn ẽn,δn(qnx+mqnα) ≥ 0.

By (7.16), we have (C2b), i.e.,

Σx(k, k
′) ≤ A for all −N2,n ≤ k ≤ k′ ≤ N2,n.

To verify (C2c), notice that for L as above we have

|Lα| = L

qn
|qnα| <

L

qn
q−n

n

n < N
−nn/2
2,n .

Hence, for any j ∈ [0, L− 1], k ∈ [−N2,n, N2,n] we have |p(x+ jα + kLα)− p(x+ jα)| ≤
N−n3

2,n . �

Lemma 7.8. For any n sufficiently large, we have:

U3,n ⊂ C3(p, N3,n, 1/n).

Proof. Let x ∈ I3,n be fixed (the same argument holds for all x ∈ U3,n). Define Q = qn,

and take for the numbers u, v, w±, u′, v′, w′
± (v, v′ ∈ [0.3, 0.4]) to be

u =
1

4
− xqn, v =

3

8
− xqn, u′ =

1

4
+ xqn, v′ =

3

8
+ xqn,

w± = v ± ε, w′
± = v′ ± ε,

where we set ε = 1
n . Assume without loss of generality that for each of the numbers

introduced above, its product with Nn is an integer that is a multiple of qn. Let A > 0 be

as in Proposition 7.5, and assume that qn is sufficiently large to satisfy

ee
A

< Q < N1/2
n .

The proof of (C3a) is almost the same as the proof of (C1) in Lemma 7.6. Namely, we

have x+ vNnα = x+ v/qn +O(N−1
n ) = 3/(8qn) +O(N−1

n ). Hence

Σx(vNn, w+Nn) =

(w+−v)Nn∑

m=1

ln q (x+ (vNn +m)α)− ln p (x+ (vNn +m)α) ≈

εNn∑

m=1

ln q (3/(8qn) +mα)− ln p (3/(8qn) +mα) = Σ3/(8qn)(εNn).
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Notice that 3/(8qn) ∈ I1,n, so the analysis of the latter sum is analogous to that of

Lemma 7.6. Let us repeat the argument. The sum above is estimated using (7.14). Since

1/n2 � ε, it follows from the definition of ẽn,δn that it is negative on most of the interval

of integration [ 38 ,
3
8 +ε]. Moreover, on all the interval, if ẽn,δn(t) < 0 then ẽn,δn(t) ≤ sin 8πt.

Thus

εNn∑

m=1

K(3/(8qn) +mα)en(3/(8qn) +mα) = K̂q−nn Nn

∫ 3/8+ε

3/8

ẽn,δn(t) dt+N0 o(q
−n
n )

<
K̂

2
q−nn Nn

∫ 3/8+ε

3/8+ε/2

sin(8πt) dt < −0.001K̂q−nn Nnε
2.

On the other hand |R(x, εNn)| ≤ 4κ−2εNnq
−2n
n , and A is independent of Nn. Hence,

by (7.12), and since K̂ ≥ 2

Σx(vNn, w+Nn) > 0.002q−nn Nnε
2 −A− 4κ−2εNnq

−2n
n > N1/2

n

for Nn sufficiently large. The remaining three estimates of this item are proved in the

same way.

To verify (C3b), notice that, by the definition of u′ and v we have:

x− u′Nnα = x− u′/qn +O(N−1
n ) = −1/(4qn) +O(N−1

n ),

x+ vNnα = x+ v/qn +O(N−1
n ) = 3/(8qn) +O(N−1

n ).

Hence, for all m ∈ [−u′Nn, vNn] we have en(x+mα) ≥ 0. By (7.16), we have the first

part of (C3b):
Σx(k, k

′) ≤ A for all − u′Nn ≤ k ≤ k′ ≤ vNn.

The second part of (C3b) is verified in the same way using formula (7.17).

It remains to verify (C3c). For k ∈ [−v′Nn/Q, v′Nn/Q], take for Σ̄(k) the sums Σ̄x(k)

and let Bx(M) := Σx(M)− Σ̄x(M). To verify (4.1) notice that for each l ∈ [−Nn/Q,Nn/Q]

we have

|lQα| < 1

Q
.

Therefore, since Σ̄x(M) = ln g(x+ α)− ln g(x+ (M + 1)α)

|Σ̄x(M)− Σ̄x(M + lQ)| ≤ 2
‖ ln g‖C1

Q
< Q−1/2

if Q is sufficiently large.

Next, we prove (4.2). For each m ∈ [−u′Nn, uNn] we have: x+mα ∈ [− 1
4qn

, 1
4qn

], and

hence en(x+mα) = 0. This implies that p(x+mα) = p̄(x+mα), and

Σx(M) = Σ̄x(M) for all M ∈ [−u′Nn, uNn].

Form ∈ [−u′Nn, vNn] we have: x+mα ∈ [− 1
4qn

, 3
8qn

], and hence en(x+mα) ≥ 0. Then

(7.16) implies, in particular, that that forM ∈ [0, vNn] we have

Σx(M) ≤ Σ̄x(M).

For m ∈ [−v′Nn, uNn] we have en(x+mα) ≤ 0, which implies the second part of (4.2)

by (7.17). This completes the proof of (C3c). �

Proof of Proposition 7.3. Putting together Lemmas 7.6, 7.7, 7.8 immediately yields

Proposition 7.3. �
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8 Proofs of the main theorems

8.1 Proof of Theorem A

By Theorem 7.1, for any p ∈ R, for almost every x ∈ T, there are strictly increasing

sequences of numbers Nj,n, such that for all j = 1, 2, 3, n ∈ N we have

x ∈ Cj(p, Nj,n, 1/n).

For j = 1, we have that pi = p(x+ iα) satisfies condition C1(N1,n). Hence, Proposition

4.1 implies Theorem A(a) for T = rn := e
√
N1,n/4.

For j = 2, we have that pi = p(x+ iα) satisfies condition C2(N2,n, 1/n).

Hence, Proposition 4.2 implies Theorem A(b) for T = sn := N5
2,n and εn = 1/n.

For j = 3, function pi = p(x+ iα) satisfies C3(N3,n, 1/n). The conclusion of Proposition

4.3 holds for any T ∈ [N5
3,n, e

N
1/4
3,n ]. Let us take T = tn := N5

3,n. Then Proposition 4.3

implies that for some v = v(x) ∈ [0.3, 0.4], v′ = v′(x) ∈ [0.3, 0.4] it holds

{
Px
(
ZT ∈ [vN − N

n , vN + N
n ]
)
> 0.1,

Px
(
ZT ∈ [−v′N − N

n , v
′N + N

n ]
)
> 0.1.

This proves Theorem A(c) with bn = vN3,n ∈ [0.3T 1/5, 0.4T 1/5], b′n = v′N3,n ∈ [0.3T 1/5,

0.4T 1/5], and εn = 1
n .

Of course, choosing larger values for T ∈ [N5
3,n, e

N
1/4
3,n ] allows to obtain a similar

statement to (c) with bn, b
′
n of order T δ, for any 0 < δ < 1/5. 2

8.2 Proof of Theorems B (a) and F (a)

We give the proof Theorem B (a). The proof of Theorem F (a) is similar. Fix α /∈ Q.

Let

Rn =

{
p ∈ P : ∃σ, ∃t > n, such that ∀x ∈ T, ∀z ∈ [−n, n],

∣∣∣Px(Zt < σ
√
tz)− Φ(z)

∣∣∣ < 1

n

}
.

The set R̃ = ∩n≥1Rn satisfies Theorem B (a). The sets Rn are open, hence R̃ is a

Gδ set.

It remains to show that R̃ is dense in P. By Proposition 3.1, R̃ contains all cobound-

aries. Recall that coboundaries are dense in P by Lemma 7.2. Hence R̃ is a Gδ-dense

set. 2

8.3 Proof of Theorem B (b)

Define

Rv,ε =

{
p ∈ P : ∃ open sets I and I ′ with Leb(I > 0.001,Leb(I ′) > 0.001

such that ∀(x, x′) ∈ I × I ′, ∃ µ(x) > v1−ε, µ(x′) = 0,

and for y ∈ {x, x′}, ∀ z ∈ [−1/ε, 1/ε] (2.9) holds with T = v

}

The sets Rv,ε are open, and any p ∈ R̂ :=
⋂

ε= 1
n

⋃

v

Rv,ε satisfies Theorem B (b). Hence,

it suffices to show that p(x) = p̄(x) + en(x), as defined in (7.5), belongs to Rvn,
1
n
, where
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we set vn = N5
2,n. For this we take In = U2,n and apply Proposition 4.2 and get (2.9) with

µn(x) ≥ v1−εnn for every x ∈ In and every z ∈ R.

On the other hand, we set I ′
n = U3,n and observe that for every t ≤ vn we have

p(x+ tα) = p̄(x+ tα). Hence the walk for such an x up to time vn is the same as the one

with the function p̄ that is a coboundary. Since N2,n can be chosen arbitrarily large as

function of p̄, we get for every x ∈ I ′
n (2.9) with µn(x) = 0.

In conclusion, the set R′ := R̄ ∩ R̂ satisfies the conditions of Theorem B. 2

8.4 Proof of Corollary C

If the walk had an absolutely continuous stationary measure, then, by Proposition

3.1, ln q− ln p would be a smooth coboundary. Then, for any given sequence {uN} such
that uN → ∞, we would have µ{x : |Σx(N)| ≥ uN} → 0 as N → ∞.

However, Lemma 7.6 shows that if α is Liouville, then for a dense Gδ set of functions

p ∈ P there exists a sequence {Nj} such that |Σx(Nj)| >
√
Nj for a set of x of measure

0.01. A contradiction. 2

8.5 Proof of Theorem E

Define

Am,n =

{
α ∈ R : ∀p ∈ P ∃σ such that ∀x ∈ T, ∀z ∈ [−n, n],

∣∣∣Px(Zt < σ
√
tz)− Φ(z)

∣∣∣ < 1

n
for all t ∈ [m, em]

}
.

The set A = ∩n≥1 ∪m≥1 Am,n satisfies the conclusion of the theorem. The sets Am,n

are open hence A is a Gδ set.

By [25], A contains the Diophantine numbers. Hence A is a Gδ-dense set. 2

8.6 Proof of Theorem F (b)

Let λ(x) =
q(x)

p(x)
. To fix our notation, we assume that

∫
lnλ(x)dx = −c < 0 so that the

walk tends to +∞. The case
∫
lnλ(x)dx > 0 then follows by replacing x by −x. We want

to perturb p to get the behavior of Theorem F (b).

Let us first recall an important fact about the drift coefficient of an asymmetric walk

in Theorem 2.3. Following [11], (see formula (1.6) and Theorem 4 of [11]), we associate

to λ a function

u(x) = 1 + 2

∞∑

k=0

k∏

j=0

λ(x− jα). (8.1)

Then the drift coefficient of the asymmetric walk in Theorem 2.3 is given by the first

integer bn(x) such that
bn(x)∑

k=0

uλ(x+ kα) ≥ n. (8.2)

The next lemma on the Birkhoff sums of a trigonometric polynomials will be a useful

tool in our perturbation of p.

Lemma 8.1. Let d,M > 0 and q be such that q > ee
d+M

. If V is a trigonometric

polynomial of degree d, and all the coefficients of V are bounded by M , then for any

x ∈ T ∣∣∣∣∣∣

q−1∑

j=0

eV (x+j/q) − q

∫

T

eV (θ)dθ

∣∣∣∣∣∣
< e−q.
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Proof. First, expand eV (·) =
N∑

k=0

V k

k!
+ εN , where N := [2q/ ln q], so that the error εN is

small compared to e−q. On the other hand, the polynomials V l that we keep are all of

degree strictly less than q, hence

q−1∑

j=0

V l
(
x+

j

q

)
= q

∫
V l. The lemma follows. �

Let us return to the proof of Theorem F (b). As in the proof of Theorem B (b), we only

need to show density. Hence, by Lemma 7.2, we can start with a p̄ such that for some

c > 0

ln λ̄(x) = ln q̄(x)− ln p̄(x) = −c+ ψ(x+ α)− ψ(x) (8.3)

where ψ a trigonometric polynomial. Let bn be as in Theorem F (a), see (2.11). It is

sufficient to prove that p̄ can be perturbed into p so that for an arbitrarily large tn, and

for some union of intervals Jn and J ′
n we have

(i) µ(Jn) > 0.8 and µ(J ′
n) > 0.1;

(ii) For x ∈ Jn we have |btn(x)− bn| < tn
1/4, and for x ∈ J ′

n we have btn(x) > bn + tn
0.9.

We start by computing the drift corresponding to p̄ for the special sequence of times:

tn := qn
2

n

∫

T

ū(θ)dθ, n ∈ N.

Lemma 8.2. There is a constant U (independent of n) such that for every x ∈ T

|b̄tn(x)− qn
2

n | ≤ U.

Proof. Observe that if (8.3) holds then the function ū associated to λ̄ as in (8.1) can be

written as

ū(x) = 1 + 2

∞∑

k=0

e−c(k+1)eVk(x) (8.4)

where Vk(x) = ψ(x+ α)− ψ(x− kα).

Applying Lemma 8.1 to each term in (8.4) (note that the norm of Vk is bounded

uniformly in k), we conclude that if qn is sufficiently large then

∣∣∣∣∣∣

qn−1∑

j=0

ū

(
x+

j

qn

)
− qn

∫

T

ū(θ)dθ

∣∣∣∣∣∣
< e−qn .

On the other hand, (7.2) tells us that there is an integer pn such that

∣∣∣∣α− pn
qn

∣∣∣∣ ≤ q−n
4

n .

Thus, ∣∣∣∣∣∣

qn−1∑

j=0

ū (x+ jα)−
qn−1∑

j=0

ū

(
x+

pnj

qn

)∣∣∣∣∣∣
≤ ‖ū‖C1q1−n

4

n .

Observe that
qn−1∑

j=0

ū

(
x+

pnj

qn

)
=

qn−1∑

j=0

ū

(
x+

j

qn

)
,

since as j changes from 0 to qn−1 the set pnj goes over all possible residues mod qn.

Therefore, for every x in T we have for n sufficiently large:
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∣∣∣∣∣∣

qn−1∑

j=0

ū(x+ jα)− qn

∫

T

ū(θ)dθ

∣∣∣∣∣∣
< q−n

3

n .

Dividing an orbit of length qn
2

n into pieces of length qn, we obtain

∣∣∣∣∣∣∣

qn
2

n∑

j=0

ū(x+ jα)− qn
2

n

∫

T

ū(θ)dθ

∣∣∣∣∣∣∣
< q−n

3/2
n .

This yields the conclusion of the lemma. �

Now we let gn be a smooth function satisfying

(a) ‖gn‖Cn ≤ 2−n;

(b) gn(θ) = 0 for {qnθ} ∈ [0, 0.85];

(c) gn(θ) = q−n−1
n for {qnθ} ∈ [0.86, 0.99],

and let p(θ) = p̄(θ) + gn(θ). Define

Jn = {x ∈ T : {qnx} ∈ [0, 0.84]}, J ′
n = {x ∈ T : {qnx} ∈ [0.86, 0.98]}.

We clearly have that µ(Jn) > 0.8 and µ(J ′
n) > 0.1, which is (i). To finish, we need to

prove (ii).

Note that for j ∈ [0, 2qn
2

n ] we have qn(x+ jα) = qnx+ jpn+O
(
q2−n

4

n

)
. Thus, it follows

from (b) that for x ∈ Jn, u(x+ jα) = ū(x+ jα) for every j ∈ [0, 2qn
2

n ]. Hence, we get that

btn(x) = b̄tn(x), and by Lemma 8.2, taking bn := qn
2

n we have

|btn(x)− bn| ≤ U. (8.5)

On the other hand, for x ∈ J ′
n, we have from (c) that u(x+ jα) ≤ (1− q−n−2

n )ū(x+ jα)

for every j ∈ [0, 2qn
2

n ]. Hence,

bn∑

j=0

u(x+ jα) ≤ (1− q−n−2
n )



bn∑

j=0

ū(x+ jα)


 = tn +O(1)− tn

q−n−2
n

< tn − t0.95n .

Therefore, for x ∈ J ′
n we have:

bn(x)∑

j=bn+1

u(x+ jα) ≥ t0.95n ,

and so bn(x) > bn +
t0.95n

maxθ u(θ)
> bn + tn

0.9. Together with (8.5) this shows (ii) and

finishes the proof of Theorem F (b) 2

Appendix A Generic deterministic environments

Here we prove Theorem 2.6. The main idea is the following. If we want to speed up

the walk, we modify p by adding a drift away from the origin, while to slow it down we

increase the drift towards the origin.

Proof of (a). We will use the notations and definitions of Section 3.2. By (3.11), the

recurrence holds iff M(n) → ±∞ as n → ±∞. The result follows since for each R the

condition that there is n ∈ N such thatM(n) > R andM(−n) < −R is open and dense
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for the product topology introduced in Definition 2.5. Openness is straightforward, and

to obtain the density it is enough to modify any given p to p̃ satisfying

p̃(n) =

{
1
3 for n > K
2
3 for n < −K.

(A1)

Proof of (b). We also consider the environment given by (A1). Note that for this

environment there are constants C1 = C1(K), and C2 = C2(K) such that

|M(n)| ≥ C1e
C2|n|.

Thus, for each T and r ≥ 0

P(|Z̄T | ≥ r) ≤ 1

C1eC2r
.

It follows that for large T , (2.14) is satisfied, showing the density of this condition.

The openness is also clear.

Proof of (c). It is sufficient to show that for each ε the set of environments such that for

some T

sup
z

∣∣∣∣∣∣
P


 Z̄T − T

3√
8T
9

≤ z


− Φ(z)

∣∣∣∣∣∣
< ε

is dense. We now modify any given environment so that p̃(n) = 2
3 for |n| > K. Then the

walk spends a finite time to the left of K. It follows that

P


 Z̄T − T

3√
8T
9

≤ z


→ Φ(z)

uniformly in z as needed.

To prove part (d), we modify a given environment outside [−K,K] in three steps.

First we take K1 � K and modify p on [−K1,K1] \ [−K,K] to achieve that

n∑

j=1

ln q̃(j)− ln p̃(j) =
0∑

j=−n+1

ln p̃(j)− ln q̃(j),

where q̃(j) = 1 − p̃(j). Next we take K2 � K1 and let p̃(n) = 1
2 if |n| ∈ [K1 + 1,K2].

Finally, we let p̃(n) = 1
3 if n < −K2 and p̃(n) = 2

3 if n > K2. It is easy to see that, given

ε > 0, we can make K1 and K2 so large that

1− ε <
|M−|
|M+|

< 1 + ε, (A2)

whereM+ andM− are defined in (3.12). Then (3.12) shows that

P
(
lim
t→∞

Z̄T = +∞
)
=

|M+|
|M+|+ |M−|

∈
[

1

2 + ε
,

1

2− ε

]
.

The same holds for P
(
lim
t→∞

Z̄T = −∞
)
.

On the other hand, it is easy to see that

P


 Z̄T − T

3√
8T
9

≤ z
∣∣∣ lim
t→∞

Z̄t = +∞


 = Φ(z)
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and

P


 Z̄T + T

3√
8T
9

≤ z
∣∣∣ lim
t→∞

Z̄t = −∞


 = Φ(z).

It follows that for T sufficiently large (2.16) is satisfied with b(T ) = T
3 , ε(T ) = T−1/3

proving the density of this condition. 2

References

[1] S. Alili Asymptotic behaviour for random walks in random environments, J. Appl. Prob. 36

(1999) 334–349. MR-1724844

[2] J. Brémont One-dimensional finite range random walk in random medium and stationary

measure equation, Ann. Inst. H. Poincare Prob/Stat, 45 (2009) 70–103. MR-2500229

[3] J. Brémont Random walk in quasi-periodic random environment, Stochastics and Dynamics,

9 (2009) 47–70. MR-2502473

[4] J.-P. Conze, Y. Guivarch, Marches en milieu aleatoire et mesures quasi-invariants pour un

systeme dynamique, Colloq. Math. 84/85 (2000) 457–480. MR-1784208

[5] D. Dolgopyat, I. Goldsheid Quenched limit theorems for nearest neighbour random walks in

1D random environment, Comm. Math. Phys. 315 (2012) 241–277. MR-2966946

[6] D. Dolgopyat, I. Goldsheid Central Limit Theorem for recurrent random walks on a strip with

bounded potential, Nonlinearity 31 (2018) 3381–3412. MR-3816760

[7] D. Dolgopyat, I. Goldsheid stationary measure for random walks on ergodic environments on

a strip, Ann. Prob. 47 (2019) 2494–2528. MR-3980926

[8] D. Dolgopyat, I. Goldsheid Constructive approach to limit theorems for recurrent diffusive

random walks on a strip, Asymptotic Analysis 122 (2021) 271–325. MR-4242830

[9] R. Durrett Probability: theory and examples. 4th ed. Cambridge Univ. Press, Cambridge,

2010. MR-2722836

[10] N. Enriquez, C. Sabot, L. Tournier, O. Zindy Quenched limits for the fluctuations of transient

random walks in random environment on Z1, Ann. Appl. Probab. 23 (2013) 1148–1187.

MR-3076681

[11] I. Ya. Goldsheid Simple transient random walks in one-dimensional random environment: the

central limit theorem, Probab. Theory Related Fields 139 (2007) 41–64. MR-2322691

[12] A. O. Golosov Localization of random walks in one-dimensional random environments, Comm.

Math. Phys. 92 (1984) 491–506. MR-0736407

[13] A. Gut, Stopped Random Walks, Springer Series in Oper. Res. & Financial Engineering, 2009.

MR-2489436

[14] G. Lorden, On Excess Over the Boundary, Annals of Math. Stat. 41, (1970), 520–527. MR-

0254981

[15] J. Neveu Bases mathématiques du calcul des probabilités, 2nd ed., Masson, Paris, 1970.

MR-0272004

[16] W. Feller An introduction to probability theory and its applications. Vol. II, 2d ed. John Wiley

& Sons, New York-London-Sydney 1971 xxiv+669 pp. MR-0270403

[17] H. Kesten The limit distribution of Sinai’s random walk in random environment, Phys. A 138

(1986) 299–309. MR-0865247

[18] H. Kesten, M. V. Kozlov, F. Spitzer Limit law for random walk in a random environment,

Composito Math. 30 (1975) 145–68. MR-0380998

[19] J. Peterson Limiting distributions and large deviations for random walks in random environ-

ments, PhD Thesis – University of Minnesota, 2008. MR-2711962

[20] J. Peterson Quenched limits for transient, ballistic, sub-gaussian one-dimensional random

walk in random environment, Ann. Inst. H. Poincare, Prob. Stat. 45 (2009) 685–709. MR-

2548499

EJP 26 (2021), paper 66.
Page 35/36

https://www.imstat.org/ejp



Random walks in a Liouville quasi-periodic environment

[21] J. Peterson, G. Samorodnitsky Weak quenched limiting distributions for transient one-

dimensional random walk in a random environment , Ann. Inst. Henri Poincaré Probab.

Stat. 49 (2013) 722–752. MR-3112432

[22] J. Peterson, O. Zeitouni Quenched limits for transient zero-speed one-dimensional random

walk in random environment, Ann. Prob. 37 (2009) 143–188. MR-2489162

[23] D. Revuz, M.Yor Continuous martingales and Brownian motion, 3d edition. Grundlehren der

Mathematischen Wissenschaften 293 (1999) Springer Berlin, xiv+602 pp. MR-1725357

[24] Ya. G. Sinai The limiting behavior of a one-dimensional random walk in a random medium,

Theory Prob. Appl. 27 (1982) 256–268. MR-0657919

[25] Ya. G. Sinai Simple random walks on tori, J. Statist. Phys. 94 (1999) 695–708. MR-1675369

[26] F. Solomon Random walks in a random environment, Ann. Probab. 3 (1975) 1–31. MR-0362503

[27] O. Zeitouni Random walks in random environment, Lecture Notes in Math. 1837 (2004)

193–312. MR-2071631

Acknowledgments. We are grateful for two anonymous referees who made numerous

comments and suggestions that helped us make substantial revisions to the first version

of this paper. Bassam Fayad thanks the KTH for excellent working conditions during his

visit.

EJP 26 (2021), paper 66.
Page 36/36

https://www.imstat.org/ejp


	Introduction
	Quasiperiodic random walks

	Results
	Diophantine walks
	Liouville walks
	Erratic behavior for random walks in generic deterministic elliptic environments
	Open questions
	Random walks in independent random environments. A brief literature review

	Preliminaries
	Stationary measures
	A fundamental martingale

	Random walks in a deterministic aperiodic medium. Diffusion and localization via optional stopping
	Localization criterion
	One-sided drift criterion
	Two-sided drift criterion

	Exit time estimates
	Traps
	Exit time in the absence of traps

	Proofs of the criteria
	Quasi-periodic environments
	The G argument
	Perturbation of a smooth coboundary. The main construction
	Coboundaries
	The sequences qn and Nj,n
	The functions en
	The sets Uj,n

	Estimates of ergodic sums
	Proof of Proposition 7.3

	Proofs of the main theorems
	Proof of Theorem A
	Proof of Theorems B (a) and F (a)
	Proof of Theorem B (b)
	Proof of Corollary C
	Proof of Theorem E
	Proof of Theorem F (b)

	Generic deterministic environments
	References

