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GLOBAL HYPERSURFACES OF SECTION IN THE SPATIAL RESTRICTED THREE-BODY

PROBLEM

AGUSTIN MORENO, OTTO VAN KOERT

ABSTRACT. We propose a contact-topological approach to the spatial circular restricted three-body
problem, for energies below and slightly above the first critical energy value. We prove the existence
of a circle family of global hypersurfaces of section for the regularized dynamics. Below the first crit-
ical value, these hypersurfaces are diffeomorphic to the unit disk cotangent bundle of the 2-sphere,
and they carry symplectic forms on their interior, which are each deformation equivalent to the stan-
dard symplectic form. The boundary of the global hypersurface of section is an invariant set for the
regularized dynamics that is equal to a level set of the Hamiltonian describing the regularized planar
problem. The first return map is Hamiltonian, and restricts to the boundary as the time-1 map of a pos-
itive reparametrization of the Reeb flow in the planar problem. This construction holds for any choice
of mass ratio, and is therefore non-perturbative. We illustrate the technique in the completely integrable
case of the rotating Kepler problem, where the return map can be studied explicitly.

C’est avec l'intuition qu’on trouve, c’est avec la logique qu’on prouve. H. Poincaré.
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In this article, we will discuss global hypersurfaces of section for the well-known circular re-
stricted spatial three-body problem. This problem concerns the motion of a massless particle in
R? under the influence of two heavy primaries with mass p and 1 — p, where p € (0,1) is a mass
parameter. By a time-dependent rotation, we can fix these primaries at m = (¢ — 1,0, 0), which we
will call Moon, and & = (u, 0,0), which we will call Earth. In the setting of symplectic geometry,
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the restricted three-body problem is then most easily described as the Hamiltonian dynamics of the
following Hamiltonian on (T*R3 \ {n, €}, dp A dq):

1 W 1—p
H(q.p) = SIP1* — =7 — 75—z +P1dz — P2au-
2 g =l [lg—e]
The planar case of this problem is obtained by setting ¢3 = p3 = 0.
The Hamiltonian flow of this dynamical system has singularities caused by two-body collisions,
namely collisions of the massless particle with 17 and with €. The resulting flow can be extended
across these singularities using various schemes. We will use Moser-regularization, [Mo], to do so.

Poincaré-Birkhoff theorem, and the planar three-body problem. The problem of finding closed
orbits in the planar case goes back to ground-breaking work in celestial mechanics of Poincaré
[P12, P87], building on work of G.W. Hill on the lunar problem [H78]. The basic scheme for his
approach may be reduced to:

(1) Finding a global surface of section for the dynamics of the regularized problem;
(2) Proving a fixed point theorem for the resulting first return map.

This is the setting for the celebrated Poincaré-Birkhoff theorem. In this paper, we address the above
first step in the spatial case; the second will be addressed in [MvK], where we prove a generalized
version of the Poincaré-Birkhoff theorem.

Moser regularization. We denote by L; the critical point of the Jacobi Hamiltonian H with the
smallest critical value, and by prs : T*R?® — R3 the projection to the g-coordinates. Let us fix
an energy level ¢ < 0, and consider the component S. C H~!(c) with the property that pgs(S.)
contains 7: this is the component of the level set containing the Moon. As explained in Section 4,

Moser regularization applied to this setting gives us a smooth Hamiltonian @, . on
8% ={(&m) e TR | [|¢]* = 1, (¢, m) =0}

with the following property. The level set @, .(1*/2) contains a component Y. that projects to S
under stereographic projection, and the Hamiltonian dynamics of @, . are reparametrization of
the Hamiltonian dynamics of H. This procedure extends the dynamics across collisions with the
Moon. We may also do the same for the Earth.

The topology is as follows. For ¢ < H(L;), ¥. is diffeomorphic to the unit cotangent bundle
of S3. We refer to this energy range as the low-energy range. If ¢ is in the interval (H(L;), H(L>)),
where L, is the critical point with second lowest critical value, then pgs (S.) contains both the Earth
and the Moon, and we need to perform regularization in both points. We also denote the dou-
bly regularized level set by ¥.. This doubly regularized hypersurface ¥ is diffeomorphic to the
connected sum of two unit cotangent bundles of S3.

Statement of results. We first recall the concept of a global hypersurface of section. On an oriented
smooth manifold ¥, we consider a flow ¢, of an autonomous vector field, which we assume to be
nowhere vanishing.

Definition 1.1. A global hypersurface of section for ¢, consists of an embedded, compact, oriented
hypersurface P with the following properties:

(1) The boundary B = JP, if non-empty, is an invariant set for ¢;;
(2) ¢ is positively transverse to P\ B;
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(3) Forall z € ¥\ B, there exist 7, > 0 and 7_ < 0 such that ¢, (z) € int(P) and ¢,_(z) €
int(P).

The main purpose of this object to reduce the dynamics of flows to the (discrete) dynamics of
diffeomorphisms. This concept has been used very fruitfully for 3-manifolds, where the boundary
is necessarily empty or a collection of periodic orbits. Higher-dimensional invariant sets are hard to
find in general, and usually don’t have good stability properties, making this notion less ubiquitous
for higher-dimensional dynamical systems. However, the spatial restricted three-body problem has
special symmetries, and these allow us to prove the following result.

Theorem A. Fix a mass parameter v € [0,1], and let ¥ as above denote a connected component of the
reqularized, spatial, circular, restricted three-body problem for energy level ¢ that contains m or € in its
projection. We have the following:

o for ¢ < H(L), the set {&; = 0} is a global hypersurface of section;
e forc € (H(Ly), H(Ls)), the manifold ¥... also admits a global hypersurface of section."
Moreover, in each of these cases there is an S'-family of global hypersurfaces of section.

Remark 1.2. The main advantage of the first description is that it is simple and explicit, and so
lends itself well to numerical work. Below we will investigate the underlying contact topology, but
we point out that the above theorem does not require any contact topology; it also does not imply
the contact condition.

The above result can be rephrased and clarified using the language of contact topology. We know
from [AFvKP,CJK18] that the bounded components of the regularized energy hypersurfaces of the
circular (planar and spatial) restricted three-body problem are of contact type for energy levels c
below and slightly above the first critical energy value, say up to H(L1) + e. We will now impose
this extra assumption, namely ¢ < H(L;) + e.

The S*-family of global hypersurfaces of section form the pages of a so-called open book decom-
position for the regularized 5-dimensional energy level sets. Such a decomposition, for a closed
manifold ¥, consists of a fiber bundle 7 : £\ B — S!, where B C ¥ is a codimension 2 submani-
fold, known as binding, which has a trivial normal bundle, such that 7 coincides with the angular
coordinate along some choice of neighbourhood B x D? of B. Topologically, this decomposition is
also determined by the data of the page P (the closure of the typical fiber of 7) with 0P = B, and
the monodromy ¢ : P — P of the fiber bundle 7, satisfying ¢ = id near B. We denote ¥ = OB(P, ¢)
whenever ¥ admits an open book decomposition with data (P, ¢): this is sometimes called an ab-
stract open book. Smoothly, we have

OB(P,¢) = B x D?|_ JMap(P, ¢),
o

where | J, denotes the boundary union, and Map(P, ¢) = PxR/(z,t) ~ (¢(z), t+1) is the associated
mapping torus. This manifold inherits a projection = as above. We will denote the §-page by
Py :=7n—1(0).

A relationship between open books and hypersurfaces of section for a given flow is contained in
the following notion. If ¢, : 3 — ¥ is the time-t flow of some autonomous vector field X on ¥, we
say that the open book decomposition is adapted to the dynamics if each page Py of the open book

lif 4 = 0,1, then H(Ly) = H(L2), so the statement is empty in this case. For ¢ > H(Lg2), the energy levels are
necessarily non-compact, and satellites can escape in the unbounded component.
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Hamiltonian flow
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FIGURE 1. The open book for ¥., with ¢ < H(L1), and the first return map f.

decomposition is a global hypersurface of section for ¢;. This definition implies that B is invariant
under the flow.
We now rephrase our theorem in contact-topological terms.

Theorem 1. Fix a mass ratio 1 € (0,1]. As above, denote a connected, bounded component of the reg-
ularized, spatial, circular restricted three-body problem for energy level c by ¥.. Then X. is of contact-
type and admits a supporting open book decomposition for energies ¢ < H(L1) that is adapted to the
Hamiltonian dynamics of Q.. Furthermore, if ;1 < 1, then there is € > 0 such that the same holds for
¢ € (H(L1),H(L1) + ¢€). The open books have the following abstract form:

. J OB(D*S?,72), ifc < H(Ly)
T | OB(D*S%D*S?, 1 o 73), ifce€ (H(Ly),H(Ly) +¢)and u < 1.

Here, D*S? is the unit cotangent bundle of the 2-sphere, T is the positive Dehn-Seidel twist along the La-
grangian zero section S* C D*S?, and D*S?4D*S? denotes the boundary connected sum of two copies of
D*S2. The monodromy of the second open book is the composition of the square of the positive Dehn-Seidel
twists along both zero sections (they commute). The binding is the planar problem: for ¢ < H(L1) this is
sP >~ RP3, and for c € (H(Ly), H(L3) ) we have ©F =~ RP3#RP3,

See Figure 1 for an abstract representation.

Let us draw analogies to the planar situation, discuss some history and speculate a bit: for
¢ < H(Ly), we have, smoothly, the following: B = £ =~ RP3 =~ OB(D*S!,73), where 7p is the
positive Dehn twist along S' ¢ D*S?, and one would hope that this open book is adapted to the
planar dynamics, and that the return map is a Birkhoff twist map. Let us briefly review what is
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FIGURE 2. Theorem 1 admits a physical interpretation: away from collisions, the
orbits of the negligible mass point intersect the plane containing the primaries
transversely. This is intuitively clear from a physical perspective, and translates
(after regularization) to the fact that the pages {¢3 = 0, ps > 0}, {¢g3 = 0,ps < 0} of
the “physical” open book are global hypersurfaces of section outside of the colli-
sion locus. Unfortunately this does not extend continuously to the latter, since for
instance there exist (regularized) collision orbits which are periodic and “bounce”
vertically over a primary, always staying on the region g3 > 0 (or ¢3 < 0). This will
be addressed by interpolating with the “geodesic” open book near the collision
locus.

known about annular global surfaces of section in the planar restricted three-body problem. For
¢ < H(Ly) and p ~ 1, one can interpret from this perspective that Poincaré [P12] proved this
by perturbing the rotating Kepler problem (when p = 1, an integrable system; note that in other
conventions this is 4 = 0). In the case where ¢ <« H(L;) is very negative and p € (0,1], the
existence of an annular global surface of section and the twist map condition was established by
Conley [C63] (also perturbatively). The most recent result concerning annular global surfaces of
section is the result due to Hryniewicz, Salom&do and Wysocki in [HSW, Theorem 1.18]: this result
asserts the existence of an adapted open book in the case where (4, c) lies in the convexity range.
This is a subset of the low-energy range, consisting of pairs (u,c) for which the so-called Levi-
Civita regularization is dynamically convex, [AFFHvK].

Disk-like global surfaces of section were found by McGehee, in [M69], for the rotating Kepler
problem and small perturbations thereof, so ;1 ~ 1. He computed the return map for 4 = 1,
and used KAM theory to establish the existence of invariant tori. More recently, non-perturbative
holomorphic curve methods due to Hofer-Wysocki-Zehnder [HWZ98] have been used to establish
disk-like global surfaces of section in the convexity range, [AFFHvK, AFFvK].
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We wish to emphasize that the results in this paper hold for c in the whole low-energy range,
independently of mass ratio, and even extend to higher energies. One partial reason is the follow-
ing: while in the planar case finding a suitable invariant subset is non-trivial, one usable invariant
subset in the spatial case is immediately obvious; it is the planar problem.

Topologically and abstractly, the situation may be understood as follows: the Stein manifold
D*S? carries a Lefschetz fibration structure, whose smooth fibers are the annuli D*S?, and its mon-
odromy is precisely 77 along the vanishing cycle S* C D*S*. We write D*S? = LF(D*S!, 72). By
restricting this Lefschetz fibration to the boundary, we obtain the above open book for RP3. See
Figure 6 in Appendix A. The Lefschetz fibration on the pages D*S? gives (S*S3,£5q) the struc-
ture of an iterated planar contact 5-manifold, which has been studied in [Acu, AEO, AM18]. Similar
remarks apply for ¢ € (H(L1), H(L1) +¢).

Figure 3 describes one of the pages of the “geodesic” open book (which is well-behaved with
respect to collisions, as opposed to the more “physical” version discussed in Figure 2), in the sim-
plest case of the Kepler problem, see Example 3.1. This is a higher-dimensional version of the
well-known Birkhoff annulus, and topologically consists of unit directions in S*S® which are posi-
tively transverse to the equator S? C S3. Its boundary is precisely the unit directions tangent to S>
(i.e. RP?). The other pages are obtained by flowing with the geodesic flow for the round metric on
S3. By construction, this open book is adapted to the dynamics of the geodesic flow, which is the
regularized version of the Kepler problem for ¢ < 0. In Figure 3 we also sketch how the pages of this
open book sit in phase space, for which one should recall that in Moser regularization momenta lie
in the base, and positions lie in the fiber; the fiber over p = oo as a point in 5% C S is a Legendrian
2-sphere -the collision locus- which is collapsed to the point ¢ = 0 in unregularized coordinates
(we will review this regularization method in Section 4). For the general case, the open book in
Theorem 1 coincides with the physical open book away from collisions, and with the geodesic one
on the collision locus (but where the unit cotangent bundle for the round metric is replaced with a
low-energy level set of the appropriate Hamiltonian); see the proof of Lemma 6.4. One may think
of a page as a Liouville filling of the planar problem; see Figure 4. Here, there is a slight subtlety
due to the fact that the symplectic form on a page degenerates at the boundary, but the symplectic
form may be modified by a continuous conjugation to make it a filling; see Appendix B.

The open books of Theorem 1 support the corresponding contact structure on X, in the sense
of Giroux (see Definition 5.1). One can interpret this as the smooth topology being adapted to the
given geometry. However, unlike in our current situation, the contact form (and hence the dynam-
ics) in the setting of Giroux’s notion is never fixed; only the contact structure is. One then adapts
the dynamics to the open book via a Giroux form, whose Reeb dynamics is normally taken as sim-
ple as possible. The content of Theorem 1 is stronger: the smooth topology is actually adapted to
the given dynamics, which is a posteriori given by a Giroux form.

Symmetries. Consider the symplectic involution of (R%, dp A dq) given by
71 (41,92, 43, P1, P2, P3) = (1,92, —q3, P1, P2, —P3)-
We also have the anti-symplectic involutions
p1: (q1,92,93,P1,P2,P3) = (1, —G2, —q3, —P1, P2, D3)

P2 . (qlqu7q3ap1ap2ap3) = (qla _q27Q37_p17p27_p3)a

satisfying the relations p; o po = p2 0 p1 = 1, and so generating the abelian group {1, 7, p1,p2} =
Zy & Zo, which is the natural symmetry group of the spatial circular restricted three-body problem.



GLOBAL HYPERSURFACES OF SECTION IN THE SPATIAL RESTRICTED THREE-BODY PROBLEM

E.g. Kepler problem, c<o

s*s” s?
e unregularied
Moser reqularization A, s
e é% oo e —— st

primary

phase-space

Higher-dimensional
Birkhoff "annulus'z D*S

(the O-page)

geodesic  flow

745" pe0

Kepler

Boundary of bourded
component of Hil vegion

flow

unregularized
47 a5

: / 26r0 Sgction

5=
(planar problem)

Ser vegularization -
l — O Vi

phase-space

Boundary of bounded
component of Hill region

The 0-page

FIGURE 3. The page D*S? of the open book for S*S® with g3 > 0,p3 = 0 corre-
sponds physically to orbits achieving their maximal height g3 > 0 for fixed energy.
In the Kepler problem, see Example 3.1, the zero section of this page sits in phase
space as a plane, emanating from ¢ = ¢2 = 0, ¢3 = ¢§**” (the highest allowed po-
sition for given energy), consisting of horizontal momenta which become infinite
as g3 — 0T along the gs-axis. This compactifies to a 2-sphere after regularization
so that p = oo becomes the north pole of S? C S3. The fiber over a horizontal
momentum p € S sits as a 2-disk of positions ¢ with g3 > 0 so that (¢, p) has given
energy; for instance, the fiber over p = 0 is the intersection of the boundary of the
bounded Hill region with the upper half-plane g3 > 0, while the others are 2-disks
with boundary in {¢3s = 0} emanating from the gs-axis and which shrink down to
a point at ¢ = 0. The other pages sit in phase-space as the image of the above one
under the Kepler flow. Note that the 6 + 7-page is obtained from the §-page by
reflection along the equator in the regularized picture, and by reflection along the
plane {¢g3 = 0} in the unregularized one. This is a general fact; see Proposition 1.3.
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After regularization, the symplectic involution admits the following intrinsic description. Con-
sider the smooth reflection R : S* — S along the equatorial sphere S? C S3. Then r is the physical
transformation it induces on 7*S3, given by

roT*8% = TS

r(a,p) = (R(a), [(dgR)*]~* ()
This map preserves the unit cotangent bundle S*S3. The maps p1, p2 also have regularized versions.
The following emphasizes the symmetries present in our setup:

Proposition 1.3. Let ¢ < H(L1), and consider the symplectic involution r : S*S3 — S*S3. The open book
decomposition ¥. = OB(D*S?, 72) is symmetric with respect to r, in the sense that

r(Py) = Pyix, Fix(r)=B=3.
Moreover, the anti-symplectic involutions preserve B and satisfy

p1(Po) = P_g, p2(Ps) = P_gin.
In particular, py preserves Py and Py, whereas ps preserves Py o and P_r /5.

In other words, the open book is compatible with all the symmetry group Zs @ Z,.

The return map. First, we recall a standard definition. We say that a symplectomorphism f :
(M,w) — (M,w) is Hamiltonian if f = ¢}, where K : R x M — R is a smooth (time-dependent)
Hamiltonian, and ¢!, is the Hamiltonian isotopy it generates. This is defined by ¢% = id, £ ¢% =
Xk, o ¢he, and Xp, is the Hamiltonian vector field of H; defined via i Xyu,w = —dH;. Here we write
K; = K(t,-). If w = da is exact, an exact symplectomorphism is a self-diffeomorphism f such that
f*a = a + dr for some smooth function 7. All Hamiltonian maps are exact symplectomorphisms.

In our setup, for ¢ < H(L1), and after fixing a page P = 7 !(1) of the corresponding open
book, Theorem 1 implies the existence of a Poincaré return map f : int(P) — int(P), defined via
f(p) = ¢r(p)(p), where ¢; : ¥, — X, is the Hamiltonian flow, p € int(P), and 7(p) is the smallest
positive ¢ for which ¢, (p) lies in int(P).

Moreover, we consider the 2-form w obtained by restriction to P of da, where « is the contact
form on X for the spatial problem, whose restriction to the binding ap = «|p is the contact form
for the planar problem. Then w is symplectic only along the interior of P. Moreover, one may find
a diffeomorphism G : int(P) — int(D*S?) on the interior which extends smoothly to the boundary
B, but its inverse G}, although continuous at B, is not differentiable along B, in such a way that
w = G,w is now non-degenerate also at B (cf. the proof of Lemma B.1). After conjugating f with
G, we obtain a symplectomorphism f := G o f o G~! : (int(D*52),&) — (int(D*S2),T), where & is
a Liouville filling of (B, ap).

Theorem B. For every 1 € (0,1], ¢ < H(L1), the associated Poincaré return map f extends smoothly to
the boundary B = 0P, and in the interior it is an exact symplectomorphism

[ = fep: (int(P),w) — (int(P),w),
where w = da (depending on ¢, ). We have f(OP) = 0P, and f|op is the time-1 map of a positively
reparametrized Reeb flow giving the planar three body problem for energy c. Moreover, f is Hamiltonian in
the interior, generated by a Hamiltonian isotopy which extends smoothly to the boundary.
After conjugating with G, f extends continuously to the boundary, is Hamiltonian in the interior, gener-

ated by a Hamiltonian isotopy which extends continuously to the boundary, and W has Liouville completion
symplectomorphic to the standard symplectic form wgq on T*S>.
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geodesic flow planar problem

A page

FIGURE 4. A page of the open book as a filling of the planar problem. After con-
jugation with a homeomorphism G which makes the page an honest Liouville do-
main by removing the degeneracy at the boundary, it may be viewed as a fiber-wise
star-shaped domain in 7* S? with the standard symplectic form. The geodesic flow
corresponds to the unit cotangent bundle.

The form w can be symplectically deformed, in the class of Liouville fillings of the fixed contact
structure on B, to the standard symplectic form by deforming to the Kepler problem (this can be
seen as the limit ¢ — —oo, for which fconverges to the identity). Equivalently, we can think of this
Liouville filling as having the standard symplectic form, but non-standard contact boundary (as in
Figure 4).

The fact that f is an exact symplectomorphism follows from the fact that the ambient dynamics
comes from a Reeb flow (see Lemma 5.4); this of course implies that f preserves the symplectic
volume. The fact that f extends to the boundary is non-trivial, and relies on second order estimates
near the binding: it suffices to show that the Hamiltonian giving the spatial problem is positive
definite on the symplectic normal bundle to the binding (see Section 8). This non-degeneracy con-
dition can be interpreted as a convexity condition that plays the role, in this setup, of the notion of
dynamical convexity due to Hofer-Wysocki-Zehnder (see Definition 3.6 and the proof of Theorem 3.4
in [HWZ98]). Note that if a continuous extension exists, then by continuity it is unique.

The fact that f is Hamiltonian in the interior follows from the following;:

(1) The monodromy of the open book is Hamiltonian (as an isotopy class; here, the Hamilton-
ian is allowed to move the boundary);

(2) The general fact that the return map f is always symplectically isotopic to a representative
of the monodromy, via a boundary-preserving isotopy (Lemma B.1);

(3) H'(P;R) = 0, so that every symplectic isotopy is Hamiltonian.

Remark 1.4 (Boundary behaviour). The statement that f is a reparametrized Reeb flow is purely
localized at the boundary, and follows directly from the construction of a return map; this is not to be
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confused with the Hamiltonian twist condition introduced in [MvK], which is of a global nature. We
remark that positively reparametrized Reeb vector fields are the same as rotational (or nonsingular)
Beltrami fields, which are relevant in hydrodynamics, and hence both classes are equivalent from a
dynamical perspective; see [EG00].

Remark 1.5 (Fixed points). One can extract the following consequence from classical topology:
since f is homotopic to the identity, its Lefschetz number is L(f) = x(D*S?) = 2. Therefore it has
a least one fixed point z, which could be degenerate; if not, there are at least two. Unfortunately,
a priori it could lie in the boundary (in [MvK], to deal with this kind of problem, we will impose
suitable convexity assumptions at the boundary). If it does not, we have two possibilities. Indeed,
applying the symplectic involution r, for which the Hamiltonian vector field is equivariant, we
obtain another fixed point (x) (in the opposite page of the open book, also equivariant by Propo-
sition 1.3). If () lies in the same orbit y as x, then by uniqueness of solutions this (spatial) orbit is
symmetric, i.e. 7(y(t)) = v(t + 1/2) for a suitable parametrization. If not, we obtained two spatial
orbits.

Rotating Kepler problem. In Appendix A, we discuss the completely integrable limit case of
the rotating Kepler problem, where ;1 = 1 and so there is only one primary. The return map can
be studied completely explicitly. Geometrically, this map may be understood via the following
proposition (see also Figure 6):

Theorem C (Integrable case). In the rotating Kepler problem, the return map f preserves the annuli
fibers of a concrete symplectic Lefschetz fibration of abstract type D*S? = LF(D*S*, 73), where it acts as a
classical integrable twist map on regular fibers, and fixes the two (unique) nodal singularities on the singular
fibers. The boundary of each of the symplectic fibers coincides with the direct/retrograde planar circular orbits
(a Hopf link in RP3).

The two fixed points are the north and south poles of the zero section S?, and correspond to
the two periodic collision orbits bouncing on the primary (one for each of the half-planes ¢3 > 0,
g3 < 0), which we call the polar orbits. See Appendix A for an extended discussion, where we derive
an explicit formula for the return map, and also describe the Liouville tori. In [M20], the first author
also proves that the structure of a symplectic Lefschetz fibration always exists whenever the planar
problem admits adapted open books (which holds e.g. when the planar problem is dynamically
convex [HSW, Theorem 1.18]). The symplectic form that makes its fibers symplectic annuli is dc,
with « the contact form giving the dynamics. We remark that this Lefschetz fibration might not in
general be invariant under the return map (but the boundary of its fibers is).

Outlook. We expect the framework discussed above to provide means for studying more general
Hamiltonian systems than the three-body problem. We shall illustrate this expectation by dis-
cussing how this works for the more general class of Stark-Zeeman systems (see Section 3 below),
under suitable conditions. An example of such a system describes the dynamics of an electron
in an external electric and magnetic field, as well as many other systems in classical and celestial
mechanics (see [CFZ19,CFvK17]).

The general framework is then the following. Assume that a given Hamiltonian system admits a
contact-type and closed energy hypersurface (X, ¢ = ker a) = OB(P, ¢), where the Reeb dynamics
of the contact form « is the Hamiltonian dynamics, and is adapted to an open book decomposition
with data (P, ¢). Here, P is a Liouville domain and ¢ is the symplectic monodromy. Then, by
considering the return map, one expects to extract dynamical information from the Floer theory of
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the page P. If the return map is Hamiltonian, then one might extract information from Floer theory
(e.g. symplectic homology). This is the direction pursued in [MvK].

Proofs. The main technical ingredients come in the form of various estimates that are scattered
over the paper. For the convenience of the reader we have therefore added a small section sum-
marizing the ingredients of the proofs in Section 10. We also work out some details concerning the
monodromies of the open books in that section.
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2. THE CIRCULAR RESTRICTED THREE-BODY PROBLEM

The setup of the classical three-body problem consists of three bodies in R?, subject to the gravi-
tational interactions between them, which are governed by Newton’s laws of motion. We consider
three bodies: Earth (E), Moon (M) and Satellite (S), with masses mg, mys, ms. We have the follow-
ing special cases:

o (restricted) mg = 0 (S is negligible with respect to the primaries E and M);

o (circular) Each primary moves in a circle, centered around the common center of mass of
the two (as opposed to general ellipses);

e (planar) S moves in the plane containing the primaries;

o (spatial) The planar assumption is dropped, and S is allowed to move in three-space.

The problem then consists in understanding the dynamics of the trajectories of the Satellite,
whose motion is affected by the primaries, but not vice-versa. We denote the mass ratio by =
% € (0, 1], and we normalize so that mg + my; = 1, and so p = myy.

Choose rotating coordinates, in which both primaries are at rest. While the Hamiltonian for the
inertial coordinate system is time-dependent, it is autonomous for the rotating ones; the price to
pay is the appearance of the angular momentum term. Assuming that the positions of Earth and

Moon are € = (11,0,0), M = (—1 + u,0, 0)2, the so-called Jacobi Hamiltonian is
H:R3\{&,m} xR® =R

1—p
—¢

1 H
H(,p) = =|p||* - —

T +Pp1g2 — p2¢a- (2.1)

2We will use the symbol ~ for vectors in R3 to make our formulas for Moser regularization simpler. We will use the
convention that ¢ € R* has the form (¢, 5 )-
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There are precisely five critical points of H, called the Lagrangian points L;,i = 1,...,5, ordered so
that H(L1) < H(L2) < H(L3) < H(L4) = H(Ls) (in the case p < 1/2). For ¢ € R, consider the
energy hypersurface ¥, = H!(c). If

m: RA{€ 1} x R® = RO\{€,m}, (q,p) =7,
is the projection onto the position coordinate, we define the Hill’s region of energy c as
Ke = m(3.) € R*\{€,m}.

This is the region in space where the satellite with Jacobi energy c is allowed to move. If ¢ < H(L;)
lies below the first critical energy value, then K. has three connected components: a bounded
one around the Earth, another bounded one around the Moon, and an unbounded one. Denote
the first two components by KF and K, as well as ¥F = 7 1Y(KP)n X, =¥ = »~1(KM) n
Y., the bounded components of the corresponding energy hypersurface. As c crosses the first
critical energy value, the two connected components K and KM get glued to each other into a
new connected component KM, which topologically is their connected sum. Denote £ =
m (KM,

While the 5-dimensional energy hypersurfaces are non-compact, due to collisions of the massless
body with one of the primaries, two body collisions can be regularized via Moser’s recipe (see
Section 4). This consists in interchanging position and momenta, and compactifying by adding
a 2-sphere at infinity (one point on S? for each direction), corresponding to collisions where the
momentum explodes. The bounded components ©F and % (for ¢ < H(L1)), as well as &M (for

c € (H(L1),H(Ly) + €), are thus compactified to compact manifolds 57, iiu, and if’M. The first
two are diffeomorphic to S*$% = $3 x 52, and the latter to the connected sum S* S3#S*S3.

3. STARK-ZEEMAN SYSTEMS

Let us assume that ¢ < H(L). By restricting the Jacobi Hamiltonian to the Earth or Moon
component, we can view it as a Stark-Zeeman system. To define such systems in general, consider
a twisted symplectic form

w=dpANdi+T*0p,
with o = % >~ Bijdg; A dg;, the magnetic field, where the B;; are smooth functions of ¢. A Stark-

Zeeman system is then a Hamiltonian dynamical system for such a symplectic form with a Hamil-
tonian of the form

Hsz(@,) = 5177 + V(@) + Vi (@),

where Vy(q) = — % for some positive coupling constant g, and V; is an extra potential.

We will make two further assumptions.

Assumptions. (Al) We assume that the magnetic field o 5 is exact with primitive 1-form A. Then
with respect to wy = dp' A dg, we obtain the following Hamiltonian

HG.5) = 3|5+ A@) + Vol@ + Vi (@),

which has the same dynamics as the above Stark-Zeeman system for the twisted form.
(A2) We assume that A(q) = (A1 (q1, ¢2), A2(q1, ¢2), 0), and that the potential satisfies the symme-
try Vi(q1, g2, —¢3) = Vi(a1, ¢2, q3)-
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Observe that these assumptions imply that the planar problem, defined as the subset {(q,p) :
gs = ps = 0}, is an invariant set of the Hamiltonian flow. Indeed, we have

=-—=pgandpy = —o— =~ — o —. 32
q3 O ps3 ps3 943 H q“ 3 9gs (3.2)

Both these terms vanish on the subset g3 = p3 = 0 by noting that the symmetry implies that
vy

dqs lgs=0 = 0.

Example 3.1. The Kepler problem is an important example of a Stark-Zeeman system without a
magnetic term. Its dynamics can be described as the Hamiltonian flow of the following Hamilton-
ian defined on (T*R3 \ {0}, dp A dq):

1
g

Remark 3.2. The assumption in (Al) allows us to transform a Stark-Zeeman system with Hamil-
tonian

1
K= —|pl* -
71

Hsz(@,) = 51717 + V(@ + Vi(@),

for a twisted symplectic form w = dp'A dg'+ 7* o g to a Hamiltonian

(G5 = 317+ A@I +Vo(@) + Vi @),

with the same dynamics for the untwisted form wy = dp'A d¢. In the remainder of the paper, we
will always transform Stark-Zeeman systems to Hamiltonian systems with untwisted symplectic
forms by changing the kinetic term as above.

4. MOSER REGULARIZATION

For non-vanishing g, Stark-Zeeman systems have a singularity corresponding to two-body col-
lisions, which we will regularize by Moser regularization. To do so, we will define a new Hamil-
tonian @ on T*5® whose dynamics correspond to a reparametrization of the dynamics of H with
the symplectic form wy (this Hamiltonian H is the one obtained in Remark 3.2). We will describe
the scheme for energy levels H = ¢ with ¢ < 0. Define the intermediate Hamiltonian

K(q,p) == (H(q,p) — o)||ql.
For ¢ # 0, this function is smooth, and its Hamiltonian vector field equals
X =4 - X + (H — o) X)q-
We observe that X is a multiple of Xz on the level set K = 0. Writing out K gives

K = (AP +1)~ (e 172+ 5 A) + LA+ Vi@ ) 141 - o

Remark 4.1. At this point, it is worth pointing out that the round metric for a sphere S}, with radius
R has the following form in stereographic coordinates

4R* 5

V,0) = 55 |V]".

The above expression is hence a deformation of the norm of ¢, interpreted as a covector; the point
P plays the role of the coordinate on the base. We will explain these coordinates below.
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Stereographic projection. We set
i=-f §=0
We view T*S? as a symplectic submanifold of T*R?, via
T*8% ={(&m) € T"RY| [l¢]I* =1, (§,m) = 0}
Let N = (1,0,0,0) € S? be the north pole. To go from T* 53\ T} 5® to T*R? we use the stereographic
projection. Recalling the notation £ = (£,£) € R x R4, 5 = (19, 7) € R x R, this is given by

3
1—¢o (4.3)
7 =no€ + (1 — &)

To go from T*R3 to T*S3\T% S3, we use the inverse given by

f:

-1
g < 121
12 +1
- 2z
g —
CERE+1 (4.4)
no = ()
I i S
M= IZ +1 H2 y— (&)
These formulas imply the following identities
2 - 2|[n]|
=1—- s == = =(1- )

which allows us to simplify the expression for K. We obtain a Hamiltonian K defined on 7*S%,
given by

-~ 1 1 - 1, -
k= (12 - et U2 - 2 @A) + SLACnIP + Vi) (- &llol - g

=l (1= (= &) +1/2) = € A6 + (1 &) (F1AEnI + vatem) ) =
Put
F6m) =1+ (1= &) (=(c+ 12+ JIAEMI + Vilen) ) - (€.Ale.n)
14 (1 €o)blEm) + M(E.m)

(4.5)

where .
b(&,n) = —(c+1/2) + g\lz‘f(fm)ll2 +V1(€,m)

M(§7 7’) = 7<gv _'(57 77)>
Note that the collision locus corresponds to ¢y = 1, i.e. the cotangent fiber over N. We then have
that

K = ||l f(&n) —g.
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To obtain a smooth Hamiltonian, we define the Hamiltonian

Q) = 5 7€l

The dynamics on the level set Q = £ ¢ are a reparametrization of the dynamics of K = 0, which in
turn correspond to the dynamics of H = c.

Remark 4.2. We have chosen this form to stress that () is a deformation of the Hamiltonian Q,.,ynq =
1]In||* describing the geodesic flow on the round sphere. This is the the regularized Kepler prob-
lem, corresponding to the Reeb dynamics of the standard contact form, a Giroux form (in the sense
of definition 5.1 below) for the open book S*S* = OB(D*S?, 72), supporting the standard contact
structure on S*S3.

4.1. Formula for the restricted three-body problem. By completing the squares, we obtain

K L—p Lo o
o~ 56t @)
lg—=m| lg=el 2
Keeping Remark 3.2 in mind, we can view the Hamiltonian dynamics of this Hamiltonian for the
untwisted symplectic form wy as a Stark-Zeeman system with primitive

/Y: (qQa —Ch»O)

H(q,p) = ! ((pl + @)+ (p2 — @)’ +p?2,) -

and potential
1
both of which satisfy Assumptions (Al) and (A2).

After a computation, we obtain

(1 —p)(1—&)
3 =1 1-— —(cC 1/2 21—12—21— — = 4.7
FEm =14 (1= 60) (e +1/2) 4 éom = o) = a1 =) = S m R 4)
(1—p)
b(&,n)=—(c+1/2) — = 4.8
(G = (et 1) 17(1 = &o) + &no + M — €| o)
M(&,n) = (1 —&)(am — &imz) — &(1 — p). (4.9)

4.2. Hamiltonian vector field. Consider the Hamiltonian
1
Q" = 5 nl*£*(&m)

on (T*R"™,wy = dnAd¢), for some smooth function f, and let Q := Q°
the submanifold constraints ||£||? = 1 and (£, n) = 0 gives:

T+ gn—1. A computation using

Lemma 4.3. We have

Xo =f (fn+1nl* (fg = &fy - ) O

(4.10)
+ ||77H f(nf’rz '§_f£_§(f+f71'77_f£'E))ar)'
Example 4.4. In the case of the round sphere (f = 1), the above reduces to
Xq =10 —|Inll’¢ - 9,. (4.11)

5. CONTACT TOPOLOGY AND DYNAMICS

In this section, we recollect important notions, which were also discussed in the Introduction.
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5.1. Open book decompositions and global hypersurfaces of section. A concrete open book (B, )
on a manifold Y consists of
(1) a codimension 2 closed submanifold B with trivial normal bundle, and
(2) a fiber bundle 7 : Y \ B — S! such that for some collar neighbourhood B x D? of B we
have
7:BxD*— S (b;r,0) — 0,
where (r, 0) are polar coordinates on D?.

The submanifold B will be called the binding. The closure of the fibers of 7 are called pages. Ab-
stractly, given a manifold P with boundary B, and a diffeomorphism ¢ : P — P with ¢|p = id, we
construct an abstract open book

OB(P, ¢) = B x D*| JMap(P, ¢),
o

where | J, denotes boundary union, and Map(P, ¢) = P x [0,1]/(z,0) ~ (¢(x), 1) is the associated
mapping torus. An abstract open book induces an obvious concrete open book, and vice-versa
(uniquely up to isotopy).

The above is so far a notion of smooth topology, and its relationship to contact topology is
encoded in the following definition. Recall that a (positive) contact form on an (oriented) odd-
dimensional manifold Y?"*! is a 1-form o € Q!(Y) satisfying the contact condition a A da™ > 0.

The induced contact structure is the hyperplane distribution { = kera C TY, and (Y, §) is a contact
manifold. We have the following definition due to Giroux, [G].

Definition 5.1 (Giroux). Suppose that Y is equipped with a concrete open book (B, 7) and a contact
form « satisfying the following:

e « induces a positive contact structure on B, and
o da induces a positive symplectic structure on the interior of each page of .

Then we say that « is adapted to (B, 7), or that « is a Giroux form for the open book, and that §{ = ker «
is supported by the open book.

In the above situation, (B,{p = (kera|g)) is a contact submanifold of Y (i.e. {|rp = &p). We
usually write (Y,§) = OB(P,¢) whenever ¢ is supported by the abstract open book with data

(P, ).
Example 5.2. We have (S*S3,&:q) = OB(D*S?,72), where 7 is the Dehn-Seidel twist along the
Lagrangian zero section S? C D*S?. See Section 6.2.
Any contact form a on Y gives rise to a dynamical system, given by the flow of the Reeb vector
field R,,, which is defined implicitly via the equations
a(Ry) =1, da(Rq,-)=0
There is a relation between open books and global hypersurfaces of section for the Reeb flow.

One part of this relation is clearly expressed in the following lemma.

Lemma 5.3. Suppose that B is a connected contact submanifold of a contact manifold (Y, &). A contact form
afor (Y, &) is adapted to an open book (B, ) if and only if

o B is invariant under the flow of R,;

o R, is positively transverse to the fibers of m, i.e. dm(Rq) > 0.
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Assume now furthermore that we have a bound on the return time. Then it follows that every page is a global
hypersurface of section for the Reeb dynamics. If the contact condition does not hold, transversality to all
pages is of course still enough for a single page to be a global hypersurface of section.

We note that, in the situation of the above lemma, we have the following general fact:

Lemma 5.4. The associated return map f on each page is automatically an exact symplectomorphism with
respect to the symplectic form induced by the restriction of dov.

Proof. Letw = da|p = d\ where P is a fixed page and A = «|p, denote the time-t Reeb flow by ¢,
and let 7 : int(P) — RT, 7(z) = min{t > 0 : ¢;(x) € int(P)}. Then f(z) = ¢, (), and so, for
x € int(P), v € T, P, we have

dyf(v) = duT(V)Ra(f(2)) + dupr(a) (V).

Using that ¢, satisfies ¢} o = «, we obtain

(f*/\):r(v) = af(x)(dwf(v))

= do7(v) + (07 () )2 (V) (5.12)
= d7(v) + Az (v).
Therefore f*\ = dr + A, which shows the claim. a

It is not always the case that the return map extends continuously to the boundary, see for in-
stance Remark 7.1.11 in [FvK18] for a return map that twists “infinitely fast” along the boundary.
This is a rather subtle point, to which we will come back to in Section 8 in order to obtain Theorem
B; see Proposition 8.2.

6. FIRST ORDER ESTIMATES

In this section, we will setup the geometric situation, and conclude the proof of the first part of
Theorem A. We will assume nothing on the energy ¢, and prove directly that the Hamiltonian vector
field X, is transverse to the planar problem, for Stark-Zeeman systems satisfying Assumptions
(A1)—(A4), yet to be fully determined. This gives global hypersurfaces of section even if the contact-
type condition fails. In the case where ¢ < H(L;) or ¢ € (H(L1),H(L1) + ¢€), so that ¥, is contact-
type, we will obtain our result in Theorem 1 via Lemma 5.3.

6.1. The physical open book. For Stark-Zeeman systems satisfying Assumptions (Al) and (A2)
we will define a natural candidate for an open book. As noted before, the planar problem defines
an invariant subset. In unregularized coordinates, we put

By :={(¢.p) € H '(c) | g3 =ps = 0}.
Its normal bundle is trivial, and we have the following map to S L
_ L +1
mpt H 1(0)\Bu—>51,(q,ﬁ)l—>M. (6.13)
We will refer to this map as the physical open book. We consider the angular 1-form
Qu
Wy =
Yot dg
where
Q, = p3dqs — qzdps, (6.14)
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is the unregularized numerator. In view of Lemma 5.3, we need to see whether w,(Xg) is non-
negative, and vanishes only along the planar problem.
From Equation (3.2), we have

0
i+ a (1 + £52@)
B P2+ ¢?

Assumption (A2) implies that %((j’) = aq3 + o(q3) near g3 = 0, and so q%%((j) is well-defined

at g3 = 0. In order for the above expression to satisfy the required non-negativity condition, we
impose the following:

. (6.15)

wp(Xw)

Assumption. (A3) We assume that the function

1 0V,
P(@) = 55+ — 5

1P % 95 7

is everywhere positive.
Note that it suffices that the second summand be non-negative.

Remark 6.1. In the restricted three-body problem, from Equation (4.6), we obtain

6V1 _ 1—/.L
5gs D = Bl

and therefore Assumption (A3) is satisfied.

This observation only applies to the unregularized problem, and we will want to look at the
compact hypersurfaces of section. We hence need the following expression for the above map 7, in
(¢, n) coordinates. Let S : T*(S? \ {N}) — T*RR? be the stereographic projection map.

Lemma 6.2. With
Op(&,m) =&+ (1= &o)moks + (1 = &)*ms)
@p(fa 77)

i’/Tp 03(5777) - m

Proof. We consider the denominator of im, (g, p) and use the formulas for Moser regularization

we have

—p3 +ig3 = 157350 + i (nogs + (1 — &o)ms) -
We rescale by (1 — &), which doesn’t change the map to S?, to obtain the claim. O

The associated angular 1-form in (&, n)-coordinates is

Wy = Qp
P (@, (€ 1) + m(6,(E, 1)

where

Qp = 1e(0,(€,7))dim(O, (&, 1)) —im(O, (€, n))dre(Op (&, 1)) (6.16)

is the regularized numerator. By construction, we have the following relationship between the
unregularized and regularized numerators:

Q, = (1—§&)*Qu. (6.17)
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6.2. The geodesic open book: a simple example. Before doing the general case, let us examine
a higher-dimensional analogue of the famous Birkhoff open book in the simple case of the round
sphere. The Hamiltonian is Q = 1(/|||7+s» with Hamiltonian vector field

XQ:n-6§—§~8n.

This is the Reeb vector field of the standard Liouville form A4 on the energy hypersurface ¥ =
Q@ (%) = S*S™. We have the invariant set

Bi={(0--&ni0s - 1n) €T | & = np =0} =S* 5"
Define the circle-valued map

||77n +i&n ”
This is the projection of the concrete open book which was discussed in the introduction, which we

shall refer to as the geodesic open book; note that the page &, = 0 and 7,, > 0 corresponds to the
higher-dimensional Birkhoff “annulus” D*S"~!. The angular form is then

_ ’r]ndgn - §7Ld7]7L
R
We see that wy(Xg) = 1 > 0, so Lemma 5.3 tells us that (B, 7,) is a supporting open book for ¥

and the pages of 7, are global hypersurfaces of section for X,. Abstractly, this gives (S*S™, {sq) =
OB(D*S™ 1, 72).

Ty N\ B —SY% (&oyee ey EniNos ey Mn)

6.3. First order estimates for spatial Stark-Zeeman systems. We now do the general case. We
consider a connected component of the energy hypersurface of a regularized Stark-Zeeman system,
which we denote by X € Q~!(g%/2). From Formula (4.5), we know that f is of the form

f=141=&)b(&n) + M(E,n),

for some smooth functions b, M/. We want to consider the analogue of the geodesic open book we
considered in Section 6.2 (for n = 3). With the same formulas for 7, we have again the angular

form
Wy = L
g+
where
Qg = n3ds — E3dns.
Note that 7w, does not agree with 7, in regularized coordinates (see Lemma 6.2).
From Equation (4.10), it follows from direct computation that:

Lemma 6.3. We have the expression

Qg (Xq) = 205 + nlPF(f + fo-n— fe - O& + nll* F(fasns — fesbs — 2Eam3fy - €)
If we write f =14 (1 — &)b+ M, then this further gives

Qy(X0) =03 + P fF(L+ &b+ M+ M, -n— M- £+ (1 —&)(b+by - —be - €))E3

6.18
InIRF((L = €0)(sbry + Exbes — 2esby - €) + nsMy + ExMe, — 2sshy - €) )
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O

Note that setting f = 1 = ||| in the above expression recovers the example from Section 6.2. We
will not verify on the whole set ¥ whether ,(X¢) is non-negative, but instead only whether this
holds near the collision locus, and combine this with Expression (6.15) from our earlier computation
in unregularized coordinates. The basic observation is that €2, works away from the collision locus,
whereas €1, works near the collision locus. We therefore interpolate between the two. This creates
an interpolation region where we need finer estimates in order to obtain global hypersurfaces of
section. This is the content of what follows.

Assume that Q = 1||n||?f(&,n)? is the regularized Hamiltonian of Stark-Zeeman system satisfy-
ing (A1), (A2) and (A3), and write f = 1+ (1 — £y)b+ M. Let ¥ be a connected component of the
regularized energy hypersurface Q' (g?/2), which we assume to be closed. Further assume that:

Assumption. (A4) 1+b(&,n) +M(E,n) — Me(&,n) - > 0forall (§,n) € Ewith{ =(1,0,0,0).

Lemma 6.4. Under Assumptions (A1)-(A4) as above, there exists an open book decomposition on ¥, with
binding the planar problem, so that each page is a global hypersurface of section for the Hamiltonian flow
Xo.

Proof. Recall that the collision locus corresponds to & = 1, is diffeomorphic to S? and its points
have the form (&,7) = (1,0,0,0;7n). Define B := {(¢,n) € ¥ | {&s = n3 = 0}. By Assumption (A2)
and Moser regularization we see that B is an invariant set for the flow of X (it is the regularization
of B,). Choose a smooth, non-negative function p = p(&;), which is positive near £, = 1, and define
the map

0:X—C, (&n) — 6,(&n) +ip(So)ns, (6.19)
where O, is as in Lemma 6.2. We note that ©(¢,7) = 0 if and only if ({,n) € B, since, by Lemma

6.2, 1e(0) = &3 and im(©) = (1 —&y)noés + (1 —&)? + p(€0))n3. Hence we obtain the circled-valued
map

X\ B — S (&) 0 n)/IIeE ).

Note that 7 = 7, away from the collision locus (where p = 0), and m = 74 at the collision locus. The
associated angular 1-form is
Q

T 1e(0(£,1))% +1m(0(, 7))?’

w

where

Q= 1e(0(&n))dim(O(E, 7)) — im(O(&, n))dre(O(&; 1)) = Qp + p(£0)2y + Eanzdp-

We will apply Lemma 5.3 to verify the open book condition, so we need to check whether Q(X¢) >
0. To achieve this, we will impose further conditions on p as we go.

Claim 1: For any small € > 0, there exists C. > 0 such that if §, < 1 —¢, then Q,(Xq) > Cc(£3 +n3).
Furthermore, we have Q,(Xq) > 0 everywhere, with equality only along B.

To see that this inequality holds, we recall Equation (6.15). This equation tells us, under Assump-
tion (A3), that ,(X#)(qp) > 0 with equality only along B. Since Xy = h Xy for some positive
function h away from the collision locus, we also have Q,(Xq)¢,) > 0 for all (§,1) € X with
& # 1, with equality only along B N {&, # 1}. To see that 2,(Xg) > 0 on the collision locus (and
hence everywhere), note from Equation (6.17) that 2, is a smooth 1-form that vanishes at £, = 1.
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We conclude that 2,(Xq) > 0 for all (£,7) € 3, with equality only along B. To obtain the lower
quadratic bound for &, < 1, we use Equations (6.15) and (6.17) to get

Qp(Xq) =h-Q(Xg) =h- (1 - &)U (Xg) =h-(1-£&)* (3 + GG F (D)

Given e > 0 small, compactness of ¥ implies uniform lower bounds » > K, and F' > K along ¥
(using (A3)), and so we may choose C! = K, min{1, K} so that

Q,(Xq) > CL(1 — &) (P} + ¢3) > CLe*(p3 + 43).

From Moser regularization, we get

2
P = (1_6350)2, @ = M55 + (1= &)?n3 + 2n0(1 — &)&ams,
S0
2
Pi+a;= (157350)2 + 1563 + (1= &0)?n5 + 2n0(1 — &)&sns

_ < & )t( e T mo(l— &) ) ( €3 )
3 m(l—&) (1-¢&)? 3
In order to think of the matrix as a metric, we need to verify that the eigenvalues are positive.
For this we compute the determinant and trace of the associated quadratic form in 3, n3. The trace
is ﬁ +n2 + (1 —£&)? > 0if & # 1. The determinant is 1, so near £, = 1 (but not at &, = 1) this

matrix represents a metric. In particular, we can bound p3 + ¢ from below by c.(£3 + 73) for some
constant c.. We can then set C, = ¢.C’e? to get the claim.

Claim 2: We can find § > 0 and As > 0 such that, along 3, we have Q,(Xq) > As(&3 + n3) for
& > 1 — 4. In particular, Qy(Xq) > 0 for & > 1 — 6, with equality only along B N {& > 1 — 0}

We will verify this claim with a computation. From Equation (6.18) we have
Qg(Xq) =03 + Inl* F(L+ €ob + M + My - — Mg - £+ (1= &) (b+by - 11— be - €))€3
+ 1912 £ (1 = &0) (13, + Ebe, — 2E3m3by - &) + MMy, + EsMe, — 2n3&3 M, - §).
The first term, which we will abbreviate by T, is obviously non-negative, and the coefficient f? in
front of n? is strictly positive on ¥ (since g > 0, recalling that Q = 1|[n||?f? = 142 along ¥). Let
us now deal with the second term T5. We first consider the limit case £, = 1, which means that
& = & = & = 0. Hence several terms drop out, and we will use Assumption (A4) to further
simplify this expression.
Recall that M (¢,7) = —(&, A(¢,n)). Using the Moser regularization formula for €and Assump-
tion (A2), we see that
M = =& A (1 (0, &1,m), q2(n0, §2,m2)) — E242(q1 (M0, &1, M), G2(10, §2,12))
_ 2 Ai(q1, 42) + paAa (01, 42)) (6.20)
717+ 1

We then immediately see that

Mg, = M,, = 0. (6.21)
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For j > 0, with the formulas for Moser regularization, we have

Z oM 8ql OM Op;
9q; 877; dp; On;

- —&))W

(6.22)

0q;

This vanishes on the collision locus where &, = 1. For M,,, we get

2
oM
Mno = ; qugu
which also vanishes on the collision locus (and so M,, - also does). This second term hence reduces
atéy=1to
= [l 140+ M = M- )¢5,

which is non-negative by Assumption (A4). It follows by compactness of 3 that the coefficient of
Ty in front of &3 is strictly positive for & > 1 — 4, for ¢ sufficiently small.

We now deal with the third term T3, for which we dissect some of its terms. Recall that b(n, £) =
—(c+1/2) + 3| A(n, €)||> + Vi(n, £). Using Assumption (A1), we compute

3A 0q; oVy 0q;
be. = 1) 1)
© Z 1 q; 03 jZ 9q; 06

ij=1
%
="o 9gs
Similarly,
0A; 0g; oVy 0q,
b .= 1) ¥
" e 0g; oy Z dq; Ons
A%
=(1-&)5—.
(1=&)5 -
Assumption (A2), implies that near ¢; = 0 we may write

2—2 — W@ + O(a2) = h(@ (os + (1 — o)) + O(c2),

where h(q) = 32(13 V1| s=0(@). This implies that £3b¢, and 73b,, can be viewed as quadratic forms
in n3, & (with non-constant coefficients). Also, note that if &, is uniformly close to 1, then ¢35 =
noés + (1 — &o)ns is uniformly close to zero along the compact manifold ¥, so that the above Taylor
expansion holds for {; > 1 — ¢ for sufficiently small 6.

From the above discussion, we see that ﬁ can be written as a quadratic form in {3 and 73 near
the collision locus, such that all its coefficients vanish at the collision locus. We conclude that we

can write 75 near {; = 1 as
t
T — 2 fs)P7 <§3)’
sl (82) poe (2
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where P(n,&) is a symmetric 2 x 2-matrix whose coefficients are smooth functions in ¢ and 7, all
which vanish at §, = 1. If § > 0 is sufficiently small, 75 is then dominated along & > 1 — ¢ as a
quadratic form by 77 + T> (which is positive definite). Therefore,

ocxa)= () Bno (&)

for a matrix B(n, ) that is positive definite for §, > 1 — §. We may then find the lower quadratic
bound as stated in Claim 2, similarly as we did in the proof of Claim 1.

To complete the proof, we need to fix the cutoff function. We choose ¢ and ¢ as in the above two
claims and decrease € such that ¢ < §/2. Choose a cutoff function py depending only on &, such
that

® po is non-decreasing,
e (&) vanishes for §g <1 -9,
o po(&p)equals1foréy >1—e.

Define p(&o) := S po(&), where K = maxsy, |dpo(X )|, and note that |dp(Xg)| < C., |p| < Cc/K.
We choose A; > 0 in Claim 2 small enough so that A5 < K /4. We now evaluate Q(X).

If §o < 10, wehave Q(Xg) = Q2,(Xg) > 0 with equality only along B (by Claim 1). If §, > 1—e¢,
we see that

0(Xq) = p(Xq) + Qy(Xq) > Qy(Xq) > As(&5 +15),

by Claim 1 and Claim 2, and ©(X) vanishes if and only if 2,(Xq) = Q4(X¢) = 0, which happens
only along BN{&y > 1—e¢}. For the intermediate region, 1—§ < &, < 1—¢, we use that 2£3m3 < §§+n§,
and we find

AUXq) = Q(Xq) + p(&0)2y(Xq) + &3n3dp(Xq)

Ce Ce Ce (6.23)
> (Oe — e As - 2) (& +m3) = (& +n3).

This verifies the assumptions of Lemma 5.3, and finishes the proof. O

Upper bounds on return time. From the bound (6.23) we will now deduce an upper bound on
the return time, needed in order to extend the return map to the boundary.

Lemma 6.5 (Bounded return time). Fix a page for the open book of Lemma 6.4. Then, the return time for
the associated return map is uniformly bounded from above.

Proof. Letm: X\ B — S, x — O(x)/||©(x)|| be the open book of Lemma 6.4. If we take standard
angular coordinates ¢ on S, i.e.

¢ om(x) = atan ilg((;c)),
then we can compute for a flow line z(t) of X the rate at which the angle progresses. This is

y ) Qu(Xo) CL(E(0) + 72(1))
4t °7@0) = @20 (XQ) = 150 2 Thre0((t)? + m O@(®)?)
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The denominator can be bounded from above by a computation:

re ()% + im O(x)? = & + ((1 - &o)moss + (1 = &) + p) ms)”

= (14+ (1= &)*R) &+ (1 - &)* +0) 03
+2(1 = &)no (1 = &) + p) Esms.
This can be written as a quadratic form in {3, 73, namely
< &3 )t ( 14+ (1—&)*n3 (1 —&o0)no ((1—50)224‘0) ) < &3 )
3 (1 —&)no (1 —&)*+p) (1—=&)*+p) 3
We will bound the eigenvalues of the matrix from above. The determinant of the matrix is given
by (1 —&)*+ p)2 > 0 and its trace is
Lo (1= &) + (1= &) +0) "
This means that the largest eigenvalue is bounded from above by
L (1= 60)°n8 + (1= €0)* +p)° < 14+4nd + (44 p)°.

The latter is also bounded on the compact hypersurface ¥, so we get a positive upper bound on the
largest eigenvalue, say «. It follows that

re ©((t))* +im ©(x(1))* < K(&(t) +n3(t))-

Hence p o
- > €
Soon(a(t) 2 o
The return time is hence uniformly bounded from above by Sg—f. O

7. THE CASE OF THE RESTRICTED THREE-BODY PROBLEM

The restricted three-body problem is an example of a Stark-Zeeman system, so we will only need
to verify the conditions of Lemma 6.4. With the expressions for b and M given in equations (4.8)
and (4.9), we find

I—p
1771 — €o) + & + 17— &l|
+ (€am — &1m2) (1 — o) — &2(1 — p) — Mg - &.
Evaluated at £ = (o, &1, &2,&3) = (1,0,0,0), using that M, = — (€211 — &1772), this reduces to
1)2—c—14p=p—c—1/2.

1+b+M—M-£=1—(c+1/2) —

We conclude:

Corollary 7.1. The spatial restricted three-body problem admits an S'~family of global hypersurfaces of
section for all energies c with ¢ < H(Lq).

Proof. Assumptions (Al) and (A2) were checked in Section 4.1, and Assumption (A3), in Remark
6.1. To check Assumption (A4), by the above, we only need to verify that 4 — ¢ — 1/2 > 0, and to
see this, we use the fact that H(L;) < —3/2; this can be deduced by combining Theorem 5.4.7 and
Corollary 5.4.4 from [FvK18]. O
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Remark 7.2. Obviously, Assumption (A4) will also hold for higher energy. However, in Lemma 6.4
we also need the component ¥ of the once regularized hypersurface to be closed. This condition
does not hold for large energies, i.e. ¢ > H(Ls3).

Symmetries. We now prove Proposition 1.3 from the Introduction, which is a simple observa-
tion.

Proof of Prop. 1.3. The symplectic involution r : T*S3 — T*S3 induced by the smooth reflection
along the equator S? is, in regularized coordinates (¢, ), simply given by the restriction to S*S® of
the map

T (£Oa5175275.,%7]077}17772’7]3) = (50»517527*53»770a7717772»*773)7

which flips the sign of the coordinates {3, 73. Moreover, it follows from Lemma 6.2 and Equation
6.19 that ©(r(§,m)) = —O(€,n) away from B = {£3 = n3 = 0}, which is clearly the fixed point set of
r. Similarly, the anti-symplectic involutions take the form

P1: (50)517523637770,7’137727773) = (503 751752753) —No, M, —12, 7773)7

P2 (507 517627 637 Mo, M1, 12, 773) — (60) _617 §2a _637 —Mo, M1, —12, 773)7
and so O(p1(£.1)) = O(£.m), O(p2(£.m)) = —O(£.n), and the claim follows. O

8. SECOND ORDER ESTIMATES

In this section, we carry out the estimates necessary to extend the return map to the boundary.
These put the estimates of Lemma 6.5 in a more general setting. We consider a Hamiltonian ) on a
symplectic manifold (M, w), and we assume that (X, ) is a contact-type compact component of a
level set of (). Furthermore, we assume the following:

e (B, ) is an open book for ¥ with adapted contact form «. The trivialization of the normal
bundle given in (2) of Definition 5.1 will be denoted by ¢ : B x D? — vx(B); we use (z,y)
to denote the coordinates on the D?-factor.

e Bisinvariant under the Reeb flow of o (which is a reparametrization of the flow of Xy).

o (u; = a%v Uy = a%) is a symplectic frame that trivializes the normal bundle vs;(B). We will
call this frame an adapted frame since it is “adapted” to the binding of the open book.

We denote the coframe dual to (u,u2) by (ul,u?). Note that u1(Q)|p = u2(Q)|s = 0, since B is
invariant under the flow of X(,. Consider the metric g = a ® a + da|g(-, J-) + u* @ u' +u? @ u? for
an extension of uy, us to a neighbourhood of B, where J is a compatible almost complex structure
on ¢ = kera preserving &|p. Let V denote the Levi-Civita connection for this metric. Choose any
symplectic trivialization € g of {| g along a Reeb trajectory z in B; we denote the associated frame of
¢| by {e;} and the coframe by {e'}. This gives us the trivialization ¢, = e @ (u1,u2) of £ along z.

Lemma 8.1. With respect to the trivialization e¢, the Hessian Hess(Q) := VdQ|¢ has the block form

Hess(Q) = ( % S?v ) , Where S¢ € & @& and Sy € N* ® N™.

Proof. Along B we have du’ = 0, so from the first structure equation we see that Vu’ = 0 and
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With the Einstein summation convention, we compute the Hessian:
VdQle = V(ei(Q)e' + ur(Q)u*)
= ejei(Q)ej Qe+ ukei(Q)uk ®@e' +e;(Q)Ve' + ejuk(Q)ej ® uF
+ upug (Q)ut @ uF + up(Q)Vur.

To prove the lemma we need to show that there are no u* @ e’-terms (in any order). Since uy(Q)|p =
0 by our above observation, the mixed derivatives e;u(Q) and ure;(Q) vanish. Furthermore, Vuk
vanishes by the above.

That leaves the term Ve'. We have

0= V(e'(ux)) = (Ve')(ur) + €' (Vug) = (Ve')(ur),

which excludes the term ¢/ @ u*, and we can use torsion freeness to show there is no term u* ® e,
either. This establishes the claim. O

We will call the bilinear form Sy in the above decomposition the normal Hessian.

Proposition 8.2. As in the above setup assume that (¥,& = ker o) admits an open book (B, ) with an
adapted contact form . Let P := w—'(1) be a page of the open book, and denote the return map of the Reeb
flow R, by f : int(P) — int(P). Assume that we have an adapted frame (U = w1,V = uy) and that the
normal Hessian is positive definite. Then f extends smoothly to the boundary.

Remark 8.3. The positive-definite assumption has some similarities with the condition of dynamical
convexity in [HWZ98]. We use it here to get a strong twist around the binding.

Proof. By smooth dependence on initial conditions, we know that the return map f is a smooth map
on int(P). We now define an extension to the boundary. Take z¢ € B and a sequence {z,}22, C
int(P) converging to z.

For each x,, we get a flow line x,,(t) = Fif(z,) with a first return time t,, = ¢, (x,,). As a first
step, we need to show that the limit lim,,_, ¢,, is a well-defined (independent of the sequence z,,),
positive real number t,. This will give us a candidate extension f(z¢) := FI; (xo).

Let 6 denote the angular coordinate in the neighbourhood B x D? as in (2) of Definition 5.1. Since

« is an adapted contact form, we have
d

—0(z,(t .
Z0(wa(t)) > 0

For large n, we can approximate z,,(t) by the linearized Reeb flow along z(t) = FIF(xg). We do
this with a vector field X, (t) along z(t) via

T, (t) = C€XPy(t) (€nXn (1)),

where we have chosen ¢, such that || X,,(0)|| = 1 and we use the adapted metric g as defined above.
We choose coordinate functions

u:BxD?* —R,(bhx,y) — x, v:BxD*—R,(hz,y)— .
Then we may write § = atan(u/v), so we obtain the angular form

udv — vdu
A
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We have

d d

ZU° xn(t) = GnduaXn(t) + o(en) = €,duVx, Ry + 0(€y),

so we can see the growth rate of the angular coordinate near B just from the linearized Reeb flow
equation % = VxR, We expand §(i,) near the binding where we write the u, v-component
of X, as X and X". Since we are considering projections of Reeb orbits to D?, we can iden-
tify TD? with R?, and expand the orbits in ¢,. This gives us the approximation mpz(z,(t)) =
en(XJ(t), X2 (1)) + o(€p), which we use to get

B () = X}dv(Vx, Ra) — X du(Vx, Ra)
2, \Tn) = (X}{)2+(X}f)2

Since the Reeb flow is just a reparametrization of the Hamiltonian flow of X, we now switch to the
linearization of X, which has the same qualitative behaviour, so we consider, with a little abuse
of notation since we continue to use X, the linear ODE

dX

82 _viX,.
a - VxXe

+o(1).

Take the adapted frame {u; = 2, u, = £} along B and choose a symplectic trivialization e as
above along x((t). With respect to this trivialization we can write X = (X¢, Xn).
By Lemma 8.1 the linearized Hamiltonian flow splits into a | g-part and a normal part:

Xe = JeSeXe, Xy =JnvSnXn.

Xy (=Jn)

Note that we can write 8x (V) = =25 XNYN . From the above expansion (using Hamiltonian flow
N

rather than Reeb flow) we find
lim B, (#,) = Bx(X)

n—0o0
XN (—JIN)INSNXN  XESNXN
B X6 Xy XL XN

Since B is compact, and Sy is positive definite by assumption, we can bound the smallest eigen-
value of Sy from below by K > 0. This gives a lower bound on the turning rate, i.e. dd(X) > K.
Since the linearized flow is smooth, it follows that there is a unique o > 0 such that §(X (t)) = 27
(where we write § = ¢'?), and we have the bound t, < 27/K. By the linear approximation proce-
dure we see that lim,,_,, t,, = to, and because of the block form of the linearization of Lemma 8.1,
we see that this limit is independent of the sequence {z,,}.

We now consider the first return time ¢ : P — Ry, and claim that this is a smooth function.
To see this, we take another point of view and adopt the arguments of Section 3.1 of [H20], which
blows up the binding to verify smoothness. To do so, we first identify a neighbourhood of the
binding in ¥ with vs;(B) = B x D? C B x C, and define the gluing map

®:Bx(0,1)x St € Bx (—00,1) x 8 — vg(B) = B x D?,(b,7, $) — (b;re'?).
Then we blow up the binding by putting

Sp =3 \B][[Bx(-00,1) x §'/ ~,
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where we identify (b, 7, ¢) € B x (0,1) x S' C B x (—00,1) x S! with ®(b,r,$) € ¥\ B.> The map
&~ is well-defined and smooth on B x (D?\ {0}) C X\ B, so we can compute the pullback vector
field ®* X. The same computation as in Section 3.1 of [H20] shows that ®* X extends to a smooth
vector field X, ¢ with the following properties:

o Xolo\ = Xols\5;
e Xg is tangent to B x {0} x S%;
e the flow of X, is complete.
We also note that the open book 7 : ¥\ B — S! extends to a fiber bundle # : X5 — S*.
Define the function

t
d N
F:Y¥p xR—R, (z,t)— / dm (ds(FlfQ(gc))> ds.
0
By the above argument and the computations we started with, the function F is a smooth function

of x and ¢. Furthermore it is an increasing function of ¢ on the subset
{reYplreX\Borre Bx {0} xS'} xRcC¥p xR

with derivative bounded from below by a positive quantity. The page P embeds into ¥, so we can
apply the implicit function theorem to the function F'| pxg —27 to find a smooth functiont; : P — R
with the following properties:

o F(p,t4(p)) =2mforallp € P;

e t, is positive (since F(z,0) = 0).
This smooth function ¢} : P — R equals the first return time on int(P), and equals the above
first return time corresponding to the linearization of the Reeb flow on B = dP. Since this function
is smooth, the candidate extension f(z) = Flt’i @) (z) is also smooth. O

In what follows, we will check the hypothesis of Proposition 8.2 for the restricted three-body
problem. From Lemma 6.5 for Stark-Zeeman systems, we see that we need only check the positive
definite assumption. Rather than computing the Hessian along the normal direction to the binding,
we will work directly with the linearized flow equation.

8.1. Round sphere. We first work out how the case for the round sphere 5", using the notation
from Example 6.2. The symplectic normal bundle of S*S™~! C S*S™ has the following symplectic
frame:

0 0
U=+—, V=_—.
ony, 96y,
We will directly work out the equations for the linearized equation X = Vy X¢ in terms of this
frame and insert X into the angular form f, defined above. We only need the U, V part, since other
components drop out (using that ||||> = 1). This is
qu+1;VXQ = UVUXQ + UVVXQ

= ude, — 2un, (€ 0y) — vlln*dy,.
On BN {||n||* = 1}, we find
u? +0?nl* _

e =

B(X) =

3Note that only the part B x [0,1) x S is directly relevant for the construction.
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8.2. The spatial three-body problem. The same steps can be done for the spatial three-body prob-
lem, both in regularized and unregularized coordinates, as follows.

Estimates in unregularized coordinates. Recall that the unregularized Hamiltonian is

1 I 1—p
H= |9 - === — 5= +P1g2 — a1,
2 lg =] llg—el
and so the Hamilton equations give
Gs=ps, P =—as" (= -
1= = ([ o
with respect to the symplectic form w = dp A dg. We write the Hamiltonian vector field as

0
8}73

0
XH—XH+QS8q

where XJ is tangent to the planar problem B = {p3 = q3 = 0}. The linearized flow satisfies the
linear ODE

+p3—

X =VxXu,
and we have the normal symplectic frame along B given by
0 0
U=-—, V=—.
Ips dqs

We write X = Xp + 2U + yV, where Xp € TB. Note that the derivatives with respect to the
B-coordinates g1, g2, p1, p2 of the U and V' components ¢3, p3 of X all vanish along B. Therefore,
the same holds for the U, V' components of Vx, Xy.

We then compute that, along B, we have

VxXu|lp =Vx, Xulp+ VavtyvXHlB,

with Vx,, Xy |p € TB. Using that Vuds = 1, Vvis = — (s + 19745 ), and Veu v X5 =0,
we see that

7 1-
Vavtyv Xnlp =20, —y (H‘T— mHs 7 — é]|3> e

For 8 = % we obtain

2 2
Ty (uq R = en3>

BX) = Sy

The relevant eigenvalues are Ay = 1 and Ay = Hqﬂ_#m“g + qu__ié’fu_g, both positive and bounded away
from zero along B (and non-singular away from collisions).

Estimates in regularized coordinates. We finish the second order estimate by computing in
regularized coordinates and checking the condition of Proposition 8.2 over the collision locus. We

do our computations for any Hamiltonian of the form Q = f?||n||?, and check for the restricted
three-body problem. The linearized flow equation is now

Y = VyXgp,
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where X is given by expression (3.2). The following normal frame along the binding is

0 0

v="2, v=2.
on3 0&3

We choose a metric for which U, V' are orthogonal to B, and its metric connection V, satisfying
VU = VV = 0 along B. A straightforward computation gives:

Lemma 8.4. Along B, we have

(u,v)S (u, v)t

where
g — < f(f2+H77|‘2fn3n3) 2fH77H2(f£3ns —fn-§) )
Tl (Feans = fo - &) Flnll*(feses + F + oo — fe - €)

O

For the three-body problem, after some computation using the expressions for f, we get the
following explicit formulas for the entries of S:

(1= = &) UnlPA = &)* — D))

Su=f (1 + (1 =&)(Eam — & —c—1/2) = &(1 —p) + D32

1—p)(1— . 1—
S22 = flln|* <(/35,(/2&))(77(2J + o - €4 (L= &) —m) + &am — & —c+1/2 - \/5#)
2 = S = Al (L2 0 201 - )76 - ) + 20l - 261))

Here,

D = (13 (1 — &) + &m0)° + (2 (1 — &) + Eam0)” + (1 (1 — &) + &mo — 1)°.

We see that on the collision set £, = 1, we have Si3 = S3;1 = 0, and so S is diagonal. Note
that ||¢[|> = 1 implies that £, = & = & = 0, and so f = 1 and D = 1 on this set. Therefore the
eigenvalues of S are

S11=1, Spo = |nll* (—c—1/24p).

If we further restrict to the fixed energy level set ¥. = {f?||]|> = p?}, and we assume that ¢ <
H(Ly) < —3/2 (so that X is closed and contact-type), we have

So9 :,UQ(*C* 1/2+,le) > 0.

This finishes the second order estimate, and the proof that the return map extends to the bound-
ary (in the case ¢ < H(Lq)), claimed in Theorem B.
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9. A GLOBAL HYPERSURFACE OF SECTION FOR THE CONNECTED SUM

9.1. Two-center Stark-Zeeman systems. We consider now a two-center spatial Stark-Zeeman sys-
tem. Consider two distinct vectors ¢, 77 in R3, and a Hamiltonian of the form

. Lo x
H(q,p) = 5llF + A@I* + V(@),

where
V(q) = Ve(@) + V(@) + Vi(d),
with Vz(q) = —ﬁ, Via(q) = _Hq*zi?ﬁl\l for g1, g2 > 0, and V; a smooth function. For very negative

¢, the sublevel set {7| V(§) < ¢} has two distinguished bounded components, which we denote by
C3(c) and Cy(c). These are characterized by the property

o ¢ Cs(c)and m € C(c).

We make the following assumption:

(A5) The effective potential V' = Vz + Vi3 + V; has only finitely many critical points L1, ..., L.
Furthermore, the first critical value ¢; := V' (L;) has only one preimage L, under V, and this
is a critical point of index 1. In addition, this critical point induces the boundary connected
sum of the components Cz(c1) and Cz(c1). By this we mean, topologically, that Cz(c1 +¢€) =
Cr(c1 +€) = Cem(c1 + €) = Ca(c1)iCh(cr1) for small e > 0.

In particular, we note that for ¢ < ¢;, the Hamiltonian H restricts to a single center Stark-Zeeman

system on each of the bounded components of the unregularized level sets

Seul(c) ={(7,9) € H '(c) | §€ Ce(o)};

Sialc) = {(@0) € H(c) | € Cin(0)}-

Smoothly, we have ¥z, (c) 2 S x R?* 2 ¥ ,(c). For ¢ = ¢; + € > ¢1, the bounded component of
the level set H~!(c), which projects to Cz m(c) and which we denote by Xz 7 ,,(c), is topologically
the connected sum Xz 7 ., (¢) = Xz, (c1)#Xm, 0 (c1). The Hamiltonian flow is non-complete due to
collisions at ¢ = €'and ¢ = 1. We can perform Moser regularization to obtain regularized compact
hypersurfaces ¥z(c), X5 (c), Ye,m(c), obtained by compactifying the corresponding unregularized
versions, so that Xz(c) & S? x $3 2 ¥,5(c) for ¢ < ¢1, and Tz 7(c) = Xa(c1)#m(c) for c = ¢ + €.
We make the following observations:

o Near the collision locus of €, Moser regularization leads to a Hamiltonian (), which has the

same form as in Section 4, namely

Qe

o Similarly, we obtain a Hamiltonian

Qun = Il

by performing Moser regularization near 7.

For ¢ < ¢1, we have S(c) = Q;'(¢?/2) and S;i(c) = Q' (93/2). There is also an induced
Hamiltonian Q¢ 7 on the boundary connected sum D*S$3*fD*S?, defined on a neighbourhood of
Y& m(c), for which this hypersurface is as a level set, whenever ¢ = ¢; + €. The Hamiltonian Q¢ 5
coincides with Qz and @5 in the corresponding summands.

The level set 3¢ 7 (c) has the following decomposition (not a disjoint union):

1 2 2,
§f€(£7 77) ||77H )
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o Aregularized neighbourhood Cg of the collision point €. Geometrically this is a neighbour-
hood of a Legendrian 2-sphere (the collision locus);

o Similarly, a regularized neighbourhood C) of the collision point 17t and the corresponding
collision locus;

e The unregularized level set H*(c).

Lemma 9.1. Assume that Hamiltonian H is a Stark-Zeeman system satisfying (A1), (A2), (A3), and (A5).
Write fe =1+ (1 — &)be + Mz, fim = 1+ (1 — &0)bm, + My Let ¢ > ¢, and Xz (c) be the associated
(connected) regularized energy hypersurface, which we assume to be closed. Further assume that:

Assumption. (A4) 1+ bz(&,n) + Me(&,n) — (Me)e(&,m) - § > 0forall (§,n) € Xgm(c) with § =
(1,0,0,0), in regularized coordinates near €; and similarly for .

Then there exists an open book decomposition on Xz (c), with binding the planar problem, so that each
page is a global hypersurface of section for the Hamiltonian flow.

Proof. Fix ¢ > ¢;. By assumptions (Al) and (A2), we have an invariant set B C Xz (c), corre-
sponding to the planar problem. The key point now is that the construction of adapted open book
of Lemma 6.4 is independent on the actual energy value c away from the collision locus (always
coinciding with the physical open book, globally defined in unregularized coordinates), and this
collision locus lies away from the region where the connected sum takes place. So we have a well-
defined open book extending near the index 1 critical point. Interpolating with the geodesic open
book near the two connected components of the collision locus as in the proof of Lemma 6.4, we
obtain the desired open book.
Explicitly, we define the open book projection

0:%zm(c)\ B— S!

\giw () v €Xem(c)\ (CeUCN)
r— yme(x) x€Cg
ﬂ-ﬁi(x) T € CM

Here O, is the map giving physical open book in regularized coordinates, as defined in Lemma 6.2,
and the maps 7z and 7,5 are the interpolated circle maps as defined in Lemma 6.4. By the proof
of Lemma 6.4 (using assumptions (A3) and (A4’)), the Hamiltonian vector field is transverse to the
pages of the open book, so the claim follows. O

9.2. Case of the three-body problem. We observe that Assumption (A4’) is satisfied provided ¢ <
—1/2. Secondly, we note that H(Ly) < —3/2 < —1/2, see Section 7 and Remark 7.2. This means
that the bounded component of the regularized X, which is diffeomorphic to the connected sum,
admits an open book for all ¢ € (H(Ly), H(L3)). This finishes the proof of Theorem A.

Remark 9.2. Topologically, each page of the open book for 3¢ 5 (c1 + €) is the boundary connected
sum of the pages of the open books for ¥z(c; — €) and X (c1 — €) provided by Lemma 6.4. The
monodromy is the composition of the corresponding monodromies (which commute); see below
for more details.

10. SUMMARY AND DETAILS OF THE PROOFS OF THE MAIN RESULTS

10.1. Proof of Theorem A. The existence of a global hypersurface of section in the case ¢ < H(L1)
follows from Corollary 7.1. The ingredient for this corollary is Lemma 6.4. This lemma also contains



GLOBAL HYPERSURFACES OF SECTION IN THE SPATIAL RESTRICTED THREE-BODY PROBLEM 33

the explicit form of the projection map ©/|©/, in Equation (6.19). This formula tells us that {3 = 0
is a global hypersurface of section.

The case ¢ € (H(L1),H(L2)) is handled by combining Lemma 9.1 with the observation in the
beginning of Section 9.2.

10.2. Proof of Theorem 1. The assertion that hypersurface ¥. is a contact manifold follows from
[CJK18]. To obtain the statement about open books we apply Lemma 5.3 to conclude that the open
book (B, §) on X carries the underlying contact structure. The statement about the monodromies
can then be obtained as follows:

10.2.1. Monodromy for ¢ < H(L,). We can homotope the Hamiltonian to the Kepler problem via

s+ (1—s)u
g — il

—(1—25) ”11]#7 g” + (1 = 5)(p1g2 — P2q1)-
These problems can all be regularized, leading to regularized Hamiltonians Q5 on 7*S3. The level
set of the Hamiltonian (); corresponds to standard contact form on ST S8 together with its natural
open book.

We will compute the monodromy using a Lefschetz fibration on the natural filling of ST*53,
namely D*S3. Put

©:D*S* = {(&n) | [¢]* = 1,(&n) =0, [In|* <1} — D* C C,
(fﬂ?) '—>§3 +Z773

We claim that © defines a Lefschetz fibration. With a computation, we see that the only critical
points are at £ = (0,0,0,£1) and n = 0; expanding O in local coordinates shows that these critical
points are of Lefschetz type, i.e. they are non-degenerate quadratic. The generic fiber is symplecti-
cally deformation equivalent to D*S?. Because there are only two critical points, the holonomy of
this Lefschetz fibration is the product of two positive Dehn twists, say 7; along L; and 7 along L.
The corresponding Lagrangian spheres L; and Ls of each Dehn twist are the zero-section of D*S52.
Finally, we recall that an exact Lefschetz fibration on W induces an open book on the boundary
of W and the monodromy of this open book equals the isotopy class of the holonomy. The claim
follows.

1
H, = —||pl|* -
5171

10.2.2. Monodromy for the case ¢ € (H(L1),H(L1) + ¢€) and u € (0,1). We will also construct a
Lefschetz fibration. The essential idea is to glue two copies of the standard Lefschetz fibration on
D*S3 together using several cutoff functions. Let us first define the symplectic manifold of interest
using a cover. Write the first Lagrange point L; = ({1, pe, ). Choose d; > 0 such that

o the first coordinate satisfies (¢; — M), > 26;.
o the first coordinate satisfies (& — ¢1); > 26;.

Put the physical region
W, :=A{(q,p) € T*R® | ¢1 € ((t1)1 — 01, (1)1 + 61), H(q,p) < c}.

Intuitively, this region contains points in the unregularized phase-space close to the Lagrange point,
which stay away from both the Earth and Moon (by a distance at least ;). Next define

2
W i= {(€1) € T°5° e | QL6n) < 5, (o) < () — 51}
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This set contains points in the bounded (due to the intersection with X.) regularized component
that are close to the Moon and that stay away from the Lagrange point L;. The Hamiltonian Q"

is the Moser regularization near 7 of the Jacobi Hamiltonian for parameters y, c. Finally, we put

M7 q1(§;m) > (b)) +51}-

Wy = {(g,n) eT* SN | Q .(6n) < 5

The Hamiltonian Qf:jc is the Moser regularization near € of the Jacobi Hamiltonian for parameters
i, ¢, so Wg consists of point in the bounded regularized component near €.

Put W := Wy U W, U We. This is a symplectic manifold with boundary, and it is clear that W is
diffeomorphic to the boundary connected sum of two copies D*S®. We define a Lefschetz fibration
of W over disk in C by the map

O(z) = S (—ps +igs) - (1 — pmll* — pet)  if v = (p3,q3) € Wy,
O4(&;m) +1idz(€,n) ifr=(,n) € We

Before we explain the terms in more details, let us briefly give the intuition. On W; we are taking
the geodesic Lefschetz fibration that we have also used for the case ¢ < H(L,), that we modify to
interpolate the “physical” Lefschetz fibration —p3 + ig3, which we use on W,,. The latter map is also
modified by a cutoff function to guarantee smoothness. On Wz we use again the geodesic Lefschetz
fibration. Let us explain the above terms:

o the term J, is
G = (1 — &o)moés + (=260 + E5)m3) - p1(&3),
where p; is a cutoff function that vanishes near {3 = £1, and that equals 1 for |£3] < 1 —¢'.

o the term ¢z has the same expression, and is defined on We.

e £ is the & coordinate (as a function of p) as defined via Moser regularization at 77, and &5
is the & coordinate (as a function of p) as defined via Moser regularization at €.

e ps and pg are cutoff functions depending only on ¢; with the following property. The
function p;; vanishes for g1 > (¢1)1 — 01/2 and equals 1 near ¢; = (¢1)1 — 1. Similarly, the
function pg vanishes for g1 < (¢1)1 + 61/2 and equals 1 near ¢; = (¢1)1 + 1.

These choices guarantee that © is a smooth function on W. We leave out the details, and refer to
the expressions in Section 6.2 to perform the necessary computations.

We now look at the critical points of ©. We find that © has two critical points in W, again
corresponding to £ = (0,0,0,%1) and n = 0, two critical points in W (of the same form), and no
critical points in W,. Using the arguments for ¢ < H(L1), and the fact that the Lagrangian zero
sections in Wy and Wy are disjoint, we find that the monodromy is a composition double Dehn
twists along each of these two Lagrangian zero-sections. This establishes the claim.

Remark 10.1. The map © we defined in the above, is not equal to the formula we used in (6.19).
However, the corresponding bindings ©~'(0) are equal, and we may see Formula (6.19) as a
reparametrization of ©.

10.3. Argument for Theorem B. The extension of the return map to the boundary of P follows
from Proposition 8.2 and the estimates in Section 8. To show that the return map is Hamiltonian,
we use Lemma B.1 from Appendix B. to show that the return map can be Hamiltonianly isotoped to
a representative of the monodromy, via an isotopy which extends smoothly to the boundary, which
is either a double Dehn twist or the composition of two of those along disjoint Lagrangian. Since
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a double Dehn twist along a Lagrangian sphere is actually Hamiltonian, and the isotopy extends
smoothly to the boundary, the first claim in Theorem B follows.

For the second claim, we construct the diffeomorphism G : int(P) — int(D*S?), extending
continuously to the boundary but whose inverse has a smooth extension to it, as in the the proof of
Lemma B.1 in Appendix B. Namely, we first find a collar neighbourhood B xD? in which the contact
form looks like a = A(ap + r2df); we then use Moser’s trick to construct a symplectomorphism
Y1 : (P,dalp) = (P,w;) which is the identity at B and supported near it, and wy = d((1 — r?)ap)
near B; we then construct a square root map @ : (D*S?,wg) — (P,w:), which is smooth away
from the boundary and only continuous along it, and supported near it, and where (D*S?, wg) is
an honest Liouville filling of (RP3, ap). We may then take G := Qo4 : (P, dalp) — (D*S? wg).
In the case of the Kepler problem, this construction yields wg = wgta|p+s2; by deforming to this
problem we see that w is always deformation equivalent to wq|p+s2. The rest of the second claim
is then immediate from the first claim.

APPENDIX A. RETURN MAP FOR THE ROTATING KEPLER PROBLEM

In this appendix, we illustrate how to understand the qualitative dynamics for the rotating Ke-
pler problem via a global hypersurface of section. This is a completely integrable system, obtained
as the limit of the restricted circular three-body problem by setting p = 1, for which the return map
can be written down explicitly.

In unregularized coordinates the rotating Kepler problem is described by the Hamiltonian H =
K + L,* where

K= %Hﬁll2 - ﬁ» L =qp2 — q2p1.

After Moser regularization, the Hamiltonians K and L both generate circle actions and are in
involution, which implies that they are preserved quantities of the motion. The remaining in-
tegral is the last component of the Laplace-Runge-Lenz vector. The regularized Hamiltonian is
Q&) = 112(€.m)|Inll2 where £(¢.n) = 1+ (1 — &)(—c — 1/2 + &amy — E11z), obtained from Equa-
tion (4.7) by setting 1 = 1.

Instead of using the general open book for Stark-Zeeman systems, we consider the geodesic
open book

&3 +1in3
€3 + ins]|

Lemma A.1. The geodesic open book is a supporting open book for the rotating Kepler problem for ¢ < —3/2.

&mn)—

Proof. A geometric way of seeing this is observing that the pages of the geodesic open book, which
is adapted to the Kepler problem K, are also invariant under the Hamiltonian flow of L (which acts
by rotation along the (&g, n0)-axis inside a given page; recall Figure 3). Since {K, L} = 0, we have

t = ¢l o ¢t . While ¢} leaves the pages invariant, the flow ¢’ is transverse to them. This implies
the claim. This also implies that the return maps associated to different pages have the same exact
dynamics, only that the return map on the ¢-page is rotated by an angle ¢ along the {y-axis. O

*We are using a different convention here than Equation (2.1), because we will be using the physical interpretation in
terms of angular momentum.
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From the proof of the above lemma, in order to study the return map, we see that it suffices to
consider the page

~{Emers®: Qe -5 & -0 m =0},

which is the easiest to visualize (see Figure 3 in the Introduction).

Since orbits in the rotating Kepler problem are precessing ellipses, the return time in unregu-
larized coordinates is simply the minimal Kepler period for the corresponding Kepler energy K
(which is preserved under the flow of H). By Kepler’s third law, this return time depends only K,

and is given by
™

2K
From ¢¥; = id, we obtain ¢}, = ¢% 0 ¢7 = ¢¥, and therefore we derive the following return map

T =T(K) =

R (q1, a2, ¢3:p1,02,0) — (Rot = (a1, 42), 435 Rot = (p1, 12), 0),

3/2

where Roty is the rotation by angle ¢. Thls is generated by the Hamiltonian L restricted to the
global hypersurface of section (as the time 7-map). To obtain an explicit formula for a Hamiltonian
generating R in time-1, we manipulate the above expression for R. With the relation K + L = ¢, we
can also write

R= ng by = ¢f(K)XL _ ¢f(C—L)XL.
We see that there is a function g(L) such that R = ¢~s("), by noting that X,y = ¢/(L)X . With
g(L)= W, we can compute g(L) as

g(L) = = (2L =)~
We may now describe the return map in the Moser regularized coordinates, which is given by

R, : (507 517 527 07 7o, 11, 72, 773) — (507 ROtT(c—L) (517 SQ)a 07 Mo, ROtT(C—L) (7717 n2)7 773)
The Hamiltonian L is given in these coordinates by L = &ani — £172.

A.l. Dynamical consequences. We now explore the consequences of the above explicit descrip-
tion.

Polar orbits. The two (distinct) periodic polar orbits are clearly visible as two fixed points of the
return map: these are 4+ = (£1,0,0,0;0,0,0, n3), where 3 > 0 is such that they lie on the level set
Q7 '(3). The fixed point z _ is the starting point of the vertical periodic collision orbit that lies in the
upper half-space g3 > 0; in unregularized coordinates it is the point in the g3-axis that is maximally
far from the origin. The fixed point = is the starting point of the vertical periodic collision orbit
that is contained in the lower half-space, and this fixed point corresponds to the periodic collision
point. This orbit and nearby periodic orbits for ;1 # 1 were already studied by Belbruno in [B].

Invariant circles. Other than that, there are lots of invariant circles. For instance, writing n =
(n,m3) where 1 = (10,711, 72), these are given by

Co,., {(577)662 H1/2): o =w, E+E&=1-2% & =0,
(A.24)

1= Ru(ay,, @) 1€ 0,201, 15 = [ (726 Mlerms Iy, @IE) 2 o},
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FIGURE 5. The invariant circles inside the page P (in green).
for given x € [~1,1], where fiz [—1,1] — T*S? is a section of the cotangent bundle along the

meridian passing through (o, 1,62) = (0,1,0) := ¢, satisfying [|n . (@)]|2f?|¢o=z < 1 (ie. taking
values in P C T*5?), and where R, is the rotation of angle ¢ along the ry-axis. We parametrize this
meridian by z — (m, cos(2mx), \/sin(2mrx)? — :I:Q). Note that the fibers of P are all invariant under

rotation in the {y-axis (i.e. under the Hamiltonian action of L), since f depends only on the angular
term L and on &. In particular, the fiber over the north pole is a disk of radius 1, and the fiber on
the south pole is a disk of radius 0 < —5- < 1/3. The singular cases, for which the circles collapse
to a point, correspond to (z = il,ﬂﬁx(il) = 0), in which case C:tl’ﬂfv (+1) = {z+} are the polar
fixed points. See Figure 5. One may also vary « to obtain invariant annuli

which in singular cases collapses to a sphere or a disk.

The action of R, on such a circle C’z,ﬂfv is by rotation by angle T'(c — L). Note that L vanishes
at {, = %1, and so R, acts by rotation by angle 7'(c) on the fibers of the north and south poles.
This immediately implies that =+ (and the associated orbits) are elliptic, and they are degenerate
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whenever T'(c) is an integer multiple of 2. Also note that L| g, = T and so L is constant
in the vertical lines of the fiber at § Fia' Therefore, having fixed ¢, and noting that the function
T(c—-L) = 3(T-ap/z 18 injective in the region K = ¢ — L < 0 as a function of L, we may vary
n fm(O) transversely to these level sets in order to achieve the resonance condition T'(c — L) = 2r%
for some co-prime integers p,q. For such a choice, every point in Coﬂfm is periodic of period q.
Thus we obtain infinitely many periodic points of arbitrary large period lying over the equator
{&o = 0}. We may play the same game for different values of &, to obtain infinitely many periodic
points of arbitrary large period lying over all parallels. Whenever n fm(x) lies in the boundary of

the corresponding fiber, fixed points for R, in the associated circle gives planar orbits; the spatial
orbits are detected precisely when 5 tia (x) lies in the interior.

Liouville tori. We may also understand the (3-dimensional) Lagrangian Liouville tori in the am-
bient phase-space. We consider the geodesic flow on the page P, which is given by the Hamiltonian
flow ¢% : P — P of K|p, and denote

Tw,gfm = U (bfk(cw,gfm)
teR

Generically, this is a two-torus lying in P, and it is a Liouville torus for the planar problem when-
ever 7 fm(a:) lies in the boundary. There are singular cases, too. For instance, one case correspond

ton fw(m) = 0, which gives a circle over a parallel, point-wise fixed by the action of X ; in partic-
ular when C’mﬂf_ = {x}, for which T.z@f, = {z1}, a point fixed by the flow of Xy and X; The
Liouville tori Lxﬂfv for the spatial problem are obtained by spinning Tgcﬂf _around the open book

Sl-direction, so that the ones corresponding to x. are precisely the associated collision orbits. The
planar tori are therefore singular cases of the Ty, , since the open book direction is not defined

along the binding.

Note that the frequency corresponding to the S'-direction of the Liouville tori LJE,,,Mc given by
the X g-action is zero. This implies that, in action-angle coordinates, the Hessian with respect to
action variables of the Hamiltonian is degenerate, and so the original version of the KAM theorem
does not apply. On the other hand, the circles C"”*”fm for which the resonance condition is satisfied,
with integers p, g, correspond, under rotation with the open book, to resonant 2-tori obtained from
Lmﬂf” by forgetting the X x-direction, with frequency vector (p,q) € Z>. Note that the relative

angular rotation from page to page (as explained in the last sentences in the proof of Lemma A.1)
induces the slope of orbits on the 2-tori. The points in all other non-resonant invariant circles, i.e.
when T'(¢ — L) is an irrational multiple of 27, have dense orbits. These circles correspond to non-
resonant 2-tori under the open book rotation, some of which have Diophantine behavior (when the
frequencies are viewed as vectors in R?).

Lefschetz fibration. We may further find a very natural foliation of the page P by invariant
annuli where R, acts as a twist map in the classical integrable sense (so the situation is indeed
compatible with the classical Poincaré-Birkhoff theorem). Indeed, the return map preserves the
fibers of (an isotoped version of) the standard Lefschetz fibration 7 on P = D*S?, whose regular
fibers are symplectic annuli, with precisely two singular fibers whose singularities are 2, and such
that the boundary of all these annuli coincides with the direct/retrograde planar circular orbits
Ydir, Yret- This, which we have stated as Theorem C in the Introduction, can be seen as follows.
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FIGURE 6. The ideal (i.e. non-compact) version of the modified standard symplec-
tic Lefschetz fibration 7 : T*S? — C is shown above, where we have isotoped
it so that the direct/retrograde circular planar orbits ~,¢:, 74ir lie over the origin,
and hence looks standard. The return map is a classical twist map on the fibers,
which are non-compact and asymptotic to vye: U 74ir at infinity. To obtain the Lef-
schetz fibration on D*S?, having compact fibers, one has to project in the Liouville
direction. The figure below shows the standard (unmodified) Lefschetz fibration
mo after projection in the Liouville direction, which is the one suitable for the non-
rotating Kepler problem, and the role of direct/retrograde orbits is played by the
equator traversed in both directions. By construction of the modified version be-
low, which is adapted to the rotating Kepler problem, this compact standard ver-
sion can also be deformed to the compact modified version.
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FIGURE 7. The modified Lefschetz fibration. In the lower right we describe the
bump function x, shown in the lower left as a 1-parameter family of functions
kr. In the upper left we describe how the modified Birkhoff annulus (in skyblue,

parametrized by A) and its opposite (in orange, parametrized by &) look like; in
the upper left, how the modified central fiber looks like (in blue, parametrized by

d). In green, we have the piece of meridian ~.

First of all, we recall a couple of facts.

Proposition A.2. The smooth affine variety V = {(z0,...,2,) € C"*" | 3°7_ 25 = 1} with its natural
Kiihler form is symplectomorphic to (T*S™, dAcan) C T*R™*! via the symplectomorphism

YV —T*S" 2z =x+iy—> (||x||_la:; lzl|ly) =: (&mn).
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Indeed, we can simply pullback the Liouville form to see this. The smooth variety V has a
natural Lefschetz fibration obtained by projecting to one of the coordinates,

O0:V—C, (z0y...,2n) — 20.

Indeed, we have precisely two critical points of holomorphic Morse type, i.e. pr = (£1,0,...,0).
We can pullback this Lefschetz fibration to 7*S™ via ©} := ©g o ¢)~!, which has the expression

€m) 1+ 1+4Hn||25 ny 2 .
)=\ ———— %0 ——F——="o-
0 \ 2 1+ /1+ 4|2

We now consider the case n = 2. In order to pullback this Lefschetz fibration to P, we first make
a couple of observations. The page (P,w|p = da|p) has an exact symplectic form that degenerates
on the boundary and finite volume. In particular, it is not symplectomorphic to 7*S?. However,
we can modify this form to obtain an ideal Liouville domain (in the sense of [G2]):

Proposition A.3. There is modification & of a making (int(P),d&) into an ideal Liouville domain. This
modification can be chosen to have the following properties.

o & agrees with « in the complement of a collar neighbourhood of the boundary vp(OP);
o & = f(ns)a for some smooth function f on vp(OP) \ OP;
o (int(P),da) is symplectomorphic to (T*S?, d)can).-

This modification can be constructed with the proof of Proposition 2.19 in [vK2]. The argument
there proves this proposition, after observing that 73 is the collar parameter.

Proposition A.3 gives us a symplectomorphism ¢p : (int(P),da) — (T*S?, d\can). As a result,
we obtain a Lefschetz fibration

7o ¢ (int(P),da) — C, p+— (©g o0y o9hp)(p).

See Figure 6. Note that R, preserves the fibers of Oy, i.e. O} o R, = ©f. Moreover, since the modi-
fication of Proposition A.3 only involves the 73 coordinate, the same holds for the fibers of m, i.e.
mo o R, = mo. Topologically, the effect of passing from the Lefschetz fibration on (int(P), d&) =
(T*S?,d)can) to (P, da|p), P = D*S?, may be thought of as projecting along the Liouville direction
in the symplectization (see Figure 6). With this in mind, the fibers of 7y have (ideal) boundary the
equator traversed in both directions, which are invariant circles for the planar problem, but these
circles are not necessarily closed orbits (this happens e.g. in the limit case ¢ — —oo in which we re-
cover the Kepler problem, and R, is the identity). But we will modify m, relative a neighbourhood
of the zero section, in such a way that the boundary of the modified symplectic fibers becomes
the disjoint union of the retrograde/direct circular planar orbits vg4;r, Vret, SO that the fibers are still
symplectic, and invariant under R,. In particular, the modification will happen away from the
nodal singularities, so that they are still quadratic.

Both the orbits vy;,, yret are circles with constant &, value, but the values differ for each of them,
and furthermore, these values also depend on the energy c. In other words, they lie on separate
parallels of P. Call these values £5¢(c), €47 (c). We have the inequality

& (c) > € (c) > 0.

Here is a computation to see this.
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Circular orbits in the rotating Kepler problem. Write the Hamiltonian in polar coordinates, see
for example the appendix of [AFFvK]. This is

1 L2\* 1

H=_(pP+=) —=+1L

2 (pr + 7“2> 7 + o
where we have used coordinates (p,,r, L, ¢) with Liouville form p,dr + Ld¢. By writing out the
equations of motion, we find a circular orbit must satisfy » = L?. Substituting this condition into
the energy H = ¢, we get two equations. Namely, —5- — /r = ¢ for the direct orbit and the orbit in

the unbounded component. For the retrograde orbit, we have the equation — - +/r = c. Rewriting
this equation leads to the cubic equation

rd—cr?—er—1/4=0,

which we solve with Cardano’s formula. The r-component of orbit in the unbounded component
is given by

2
3 02
Tunbded = | 1/6 \/ =54 — 8¢ +61/24¢® + 81+ 2/3 - —¢/3
( \/ V/—54—8¢3 + 612463 + 81

The r-component of the retrograde orbit is given by

2
3 02
Tret = | 1/6 /54 +8c3 +6+/24¢3+81+2/3 +¢/3]
( \/ V/b4+8¢3+ 612403 + 81

and the r-component for the direct orbit is given by

2
2
2 3 C
raw =c¢*— | 1/6{/—54—8c3+6+/24¢3+81+2/3 —¢/3
( \/ V/—54 — 8¢3 +61/24¢3 + 81
2
62
— [ 1/6\/54+8¢3 +61/24¢3 + 81 +2/3 +¢/3
( \/ V544 8¢3 +61/24¢3 + 81

At the critical value ¢ = —3/2, we have
Tunbded = Tdir = 1, Tret = 1/4.
The corresponding values for the norms of momenta are
pair(c==3/2) =1, pret(c=-3/2) =2,

2
and using the derivative, and recalling that £, = H’;Hﬁ, we can verify the above claim.

Deforming cylinders. Parametrize a piece of the meridian joining & iz = (0,1,0) to £, =
(&5t (c), /1 — (€5 (c))?,0) via the path
70,6 ()] — 52,
Y(s) = (s, V1—=520),
and consider the time-s parallel transport PT : Tém S? - T,Y(S)S2 along ~ (with respect to the
round metric). Recall that L|T§m 52 = —ng, and hence is constant in the vertical 7-lines. Moreover,

Lz, (582 = —(v1 — s2)n2, so the analogous statement holds over v(s). Denote by P the fiber of
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P over { € 5%, We view Péf‘ C Téf. S? as a closed star-shaped domain in the (o, L)-plane (see
Figure 7). Let

Loin = min(L|p§f7’w) = max(n2|p§ﬁ$ )s Limaz = max(L\Péfm) = min(n2|p§ﬂm ),
mr)nin = min(no‘Péfm ), ngnaz = max(n0|p§fm) = _ngzin’
i = iU, go) = (VI 6@ ) b

L;f’t” - maX(Lle(&S”(c))) = ( 1- (gget(C)P) Liag-

Then LT 'Lre! are respectively the angular momenta of the 74, and 7,.;. We then define a

smooth bump function
ki Pe o [0.6°(0)

H(T]Oa L) = ’%L(T/O)v
shown qualitatively in Figure 7, where we also describe it as a 1-parameter family «, for clarity;
intuitively, x has the shape of a “boat”. In particular, we impose that x vanishes on %ngv (the

“hull” of the boat), that it satisfies the symmetry x(no, L) = x(—no, L), and that (0, L) = £ (c)
(the “bow”), k(0, Lynaz) = £37(c) (the “stern”). We then let
PT:P, —P,
PT<7707L) = PTKL('r]o)(nOvL);

and denote ﬁ§m = PT(P§M) the (diffeomorphic) image of this map. We now foliate Pﬁm by
line segments joining (0, Ly,in) t0 (0, Lies ), so that the resulting foliation looks like an “eye” (see
Figure 7). If I : [Lyin, Linas] — Pém is a non-singular parametrization of such a segment, we
denote | = PT(l) C ]Sﬁfm’ which taken together provide a foliation of }Bém. Figure 7 shows what
this path looks like in the case of the upper boundary of Péfm (denoted ! = p), the lower one

(I = a), and the central segment (I = §). If ¢ : P — P denotes the time-t Hamiltonian flow of L
(i.e. rotation along the (&, 170)-axis), for [ a segment in the foliation, we define

G = U 7. (0).
teR
By construction, this is a cylinder with boundary 7,¢: U v4;r. Moreover, note that each [ is by
construction positively transverse to the level sets of L|T5f, s2, and the parallel transport map PT}
preserves the vertical level sets of L. Therefore dd(@{l: Xr) = dL((?J) > 0, which means that 5’; isa
symplectic cylinder. Note that (] is invariant under R,., since it is a union of the invariant circles of
the form C’m,,,f‘ considered above. We then flow the C; with the action of K, i.e. we consider

Cl = ¢ (C1), t€R.
These are symplectic cylinders which glue with the fibers of the standard Lefschetz fibration on

(1/2)P, a neighbourhood of the zero section. Note that as constructed the CN'lt do not intersect the
zero section away from the equator, but after gluing them with the standard fibers, they do. After
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this modification, the élt are the fibers of a Lefschetz fibration = which coincides with 7, along
(1/2)P, and has the desired properties. This map is given by

m: P —C,

T=mo U,

where ¥; : P — P, t € [0,1], is the smooth isotopy induced by doing the same deformation
construction with x replaced with tx, so that ¥y = idp, and ¥, is the identity on (1/2)P for all ¢.

By construction, the return map acts as a twist map on each fiber, preserving the horizontal
circles where it acts as a rotation whose angle changes from circle to circle, rotating each boundary
component (Ygi, T€Sp. Vre¢) with angle T'(c — LY Y resp. T(c— L% ). The dynamics then alternates
between rational/irrational / Diophantine behavior along each circle in the fiber. The critical points
of 7 are precisely =, which are fixed by the return map. This is depicted in Figure 6, where we view
the fibers as copies of T*S! which become asymptotic at infinity to the direct/retrograde orbits (we
only draw their intersection with D*5?), after an isotopy of 7 so that it looks standard. The pages of
the standard open book in RP? = 9D*S? are obtained as the radial projections along the Liouville
direction of the fibers of 7. In the second picture of Figure 6 we sketch how some of these fibers look
like from an alternative perspective, for the case of the Kepler problem, where we have projected
all fibers to D*S? so that now they are copies of D*S? (including the Birkhoff annulus consisting
of co-vectors which point towards the upper hemisphere along the equator, corresponding to the
segment 3; its opposite version, consisting of co-vectors which point towards the lower hemisphere
along the equator and corresponding to «; and the central fiber, a regular annulus which intersects
the Lagrangian zero section along the equator, and corresponds to 6).

Outlook and further comments. Theorem A in particular provides a global hypersurface of
section for any nearby perturbed system (where p is close to 1). These can be thought of as the
original hypersurface P, but where the disks in the fiber are now perturbed to have boundary the
level set for the corresponding planar problem. From the above discussion one can ask what part of
the above structure survives a perturbation of i, and/or whether we can detect Arnold diffusion.
This is naturally the realm of KAM theory, as well as weaker versions like Aubry-Mather theory,
and we shall not pursue this direction here. In work of the first author [M20], it will be argued that
the underlying geometric structure for the page (i.e. the symplectic Lefschetz fibration) also holds
non-perturbatively; this will be used to define an associated Reeb dynamics on S* whenever the
planar dynamics is dynamically convex.

APPENDIX B. SYMPLECTIC MONODROMY AND RETURN MAPS

In this appendix, we prove a general fact that implies that the return map in the statement of
Theorem B is Hamiltonian. Namely, we shall establish that return maps arising from an adapted
Reeb flow, under a suitable concavity assumption near the boundary, are always symplectically iso-
topic to a representative of the monodromy, via an isotopy which preserves the boundary (Lemma
B.1). If the monodromy happens to be Hamiltonian (as is the case for an even power of the Dehn-
Seidel twist), and the page P happens to have H'(P;R) = 0 (so that all symplectic isotopies are
Hamiltonian), it follows that the return map is Hamiltonian.

Fix a concrete open book (B, #) on a closed (2n + 1)—manifold 3, supporting a contact structure
&. Assume that « is a Giroux form, and let f : P — P be the associated Poincaré return map on a
fixed page, which is an element of Symp(int(P), da|p). We assume that f admits a (unique) smooth
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extension to the boundary B, and we will denote the symplectic monodromy of the open book by
9]

We need some notation to state an additional assumption. The binding B is a contact subman-
ifold, so by a neighbourhood theorem o = A(ap + r?df). Because B is invariant under the Reeb
flow of o, whose Reeb vector field coincides with that of ap along B, we see that

(i) dA|p = 0 (including the normal direction);

(i) Alp =1
We will consider the Hessian along the binding below, and make the assumption that the Hessian
of A in the normal direction of B is negative definite. To see that this condition is independent of
the chosen trivialization of the normal bundle, simply write out the second derivative of A, and
apply the chain rule; the term not corresponding to the Hessian vanishes due to the assumption
that dA vanishes along B.

Lemma B.1. Assume that the Hessian of A in the normal direction of B is negative definite. Then the
return map f is symplectically isotopic to a representative ¢ of the symplectic monodromy, as elements in
Symp(int(P), da|p). The isotopy 1 is supported near B, extends smoothly to B, and preserves B.

Proof. For clarity, we split the proof in several steps.

Step 1: Isotopy to standard form. We shall consider o, the 1-parameter family of Giroux forms
following [DGZ, Prop. 3.1] This family joins the original contact form o = o to an adapted contact
form o in standard form near B, and satisfying a; = o away from a fixed neighbourhood of B, for
all t. This means that oy = hy(r)ap + ha(r)df in a neighbourhood B x D?, for suitable functions
hi,he and ap = a|p, where r is the radial coordinate so that B = {r = 0}, and 0 is the open book
coordinate. For convenience of the reader, we recall some of the arguments in [DGZ, Prop. 3.1].

Using the characteristic foliation on the pages, one first finds a neighbourhood B x D? in which
a = A(ap + r?df) for a smooth positive function A satisfying A = 1 along » = 0 and 9, 4 < 0 for
r > 0 (note that this last condition is to ensure that da is positive on each page). From condition
(i), we have in particular that 0, A|,—¢ = 0. Since Hess(A) is negative definite along B, we find
a neighbourhood r < § where this property also holds. On this neighbourhood we also find a
constant ¢ > 0 with a < min(—Hess(A)). After that we choose a decreasing cutoff function A
satisfying A = 1 near » = 0 and A = 0 for r = § < 1. Define the deformed form /5 by

B:=(Ar)(1 —ar?) + (1 = A(r)A)(ap + r2db).
We claim that § is a contact form. This is evident for r > ¢, as §|,>5 = . For r < §, we note that
A:= (\(r)(1—ar?)+ (1= A(r))A) > 0, and for 0 < r < § it suffices to check that 8, A < 0. We have

oA =N —ar?)—2arA = NA+(1-))3,A
= N (—=Hess(A)(r,r) — ar? + o(r?)) — 2rA + (1 — N9, A,
The last two terms are negative for r > 0, and for the first term we observe that the expression
—Hess(A)(r,r) — ar? + o(r?)

is positive by our choice of a. As X' < 0, the claim follows. Hence the linear interpolation of these
forms

(B.25)

v =1—-ta+tf={tA+ 1 —1t)A)(ap + r’db)
brings « to the desired form, through a family of Giroux forms. It follows that a;|p = Fiap near
B, with F; := tA + (1 — t) A satisfying 0, F; < 0 for »r > 0 and F;|g = 1. Note that we may further
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choose hy(r) = 1—ar? for some a > 0, and r < §. We may also slightly isotope hs so that hy(r) = r?
forr <.

Step 2: Moser trick. We let w; := doy|p. This is then a 1-parameter family of 2-forms on P
which are symplectic on int(P) (but become degenerate at B). We wish to appeal to the standard
Moser trick to obtain a symplectic isotopy ¢, of int(P), satisfying 1;w; = wp. For this, because
of degeneracy of w; at B, we need to study the behavior of the Moser isotopy at the boundary.
This isotopy would be generated by a vector field X; tangent to P and defined via ix,w; = —d|p,
which would make 1), supported near B. Moreover, 1), would need to be tangent to the r-direction:
indeed, near B we have a;|p = (/i —A)ap and w, = dF; Aap + Fidap, so this uniquely determines
= ngI? = tBTAf(lft)arA'

To make sure its flow is well-defined at B, we study the limit of v, as » — 0. Expand numerator
and denominator in powers of r. Near r = 0, we have A = 1, so this yields

1+ Hess(A)(r,r) +o(r?) —1+ar®  rd2A/2+ ar +o(r)
 2art+(1-1)02A-r+o(r)  —2at+ (1 —-1)02A+0(1)

The denominator is negative and can be bound from above by —2a. The numerator vanishes for
r = 0, so we conclude that the Moser flow exists and it extends as the identity to B.

Xt = 70, with v

Ve

Step 3: Holonomy maps. Let f; : (int(P),w;) — (int(P),w;) be the symplectic holonomy map
associated to the symplectic connection w, i.e. the return map associated to a vector field spanning
the 1-dimensional horizontal distribution Hor; = {v € T(X\B) : i,w; = 0}. Define g, := ¢; ' o f, o
;. Then g, is a symplectic isotopy in Symp(int(P), wp), i.e. for the same symplectic form on int(P),
joining (rel B) the original return map f = fy = go to a symplectomorphism g, for wy. In particular,
g+ (and f;) extends smoothly to B for every ¢, agreeing with the extension of f. The w;-horizontal
distribution is spanned by
)

X1 =09 —
hi

R37

and so X1 = 8y + L Rp forr < 6.

Step 4: Monodromy. Consider the symplectic form wy = d($4), where g is a function satisfying
g=rnearr =0,and g = 1 for r > ¢ — € for some small 0 < ¢ < J. The wgy-horizontal distribution
is spanned by

X, =0 —2r (9 —rg’ ) Rp =: 0y + ®(r)Rp
g ghy —2h1g’ ' '
Note that ® = Onearr = 0,and ® = 1/aonr > 0 —¢ so that X; = X, onr > § — € and also
on P\{r € [0,1]}. By definition, the return map for w, is a representative of the monodromy (see
e.g. the proof of [vK2, Prop. 2.19]). Note that w, has infinite volume since g vanishes at r = 0; it is
in fact symplectomorphic to the Liouville completion of (P, ,w1|p,, ), where P, = {r >} C P
with 0 < 1 < §, which is a Liouville domain filling the contact manifold (B, {p = ker ap) (whose
completion is independent of such r1).

Step 5: Square root map. We now make the symplectic manifold (P, w; ) into an honest Liouville
domain by considering a square root map @ : P — P, defined as follows. Choose a continuous
function ¢ : [0,1] — R which satisfies ¢(r) = \/r/aforr < §—e < 1,q(r) = r forr > §, and q is
smooth away from r = 0 where it satisfies ¢’ > 0. Define Q(b, 7, 0) := (b, ¢(r), 0) along B x D?, and
extend it to P via the identity. Note that this map is not smooth at = 0 (only continuous), although
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its inverse is. Define wg := Q*w; on P. Note that along B x D? we have wg = d(h1(q(r))ag), and so
wo = d((1—7r)ag) for r < d—e. It follows that wq is a symplectic form which is also non-degenerate
at B, and so (P, wq) is a Liouville domain filling the strict contact manifold (B, ap), and having the
same symplectic volume as (int(P), wq).

Step 6: Continuous conjugation to a Liouville domain. By squashing the r-direction, we can
construct a symplectomorphism between the (honest) Liouville domains

F:(Pwg)— (Pr,wy),
where the precise value of r; is determined by the total volume of (P, wg). We put
Fo:=FoQ " :(Pw)— (P, wy),

and G := Fg o 91, which satisfies G*w, = wy. Note that G has a smooth extension to B, although
G~ ! extends only continuously.

Step 7: the symplectic isotopy. The vector field X, differs from X; by
/
Xg - X, = <<b + Z?) (’I‘)RB = ‘I’(T)RB,

1
with ¥ =0onr > § —eand on P\{r € [0,1]}, and ¥ = 1/a near r = 0. This vector field is
Hamiltonian for w;, generated by H : P — R which on B x [0,1] is given by H(b,r) = H(r) =
Jo W(s)hy(s)ds, and extends to P\{r € [0,1]} by zero. Let ¢!’ be the corresponding Hamiltonian
flow (computed with respect to w;), which we may take supported near B, which moreover extends
smoothly to B, and preserves B. Then ¢, := Fgop o f1 0 Fél joins ¢pg = Fgo fio Fél to ¢’ == ¢1.
By construction, ¢ preserves w, on P,,, and extends from P,, to P via the identity on r < 7y, to
a representative of the monodromy, which we also call ¢'. We have ¢Vt = ¢ Lo gt oy is
Hamiltonian for wy. Finally, the symplectic isotopy ¢’ := ¢X°%1 0 g; = 97" 0 ¢ o f 0 4y joins gy
to ¢ := G~ o ¢/ o G, which also represents the monodromy. Concatenating ¢’ to g; we join the
original return map f = gy to ¢, as elements in Symp (int(P), wp). But note that ¢/, does not involve
the function G, which was only used to define ¢ (which agrees with the identity at B), and in
fact has a smooth extension to B. This finishes the proof. O
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