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Abstract

We show that one-dimensional random walks in a quasi-periodic environment with
Liouville frequency generically have an erratic statistical behavior. In the recurrent
case we show that neither quenched nor annealed limit theorems hold and both drift
and variance exhibit wild oscillations, being logarithmic at some times and almost
linear at other times. In the transient case we show that the annealed Central Limit
Theorem fails generically. These results are in stark contrast with the Diophantine
case where the Central Limit Theorem with linear drift and variance was established
by Sinai.
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1 Introduction

1.1 Quasiperiodic random walks

Let C*°(T, (0,1)) be the set of smooth functions from the standard torus T = R/Z to
(0,1) (these can be identified with smooth 1-periodic functions from R to (0, 1)). Each
triple (p,a,z), where p € C>*(T, (0,1)), a € (0,1) and = € T defines a sequence of
numbers p(j) = p(z + ja) for all j € Z. The sequence (p(j));cz Will be called the
quasi-periodic environment defined by (p, o, x), or just environment (p, o, x).

Consider the nearest neighbor random walk (Z;):cy on the one dimensional lattice Z,
given by Zy =0, and fort € IN
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Random walks in a Liouville quasi-periodic environment

where q(z) = 1 — p(x), and where we stressed the dependence on z with the notation P,.
Following [25], one can also define a related Markov process (X;):en on T:

Xi=Xo+ Zzamod 1, Xy=uzx. (1.2)

When o ¢ Q, we call (Z;):ew a one-dimensional random walk in quasi-periodic
environment, or for short a quasi-periodic walk. The behavior of these walks has many
similarities with that of the classical random walks in a random environment, and yet
many differences. We will present the statements in different contexts, in particular,
quenched and annealed limit laws, as defined below.

Definition 1.1. We use the notation P, for the distribution of the paths of (Z;)ien
defined in (1.1), when x € T is fixed, and Py, for the distribution of the paths of (Z;)ien
when x is uniformly distributed on T with respect to the Haar measure Leb on T. The
notation E, is reserved for the expectation under the probability P, while [y, is used
for the expectation under Py ,. Similarly, we use the notations Var, and Varyq, to denote
variances for P, and P1.,. The same notations will be used for the distribution of the
paths of (X;);cw defined in (1.2).

Definition 1.2 (Quenched and Annealed limit theorems). Consider a quasi-periodic
environment defined by a triple (p, o, x) where p € C*(T, (0,1)), « ¢ Q and x € T, and
let (Z;)iew be the random walk defined as in (1.1). When x € T is fixed, we say that the
walk (Z;):cn satisfies a quenched limit theorem if there exist sequences (b;(x))ien and
(0+(z))ten and a proper distribution D, (-) such that for any z € R

tlggo P, (Z, — b () < o(x)2) = Dy(2).

We say that the walk satisfies an annealed limit theorem if there exist sequences
(bt)ten and (o¢)rew and a proper distribution D(-) such that for any z € R

thjgo ]PLCb(Zt - bt < O'tZ) = D(Z)

In analogy with the drift of simple random walks, we call b;(x) or b, the drift at time t.

We will see that the notion of symmetry is very important in distinguishing different
types of quasi-periodic walks. Following [25], we adopt the following definition.

Definition 1.3 (Symmetric and asymmetric walks). Given an environment defined by
(p, v, ), we call (Z;)ew defined as in (1.1) a symmetric quasi-periodic walk if p satisfies

/lnp(x)d:r:/lnq(az)dx. (1.3)
T T

Otherwise we say that the walk is asymmetric. We denote by P C C*°(T, (0,1)) the set
of functions satisfying the symmetry condition (1.3), and by P¢ = C*>(T,(0,1)) \ P—the
set of asymmetric walks.

Note that in general, even if p € P, the sequence (p(z + ka))rez does not exhibit any
symmetry. The effect of the symmetry condition above is the result of the averaging
effect, which comes from the equidistribution of any orbit of an irrational rotation
on the circle. It is a classical fact in dynamical systems that the effectiveness of the
equidistribution of the orbits of an irrational rotation of the circle is determined by the
arithmetic properties of its angle a.

Recall that o € R is said to be Diophantine (denoted o € DC(y, 7)) if there exists
~ > 0 and 7 > 0 such that for any (p,q) € Z x IN*

ap‘z

q

7y

2t (DC)
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An irrational real number that is not Diophantine is called Liouville.

An elementary but noticeable fact of number theory is that Liouville numbers form a
dense G° set of R, while the Lebesgue measure of this set is zero.

We now introduce a short hand notation that will help simplify the exposition.

Definition 1.4 (Diophantine and Liouville walks). We call (Z;):cn defined as in (1.1) with
a € DC a Diophantine walk. If o ¢ Q UDC, we call the walk Liouville.

Because the equidistribution of Diophantine rotations is more effective than that of
the Liouville ones, the averaging on the medium due to quasi-periodicity is more effective
in the case of Diophantine quasi-periodic environment. As a result, they behave similarly
to simple random walks, as was established by Sinai in [25]. Namely, they have linear
(possibly null) drift and satisfy the Central Limit Theorem. The precise statements for
Diophantine walks will be recalled in §2.1. By contrast, nothing was known for Liouville
environments beyond the results which hold in any uniquely ergodic environment.

In this paper we study the Liouville case. We show that for any given Liouville o
the walk (Z;)ien defined by (1.1) with a generic p € C*°(T,(0,1)) has a very erratic
statistical behavior. By generic we mean of first category for the C'"*° topology. Since a
generic irrational « is Liouville, our results imply the erratic behavior for one-dimensional
random walks in a generic quasi-periodic environment. What we mean by erratic, is that
at different times scales the walk (Z;);c behaves very differently (think of a walk that
drifts almost linearly for a subsequence of times (¢,),cn, while for another subsequence
() )nen it will be localized logarithmically around the origin).

Our main results can be summarized as follows. For symmetric random walks we
show that the following behavior is generic:

e The spread of the walk (as measured, for example, by standard deviation) oscillates
wildly. Sometimes the walk is localized at a logarithmic scale while at other times the
variance grows faster than t' ~¢. At the latter scales the walk bypasses both —t' ¢ and
t!~¢ with probability larger than 0.1.

e The drift of the walk oscillates wildly: sometimes it is larger than ¢! ~¢, sometimes it
is smaller than —¢!~¢, sometimes it is of order 1.

e The walk does not satisfy neither an annealed nor a quenched limit theorem: the
set of limit distributions includes the normal distribution as well as a distribution with
atoms.

We will also show that

e A one-dimensional random walk in a generic asymmetric quasi-periodic environment
does not have an annealed limit law.

The precise statements of the results outlined above are contained in §2.2.

Plan of the paper and outline of the proofs. Section 2 contains all the main
statements and a review of related resutls from the literature. Quasi-periodic Diophantine
environments are discussed in §2.1. §2.2 contains the precise statements about Liouville
walks. It turns out that their behavior is quite different from the Diophantine walks, and
is, in fact, quite similar to the walks in a generic deterministic elliptic environment that
we define and discuss in §2.3. The Liouville walks are more erratic than the walks in
independent random environments that we briefly review in §2.5. Several open questions
motivated by the present work are discussed in §2.4.

The main technical tool in the study of one dimensional random walks in a fixed
environment given by transition probabilities p;, j € Z and q; = 1 — p;, is the martingale
(3.9). The important quantities that are involved in this martingale, and that determine
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the behavior of the walk, are the sums

n
Zlnqj—lnpj ifn>1,
j=1

¥(n) =<0, if n =0, (1.4)
0
Z Inp; —Ing; ifn < -1,
j=n-+1

The function n — 3(n) is known as the potential. A direct inspection shows that if
p; > q; for all j in some interval I C Z then X is decreasing on I, while if q; > p; for all
j € I then ¥ is increasing on I. Thus, the guiding intuition is that the walker tends to go
downwards on the graph of ¥ and spends a lot of time near local minima of the potential.
The study of the potential plays a crucial role in the study of random walks on Z starting
with the pioneering work of Sinai [24] and it is also central in the present paper.

The reason for the strong difference of behavior between Diophantine and Li-
ouville walks. In the case of quasi-periodic walks defined by some p € C>°(T, (0,1)) as
in (1.1), both the transition probabilities p, ; = p(z + ja) and the sums X, (n) defined by
(1.4) are dependent on z € T.

If the walk is symmetric (see (1.3)) and « is Diophantine, the fact that In(1—p) —Inp is
a smooth coboundary above R, implies that the sums ¥, (n) are bounded, which renders
the Diophantine walk very similar to the simple symmetric random walk (we will come
back to this in §2.1 and we refer the reader to [6, 8] for more details).

A contrario, obtaining various specific behaviors for the sums ¥, (n) of a generic
function p € C*°(T, (0,1)) when « is Liouville, underlies all our findings. Displaying very
different behaviors of ¥, (n) at different time scales n and different initial conditions x is
the key behind the erratic behavior of the Liouville walks.

Outline of the proofs. Section 3 contains the necessary preliminaries. To keep the
exposition as clear as possible, we split the analysis of Liouville walks into two separate
parts. In the first part (Sections 4-6) we deal with a fixed environment and describe
several criteria based on the behavior of the potential, that imply various types of
behaviors for the random walk.

In Section 4, we formulate criteria for localization, one-sided drift and two-sided drift
for random walks in a fixed environment. The proofs are given in Section 6; they rely on
auxillary estimates of exit times for random walks in a fixed environment presented in
Section 5.

The second part of the paper (Sections 7-8) deals with quasi-periodic walks. In
Section 7 we prove Theorem 7.1, stating that when « is Liouville, then for a residual set
of symmetric environments, the criteria for localization, one-sided drift and two-sided
drift are satisfied for almost every € T. In fact, as we mentioned above, the criteria ask
for particular behaviors of the sums %, (n) at different time scales n and different initial
conditions z. By definition of the criteria, it will be easy to show that the set of p € P for
which these criteria are satisfied contains a countable intersection of countable unions
of open sets. These open sets, are subsets of p € P for which a criterion on X, (n) holds
for some n and some (not too small) intervals of initial conditions x.

To prove the theorem, we just need to show that the union of these open sets is dense.
For this we start by perturbing any given p € P into a smooth multiplicative coboundary
p above R,. Then, the main construction is to show that any smooth coboundary p can be
perturbed to p + ¢, (-) € P that satisfies each of the above mentioned criteria at different
scales. This is stated in the main Proposition 7.3. §7.1 contains the reduction of Theorem
7.1 to Proposition 7.3 while the rest of Section 7 is devoted to the proof of Proposition
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7.3. The proof proceeds by a Liouville construction in which we obtain e,, and prove the
required properties of the ergodic sums as in (1.4) for the function p + e,,.

Section 8 contains the proofs of all the statements about Liouville walks, including
the asymmetric walks that are treated in §8.6. We note that the proofs in §8.6 do not use
the results of Sections 4-6 so the reader who is only interested in the asymmetric walks
could skip those sections.

In the appendix we give the proof of the results in the generic deterministic elliptic
medium. They are similar, albeit easier because we have more freedom in perturbing
the medium, to the proofs in the Liouville environments.

2 Results

In this section we present our main results about Liouville walks and compare them
with other classes of random walks. We start with a summary on what is known for
Diophantine walks. Then we state our results on Liouville walks. After that we give a
brief list of erratic behaviors of a walk in a generic deterministic elliptic medium. Next,
we ask some natural questions that arise from our results. Finally, we end the section
with a very brief survey of related results in the case of random walks in independent
random media.

2.1 Diophantine walks

In this section we review the known results about quasi-periodic Diophantine walks.
These results show that Diophantine walks are very similar to the simple random walks.

Recall the notations introduced in Definition 1.1. In particular, recall the notation
P =C>(T,(0,1)) \ P where P is the set of functions satisfying the symmetry condition
(1.3). The following results are known.

Theorem 2.1. ([25, Theorem 1]) (Stationary measure) For o ¢ Q andp € C>(T, (0,1))
such that any of the following two conditions holds:

() p ePe,

(2) « is Diophantine,

then there exists a unique probability measure v on T that is stationary for the
process (X;)ten defined as in (1.2), and this measure is absolutely continuous with
respect to the Haar measure on T. Moreover, for each ¢ € C°(T,R) and for any x € T

Jim B, (6(X,)) = v(0):

The precise definition of a stationary measure will be given in §3.1.

For Diophantine frequencies, the walk (Z;).;c satisfies the Central Limit Theorem,
as shown by the following two statements. Denote

d(z) = / \/%e_lﬁ/%lu. (2.1)

Theorem 2.2. ([1], [25, Equations (15) and (20)]) For « Diophantine and p € C*(T, (0,1)),
and the walk (Z;):cn defined as in (1.1), there exist v € R and o > 0 such that for all x

Jim Py (Z; —tv < oVitz) = ®(2). (2.2)
—00
Therefore
tlim Pren(Z; — tv < ovV/tz) = ®(2). (2.3)
—00

Moreover v = 0 iff the walk is symmetric.
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Note that Theorem 2.2 shows that the Diophantine walks behave similarly to simple
random walks independently of the starting point on the circle. Namely, they have linear
growth, variance also grows linearly and the limit distribution is Gaussian.

In fact, asymmetric walks (Z;).;c for all irrational frequencies, have quenched limits
similar to simple random walks, but with a drift that depends on the starting point.

Theorem 2.3. ([6, Theorem B.2]) For « ¢ Q and p € P¢, and the walk (Z;):;cn defined as
in (1.1), there exist functions (b;(-)):cz and a number ¢ > 0 such that for any z € R

Jim Po(Z; — be(2) < oVtz) = ®(2). (2.4)

In case « is Diophantine, we have that for every x, we can take b;(z) = tv where v is
given by Theorem 2.2.

Remark 2.4. A general formula for b,(-) will be recalled in §8.6 (see equation (8.2)).

The results of Theorems 2.1-2.3 have been extended to random walks driven by
rotations of T¢, for arbitrary d € N, to random walks with bounded jumps where the
walker can move from z to x + ja with |j| < L for some L > 1 and to quasi-periodic walks
on the strip, see [3, 6, 7, 8].

2.2 Liouville walks

Theorems 2.1, 2.2 and 2.3 naturally raise the question of what would be the behavior
of a quasi-periodic walk when the driving frequency « is Liouville. The following
statements show that their behavior can indeed be very different from the Diophantine
case.

Recall that P C C*°(T, (0,1)) the set of functions satisfying the symmetry condition
(1.3), and ®(z) is the normal distribution given by (2.1).

Theorem A. For any Liouville « there exists a dense G5 set R = R(«) C P, and for each
p € R(a) aset S(p) C T of full measure with the following property.

Let p € R(«) and = € S(p), and consider a quasi-periodic walk (Z;):en as in (1.1) in
the quasi-periodic environment defined by (p, «, ). Then there exist strictly increasing
sequences of integers (7, )nen, (Sn)nen, (tn)nen, and a sequence of positive integers
(en)nen with &, — 0, such that for any ¢ > 0 and for k sufficiently large we have:

(a) (Localization) For T = r,, it holds

P, <1tn<aTx |Z4| > 16(In T)2> < T ?and Var,(Zr) < 300(InT)*; (2.5)

(b) (One-sided positive drift) For T = s, and some pu,(z) > T'~¢, for any z € R, it
holds

Ino,(x) 1

<e, —‘ <e (2.6)

P ZT B Mn(x)
¥ InT 2

on(z)
where o, (z) = /Var,(Z7);
(c) (Two-sided drift) For T = t, there exist b, (z),b,(z) € [0.3T"/5 0.47"/%] and
en — 0 such that

< z) —®(2)

P, (\ZT ~ba(2)| < snTl/s) >01, P, (|ZT U (2)] < 5nT1/5) >0.1. 2.7)

Naturally, statement (b) can be modified to provide a one-sided negative drift for the
walks over a subsequence of times.

We will also need a different version of property (b) in order to guarantee the absence
of an annealed limit for the walk. Namely, we need a sequence of times so that property
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(b) holds with uniform drift parameters for a set of positive measure of initial positions
zeT.

Theorem B. For any Liouville «, there exists a dense G5 set R’ = R'(«) C P with the
following property.

(a) There exists a strictly increasing sequence of integers (u,).cn, and sequences
(0n)nen, (En)nen with €, — 0, such that for any p € R/(«), for any « € T, the quasi-
periodic random walk (Z;):cn as in (1.1) in the environment defined by (p, o, z) satisfies
for each T' = u,, and any z € R:

P.(Zr < 0,VT2) — ®(2)| < &,,. (2.8)

(b) There exists a strictly increasing sequence of integers (v, ),cn and two sequences
of measurable subsets of T, (Z,,)nen, (Z'n)nen With Leb(Z,,) > 0.001 and Leb(Z',,) > 0.001,
such that for any p € R'(«), for any = € Z,, | JZ',, there exist y,,(z) such that j,,(z) > vl ="
if z € Z,, and p,(x) < —vl=¢n if z € 7’,,, and such that the following holds.

The quasi-periodic random walk (Z;);e as in (1.1) in the environment defined by
(p, o, x) satisfies for each T' = v,, and any z € R:

‘IPm (ZTM"(‘T) < z> —®(2)

on(x)

Inon(@) _ 1’ <&, (2.9)

SEmo \TT 3

where o, (z) = /Var,(Z7).

Part (a) of Theorem B is based on the fact that for a generic p € P, the quasi-periodic
walk (Z;)ien “simulates” (uniformly in « € T) a Diophantine walk for a sequence of times.
The same phenomenon for asymmetric walks is observed in Theorem F. Theorem E
encloses a similar observation, this time for every p € P and for a generic set of o € R.

As a byproduct of our analysis, we will show that the existence of an absolutely
continuous stationary measure (see §3.1 for the precise definition) is incompatible with
the erratic behavior of Theorem A.

Corollary C. If « and p are as in Theorem A, then the process (X;):cn defined by (1.2)
has no absolutely continuous stationary measure on T.

The proof of Corollary C will be given in §8.4. Its statement makes a sharp contrast
with the behaviour for Diophantine walks, described in Proposition 3.1.

Theorems A and B imply that the walk does not satisfy any limit theorems. Let us
give a more precise statement, with Definition 1.2 in mind.

Corollary D. If « and p are as in Theorem A, then for = in a set of full measure the walk
(Zi)ten defined by (1.1) in the quasi-periodic environment defined by (p, «, ) has no
quenched limit theorem at z.

If o and p are as in Theorem B, then the walk (Z;);cn defined as in (1.1) has no
annealed limit theorem.

Proof. We start with the absence of quenched limit theorems. Consider x for which (b)
and (c) of Theorem A hold. It follows from (b) that if a quenched limit theorem holds,
then the limit distribution should be normal. X

On the other hand, let ¢, be as in (c). Then, since b,(x) + b, (z) > 0.6¢;, the nor-
malization has to be at least of order t,% . Indeed, if the normalization was negligible
compared to tf, for infinitely many n, then the limit distribution would have to give
weight larger than 0.1 to segments that accumulate at infinity, which is impossible. But if
the normalization is comparable to té or larger, then the limit distribution should give a
probability larger than 0.1 to two intervals, each one having size at most ¢,,. This implies
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that any limit point along the sequence t,, has non-trivial atoms, so it cannot be normal,
giving a contradiction.

To show that the walk has no annealed limit, we use Theorem B. From (a) it follows
that if an annealed limit theorem holds, the limit must be the normal distribution.

On the other hand, (b) forces the normalization of any candidate annealed limit
theorem to be of order at least v} ~¢ for the time v,,. Indeed, if the normalization was
negligible compared to v} ¢ for infinitely many n, then by (2.9) the limit distribution
should give weight larger than 0.001 to segments that accumulate at infinity, which is
impossible. But if the normalization is comparable to v}~ or larger, then the CLT (2.9)
would imply that the annealed limit distribution gives a positive mass to an interval
of size v, 1/2+¢ This implies that any limit point along the sequence v,, has non-trivial
atoms, giving a contradiction with (a). O

Our next result shows that for a generic Liouville frequency, the behavior of the
corresponding walk “simulates” that of a Diophantine one (described by Theorem 2.2)
for long periods of time.

Theorem E. There exists a dense G set A C R such that for any («,p) € A x P there
exist sequences (0, )nen and (T3, )nen, T — 00, such that for any « € T the quasi-periodic
random walk (Z;);cn as in (1.1) in the environment defined by (a, p, ) satisfies for any
z€R:

1
P.(Z; < onVtz) —®(2)| < = forall t € [T, eT"], (2.10)
n

where ®(z) is the normal distribution given by (2.1).

Consider t of order T,,. Relation (2.10) implies that o,, is necessarily larger than
1/ \/T,,. Therefore, when ¢ is of order eI, we see that the variance is almost linear in ¢.

Let us turn to the asymmetric quasi-periodic walks. Recall that, by Theorem 2.3, a
quenched CLT (2.4) holds with some function b;(-). Moreover, by Theorem 2.2, in the
Diophantine case there exist b;(-) = tv such that the annealed limit (2.3) holds. To show
that no annealed limit theorem holds in the Liouville case, it suffices to show that the
drift function b, in the quenched limit theorem fluctuates much more than v/t when we
vary .

Theorem F. For any Liouville « there exists a dense Gs set D(«) C P¢, such that the
walk (Z;)ien defined by (1.1) with p € D(«), satisfies the following:

(a) There exists a sequence of integers (s,)nen and sequences (by)nen, (0n)nen,
(€n)nen with &, — 0, such that for T = s,, we have for any « € T and any z € R:

P, (Zr — by, < o,Vtz) — B(2)| < &5. (2.11)

(b) There exists a sequence of integers (¢, )ncn, and sequences (7, )nen and (7 )nen
of measurable subsets of T, such that the drift coefficients b;, (-) and bs, () of the
quenched CLT (2.4) satisfy:

(1) u(Jn) > 0.8 and u(J)) > 0.1;
(i4) For x € J,, we have |b;, (z) — b,| < t,'/4, and for 2 € J’ we have b;, (x) > b, +1,°°.

As a consequence we get:

Corollary G. For « and p as in Theorem F, the walk (Z;);cn defined by (1.1) has no
annealed limit.
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Proof. If an annealed limit as in (2.3) holds, then by (a) the limit must be the normal
distribution. On the other hand, properties (i) and (i¢) of (b) require that the normalizing
factor at time t,, should satisfy o;, > 9. But then we get, again from (i) and (ii),
that the limit distribution must give a mass larger than 0.8 to some point on the line, a
contradiction with (a). O

2.3 Erratic behavior for random walks in generic deterministic elliptic envi-
ronments

In this section, we consider random walks on Z in a fixed generic deterministic
elliptic environment (p(j));ez. that we define as follows.

Definition 2.5 (Deterministic elliptic environments and generic walks). For any ¢ € (0, %),
we define &, = {p:Z — [e,1 — ¢]}. We call

e=Je& (2.12)

e>0

the set of deterministic elliptic environments. For every ¢ > 0, we endow &, with the
product topology generated by the sets of the form

Wik () ={p : [p(n) —p(n)| < for |n| < K}.

A subset € of € is called generic if for each ¢, € N &, contains a countable intersection
of open dense sets.
Forp € &, we let (Z;)ien be the random walk on 7 given by Zy = 0 and

P(Zt+1:k+1|2t:k'):pk, IP(ZtJ,_l:]C*HZt:k’):qk (213)

We say that a property is satisfied by a generic random walk on 7. if it is satisfied by
the walks (2.13) for p in a generic subset of £.

In the definition of generic sets of environments we are allowed to perturb any given
environment outside of a finite set, so we can directly prescribe the asymptotic behavior
of the potential to enforce a desirable behavior of the walk. Hence the erratic behavior
similar to the Liouville walks can be observed for random walks in generic deterministic
elliptic environments. The results are even stronger in the latter case and the proofs are
much easier. Since we could not find these results in the literature, we give the proofs in
the appendix.

The criteria that yield erratic behavior of generic walks that are included in the
appendix are a source of inspiration for the criteria that we use in the Liouville walks
context. However, the latter criteria must be more sophisticated and tailored in a way
that makes it convenient to verify their validity for quasi-periodic Liouville walks.

Theorem 2.6. There exist a generic set £ C £ such that for each p € £, the following
properties are satisfied by the walk (Z;);cn defined in (2.13):

(a) (Recurrence) The walk is recurrent.

Moreover, there exist strictly increasing sequences ry, Sg, t such that

(b) (Localization) ForT = ry,

P (|Zr| > (InT)?) < T~/? and Var(Zr) < 2(InT)*. (2.14)
(c) (One-sided drift) ForT = s, and some ., o, such that
minf 2@ 5 0 liming 22 S g
n—oo Sn n—o0  \/Sp
we have that for all z
EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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Z - Mn
P (T“ < z) = 0(2). (2.15)
on ()

bn
(d) (Two-sided drift) For T = t,, there exists b,, and ¢,, such that lirr_1>inf— > 0,

lim ¢, =0 and "

n— o0

P (|Zr — bn| < enby) > 0.1, P (|Z7 4 by| < enby,) > 0.1 (2.16)

As mentioned above, the proof of this theorem involves similar ideas, albeit simpler,
as the ones used to prove the analogous results for Liouville walks. Therefore some
readers may prefer to go through the proofs of Theorem 2.6 before going over the proofs
of the results for the Liouville walks.

We note several interesting consequences of Theorem 2.6.

We say that the walk satisfies a limit theorem if there exist sequences (b;):cn and
(0¢)ten and a proper (that is, not concentrated on a single point) distribution D(-) such
that forany z € R

lim P(Zt — bt < O'tZ) = D(Z)
t—o0

Corollary 2.7. There exist a generic set £ C £ such that for each p € &, the following
properties are satisfied by the walk (Z;)ien:

In|E(Z In|E(Z
(a) liminf M =0, limsup M =1;
t—o0 nt 00 Int
i inf 2OV _ o g g OVAI(ZD)
=00 Int t—o0 Int

(b) (Z;)ten does not satisfy a limit theorem.

Proof. (a) Follows from parts (b) and (d) of Theorem 2.6.
Part (b) follows exactly as the absence of quenched limit in corollary D follows from
Theorem A. O

2.4 Open questions

We close Section 2 with two open questions about the Liouville one dimensional
walks.
Comparing Theorem 2.1 with Corollary C leads to the following natural question.

Question 2.8. Suppose that the walk is symmetric and « is Liouville. By compactness,
the walk has at least one stationary measure. Is the stationary measure unique? Are
ergodic stationary measures mixing?

We also note that the maximal growth exponent for the variance of a generic walk
obtained in Corollary 2.7(a) is optimal, since the variance of Zr is at least O(1) and at
most T2. However for Liouville walks we can only show that the variance grows along a
subsequence at a rate that is not slower than 7' ¢, see the discussion after Theorem E.
We believe that the optimal result should be of the same order as for the generic walks.
Thus we formulate

Conjecture 2.9. For generic quasi-periodic symmetric walks, for almost every x

lim sup In Var,(Zr)

= 2.
T—o0 InT

EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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2.5 Random walks in independent random environments. A brief literature
review

A random environment is defined by a sequence {p, } of random variables. We can
generate it as p, = p(7"w) where 7 is a map of a space (2 onto itself, and p : @ — [0, 1]
is a measurable function. It is usually assumed that 7 preserves a probability measure p.
The most studied system in this class are iid environments where {p,,} are independent
for different n. We consider a random walk in this environment where the walker moves
to the right with probability p,, and to the left with probability q, = 1 — p,,. The case
where w is distributed according to p is called annealed, and the case where w is fixed
and we wish to obtain the results for ¢ almost every w is called quenched. Quasi-periodic
random walks are examples of random walks in random environment.

Since there is a vast literature on this subject, we will just briefly discuss the iid walks
here, referring the readers to [27, Part I] for more information. Let A = E(Inp,, — Inqy,).
We call the walk symmetric if A = 0 and asymmetric otherwise. Let the walk start at the
origin, and denote by Z; the position of the walker at time ¢. Here are some results.

According to [26], the walk is recurrent iff it is symmetric. Moreover, if A > 0, then
Z; — +oo with probability 1, and if A < 0 then Z; — —oo with probability 1. Surprisingly,
in the transient case the walk can escape to infinity with zero speed or have positive
speed and superdiffusive fluctuations. We also note that, unless the walk satisfies the
classical Central Limit Theorem, there is no quenched limits."

Thus, the behavior of the random walk in the independent asymmetric environment
can be very different from that of a simple random walk. The difference is even more
startling in the symmetric case where it was shown by Sinai ([24]) that ; nZ; ; converges to
a non-trivial limit (the density of the limit distribution is obtained in [17]). The quenched
distribution has even stronger localization properties, namely, most of the time the
walker is localized on the scale O(1) [12]. More precisely, given € > 0, we can find an
integer N (e) such that for each n € N, for a set of environments w of measure more than
1 — ¢, there is a subset T;(w) C Z of cardinality N(¢) such that P, (Z; € T;(w)) > 1 —¢.
This strong localization could be used to show that the symmetric walk does not satisfy a
quenched limit theorem. The fact that the fluctuations of the walk in both annealed and
quenched case are subpolynomial is referred to as Sinai-Golosov localization.

To understand different behaviors in different regimes in the asymmetric case, one
needs a notion of a trap. Informally, a trap is a short segment I where for most of the
sites the drift is pointing in the direction opposite to the one in which the walker is
going. The most convenient way to do this ([24]) is in terms of the potential, defined in
(1.4). Namely, a segment [ is a trap if the minimal value of the potential inside I is much
smaller than both boundary values. The creation of traps is our main tool for proving the
localization of the walker in the Liouville case.

3 Preliminaries

3.1 Stationary measures

Here we comment on the relation between our findings and the question of the
existence of absolutely continuous stationary measures for the quasi-periodic walks. We
consider a walk given by a pair (a, p) with o ¢ Q and p € C*°(T, (0,1)). The associated
process (X;):en has an absolutely continuous stationary measure with density p(-) iff for
Haara.e.z €T

p(e) = p(z — a)p(x — a) + a(z + a)p(z + ). (3.1)

1We refer the readers to [19, 22, 5, 10, 21] for more discussion of the quenched behavior of the walk.

EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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A direct computation shows that the flux

f(@) = p(@)p(z) —a(z + a)p(z + a)

is constant along the orbit of the rotation and by ergodicity f(z) = f. Now there are two
cases

(I) The walk is not symmetric. We may assume (applying a reflection if necessary)
that

/lnp(x)dx > /ln q(z)dx.

In this case we can take (rescaling p if necessary) f = 1 so that

1 q(z + )
p(r) = —+ ——p(z + a).
W@ T e T
Iterating further one can obtain following [25] a smooth solution?
R R G )
p(z) ,; o P+ ja)

(IT) The walk is symmetric. In this case using recursive analysis similar to case (I) one
can see that there are no solutions with f # 0 (see [25]). In the case f = 0 the equation
reduces to

p(z)p(z) = q(z + a)p(z + a). (3.3)

Introducing

we see that (3.3) reduces to
p(z) gz +a)
We call the function p(-) such that (3.4) has a measurable solution g a (multiplica-
tive) coboundary above o, and g its corresponding transfer function?. In conclusion,

we have the following proposition.

Proposition 3.1. (a) ([4, Theorem 3.1], [2, Theorem 1.8]). The Markov chain (X;):eN
defined by («, p) as in (1.2) has a stationary measure which is absolutely continuous with
respect to the Lebesgue measure iff either the walk is asymmetric or if it is symmetric
and p is a coboundary above a.

(b) ([8, Corollary 6.2]) In the case o« € R\ Q and p is a coboundary, the walk (Z;)ten
defined by («, p) as in (1.1) satisfies the CLT. That is, there exists a constant D? > 0 such
that for all x all z

P, (Z, < 2zDy/n) = ®(z).

Observe that for asymmetric walks, the existence of an absolutely continuous station-
ary measure for (X;);cn, or equivalently the existence of a measurable solution to (3.2),
is behind the validity of the quenched central limit of Theorem 2.3, proved in [6].

We denote by B, C P the subset of functions p(-) such that (3.4) has a smooth solution
g. Such p is called smooth (multiplicative) coboundary above «.

For every x € T, denote X,(0) =0,

£u(n) = {zjzllnqo:ﬂa) ~lnp(z+ja), =1, 35

Z?:n“ lnp(z + ja) —Ing(z + ja), n<-—1.

2The convergence of the sum defining the solution p is guaranteed by the asymmetry condition and the fact
that o ¢ Q.
3 A coboundary p(-) above « is necessarily symmetric.

EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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Notice that if p € B,, then ¥,(n) has an easy expression
%,(n) = Ing(a +a) — Ing(a + (n + 1)a),

where g is as in (3.4). This behavior of X,(n), as we will see in §3.2, renders the walk
very similar to the simple random walk.

In the symmetric case of Theorem 2.2, a crucial observation is that for a Diophantine,
any smooth p € P is a smooth coboundary above a. As explained in the introduction, the
fact that for a Liouville «, the generic function p € P displays very different behaviors
of ¥,(n) at different time scales n and different initial condition « is the key behind the
phenomena described in Theorems A, E, and F and Corollaries C, D and G.

3.2 A fundamental martingale

Until the end of this section we will work with random walks on Z in deterministic
elliptic environments as in Definition 2.5, and study the dependence of the behavior
of such a walk on the potential defined in (1.4). Notice that for a fixed triple (a,p, ),
the quasi-periodic walk defined by (1.1) is equivalent to the walk in a deterministic
environment defined by p(j) = p(x + ja) for all j € Z.

Recall that we fix a small ¢g < 0.1 and let

o ={P:Z — [e0,1 — 0]} (3.6)

Forp € &, let q(-) = 1 — p(+). Consider the nearest-neighbor random walk (Z;);cy on Z
defined by the transition probabilities Z(0) = 0,

P(Ziy1 =5+ 1Zy =35) =p(j), P(Ziyr=3—1Z: =j) =a(j). (3.7)

Denote ¥(0) = 0 and
> Inq(j) —Inp(j), n>1,
S(n) =477 (3.8)

For j < k, we use the notation

Denote M(0) =0, M(1) =1,

n—1 k ( )
LY [T 3L, nxe
M _ k=1 j=1 p(7)
(n) = 00 ) (3.9)
SN I SR
k=n+1j=k a ‘7)
Notice that .
Z =) n>1,
i=0
M(n) = ! -1
_262(3)7 n<-—1
Jj=n

It is straightforward that M(Z;) is a martingale under IP. The optional stopping
theorem for the martingales implies that if Z,; = n with ¢ < n < b, and if 7 is the

EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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first time such that Z,, . the walk reaches either a or b, then M(Zmin(lto+tuto+r|)) isa
martingale under PP. In particular forany a <n < b

IP(Z, reaches b before a|Zy = n) = (3.10)
(see e.g. [9, Theorem 6.4.6]).

This formula provides a relation between the sums ¥(j, k) and the behavior of the
walk.

We note that (3.10) also holds if a = —oc0 or b = 400 (see e.g. [23, §VIL.3]). In
particular,

Zyisrecurrent < lim M(n) = —ococand lim M(n) = +oo, (3.11)
n——oo n—-+o0o
and

4 Random walks in a deterministic aperiodic medium. Diffusion

and localization via optional stopping

For a fixed ¢y < 0.1 and € as in (2.12), fix p € £ and consider the random walk (Z;):ew
defined by (3.7).

In this section we present criteria involving the sums 3(n) defined in (3.8), that will
be used to guarantee the different behaviors in Theorem A.

Proposition 4.1 below gives a criterion for localization, Proposition 4.2 for one-sided
drift, and Proposition 4.3 for two-sided drift. The proofs of these propositions will be
given in Section 6.

4.1 Localization criterion
We say that p satisfies condition C; (V) if the following two inequalities hold:
S(N) > N2, (Ciay)
S(—N) > N2, (Cra-)

Proposition 4.1. Ifp satisfies condition C;(N), then for T = ¢VN/* we have

P (I&a%{ |Zr| > 16(In T)Q) < T %and Var(Zr) < 300(InT)%. (Localization)

Condition (C;) means that the origin is a sharp local minimum of the potential, and
as explained in the introduction, it implies that the walker spends a lot of time near the
origin.

4.2 One-sided drift criterion

We say that p satisfies condition C»(N,¢) for £ > 0 if there exist A > 100 and L
A 2 0.1
satisfying e®” < L < N¢, N <el", such that the following conditions hold:

Y(—L) > \/E; (Cea)
S(k,k') < A forall k,k' € [-N,N], k<FK; (Cab)
Ip(j + kL) — p(j)| < N~V forall (j,k) € [0,L — 1] x [-N/L, N/L]. (C20)
EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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Proposition 4.2. If p satisfies condition C2(N,¢) for some ¢ > 0, then for T = N, there

exist u > T'~¢ and o with |{2% — %| < e such that for every z € R

‘IP(ZT_’U <z> — B(2)

g

< €. (One-sided drift)

Conditions (C2(a)) and (Cz(c)) imply that on a large segment around the origin, the
potential ¥ is decreasing on scale L, while (C2(b)) means that there are no deep wells of
the potential (also known as traps) on smaller scales. Thus, Proposition 4.2 confirms the
heuristic arguments described in the introduction after (1.4).

4.3 Two-sided drift criterion
We say that p satisfies condition C5(N,e) for e > 0 if there exist A > 100, e’ <
Q < N'/? and numbers u, v, w, v, v, w’, such that v,v" € [0.3,0.4],
0225 <u<v—e<w_ <v<wy <v+e<0.5,
0225 <u' <v' —e<w. <V <w <v +e<05,

and
S(vN,wyN) > NY? S(vN,w_N)> N2 (C3a)
Y(—v'N,—w'N) > NY?  S(—v'N,-w/ N) > N'/2,
S(k,k') < A for k,k' e [-u/'N,oN], k' >k, (C3b)
Y(k, k') < A for k,k €[-v'N,uN], kK <k,
Y (k) = S(k) + B(k), ke [-v'N,vN], (C30)

where ¥ and B satisfy
1S(k) —S(k+1Q)| < QY2 for ke [0,Q], | € [-v'N/Q,vN/Q] (4.1)
and
B(k) {< g EZ; kk:[[_;f;\]]\f;ﬁ.h 4.2)

Figure 1 illustrates the behavior of (k) for k € (—(v' 4+ )N, (v + &)N) due to (Cs).
In the figure we assumed Y = 0 since (4.1) and (4.2) imply that the effect of Y is not
important in the behavior of X(k).

We note that condition (Csa) implies localization of the walk around the points —v'N
and v N (compare with conditions of Proposition 4.1).

Conditions (C3by) imply that the random walk starting at zero exits the interval
[-v'N,vN] before time N° with probability almost one (see Lemma 5.2 below).

Condition (C3c) compares the walk on [—v' N, vN] to a Q-periodic walk. This condition,
combined with (Csby ), makes sure that for the random walk starting at zero, both the
probability of reaching —v’' N before time N®, and the probability of reaching vN before
time N5, are not too small. Since (Csa) implies localization around —v'N and vIN we get
the following.

Proposition 4.3. Ifp € C3(N, ¢), then for any T € [N°,¢N"""] we have:

P(Z _N.w.N]) > 0.1
{ (Zr € [w-_N,w N)) : (Two-sided drift)

P (Zr € [-w N, —w’_N]) > 0.1.

EJP 26 (2021), paper 66. https://www.imstat.org/ejp
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—w', N —uv'N —w' N —u'N ulN w_N vN we N

Figure 1: A sketch of the graph of (k) under condition C3([V, ), in which it is assumed that
S =0.
5 Exit time estimates

In this section we derive the key estimates used in the proof of the above propositions

for p € £, see (2.12). Recall the definitions of ¥(n) and M (n) given in (3.8) and (3.9).

5.1 Traps
Lemma 5.1. Suppose that for some N condition (Ca.) holds, i.e.,

S(N) > VN. (Cay)
Then for T = ¢VN/2 we have

IP(rtn<aTXZt > N) < exp(—VN/2).

In the same way, if
S(—N) > VN, (Ca_)

then for T = ¢VN/2 we have

]P(r1511<a72<Zt < —N) < exp(—VN/2).

Moreover, if for some N both (Ca.) and (Ca_) hold, then for T = eVN/4 we have:
Var(Zr,) < 300(InTy)*.

Proof. Recall the notations and the background material from §3.2. If (Ca4 ) holds, then
we have M(N) > em, and (3.10) implies that

P(Z; visits N before 0|2y = 1) = ]\Z‘j&))— 1}\44 ((00)) _ M(lN)
< exp (—\/JV) .

Hence, for L = o(e¥N) we have:
L
P(Z, visits N before visiting 0 L times) <1 — (1 — e"/ﬁ) < 2Lexp (,\/N) .

Choosing L = exp(v/N/2), we obtain:

P max  Z; > N | < 2exp(—VN/2).
t<exp(vVN/2)

The case of (Ca_) is exactly similar.
Assume now that both (Ca,) and (Ca_) hold. Then for T; = exp(v/N/4) we have
N =16(InTy)?, and Var (Zr,) < E(Z3,) < N? + 2T exp(—VN/2) < N? +2 < 300(In T3 )™.
O

EJP 26 (2021), paper 66. https://www.imstat.org/ejp
Page 16/36



Random walks in a Liouville quasi-periodic environment

5.2 Exit time in the absence of traps
Let L € N. For an arbitrary choice of ky € (—L, L), let 7 be the first time the walk
that starts at kg hits L or —L.

Lemma 5.2. Suppose that there exist A > 100 and L satisfying e¢" < L such that for
each k € [-L, L] either (Cb;.) or (Cb_) holds:

Y(k,k') < Aforallk' € [-L,L], Kk >k;. (Cby)
S(k, k') < Aforallk' € [-L,L], k' <k. (Cb_)

Then there is a constant ¢ > 0 such that for s € {1,2,3} we have
E(r%) < ceSAL* T, (5.1)

Moreover E(7) > L and Var(r) > 1.

Proof. Forevery k € [ =[-L+1,L — 1], let n; be the total time the walker (starting at
0) spends at site k before reaching —L or L. Then 7 = Z nr. Hence, for any s € I

kel
LYY
kel

Thus, it suffices to show that for s € {1,2,3} and for any k € I
E(n;) < ce®AL°.

For k € I, let 7y, be the total time a walker starting at site £ spends at site k£ before
reaching —L or L.
Note that 7 has geometric distribution with parameter

r, = IP(Z starting at k does not return to k before exiting 7).

Since E(n}) < E(7;), we finish the proof of (5.1) once we prove the following

Claim. If either (Cby) or (Cb_) holds, we have for every k € I

C
Tk_m.

Proof of the Claim. Fix k € [—L, L]. Observe that since the walk is elliptic (p € £), then
there exists ¢ > 0 such that
ri > g9 max{IP(Z visits L before k|Zy =k + 1),
P(Z visits (—L) before k|Zy =k —1)}.
Now, if (Cby) holds, then (3.10) implies

. M(k+1)— M(k) eZ(k+1)
P(Z visits L before k|Zy =k +1) = =
M(L)—M(k)  SSEL e
j=k+1
B 1 -
14+ Ef;klw eS(k+1,5) ~ LeA’

In the same way, if (Cb, ) holds, then

IP(Z visits (—L) before k|Zy =k — 1 —
(Z visits (—L) before k|Z )>LeA’

and the claim is proved. |

Since the walker moves one step at a time, E(7) > L. The lower bound on the
variance of 7 is obvious due to the ellipticity condition on the walk. O
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6 Proofs of the criteria

In this section, we prove Propositions 4.1-4.3.
Proposition 4.1 follows directly from Lemma 5.1.

Proof of Proposition 4.2. Fix N € N and € > 0 and A > 100 and L satisfying e’ < L <
N, and N < X",

To make the argument easier to follow, we first consider the periodic case, i.e., we
assume that the environment satisfies

p(k+ L) = p(k) for any k € Z. (6.1)

If we run the walk starting from 0 and stop it at the time 7 when it hits either L or
—L, we get two random variables: 7 and U = Z, (thus, U takes values L or —L). Let us
consider iid copies (7;,U;) of such pairs. Denote

p=E(m), V=E(n-p?, 7=E(n-aP)

L<p<ceL®, 1<V <ce* L%, 4 <ce®L7. (6.2)

Note that
P(U=L)>1-—¢05VE

by condition (C2a) (cf. the proof of Lemma 5.1).
For M € IN, denote

M
@M = E Ti-
i=1

M
For M < N? we have that Zg,, = Z U, satisfies

=1
P (Zo,, = ML) > (1 — e O5VE)N* > 1 _ o~0VL (6.3)

if N is sufficiently large, since N < X",
Define the stopping time My as the first integer such that ©,,,, > N. By [14, Theorem
11, we have that the “residual lifetime” or “excess over the boundary”, ©,s, — N satisfies

E(Ony — N) < V/ji < ce* L, (6.4)

from (6.2). Since L > e¢" Markov inequality implies that

1
P (O € [N,N+L)) >1— 7 (6.5)
Thus, combining (6.3) and (6.4), we get
2
P (|Zy — MyL| <2L°) >1— I (6.6)

By the Berry-Esseen theorem for renewal counting processes [13, Theorem 2.7.1]
we have
3
MN — g <y ] 1
V%N Vi) oo
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if N (and therefore L since N < eLo'l) is sufficiently large. Hence

ZN — Llfv 1
o] —2(r)| < 7 (6.7)
Ly %N L

Since L < N<°, (6.2) implies that

LN N 1—
5 >N ‘

=—>—
a I cetL
and

L N

[

satisfies |lno/In N — 1/2| < e.

This completes the proof in the periodic case (6.1). Now let the periodicity assumption
(6.1) be replaced by the weaker condition (Cac). In this case we consider a new periodic
environment p,,, where p,, = p,, for each n € [0, L], and p,, is periodic with period L. Let
P denote the corresponding probability for the paths of the walk (Zt)te]N defined by p. By
(Cac), the conditions (Caa) and (Cab) are valid for (Z;),cn, thus the CLT limit (6.7) holds

for Zy, with the corresponding 7, V.
Now, for any path of length N for the walks: (z1,...,2n), 2j41 = 2z; £ 1, we have from
(CQC) that

’IP(lezl,.. -7ZN:ZN) —F(lezl,...,ZN:zN)|<N_1/€21P (21221,...721\]:2]\]) .
This shows that |7 — 1| < N~' and |V — V| < N—!, and also that one can replace Zy
by Zx in (6.7). Hence, the general case follows from the periodic one. 0

Proof of Proposition 4.3. We divide the proof into three steps.

Step 1. For an arbitrary choice of k € (—v'N,vN), denote by 7 the exit time from
(—v'N,vN) (while starting at k). We need to estimate

IP(Z; reaches —v'N or vN before time N°|Z, = k) = P(r < N°).

By Lemma 5.2, under condition (Csb) there exists ¢ > 0 such that for any k €
(—v'N,vN) we have: E(7) < ceAN3. Then P(r > N*)N* < E(7) < ce* N3, so
P(r > N*) < ce®*/N.
This implies
P(t > N°) < (ce®/N)N < eV,
Hence,

IP(Z, reaches —v'N or vN before time N°) > 1 —e~ V.

Step 2. We have the following two inequalities:

P(Z; visits — v'N before visiting vN') < 0.89,
P(Z; visits vN before visiting — v'N) < 0.89.

We prove the first estimate, the second one can be proved similarly. By (3.10)

M(vN)

P(Z visits (—v'N) before visiting vN) = M@N) — M(—o/N)
v - —v
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Using (Csc), we get:
vN/Q+1 Q

N>:v2%e <Zezu < Z Ze or-@ < (U4 0) M)+ 207172,
- Q

In the same way,

uN/Q Q

Zezm _ Zezm > 3 3 SN > CZ?VM(Q)(l _901/2),
=1 j=1
Hence
M(vN) > M(uN) > %M(Q)(l —2Q71?).
Similarly
M(=v'N) < M(-u'N) < - (“éN - 1> M(Q)(1—2Q7 /).
Hence, M( N) M( )
oN) — M(x v 0.4
MON) = M(—o'N) < ut +0.01 < 5= +0.01 < 0.89.

Step 3. By Step 1, with probability 1 — e~%, the walk starting at 0 reaches either vN or
—vN’ before time N°. By Step 2, it reaches vN before time N® with probability larger
than 0.1. The first part of (Cza) states that X(vN,wyN) > N'/2 and X(vN,w_N) > N'/2,
Under this condition, Lemma 5.1 implies that the walk starting at vV satisfies

P(Zr € [w_N,w;N]) > 0.1

forall T € [N°, eV 1/4], which implies the desired result. The same argument holds for
—v'N. O

7 Quasi-periodic environments

In this section we return to the study of quasi-periodic random walks. Fix a Liouville
number o € R\ Q and p € P, and for « € T consider the corresponding environment:

p(j) :=p(z + ja),
as well as the random walk (Z;);c on it, defined by (1.1).

It will be convenient to reformulate the main conditions C;, j = 1,2, 3, in this new
context. First of all, notice that condition C; = C; (V) does not depend on ¢, while the
other two conditions do. For the uniformity of notations, we formally include an ¢ in all
the three conditions. We say that

z €C;(p,N,e) ifand only if p € C;(N,¢e), j=1,2,3.

The goal of this section is to prove the following statement.

Theorem 7.1. For any Liouville « there exists a dense G5 set R C ‘P with the following
property: for any p € R, for almost every x € T, there are strictly increasing sequences
of numbers N ,,, such that for all j = 1,2,3, n € IN we have

z € Cj(p, Njn,1/n).

By the results of Propositions 4.1-4.3, this will suffice, to prove Theorem A, see §8.1
for details.
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7.1 The G° argument

In §3.1 we denoted by B, C P the set of (multiplicative) coboundaries, i.e., functions
p(x) such that (3.4) has a solution with a smooth transfer function g. We noticed after
formula (3.5) that if p € B, then

Y.(n)=lnglz+a)—Ing(z+ (n+ 1)a).

In particular, for all n, |X,(n)| is bounded by a constant independent of n, hence none
of the criteria from the previous section holds for p € B,. The advantage of coboundaries
however, is that due to the simple formulas for their ergodic sums one can develop
a reasonable perturbation theory and check our criteria for perturbations p of p on
appropriate subsets of T.

Thus, we start by proving that the set of coboundaries are dense in P.

Lemma 7.2. For any o € R\ Q, the set B, of smooth multiplicative coboundaries is
dense in ‘P for the C*° topology.

Similarly, any p € C*°(T,(0,1)) NP¢ can be approached in the C*° topology by p such
that for ¢ = 1 — p and some constant ¢ # 0, there exists ¢ € C*°(T, R) such that

Inqg(z) —Inp(z) = c+ Yz + a) — Y(z).

Proof. Let @« € R\ Q. By truncating the Fourier series of In(q/p) it is possible to
approximate it in the C*° topology by coboundaries of the form () — ¢(- + «) where
¥ € C°(T,R). Hence F(-) = ¢g(:)/g(- + a) where g = ¥ can be made arbitrary close to
q/p. Now define p = 1/(1 + F') and observe that p approximates p and p € 5,.

The case p € C*°(T, (0,1))NP¢ is treated similarly except that In(q/p) is approximated
by ¢+ () — (- + ) with ¢ # 0. O

To prove Theorem 7.1, we will construct explicit sequences of functions e,,, numbers
N, ., and sets U; , such that the following statement holds true:

Proposition 7.3. For any Liouville number « there exists

O

A strictly increasing sequence of integers q,,

O

An explicit sequence of C* functions e,, satisfying |e,
For every j € {1,2,3}, a sequence of numbers N ,,,

cn-1 < 1/n (see §7.2.3),

O

For every j € {1,2,3}, a sequence of sets U; , = U (Ijn +1i/qn) C T, where
i€[0,q, —1]

[m]

0.01

Ijn is an interval in [0,1/qy] of size |Ijn| > %=

with the following property. For every p € B,, for every sufficiently large n
_ 1
Uj,n C Cj p+ en,Nj,n, )

Before proving Proposition 7.3 we show how it implies Theorem 7.1.

Proof of Theorem 7.1. Fix a Liouville « € R\ Q. Fix any j € {1,2,3}. Let U; , and N;,
be as in Proposition 7.3. Denote

Rin={p€eP|Uj, CCj(p,Njn,,1/n)}.

By the definitions of the conditions C;, the sets R;, are open. Lemma 7.2 and
Proposition 7.3 show that for any m € IN the set | J,,~,, R, is dense. Hence the set

Rj = m U Rj,n,

meNn>m
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is a dense G5 set (in C” topology for any r € IN).

Observe now that for p € R; there exists a strictly increasing sequence [,, such that
p € Rj,,. Recall that Uj; has Lebesgue measure larger than 0.01 for every /,,. Moreover,
up to extracting a subsequence we may assume that ¢, ,, > ¢, so that

n—1 n—1
‘ 1
A (Uj,zn nN U;,u) > s AUju,) - A (ﬂ ch,zi> :
=1 =1

Now, an enhanced version of the Borel-Cantelli Lemma (see [15, Chapter IV]) states
that if events C,, are such that for each £ > 1

e} n—1
S P(Cu|(C5 | =+,
n==k j=k

then with probability 1, infinitely many of those events occur. We thus conclude that a.e.

x belongs to infinitely many Uj;,, thus to infinitely many C;(p, Nj;,,1/n). In conclusion,
3

the set R = ﬂ ‘R; satisfies the property required in Theorem 7.1. (]
j=1

The rest of Section 7 is devoted to the proof of Proposition 7.3.

7.2 Perturbation of a smooth coboundary. The main construction
7.2.1 Coboundaries
Given a smooth coboundary p € B, with a transfer function g(z), for M € N, let ¥, (M)

be the ergodic sum of p defined by formula (3.5) with p replaced by p. Thus, for all &k < &’
and all M € IN we denote:

Y.(M)=Ing(x+a) —Inglx+ (M + 1)a),
Sk, k) =Ing(x + (k+1)a) —Ing(z + (K + 1)a),
A:=Ing| +n1/g]l.

Then,
Ve e T,vM € IN : |EZ(M)| <A, |ix(k,k')\ <A,

Moreover, for any smooth coboundary p, there exists 0 < « < 1/2 such that

k<p(x)<1—k forall zeT.

Define ) )

Kz)==—+—, (7.1)

p(z)  q(x)
and observe that
K(z) € (2,2/K]

7.2.2 The sequences g, and N; ,
Given a Liouville number « € R\ Q, let ¢, be a sequence of integers satisfying

T = |QnOé| < q’;n"’, (72)

where | - | denotes the closest distance to integers. Moreover, for each n we will need to
choose ¢, sufficiently large for our arguments to hold.
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Denote the integer closest to ¢, by s,. In the constructions below we assume that
qna > s, for all n. If ¢, < s,, the arguments are the same up to a suitable change of
signs.

Denote
N, = [(ann)_l] qn,

Ny = [No/20], Ny, :=q", Ns,:=N,,

were [a] stands for the integer part of a.

We make the following useful observation on the combinatorics of the irrational
rotation R, on the circle. The orbit of any fixed point x of the circle under the rotation by
a on T is essentially distributed in the following way. The points z, z+a, x+2¢, . . . z+ (g —
1)« are very close (closer than 7,) to z, x +4 L 2”” x4 (gn—1) 5” Hence, there will
be one point of this g, piece of orbit in each basic 1nterva1 [k/qn, (k4+1)/qn), k=0,...¢,—1.
Moreover, the first return of x to its basic interval will be shifted by 7,,. The next return
will thus be shifted by one more 7,. Finally, the orbit z,2 + o, 2 + 2¢, ..., 2 + Ny will
form an 7,,-grid inside each basic interval, and thus in the whole circle.

(7.3)

7.2.3 The functions ¢,,

In this section, the names of functions with the shortest period 1 are marked with a tilde,
while —-perlodlc functions have no tilde in their name.
Let en( ) € C* be a 1-periodic function satisfying [ €,(z)dz = 0 and such that

sin 87z forze|-3+ % -2-HU[-2+%, -3 - =
3= B0 + g -
0 forz € -1, 1],
én(r) = { increasing  on the intervals [—1,—1 4+ L] [—1 — L —1] [ 14 L]
5= 73,
decreasing  on the intervals [-2 — L -3 4 L] (3 - L 34 L]
0 and co-flat atz = +3.

Observe that ¢, is also flat at i% since it is smooth. Figure 2 represents the function ¢,.

The idea is to perturb a given smooth coboundary p by a function of the form
4, "en(gnx) to produce the desired behavior of the walk. For each n we will choose g,
satisfying (7.2) and sufficiently large. In particular, although the C* norms of ¢, may
grow fast as n grows, we can still guarantee that g, "€, (gn)||cn-1 < +.

A small problem is that the perturbed function p(z) = p(z) + ¢, "€,(¢,2z) may not
satisfy the symmetry condition (1.3). Below we modify ¢, () in order to assure condition
(1.3) for p. Let & (z) and ¢, (x) be the positive and negative parts of ¢, (x):

St (z) = {’én(a:) fe,e) 20, o {'én(:v) if &, (x) < 0,

€
n . .
0, otherwise, 0, otherwise.

For ¢ € [—1,1], define €, 5(z):

~ en(x) + det(x) if § € [0, 1],
en,s(z) =

~ ~ (7.4)
en(z) + de, (z) if 6 € [-1,0).

Note that, since €, is flat at ﬁ:% and j:i, where it actually changes the sign, the functions
€n,s are also smooth. This is the only reason why we need ¢, to be flat at those points.

The following lemma introduces the function e,, that will be the main building block
of our construction.
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Iy

Figure 2: Graph of e, (z). The intervals I, I; and I3 are the sets for which the conditions Ci, C2
and C3 hold (Lemmas 7.6-7.8).

Lemma 7.4. Given any p € B,, if g, is sufficiently large, there exists 6, € [—2,1]
satisfying
po() =p(x) +en(z) € P with ey(z) =q, "ens, (). (7.5)

Proof. In this proof, we will use the notation
ens(x) = q, "ens(qne).

We are looking for § € [-1/n,1/n] such that p, (z) satisfies the symmetry condition
(1.3), i.e.,

Ins = /Tln(pn(x)) —In(1 — pp(z))da = /Tm (1 + epfg)) —In (1 - f_ifé%) dz =0

We will approximate I, s with

Jn,é ::/en,é(x)K(x)dx
T

where K is given by (7.1).

Claim. There exists a constant ¢ > 0 that does not depend on n or ¢ such that

|5 — Jnsl < cq,?" (7.6)
1
|Jn0l < c—q," (7.7)
n
For6 >0, Jps5— Jno > cog,"” (7.8)
For 6 <0, Jus— Jno < —coq," (7.9)

From the continuity of I,, 5 and J,, s in ¢, it follows directly from the claim that there
exists 6 € (—1/n,1/n) such that I,, s = 0.

Proof of the Claim. (7.6) follows from the fact that max |e,, 5(z)| < 2¢,,™. (7.7) follows
from the fact that the average of ¢, is zero and from the fact that K is almost constant
on intervals of size 1/¢q,. As for (7.8), it follows from the fact that K > 2, and that the
average of ¢ is larger than some positive constant independent of n. (7.9) is proved

similarly. O
Lemma 7.4 is thus proved. O
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7.2.4 The sets U; ,

Consider the following subintervals of [0, 1]:

(11
~\ 2007200/

3 5
Li==—+1 Iy:=—+1, I3:=1
1 S + ) 2 16 + ) 3 )
3 7
IN=—+1, I,:=——+4+1
! gt 60
andlet I;,, = I;/qn, I}, = I}/qn for j = 1,2,3,
qn—1 k qn—1 k'
UjJL = U (Ij,n U I]/m + ) ) j =12 U37n = U I3,n + —. (7.10)
k=0 n k=0 n

Notice the total measure of U; ,,: |U;,| = 0.02, and |Us,,| = 0.01.

7.3 Estimates of ergodic sums

Recall that p(z) = p(z) + e, (x) (see (7.5)), and that N, , is defined by (7.3).

For p(-) and p(-), we denote by ¥, (n) and ¥,(n) the potential functions defined in
(3.5).

The next statement represents the sums ¥, (M) for a large M in the form ¥, (M) =
Main term(M)+Rest(M). Notice that the Rest()M) may not be small, see (7.14) and
(7.15). Nevertheless, these estimates are sufficient for the proofs in the next subsection.
There we will show that, for certain values of x, the Rest(M) is asymptotically smaller
than the Main term (M) provided that M and ¢, are sufficiently large.

Proposition 7.5 (Main technical lemma). GivenAoz € R\ Q and a smooth coboundary
p € B, let Ak, and K(x) be as in §7.2.1, and let K = [, K(z)dx. Then for all z € T and
all M € [0, N,,] there exist functions R(x, M) and R'(x, M) satisfying

|R(x, M)|,|R (x, M)| < 4x~*Mgq,, *" (7.11)
such that
M
Y.(M)=- Z en(z +ma)K(z +ma) +X,(M) + R(z, M), (7.12)
m=1
0
Y. (—M) = Z en(z +ma)K(x +ma) + 3, (—M) + R (z, M), (7.13)
m=—M-+1
where
M N gnz+M/N,,
en(z + ma)K(z + ma) = Kq, "N, / €n.s, (t)dt + Mo (q,™) , (7.14)
m=1 an®
0 R Gnz
Z en(z +ma)K(z + ma) = Kq, "N, / €n.s, (t)dt + Mo (q,™), (7.15)
m=—M-+1 qne—M/Ny
Moreover,
en(x+ma) >0 forallm=k,....k' =X, (k,k)<Z.(kk)<A (7.16)
en(z+ma) <0 forallm=Fk,....k = X, (k, k) < Z.(k k) < A (7.17)
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The statement of this lemma covers several different situations that will be useful in
checking all the conditions C;.

Proof. Recall the notations: p(x) = p(z) + e, (), K = 505 +
T, we can write:

e ( % Omitting the argument

In(1—p)—Inp=In(l—p—e,) —In(F +e,) = In(1 — ) — Inp + In(1 — 1‘3—"_)

e _ 1 1 _
—In(1+ 2 :ln—lnp—en(_—l—_>—|—rn:1n—lnp—enK—l—rm
( p) q - q

where |r,| < 2e2(77% +p~2) < ||[K?|| < 2s~2. The estimate of |r,| follows from the Taylor
expansion of In(1 4 y) for small y.
Now we estimate ¥, (M) for any « € T and any M > 0:

M
Se(M) =" In(qa(z + ma)) — In(pn(z + ma)) = (7.18)

m=1

B

Z In(g(z + ma)) — In(p(z + ma)) —

m=1

en(z +ma)K (z + ma) + R(x, M)

3
Il

and

M
|R(z, M)| < Z e2(z 4+ ma) (672(:10 +ma) +p 2z + ma)) < 4rk2Mgq; ",
m=0
since |le,|| < 2¢,,™ and p, § € [k, 1 — k]. This gives (7.12) and (7.11). The proof of (7.13)
is similar.
Let us prove (7.14). By (7.2) and (7.3), we have 1, = |g,a| < ¢;™", and 5, ~ N '.
By definition, e, (z + a) = ¢, "€ (gn(z + @) = ¢;;"€n(gnx + ). For each j < g,, we have:

len (2 + ja) — en(x)] = ¢, " [En(gnz + J1n) — €n(gn))| < g, "ngnmaxy [€), ()] = o(q, ™),

since 7, = q;"n by (7.2), and €, (z) does not depend on ¢, see §7.2.3 for the definition
of ¢, (x). Since « is close to p,/q¢,, we get:

an

Z (x + ma)K (x—i—ma):(en(x)—ﬁ—o(qg”))iK(x—l—ma)

= Kqn(en() +0(4;"))-

Hence, for M > ¢, we have

M M/qn
> ealz+ma)K(z +ma)=Kg, Y enlz +mgna) + Mo(g,")
m=1 m=1

M/qn z+M/(qnNy)
_anN Z en x+m|qna|)nn+M0(qn ) anN / ()dt—i—Mo(qn )

gnx+M/Ny

=Kq;"N, Ens, (t)dt + Mo (g;™) .

qnx

The proof of (7.15) is similar.
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To show (7.16), notice that under the assumption e, (x +ma) >0 forallm =k,... k'
we have for these m that p(z + ma) > p(z + ma), hence

Zl q“"+mo‘ Zln e + ma) :SI(M)SA.

+mo¢

Estimate (7.17) is proved in the same way. (]

7.4 Proof of Proposition 7.3
Lemma 7.6. For n sufficiently large, we have:

Uin CC1(p, Nin)-

Proof. Fixz € I , (the same argument holds for all x € U, ,,). Then g,z lies in an interval
of size 0.01 around the point 3/8. Since €, s, is smaller or equal to sin(87z) for most of
the above interval, we have that for large n

gnz+1/20 3/8+40.04
/ en(t) < / sin 87t < —0.001.
3/8-0.01

By (7.14) with M = N, ,, = N,,/20, we have
Nin Gna+1/20

Z en(z + ma)K(z + ma) = I?q;"Nl)n / €n.s, (t)dt + Ngo(q,™)
m=1 q

nT

< —0.001Kq;" Ny p

Since |R(z, N1,,)| < 4672Nj ,,q,,?", and ~ and A are independent of N,,, we get from
(7.12) for any n sufficiently large:

S (Vi) > 0.001R Ny ;™

Recall that, by (7.2) and (7.3), N,, is of order q;}n and N, = [N, /20]. Therefore,
Nip 2> qzﬁ /40 > qﬁ", and for sufficiently large ¢, we have 0.001K /N ,q," > 1. Hence,

Se(N1p) > N2

Likewise, X;(—N14,) > N1/2. O
Lemma 7.7. For n sufficiently large, we have:
Us,n C Ca(p, Nom,1/n).

Proof. We choose ¢,, and N3 ,, satisfying (7.2) and (7.3). Let ¥, (M) and A be asin § 7.2.1;
recall that A only depends on p. Assuming that ¢, is sufficiently large, we define

2 A
L:=gq; >¢€°
Since Ny, = qu by (7.3), we have
3 2
Nop=L" >L",

and Ny, < el”", as required in Cy(p, Nap, ).
Let z € I, (the same argument holds for all x € U ,,). Then

gnx € [5/16 — 0.01,5/16 + 0.01].
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By the definition of €, 5,, for any ¢ € [g,z — 0.001, ¢, + 0.001] it holds that e, s, (t) > 0.5.
Since by (7.3) we have Ng,n/Nn < 0.0001, we get from (7.15) with M = L < Ny,

0 qnx

3 enla+ma)K(z +ma) = Kq,"N,, T, (H)dt+No o(g™)
m=—L+1 q”x_L/Nn,

> K0.49Lg, ™.
Then, since K > 2, we conclude from (7.13) and (7.11) that
Y.(—=L) > 0.1Lg;"™ > VL.

This gives (C2a).
To verify (C2b), notice that for x € I, ,, and any m € [Nz ,,, No ,,] we have
gn + mqpa € [5/16 — 0.02,5/16 4 0.02]. Thus

en (T +ma) = ¢, "en.s, (gnr + mgpa) > 0.
By (7.16), we have (Cqb), i.e.,
So(k, k') < A forall — Ny, <k <k < Ny,

To verify (Czc), notice that for L as above we have
L L —n" —n"/2
|LO“ = 7‘(1n0¢| < —q, < NQ,n / .
qn qn
Hence, for any j € [0,L — 1], k € [-Na,,, N2 ,,] we have |p(z + ja+ kLa) — p(z + ja)| <
Ny O
Lemma 7.8. For any n sufficiently large, we have:

UB,n C C3(IJ7 NS,nv 1/”)

Proof. Let x € I3, be fixed (the same argument holds for all = € Us,). Define Q = gy,
and take for the numbers u, v, wy, v, v', w/, (v,v’ € [0.3,0.4]) to be

1 , 1+ , 3+
U=——2x V=< —x U =—-+4x vV =<-+4x
4 q’ﬂ? 8 Q’m 4 Q'ru 8 qTL)

wy =vte, w =10+,

where we set ¢ = % Assume without loss of generality that for each of the numbers
introduced above, its product with N, is an integer that is a multiple of ¢,,. Let A > 0 be
as in Proposition 7.5, and assume that ¢, is sufficiently large to satisfy

e’ < Q< N2

The proof of (Csa) is almost the same as the proof of (C;) in Lemma 7.6. Namely, we
have z + vN,a =z +v/q, + O(N; ') = 3/(8¢,) + O(N,; ). Hence

(wg—v)Ny,
Yo (ONp, wi Ny) = Z Ing (x4 (vN, +m)a) —Ilnp (z + (vN, + m)a) ~
m=1
eNn,
> g (3/(8¢n) + ma) — Inp (3/(8¢a) + ma) = Sg/(sq,) (ENa)-
m=1
EJP 26 (2021), paper 66. https://www.imstat.org/ejp

Page 28/36



Random walks in a Liouville quasi-periodic environment

Notice that 3/(8¢,) € I, so the analysis of the latter sum is analogous to that of
Lemma 7.6. Let us repeat the argument. The sum above is estimated using (7.14). Since
1/n? < ¢, it follows from the definition of ¢, 5, that it is negative on most of the interval
of integration [2, £ +&]. Moreover, on all the interval, if &, 5, (t) < 0 then €, 5, (t) < sin 8xt.
Thus

eN, 3/8+¢
S K(3/(342) + ma)en(3/(8g2) + ma) = Rg; "N, / Zus, (1) di+No o(gy™)

m=1

3/8+e
’"N / sin(8xt) dt < OOOqun N,
3/8+¢/2

On the other hand |R(z,eN,,)| < 4k~ 2eN,q, %", and A is independent of N,,. Hence,
by (7.12), and since K > 2

Yo (VN wy Ny) > 0.002g, " Nype? — A — 452N, ¢, 2" > N}/2

for N,, sufficiently large. The remaining three estimates of this item are proved in the
same way.
To verify (C3b), notice that, by the definition of «’ and v we have:

r—u' Ny = — Ul/‘]n + O(N;l) = —1/(4qn) + O(N;l)v
@+ oNya =z +0/gy + O(N, 1) = 3/(8¢s) + O(N, ).

Hence, for all m € [—u'N,,,vN,] we have e, (x + ma) > 0. By (7.16), we have the first
part of (C3b):
Y.(k, k") < A forall —u'N, <k <k <ovN,.

The second part of (Csb) is verified in the same way using formula (7.17).

It remains to verify (Csc). For k € [-v'N,,/Q,v'N,, /Q), take for ¥ (k) the sums ¥, (k)
and let B, (M) := ¥,(M)—X,(M). To verify (4.1) notice that for each [ € [-N,,/Q, N,,/Q]
we have )

IQal < —.
lQal 0

Therefore, since ¥, (M) = Ing(z + a) — Ing(z + (M + 1)a)

200 - 5,01 +1Q) < 222 < gz

if @ is sufficiently large.
Next, we prove (4.2). For each m € [—u'N,,uN,] we have: = + ma € [fﬁ, ﬁ], and
hence e, (x +ma) = 0. This implies that p(z + ma) = p(z + ma), and

S, (M) =S,(M) forall M € [—u'N,,uN,].

For m € [—u'N,,,vN,] we have: z+ma«a € [— 4q , 82 ], and hence e, (z+ma) > 0. Then

(7.16) implies, in particular, that that for M € [0,vN, ] we have
2. (M) < Zp(M).

For m € [—v'N,,,ulN,,] we have e, (x + ma) < 0, which implies the second part of (4.2)

by (7.17). This completes the proof of (Csc). O
Proof of Proposition 7.3. Putting together Lemmas 7.6, 7.7, 7.8 immediately yields
Proposition 7.3. O
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8 Proofs of the main theorems

8.1 Proof of Theorem A

By Theorem 7.1, for any p € R, for almost every = € T, there are strictly increasing
sequences of numbers Nj; ,, such that for all j = 1,2,3, n € N we have

xz €C;j(p,Njn,1/n).

For j = 1, we have that p; = p(z + i) satisfies condition C; (/NV; ,,). Hence, Proposition
4.1 implies Theorem A(a) for T = r,, := eV Nun/4,

For j = 2, we have that p; = p(z + i«) satisfies condition C2(Na ,,, 1/7).

Hence, Proposition 4.2 implies Theorem A(b) for T’ = s,, := N3, and e, = 1/n.

For j = 3, function p; = p(z+i«) satisfies C3(Ns 5, 1/n). The conclusion of Proposition
4.3 holds for any T € [N} eNér/;l]. Let us take 7' = t, := N3 . Then Proposition 4.3

3.n

implies that for some v = v(z) € [0.3,0.4],v" = v'(x) € [0.3,0.4] it holds

P, (Zr € [vN — X oN + X)) > 0.1,
P, (Zr € [-v'N — X o/N + &) > 0.1.

This proves Theorem A(c) with b, = vN3,, € [0.37/5,0.4T/%], b, = v'N3,, € [0.3T/5,
0.47'/%], and g, = L.

n
. 1/4 . o
Of course, choosing larger values for T' € [N}, ¢Nan] allows to obtain a similar

statement to (c) with b,,, b, of order 79, for any 0 < 0 < 1/5. a

8.2 Proof of Theorems B (a) and F (a)

We give the proof Theorem B (a). The proof of Theorem F (a) is similar. Fix a ¢ Q.
Let

Ry = {p € P: Jo,3t > n, such that Vz € T,Vz € [—n, n],
1
P, (Z < oV/1z) f@(z)’ < n}

The set R = Nn>1R, satisfies Theorem B (a). The sets R,, are open, hence R is a
G set.

It remains to show that R is dense in P. By Proposition 3.1, R contains all cobound-
aries. Recall that coboundaries are dense in P by Lemma 7.2. Hence R is a G’-dense
set. a

8.3 Proof of Theorem B (b)
Define

Roye = {p € P : 3 open sets Z and Z’ with Leb(Z > 0.001, Leb(Z") > 0.001
such that V(z,2") € Z x T/, 3 pu(x) > v' =%, u(z’) = 0,
and for y € {z,2'}, V z € [-1/e,1/e] (2.9) holds with T' = v}

The sets R, . are open, and any p € R = ﬂ LJR,J_,‘g satisfies Theorem B (b). Hence,

e=1 v

it suffices to show that p(z) = p(z) + e, (), as dneﬁned in (7.5), belongs to R,, 1, where
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we set v, = Ng’m. For this we take Z,, = U, ,, and apply Proposition 4.2 and get (2.9) with
pn(x) > vi=en for every x € Z,, and every z € R.

On the other hand, we set Z, = Us,, and observe that for every ¢ < v, we have
p(x + ta) = p(x + ta). Hence the walk for such an z up to time v, is the same as the one
with the function p that is a coboundary. Since N, can be chosen arbitrarily large as
function of p, we get for every x € 7/ (2.9) with u,(z) = 0.

In conclusion, the set R := RN R satisfies the conditions of Theorem B. O

8.4 Proof of Corollary C

If the walk had an absolutely continuous stationary measure, then, by Proposition
3.1, Ing — Inp would be a smooth coboundary. Then, for any given sequence {uy} such
that uny — oo, we would have p{z : [2,(N)| >uny} — 0as N — oc.

However, Lemma 7.6 shows that if « is Liouville, then for a dense G set of functions
p € P there exists a sequence {N,} such that [Z,(N;)| > |/N; for a set of = of measure
0.01. A contradiction. a

8.5 Proof of Theorem E
Define

Apn = {a € R:Vp € P Jo such that Vz € T,Vz € [—n, n],
1
’]Pz(zt <oVtz) —®(z)| < — forall te [m,em]}.
n

The set A = Ny>1 Um>1 A, satisfies the conclusion of the theorem. The sets A, ,,
are open hence A is a G? set.
By [25], A contains the Diophantine numbers. Hence A is a G°-dense set. a

8.6 Proof of Theorem F (b)

Let \(z) = ggg To fix our notation, we assume that [ In\(z)dz = —¢ < 0 so that the
walk tends to +oo. The case [ InA(z)dz > 0 then follows by replacing = by —z. We want
to perturb p to get the behavior of Theorem F (b).

Let us first recall an important fact about the drift coefficient of an asymmetric walk
in Theorem 2.3. Following [11], (see formula (1.6) and Theorem 4 of [11]), we associate
to A a function

co k
u@) =1+2> [ Mz - jo). (8.1)
k=0 j=0
Then the drift coefficient of the asymmetric walk in Theorem 2.3 is given by the first

integer b, (x) such that
b ()

Z uy(z + ka) > n. (8.2)
k=0
The next lemma on the Birkhoff sums of a trigonometric polynomials will be a useful
tool in our perturbation of p.

Lemma 8.1. Let d,M > 0 and q be such that q > e If V is a trigonometric
polynomial of degree d, and all the coefficients of V are bounded by M, then for any
zeT

C(H»JVI

q—1
S eVt _ g / VO gl < o-a
=0 T
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N
Vk
Proof, First, expand ¢¥() = Z o +en, where N := [2¢/In¢|, so that the error ey is
k=0
small compared to e~?. On the other hand, the polynomials V! that we keep are all of
q—1 .
degree strictly less than ¢, hence Z V! (m + J) =q / V. The lemma follows. O
; q
7=0

Let us return to the proof of Theorem F (b). As in the proof of Theorem B (b), we only
need to show density. Hence, by Lemma 7.2, we can start with a p such that for some
c>0

In\(z) =Ing(z) —Inp(z) = —c+Y(z + a) — ¢¥(z) (8.3)
where ¥ a trigonometric polynomial. Let b,, be as in Theorem F (a), see (2.11). It is
sufficient to prove that p can be perturbed into p so that for an arbitrarily large ¢,,, and
for some union of intervals 7,, and J,, we have

(i) u(Jn) > 0.8 and u(J)) > 0.1;
(i4) For z € J, we have |b;, (z) — b,| < t,'/*, and for z € J' we have b;, (z) > b, + 1,°.

We start by computing the drift corresponding to p for the special sequence of times:

2
tn == q; / u(0)dd, n e NN.
T
Lemma 8.2. There is a constant U (independent of n) such that for every x € T
— 2
|bs,, () — g, | <UL

Proof. Observe that if (8.3) holds then the function @ associated to X as in (8.1) can be

written as
o0

() =1+2) e kel (8.4)
k=0
where Vi (2) = ¢¥(z + a) — ¢¥(z — ka).
Applying Lemma 8.1 to each term in (8.4) (note that the norm of V; is bounded
uniformly in k), we conclude that if ¢, is sufficiently large then

qn—1 .
Z a (x + ‘7) - qn/ u(0)dl| < e,
=0 an T

On the other hand, (7.2) tells us that there is an integer p,, such that

pn
o — —

an

7"7/4
— 4n

Thus,

qn—1 qn—1 .
aia) = 3 a (o4 29| < gt

j=0 =0 an

gn—1 . qn—1 .
Zu(af—i-]z;j) = Zu(w—l—(jﬂ),

Jj=0 =0

Observe that

since as j changes from 0 to ¢,—; the set p,,j goes over all possible residues mod g,,.

Therefore, for every x in T we have for n sufficiently large:
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gn—1

Z 17,(.’13 +j0£) - Qn/ ﬂ(ﬁ)d@ < q;nS
T

§=0
Dividing an orbit of length q,’f into pieces of length ¢,,, we obtain
n2
dn
— . _ n2 — 9 de 777,3/2
N (e +ja) — g [ al6)do| < ;"2
T

j=0
This yields the conclusion of the lemma. ]

Now we let g,, be a smooth function satisfying

@) |lgnllen <277
(b) gn(0) = 0 for {g,0} < [0,0.85];
(€) gn() = q,;" ! for {q,0} € [0.86,0.99],

and let p(#) = p(6) + ¢.(0). Define
To={zeT: {guz} €[0,0.84}, T ={zeT: {guz} € [0.86,0.98]}.

We clearly have that p(7,) > 0.8 and p(7,,) > 0.1, which is (¢). To finish, we need to
prove (ii).
Note that for j € [0, 2ql§2] we have ¢, (z+ ja) = g+ jpn + O ( 2_"4>. Thus, it follows

from (b) that for z € J,, u(z + ja) = a(z + ja) for every j [0,2¢"°]. Hence, we get that
b:, () = by, (x), and by Lemma 8.2, taking b, := qn we have

|bs,, () — by| < U. (8.5)

On the other hand, for z € J/, we have from (c) that u(z + ja) < (1 — ¢, " ?)u(z + ja)
2
for every j € [0,2¢ ]. Hence,
bn bn t
Zux—hya (1—q," %) Z u(z +ja)| =t, +O(1) — —— <t, —to%.

j= 3=0 dn

Therefore, for « € J, we have:

by ()
u(z + jo) > 29,
Jj=bn+1
£0.95
and so b,(z) > b, + —2—— > b, +t,°°. Together with (8.5) this shows (i) and
maxg u(6)
finishes the proof of Theorem F (b) O

Appendix A Generic deterministic environments

Here we prove Theorem 2.6. The main idea is the following. If we want to speed up
the walk, we modify p by adding a drift away from the origin, while to slow it down we
increase the drift towards the origin.

Proof of (a). We will use the notations and definitions of Section 3.2. By (3.11), the
recurrence holds iff M (n) — oo as n — +oo. The result follows since for each R the
condition that there is n € IN such that M(n) > R and M(—n) < —R is open and dense
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for the product topology introduced in Definition 2.5. Openness is straightforward, and
to obtain the density it is enough to modify any given p to p satisfying

p(n) = {

Proof of (b). We also consider the environment given by (Al). Note that for this
environment there are constants Cy = C;(K), and Cy = C3(K) such that

forn > K

(A1)
forn < —K.

Wi Wl

|M(n)| > Crec2In

Thus, foreach T"and » > 0

P(|Zr| = 1) < Crelar

It follows that for large T, (2.14) is satisfied, showing the density of this condition.
The openness is also clear.

Proof of (c). It is sufficient to show that for each ¢ the set of environments such that for
some T’

is dense. We now modify any given environment so that p(n) = 2 for |[n| > K. Then the
walk spends a finite time to the left of K. It follows that

uniformly in z as needed.
To prove part (d), we modify a given environment outside [— K, K] in three steps.
First we take K; > K and modify p on [~ K, K] \ [ K, K] to achieve that

Y WG —p() = Y Wp) - Ind(),

j=1 j=—n+1
where G(j) = 1 — p(j). Next we take K> > K; and let p(n) = L if |n| € [K; + 1, K>).
Finally, we let p(n) = % if n < —K3 and p(n) = 3 if n > K,. It is easy to see that, given
e > 0, we can make K; and K, so large that

M|

1—e<
| M|

<l+e, (A2)

where M, and M_ are defined in (3.12). Then (3.12) shows that

o M, | 11
IP(] Zp = ): , .
S T VT VA Il e s

The same holds for P (tlim Zr = —oo).
—00
On the other hand, it is easy to see that

Ir— T

P 3 <z

lim Z;, = +o0 | = ®(2)

t—o00

8T
9
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and

7 T
P ggz

/8T

9
It follows that for T sufficiently large (2.16) is satisfied with b(T) = %, &(T") = T-1/3
proving the density of this condition. |

lim Z; = —0 | = ®(2).

t—o00
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