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Tunable Wave-Propagation Band gap via Stretching Kirigami Sheets
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This study examines Bragg’s band gap and its mechanical tuning in a stretch-buckled kirigami sheet
with “zig-zag” distributed parallel cuts. When stretched beyond a critical threshold, the kirigami buckles
out of plane and generates a three-dimensional periodic architecture. Our theoretical calculation, numerical
simulation, and experiments confirm the transverse elastic wave-propagation band gaps and their corre-
lation to stretching. This result opens an avenue of using kirigami as a simple and effective approach for
creating and adapting periodicity for wave-propagation control.
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The emergence of mechanical metamaterials, which
derive their properties primarily from their underlying
architecture, has unleashed an era of material functional-
ity. Exploiting such architecture-property correlations has
enabled many desirable and even “unnatural” responses
[1-4]. One of the most consequential examples is Bragg’s
band gap—a phenomenon that the interferences from a
periodic array of scatterers can completely stop the propa-
gation of incident waves when their wavelengths are simi-
lar to the scatterer’s spacing [5]. The ability to manipulate
wave propagation via Bragg’s band gap has enabled count-
less applications in noise mitigation [6], wave transmission
control [7], acoustic cloaking [8], nonreciprocity [9], and
even wave-based mechanical computation [10]. Nonethe-
less, the potentials of these applications all hinge upon our
capability to fabricate and control periodic architectures
in metamaterials. To this end, we have seen a variety of
fabrication approaches like three-dimensional (3D) print-
ing [11-13], self-assembly [14], and laser cutting [15].
For controlling (or changing) the periodicity, mechanical
deformation [16—18] and lattice reconfiguration [19] have
been examined. However, these methods of creating and
changing periodicity are two separate processes, which
could be time consuming and cumbersome.

In this letter, we show that simply stretching an elas-
tic kirigami sheet is an integrated process to simultane-
ously create and control periodic architectures, providing
tunable propagation band gaps for elastic waves at low
frequencies. Kirigami is an ancient art of cutting and
shaping papers into decorative 3D shapes. It has recently
transformed into a design and fabrication framework to
engineer flexible electronics [20], superstretchable mate-
rials [21], light-weight structures [22], and soft robots
[23,24]. Compared to other methods of constructing
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periodic 3D motifs, the kirigami-inspired approach has
many unique advantages. For example, the seemingly infi-
nite possibilities in cutting pattern geometry offer signifi-
cant freedoms in design [25]. And cutting as a fabrication
method is easily scalable from nano- [26], micro- [27],
millimeter [28], to meter scale [29].

This study also presents efforts to examine the dynamic
responses in kirigami-based material systems. Static prop-
erties induced by cutting like stretchability [30-32], auxet-
ics [33], buckling [34,35], and multistability [36,37] have
been extensively examined. However, dynamic character-
istics in kirigami, such as vibrations and wave propagation,
remain largely unexplored.

Here, we focus on the transverse elastic wave propaga-
tion in a stretch-buckled kirigami sheet with a “zig-zag”
uniform distribution of parallel slit cuts shown in Fig. 1.
A few design parameters—including the cut sizes /,, I,
l., and the spacing between cuts w—can fully define
the overall cutting pattern. When sufficiently stretched
in plane along the periodicity direction (the x direction),
the kirigami sheet would buckle and develop out-of-plane
deformations, creating a linear array of identical unit cells,
each consisting of a few curved ligaments. Moreover, con-
trolling the in-plane stretching can directly change the 3D
geometry of these unit cells, offering a simple approach
for turning the dynamic responses. The stretch-buckled
kirigami sheet’s overall height and width are significantly
smaller than its length, and we assume that its shear-
ing deformation and rotational inertia are negligible by
ensuring small transverse elastic wave magnitude. So the
Euler-Bernoulli beam condition applies, and the governing
equation for the wave propagating along the longitudinal x
direction is
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FIG. 1. The overall concept of this study. (a) A kirigami sheet
with “zig-zag” patterned parallel cuts, whose geometry can be
defined by just a few parameters. Here, we neglect the slit cuts’
width. (b) The external shape of a stretched-buckled kirigami
sheet, simulated in ABAQUS (3D solid elements with explicit
solver). It exhibits a controllable, 3D periodic architecture, gen-
erating Bragg’s band gaps for out-of-plane transverse elastic
waves. (c) A different view of the kirigami highlighting the
curved ligaments.

Here, p and E are the mass density and Young’s modulus
of the constitutive sheet material, respectively; U(x,?) is
the out-of-plane transverse displacement in the z direction;
and A (x) and I (x) are the distributions of the cross-section
area and the area moment of inertia in the buckled kirigami
sheet, respectively. It is worth noting that this governing
equation of motion does not involve stretch force. At mod-
erate stretch (postbuckling), the kirigami deforms out of
plane and shows almost constant reaction force [34,35].
Therefore, the result of stretching is mostly shape change
in A(x) and / (x) rather than generating more internal stress.

Calculating A(x) and /(x) is quite challenging because
of the buckled kirigami sheet’s complicated 3D geometry,
especially the curved ligaments. Therefore, we introduce
“virtual folds” at critical locations on the ligaments that
exhibit the most concentrated bending deformation and
assume that the facets in-between these folds are flat sur-
faces (surfaces A, B, and C in Fig. 2). Indeed, these
folds can naturally occur when the stretching is strong
enough to induce plastic deformation [34], so they could
represent the mechanics of buckled kirigami sheets with
reasonable accuracy. Moreover, the simplified kirigami
becomes rigid foldable, making the kirigami deformation
a one-degree-of-freedom mechanism.

Figure 2(d) elucidates the complex A(x) and /(x) dis-
tributions in a unit cell subject to different amounts
of in-plane stretch. Here, we use the dihedral angle ¢
between surface B and the y-z reference plane to describe
stretching; the detailed calculations are available in the
Appendix A.

Denote R = aje; as a translational vector in direct
space, representing the periodicity [Fig. 2(b)]. That is, we
can construct the kirigami sheet by a set of infinite transla-
tional operations of the unit cell based on R. In this case,
a) is an integer number, and the lattice vector e; lies in the
x direction. We then define the reciprocal lattice vector G
in that e "¢'R = 1. Here, m, is another integer, G = m by,
and b, is the lattice vector in reciprocal space. Equivalent
to the lattice vector e; in direct space, infinite translation
operations of the reciprocal lattice vectors b; define recip-
rocal space, which has similar symmetry to direct space.
Like in the direct lattice, an equivalent unit cell can then
be defined in reciprocal space based on by, giving us the
first Brillouin zone (FBZ).

To analyze the wave-propagation behavior in the
stretch-buckled kirigami sheet, we employ the plane-wave
expansion (PWE) method. First, a separation of variables
gives U(x, 1) = U(x)e~ ™' where w is the harmonic oscil-
lation frequency. Based on the Blotch theorem, we can
formulate the spatial term U(x) for the whole kirigami
sheet into a product of plane-wave and periodic functions
in the first irreducible Brillouin zone so that

0()() — ei(Zn’k]x) Z U(nl)ei(Zﬂnlx)’ (2)

n

where n) is an integer and k| is a wave number within the
FBZ in that &, € [0, %]. We further expand the distribution
of cross-section area A(x) and area moment of inertia 7 (x)
in Fourier series so that

A@) =) A(my)e @, (3)
[x) =Y Tm)e®™m. 4)

my

By substituting the formulations above into the governing
equation, Eq. (1), and denoting by b; the magnitude of the
reciprocal lattice vector (b; = |by|), we obtain the eigen-
value problem for calculating the dispersion curves. More
details are given in the Appendix B, and a few results are
highlighted in Fig. 3(a). We have

> [E(nl + k) ey 4 my +m)*T(my) — w2(b’¥4>/1<m1)}

ny 1

=0. (5)

To validate the theoretical prediction of band-gap fre-
quencies, we compare its results to numerical simula-
tions and experimental measurements based on a nylon-
based kirigami sample (E = 9.2 GPa, p = 1200 Kg/m?,
material thickness 7= 0.002 m, with cut sizes [/, =
0.04 m, [, =0.02 m, /. =0.064 m, and cut spacing
w = 0.01 m). Regarding the numerical analysis, we first
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Simplification and modeling the geometry of a stretch-buckled krigami sheet. (a) Comparing the original and simplified

geometry of kirigami sheets; the insert details the “virtual folds” and the flat facets (aka. surfaces 4, B, C) between them. (b) Stretching
deformations of the simplified kirigami sheet, which shows rigid foldability, and its facets remain flat and undeformed during stretch-
ing. The lattice vector e, is highlighted. Here, the dihedral angle ¢ describes the kirigami stretching, and ¢ = sin™!(2w/a), where a
is the unit cell’s length after stretch and w is the spacing between cuts. (¢) Detailed geometry of a unit cell. The solid and dashed
lines highlight the shape of its cross sections. (d) The 4(x) and /(x) distributions in a unit cell with different stretches (/, = 0.04 m,
I, =0.02m, . = 0.064 m, w = 0.01 m, z = 0.002 m). Detailed geometric derivations are given in Appendix A.

create a CAD model of the stretch-buckled kirigami sheet
in SolidWorks®—based on the simplified geometry in
Fig. 2—and export it to COMSOL® software (3D mesh ele-
ments and frequency analysis solver; see Fig. 6 within the
Appendix C). After the mesh convergence study, we use
two reference lines parallel to the y direction at both ends
of the kirigami sheet to measure the vibration entering and
exiting structure at specific ranges of frequencies. Then,
the wave transmissibility is defined as TR = f]out/ Ui,
where U, and U,y are the maximum displacement of
incoming and transmitted waves, respectively. This trans-
missibility has been widely used to evaluate the band-gap
frequency [38].

Figure 3(b) details the experimental setup. We attach
one end of the kirigami sheet to a shaker (Labworks
DB-140 with Pa-141 amplifier) to provide the out-of-
plane (z-direction) excitation. The other end is attached
to a rigid end fixture via thin tape. We carefully choose
the tape width w; to mimic the free boundary condition
the best. This tape needs to be wide at low excitation
frequency due to a large vibration amplitude but nar-
row at high frequency; we find that tan~'(w,/ Ugwt) <
6° is a good guideline. To measure the wave transmis-
sibility through the stretch-buckled kirigami sheet, we
use a signal generator (Tektronix AFG3022c) to gener-
ate harmonic excitations with sweeping frequencies and
use two laser vibrometers (Polytec OFC-5000) to measure

the input and transmitted waves (see Fig. 7 within the
Appendix D.

The analytical theory’s predictions, COMSOL simula-
tions, and experimental results all confirm the occurrence
of Bragg’s band gap in the stretch buckled kirigami sheet
[Fig. 3(c)]. Moreover, the band-gap frequency can be
effectively tuned by simply increasing or decreasing the
in-plane stretch. Based on the theoretical prediction, the
kirigami sample provides a Bragg band gap between 423
and 681 Hz with a moderate stretch [¢ = sin™!(2w/a) =
33°, or the kirigami sheet stretched to 183% of its orig-
inal length]. Stretching the kirigami sheet to 200% of its
original length (¢ = 30°) places the band gap to between
465 and 773 Hz. As the kirigami sheet is stretched fur-
ther to 228% of its original length (¢ = 26°), the band
gap moves to between 550 and 838 Hz. Such correlation
between stretching and band-gap frequencies is confirmed
by numerical simulation and experiment.

While the different test results show good agreement
regarding the band-gap frequencies, there are notable dif-
ferences between the numerical simulation and experi-
ment regarding the magnitude of wave transmissibility.
Such discrepancy might come from a combination of
different factors, such as fabrication imperfection, the
differences between the original and simplified kirigami
geometry, and material damping (while the nylon material
has significant internal damping, the numerical simulation
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FIG. 3. Summary of simulation and experiment results. (a) Theoretically predicted dispersion relationships at three different levels

of stretch, highlighting the first Bragg band gap. (b) The experimental setup (for more details, see Sec. 3 of the Appendix D). (c)
First row: the simulated transmissibility in decibels; second row: comparison between the same simulation results and experimental
measurements in linear scale. The experimental results are slightly postprocessed only to eliminate electronic noises.

assumes zero damping to avoid unnecessary computational
complexities). Moreover, the analytical model assumes an
infinite number of unit cells, while the kirigami experi-
mental sample only has 12. The omission of the tension
force in the governing equation is another probable cause
for the more considerable discrepancies at the highest
tested stretch. Regardless, these results firmly validate our
assumptions that stretching elastic kirigami sheets is a sim-
ple and effective approach for generating and controlling
periodicity in a metamaterial system for wave-propagation
control. Moreover, the results elucidate the physical prin-
ciples underpinning the correlation between stretching and
band-gap frequency tuning.

It is worth pointing out that our analytical calculation
and cOMSOL simulation use the simplified kirigami geom-
etry with virtual folds and flat facets, but the experiments
do not. That is, the physical kirigami prototype has curved
ligaments. Therefore, the agreement between these results
indicates that the kirigami geometry simplification summa-
rized in Fig. 2 provides an reasonably accurate correlation

between the Bragg band gap and kirigami design and
stretching. Therefore, our theory can serve as a quick and
effective design tool for kirigami-based metamaterial sys-
tems, and it could be expanded to more complicated cut
patterns.

Finally, the simplicity and versatility in kirigami cut-
ting pattern design offer us significant freedom to prescribe
and control the wave-propagation band gaps. We apply
our theoretical method to three kirigami sheets and exam-
ine their band-gap frequencies at different stretch levels
(Fig. 4). These sheets share the same constitutive material,
overall size, and cut spacing. The only difference between
them is the cut lengths, which are very simple to change
during fabrication. Yet, the three kirigami sheets exhibit
significantly different and tunable band-gap frequencies.

In conclusion, we use theoretical, numerical, and
experimental methods to examine Bragg’s elastic wave-
propagation band gaps in stretch-buckled kirigami sheets.
Our results show that we can prescribe and tune the band-
gap frequencies with considerable freedom by simply
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FIG. 4. The Bragg band-gap frequencies are directly related to
the kirigami cutting pattern design and in-plane stretching. Note
that the ¢ values correspond to the maximum stretch and vary for
different cut pattern designs.

tailoring the cutting pattern and controlling the in-plane
stretch. The results of this study open an avenue for
using kirigami-based metamaterial systems with adaptive
periodicity for wave-propagation control.
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APPENDIX A: SIMPLIFYING KIRIGAMYI’S
GEOMETRY

Figure 1(a) in the main text explains the parameters
defining the parallel and zig-zag distributed cutting pat-
tern. Here, [,, I, and [. define the slit cuts’ size; w is the
spacing between two cuts along the longitudinal direction.
Once buckled via stretching, the kirigami sheet takes a
complicated three-dimensional shape with significant out-
of-plane deformation. As a result, the buckled kirigami
structure has a finite thickness, satisfying Euler-Bernoulli’s
beam geometrical conditions. In other words, the stretch-
buckled kirigami sheet becomes a beamlike structure con-
sisting of a linear periodic array of “unit cells,” as shown
in Figs. 1(b) and 1(c).

The ligaments inside the unit cells exhibit complex
deformations with a nonuniform curvature distribution,
making it challenging to calculate the parameters relevant
to wave-propagation analyses, such as the cross-sectional
area and area moment of inertia. To address this chal-
lenge, we introduce “virtual folds™ at critical locations on
the ligaments that exhibit the most concentrated bending
deformation and assume that the facets in-between these

folds are flat surfaces (surfaces 4, B, and C in Fig. 2 of the
main text). The simplified kirigami becomes rigid foldable,
making the kirigami deformation a one-degree-of-freedom
mechanism.

To solve the dynamic equation of motion for wave
propagation, we need to calculate the distributions of the
cross-sectional area A(x) and area moment of inertia /(x)
over a unit cell, where x represents the longitudinal direc-
tion. To this end, we choose the dihedral angle (¢) between
surface B within the kirigami unit cell and the y-z reference
plane as the independent variable [Figs. 2(b) and 5]. When
the kirigami sheet is undeformed (or flat in the x-y ref-
erence plane), ¢ takes the maximum value (¢m.x = 7/2);
when the buckled kirigami sheet is fully stretched, ¢ takes
the minimum value:

2
@Pmin = tan_l <I_W>

We also denote the dihedral angle between surface C
defined in Fig. 2 and the x-z reference place as 3, so that

2
,3:005_1< d )
I tan @

When the kirigami sheet is undeformed (flat), 8 = 7/2;
when the kirigami sheet is fully stretched, § = 0. The
overall length of the unit cell is

(AT)

(A2)

2w
sing’

a =

(A3)
Another important geometric variable is the projected

length of surface C along the y axis, as illustrated in
Fig. 5(b):

tan 8 2 w?

tan ¢

e .
Z—m—ESIHﬁ. (A4)
Here, we assume that the kirigami sheet is highly stretched
after buckling in that ¢y < ¢ < /4 (assuming that /. >
2w). We can divide half of the unit cell in this case into
three sections [sections i, ii, and iii in Fig. 5(c)] because the
cross sections take distinct shapes in these three sections.

Section i corresponds to 0 < x < wsin ¢, and the cross-
sectional area involves surface B and surface C. The cross
section [solid lines in Fig. 5(b;)] is the summation of these
two parts so that

t
Ai(x) = ——(lp + 2LY)
sin @

t
—_ (lb 4 Jaw? + Ptan’ (p), (A5)
Sm @ wSsin @

where ¢ is the thickness of the kirigami sheet material.
The area moment of inertia with respect to the y axis also
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FIG. 5. The unit-cell geometry of a simplified kirigami sheet
with a relatively large stretch. (a)(c) The isometric, front, and
side views of the kirigami unit cell, respectively. The indepen-
dent variable ¢ and the three sections in the half unit cells are
highlighted in the side view. (b;)}~(bji;) Close-up front views of
the cross-section area corresponding to different ranges of x val-
ues. Note that the solid, dashed, dotted black lines are the cross
sections of the kirigami unit cell in three different sections.

includes two parts:

Lix) =1%+1,

t X 2
. ( ) +21¢
s g \ tan ¢

2xtan,3 .t <xtan¢)—xcot¢))2. (A6)
cos ¢ sing 2

Here the first two terms come from the cross section of
surface B (using the parallel axis theorem), and the third
and fourth terms come from the cross section of surface C.
Here, 12 is the bending moment of inertia of surface B’s
cross section with respect to its own neutral axis in that

B — I t 3
~ 12\sing )

Similarly, I is surface C’s area moment of inertia with
respect to its own neutral axis in that

t xtanB[ £
12sing cosg

(AT)

If(x) =

+ x?(tan ¢ + cot <p)21| .
(A8)

sin’

Section ii corresponds to wsin < x < a/2 — wsin ¢, and
the overall cross-section area involves surface C [dashed

line in Fig. 5(by)]:
t
sin ¢

Aii(x) =2 Ly =

(A9)

t
—/4w? + P tan* .
sin ¢

The area moment of inertia with respect to the y axis is

t
Li(x) = 2[5 +2——[(a/4 —x)tang]’,  (A10)
sin ¢
where
P 2
Il.l.cz —wtangtan f| — — ). (All)
12sing singp ~ cos? g

Finally, section iii of the half unit cell corresponds to
sing < x < a/2. In this section, the cross section [dotted
line in Fig. 5(by;)] involves surfaces 4 and C in that

! c
Aiii(x) = @(la +2L)

¢ 2-
— <za+“/_ x,/4w2+zgtan4¢>. (A12)
sin g wsin @

The corresponding area moment of inertia with respect to
the y axis includes two components in that

t 2 —x\*
Li(x) = I + 1, — (a/ x) +2I;
Smme \ tang
+2(a/2—x)tan,8 .t
cos ¢ sin @
2 —x)(tang — cot) T
y (a/2 — x)(tanp — cot ) ’ (A13)
2
where

t (a/2—x)tanp

I5(0) = ——
12sing cos ¢
2
X [ —— + (a/2 —x)*(tang —|—cot<p)2]
sin” @

(Al4)

and I is the bending moment of inertia of the cross-section
area in surface 4 with respect to its own neutral axis so that

il 3
" 12\sing )

The final results of 4(x) and / (x) corresponding to different
amounts of stretch are summarized in Fig. 2(d).

(A15)
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APPENDIX B: SOLVING THE BAND GAPS USING
THE PWE METHOD

To obtain the band structure of the stretch-buckled
kirigami sheet, we apply Bloch’s theorem to its unit cells
in the reciprocal lattice space (aka. Brillouin zone). It is
worth noting that the formulations in this section apply to
generic two-dimensional periodic structures, and we high-
light the simplification for a 1D periodic stretch-buckled
kirigami sheet at the end.

First, we review the fundamental concepts describing
the geometry of periodic structures. A generic two-
dimensional periodic structure can be constructed by an
infinite set of translation operations on its unit cell along
with specific directions. Such operations can be repre-
sented by translational vectors r:

r =ae; + aze;. (Bl)

Here e, e, are the lattice vectors in direct space, and ay,
a, are integers. The dimension of this translational vector
depends on the nature of the underlying periodicity. The
stretch-buckled kirigami sheet in this study is periodic only
in the x direction, so r is one dimensional and r = a; e,
where e; aligns with the x direction.

The reciprocal lattice is described by a set of vectors G
that satisfy the relationship

e 6T =1, (B2)
where G = m by + myb,. Here, b; and b, are the lat-
tice vectors in reciprocal space; m;, m, are integers.
Equation (B2) indicates that the reciprocal lattice vectors
by, b, are orthogonal to the lattice vectors e, e; in that

e - bj = 27'[8!‘1‘. (B3)
Just like the lattice vectors e, e, that can define period-
icity in direct space, infinite translations of the reciprocal
lattice vectors by, b, define reciprocal space, which has
similar symmetry properties to that of direct space. In a
stretch-buckled kirigami sheet, the lattice vector r = a;e;
aligns with the x direction, so the reciprocal lattice vec-
tor is G = m by, also in the x direction. More importantly,
b, b, define the elementary unit cell in reciprocal space,
which is called the first Brillouin zone. The importance of
this Brillouin zone stems from the Bloch wave description
of the wave field in periodic media: Bloch wave descrip-
tions in the first Brillouin zone can fully characterize the
solutions.

Next, we turn to the application of the PWE method for
solving wave equation (1) in the main text and calculat-
ing the band-gap structure. Assume that the constitutive
material properties £ and p are constant. The first step in
implementing the PWE method is to expand the periodi-
cally varying entities—cross-sectional area 4(x) and area
moment of inertia /(x)—into Fourier series.

For a generic, two dimensional periodic system, such
expansions take the form

— Z A? (G)eiG-x’
G

= Zi(G)e"G"‘.
G

A(x) (B4)

I(x) (B3)

In the equations above, the Fourier coefficients /i(G) and
1(G) over the unit cell with area A, can be calculated as

1 .
= - f /A A(x)e 6%gx,
1 _ic
I(x)e "™ Xdx.
Au.c. Auc.

The next step in the PWE method is to convert the gov-
erning dynamic equations of motion into an eigenvalue
problem. For a generic 2D periodic structure, we start by
applying the separation of variables to the displacement
field:

A(G)

(B6)

1(G) = (B7)

U(x, ) = U(x)e ™ (B8)

with w the harmonic oscillation frequency. We then expand
the displacement U(x) based on the Bloch theorem:

U(x) = K~ Z OH)eM ™,
H

(B9)

Here H = n1b; + m,b; is a direction vector with integer
valued ny,n, and K = k;b; + kob, is the wave vector,
whose components are restricted to Vary within the first
irreducible Brillouin zone: ki, k> € [0, 2] The term &K
comes from the Bloch condition, which states that the solu-
tion is entirely periodic except for a phase shift across the
unit cells’ boundaries.

Based on Eq. (B9), we can obtain the following expres-
sion regarding the spatial derivative of the displacement
function:

n

aax,, [Ux, 0] = (") (K +HH)"UX, ).

(B10)

Now, substituting the Fourier expansions of 4(x) and /(x)
[Egs. (B4) and (B5)] into Euler-Bernoulli’s governing
equation for a two-dimensional structure yields

[ ZI(G) 1y 0 U(x z)]

92U(x, 1)

—I—pZA(G) G =0.

—p (B11)
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Then, we further simplify this equation by applying the
expressions in Egs. (B9) and (B10):

D Y IEM+ K (K + H + G)’1(G) — 0’ pA(G)]

G H

x UH)®F6+Hx — (B12)
This leads to the characteristic equation of the correspond-
ing eigenvalue problem

YOS EM KK+ H+GP(G) — o?pAd(G)] =0.
G H
(B13)

Since this characteristic equation must apply for all G, we
can select a specific G vector and solve the equation

Y [EH + K’ (K + H + G)’I(G) — 0”pA(G)] = 0.
H
(B14)

The solution of this equation generates an eigenfrequency
curve in the dispersion relationship.

Finally, we simplify the formulations above for the
stretch-buckled kirigami sheet. Since the direct and recip-
rocal spaces of the stretched kirigami are both 1D periodic
along the x direction, x = xe; and G = mb,. Moreover,
the orthogonality conditions from Eq. (B3) indicate that
e; - b; = 2. Substituting these expressions into Eqgs. (B4)
and (BY) yields the following two simplified equations for
the Fourier expansion:

A®) =Y Amby)e ), (B15)

mi

10 =) Imbpe ™™,

mj

(B16)

with the summation taken over all integers m; .

To double check, let us increment the position vector by
a period, x — x + a;e;, and validate that A(x) and /(x) do
not change:

A+ are)) = Y A(myby)emPricracy
mj

— E AA(mlbl)eimlbl~Xei27'[alml

my

= A(x), (B17)
I(x+aje)) = Zi(mlbl)eim‘bl'(”“lel)
mi
— Zj(mlbl)eimlbl-xeﬂﬂalml
mi
=1(x). (B13)

Note that e/?7%1") equals one because a; and m, are inte-
gers. The origin of x is at the center of the unit cell. We
can further simplify the Fourier expansion equations by
plugging in a; = a, where a as the unit cell’s length, and
by = |by]| so that

R R 1 (42 .

A(mb)) = A(m)) = —/ Ax)e " FmD gy (B19)
aJ_qn

. . 1 al2 )

I(mby) = I(m)) = — / I[(x)e” " @m gy (B20)
aJ_qn

Moreover, the 1D periodicity of kirigami indicates that
H =nb;, K= kb, and both H and K are along the
x direction. Substituting the 1D simplifications of H,
K, G into the Blotch theorem equation, Eq. (B9), will
yield Eq. (2) in the main text. Furthermore, by substi-
tuting this 1D simplifications and Egs. (B19) and (B20)
into eigenvalue equation (B14), we eventually obtain the
characteristic equation in 1D:

> [E(m + k) (k4 my +m)*T(my) — w2<§)fi(m1)]

ni 1

=0. (B21)
Solutions of this equation are summarized in Fig. 3(a).

APPENDIX C: comsoL SIMULATION

Figure 6 details the meshed stretch-buckled kirigami
sheet after the convergence study, using 3D solid elements.
The mesh sizes are refined manually near the cut corners
to ensure accurate simulation.

APPENDIX D: EXPERIMENTAL SETUP

Figure 7 details the complete experimental setup for
measuring the transverse elastic wave transmissibility over
the stretch-buckled kirigami sheet. It is worth noting that
the unit cells in Fig. 3(b) appear different from each other,
but this is an optical illusion. All unit cells in the kirigami
prototype, except for the first and last ones at the boundary,

FIG. 6. Three-dimensional meshed model in COMSOL, show-
ing the details near cut corners.
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Shqker

~~~~~~~~~~~~

~ Signal

generator Data aquisition and PC

FIG. 7. A schematic diagram of the test apparatus.

have the same shape and dihedral angle. However, when
the camera is placed in front of the kirigami prototype,
every unit cell is at a slightly different angle with respect
to the camera lens, so they appear different in the picture.

Moreover, we do not observe significant global plastic
deformation in our stretched kirigami sample because the
zig-zag distributed parallel cuts are intended to offer high
stretchability and elastic response. Because of stress con-
centration, there are small and local plastic deformations
at the tip of the slit cuts. These plastic deformations can be
avoided by optimizing the cut tip shape, and they should
not significantly affect the elastic wave band gaps at low
frequency.
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