
1.  Introduction
1.1.  General Context

Coastal boulders are important because they document extreme wave actions, such as those that occur during 
storms and tsunamis. Furthermore, boulders are a unique type of deposit as they can consist of only few “parti-
cles.” Nott  (2003) demonstrated that information about the pre-transport setting of boulders is important. A 
variety of different approaches have been developed to consider boulder motion, assuming different pre-transport 
settings and simplifying assumption about the hydrodynamic forcing to quantify the storm or tsunami that moved 
boulders. We refer to Cox et  al.  (2020) for more information about Nott's 2003 approach, the most common 
approach from which others, such as Benner et al. (2010), Nandasena et al. (2011b), Nandasena et al. (2011a), 
Buckley et al. (2012), and Barbano et al. (2010), are derived. More fundamentally, if information about the caus-
ative events is available, and better yet, data that can be used to calibrate hydrodynamic models, boulder transport 
can be understood at a much more advanced level (see for example, Watanabe et al., 2019, and references therein). 
However, very often, especially for historic events or events in the geologic record, such information is not avail-
able–including the pre-transport setting of the boulder. None of the existing approaches can accommodate the 
ambiguity related to the causative process and pre-transport setting in a consistent manner. To address this short-
coming, we present a Monte-Carlo-type ensemble model with the capability to sample parameter distributions 
that describe the uncertainties around the pre-transport setting as well as how the flow interacts with the boulder.

Boulders as heavy as 50 or 80 tonnes have been reported as moved by storms (Cox et al., 2012) and tsunamis 
(Dewey & Ryan, 2017). Just the fact that hydrodynamic forces during storms and tsunamis are capable of trans-
porting such large particles is in itself astonishing and should narrate a cautionary tale independent of the caus-
ative process. However, much of the debate, when it comes to boulder deposits during coastal hazard events, is 
focused on whether the boulders were moved during a tsunami or a storm. Of course, it is important to delineate 
the causative boulder movement processes for hazard assessment, as while both storms and tsunamis can have 
devastating effects, they do vary in their coastal inundation, duration, and the character of how they impact the 
coastline. However, especially without enhanced knowledge and specific information about the hydrodynamic 
forcing, it remains difficult to defend a conclusion regarding whether a storm or a tsunami caused the motion of a 
boulder. Advanced numerical simulations, such as presented in Zainali and Weiss (2015), Kennedy et al. (2016) 
and Watanabe et al. (2019) are capable, but the wealth of information needed to create the input waves has only 
been recorded by tide gauges, wave buoys, or other measuring devices in the past few decades. Without these 
existing constraints, advanced simulations produce speculations rather than certainties about the conditions that 
lead to boulder transport. To emphasize this consideration, we have to acknowledge that waves in a tsunami 
or storm are best characterized by a wave spectrum, which provides information about the presence of certain 
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amplitudes and how often a certain amplitude occurs. However, it does not 
provide the true sequencing of the waves, and information on how these 
wave ampli tudes interact with each other as they propagate. In this context, 
wave-wave interactions can create hydrodynamic forcing capable of moving 
boulders in an area some distance from where the spectrum measurement 
was taken (e.g., wave buoy); in other words, these interactions can create 
local amplitudes that are above the maximum amplitude component of the 
observed spectrum. The opposite on the lower end is also possible for boul-
ders not having been moved (Weiss & Sheremet, 2017). Because of this fact, 
our model output is the relationship of boulder motion given flow depth and 
flow velocity for a given boulder mass, where we consider other parameters 
to be random and sample them from a distribution.

1.2.  Geometric Setup and Study

Figure 1 depicts the boulder transport problem. We assume that a boulder's 
geometry can be simplified by a rectangular prism whose length is a, width is 
b and height is c. While a rectangular prism is still an idealized representation 
of the boulder, when compared to a sphere, a rectangular prism much more 
closely aligns with realistic boulder shapes seen in the field. Importantly, the 
rectangular prism allows us to consider boulder shapes with aspect ratios 
other than one, namely, boulders with one dimension measurably longer than 
another. Note that for simplicity, we define the wave arrival perpendicular to 
the length of the boulder. Additionally, note that this axis definition differs 
from the one classically used in boulder studies, in which a defines the long-
est boulder dimension while c denotes the shortest boulder dimension.

Figure 1 also contains all the forces that directly contribute to boulder move-
ment, along with their respective moment arms for overturning about the 
axes' origin. For more discussion on the forces, their moment arms, and how 

they relate to the equations of motion, we refer to Section 2 Theoretical Background. The general setting for 
the boulder is on a uniform slope of angle α, where the boulder has to overcome the roughness δ to move into 
a position that allows dislodgement (dotted rectangle in Figure 1). The angle that the boulder rotation has to 
exceed to reach a position where it remains dislodged once the event is over–the critical position for permanent 
dislodgement –is referred to as the critical angle θc. In the case of a fully submerged homogeneous boulder, the 
physical definition for the critical angle is when the center of mass (black dots in Figure 1) is directly above the 
pivot point (vertically aligned). For more information on the paradigm that is behind this assumption, we refer 
to Weiss and Diplas (2015) and references therein. The roughness can have any value from zero to the height of 
the boulder. For the case when the roughness δ is zero, boulder sliding is also possible. Nandasena et al. (2011b) 
and Nandasena et al. (2011a) also calculated conditions for rotation and sliding, showing the sliding scenario 
requires a lower velocity for motion. From a physical point of view, as long as the center of mass of the boulder 
is above the pivot point, the boulder can rotate toward the critical dislodgement position. If the center of mass of 
the boulder is below that point, rotation becomes impossible because a positive moment cannot occur. Yet, it has 
been observed in the field that boulders were dislodged whose height is approximately equal to the roughness 
δ. For example, Switzer and Burston (2010) reported on boulders that were quarried from a rock unit located 
nearshore that exhibit the same thickness as the transported boulders. In this case and other situations where the 
vertical position of the center of the mass of the boulder is below the pivot point, in order for the boulder to over-
turn it must first be lifted, a process that we refer to as vertical sliding because the boulder moves upward. If the 
roughness δ is zero, it is also possible that the boulder slides along the slope, hereafter referred to as “along-slope 
sliding.” We assume that along-slope sliding is an irreversible motion that does not allow for the boulder to return 
to its original position. Therefore, we define the motion of the boulder by length b as dislodged.

In our contribution, we generally follow the approach outlined by Weiss and Diplas (2015) and employ Newton's 
Second Law of Motion for the rotational motion toward the critical dislodgement position, depending on the 
height c of the boulder compared to the roughness δ this also includes vertical sliding. Furthermore, we consider 

Figure 1.  Geometric definition of the boulder-dislodgement problem 
including forces and lever arms. The dashed boulder indicates the position the 
boulder has to move to to dislodge.
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along-slope sliding in the case of δ = 0. We generally refer to a boulder to be 
dislodged if a boulder's movement exceeds the critical angle of dislodgement 
in the rotational case or travels the length of b in case of along-slope sliding. 
As in Weiss and Diplas (2015), we calculate how the boulder moved from its 
original to a position from which onward dislodgement occurs. We assume 
that this is the minimum requirement for recognizable boulder movement in 
the field. How the boulder moved with the flow after the critical dislodge-
ment position is exceeded is complex and will most likely be influenced by a 
complex interaction of multiple waves in both tsunamis and storms. Further-
more, the simplicity of the approach also generates uncertainties arising from 
the simplifications employed. Most notably, the coefficients and constants, 
mostly used for the calculation of forces, are difficult to constrain and are 
potentially a significant source of uncertainty in the results. Instead of trying 
to justify a specific coefficient or constant's magnitude, for example, for the 
drag and lift coefficients, we treat these coefficients and constants as random 
parameters that are sampled from a physically defensible interval given a 
uniform probability for each sample. This has the advantage that uncertain-
ties coming, for example, from the data, such as the boulder dimensions and 
bulk density, can be treated in the same fashion, resulting in a more statis-
tically defensible result, which, by extension, also means a more physically 
defensible result.

2.  Theoretical Background
Within a Monte-Carlo framework we investigate herein boulder dislodge-
ment by rotation and sliding, or a combination of both, by assuming idealized 

flow conditions and that the boulder may be represented as a rectangular prism –with respect to spheres, a more 
realistic representation of boulder geometries occurring in nature (Figure 1). Below, we introduce the form of the 
governing equations of motion used herein, namely, the conservation of angular momentum for rotation (follow-
ing Weiss & Diplas, 2015) and conservation of linear momentum for sliding, then discuss characterization of the 
dynamic forces the fluid exerts on the boulder, the criteria for boulder dislodgement, and implementation within 
a Monte-Carlo framework.

2.1.  Governing Equation for Rotation

If roughness is present in front of the boulder, the movement of the boulder toward dislodgement can be simpli-
fied by a rotational motion. Therefore, the predominant equation of motion is the conservation of angular momen-
tum, written in terms of the moments exerted on the boulder and the mass moment of inertia:

𝐼𝐼
d
2
𝜃𝜃

d𝑡𝑡
2
=

∑

𝑀𝑀𝑎𝑎� (1)

in which I refers to the mass moment of inertia and Ma to the moments. In the presented geometry, the mass 
moment of inertia is governed by the relationship between b and c and whether the boulder is fully submerged or 
if it starts or becomes emergent during any part of its movement. Figure 2 depicts the initial conditions and a later 
time during movement toward dislodgement for the fully submerged and partially submerged cases.

For the governing equations, it is important to consider the fact that water is displaced as the boulder moves. For 
the fully submerged case, the volume of water that has to be displaced is proportional to some fraction of the 
entire boulder volume; while in the partially submerged case, the fraction of displaced water is proportional to 
the portion of the boulder that is in the water. The water that has to be displaced is referred to as added or virtual 
mass in the literature, such that the effective mass that is to be moved is the sum of the mass of the body plus a 
fraction of the equivalent water mass: m = ms + mv, where mv is approximated by CmVsρ (Vs – volume of boulder, 
Cm – added mass coefficient, and ρ – water density). This added mass effect appears in the angular momentum 
balance via the mass moment of inertia in Equation 1, yielding: I = Is + Iv. To calculate Is and Iv for the conditions 

Figure 2.  Fully submerged (a & b) and partially submerged (c & d) boulder 
dislodgement. For the partially submerged boulder, we see the distance 
between the Centers of Mass of the entire boulder and of the submerged 
portion changes with boulder position, that is, between the original position 
(t0, c) and later position (t1, d), as the boulder moves toward the dislodgement 
position.
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presented in Figure 1, we integrate the boulder mass along the horizontal and vertical axes of the boulder geom-
etry to calculate the mass moment of inertia of both coordinates if the rotation would be respectively around the 
horizontal axis, Ix and the vertical axis Iz. The perpendicular axis theorem, Jy = Ix + Iz, then allows us to move 
the rotation axis to one along the boulder length a passing through the Center of Mass, of the entire boulder for Is 
and of the submerged portion of the boulder for Iv. Finally, we apply the parallel axes theorem, Jy + md 2, where 
d denotes the distance between the center of mass and the desired location, in this case the pivot point marked 
by the red dot in Figure 1. Based on this method, we can derive the following equation for Is and Iv for the fully 
submerged case (Figure 2a):

��,� =
1
12

��,�
(

�2 + �2
)

+ ��,�

[
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3
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� − �
2

)2]
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substituting Equation 2 for Is and Iv, we then can rewrite Equation 1 for the fully submerged case (Figure 2a) to:
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as mentioned, Equation 3 can only be applied to fully submerged boulders. If, however, in the case where the 
boulder starts or becomes emergent due to a relatively small flow depth compared to the boulder's height, the 
shape of the submerged portion of the boulder is no longer of a rectangular cross section. In this case, we approx-
imate Ix and Iz with

𝐼𝐼𝑥𝑥 = 𝜌𝜌𝜌𝜌𝜌𝜌𝑝𝑝
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where xi and zi are the coordinates of the polygon defining the shape of the submerged portion of the boulder. 
To obtain Iv, we substitute Equations 4 and 5 into the perpendicular axis theorem mentioned earlier and apply 
the parallel axis theorem by adding md 2. Here the parameter d is the distance from the center of displaced fluid 
mass (cx, cz) and the pivot point, which for polygons is calculated with the help of the method proposed by 
Bourke (1988): 𝐴𝐴 𝐴𝐴

2 = 𝑐𝑐
2
𝑥𝑥 + 𝑐𝑐

2
𝑧𝑧 because the pivot point is located at the origin (see 1). The mass m is calculated by 

m = ρaAp, where Ap is the area of the polygon describing the shape of the submerged portion of the boulder (in 
the x-z plane in 1) and is computed after Bourke (1988).

The sum of the moments on the right-hand side of Equation 1 is analogous to the sum of the forces on the right-
hand side of Newton's Second Law of Motion, or the conservation of linear momentum equation (F = ma). A 
moment is defined to be a force multiplied with its lever arm, defined as the perpendicular distance between the 
force vector and the axis of rotation. In our case, the forces that are important are the boulder weight W, buoyancy 
B, and the dynamic fluid forces–modeled here as drag force D and lift force L. For the general case, the weight of 
the boulder acts at the center of mass of the entire boulder, while the buoyancy acts at the center of mass of the 
submerged portion of the boulder. By this definition, the moment arm of the weight is the horizontal component 
of the center of mass of the entire boulder, while the moment arm of buoyancy is the horizontal component of the 
center of the submerged boulder mass (cx). In cases where the boulder is fully submerged, these centers of mass 
are coincident. The actual distribution of dynamic fluid force on a submerged body is complex, and we assume 
here the resultant dynamic fluid force is represented by a drag and a lift component (see Section 2.3) such that the 
lever arms for the drag and lift forces are respectively measured perpendicular to and in line with the upstream 
flow direction. For simplicity, we assume the magnitude of these lever arms is equal to one-half of the projected 
wetted area into the flow for drag and parallel to the flow for lift.

As given in Equation 1 and other aforementioned equations, the sum of the moments, ∑Ma, on the right-hand 
side is an important part of the equations of motion. In our case, the moments are, not surprisingly, related to 
drag (lDD), lift (llL), Weight (lW), and buoyancy (lBB). For drag and lift, we employ the classical quadratic form 
(see below). For Figure 1 provides an overview of how drag, lift, weight, and buoyancy relate to each other 
and how the respective levers are determined. Based on these relationships, the sum of the moments yields: 
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∑Ma = lDD + lLL + lBB − lWW. Note that the sum moments is adjusted to accommodate the slope, α, and for the 
case of partially submerged boulders.

2.2.  Governing Equations for Sliding

Sliding occurs in the proposed model in two ways: (a) sliding along the slope (x′) if the roughness δ is zero 
(along-slope sliding), and (b) sliding perpendicular to the slope (z′) (vertical sliding). Note that friction between 
the boulder and the slope will be considered, but describes a material behavior during the sliding process rather 
than a geometric characteristic of the setup; in other words, friction accounts for roughness elements that are  too 
small to prevent sliding along the slope. Furthermore, we assume vertical sliding is a dominant process only 
when roughness δ is nonzero and the center of mass of the boulder is initially located below the pivot point of 
the dislodgement movement, where we neglect vertical sliding otherwise. The equations of motion for sliding are 
conservation of linear momentum along the slope and perpendicular to the slope:

𝑚𝑚
d2𝑥𝑥′

d𝑡𝑡
2

= 𝐷𝐷 − 𝜇𝜇𝑥𝑥′ (𝑊𝑊 − 𝐵𝐵) cos 𝛼𝛼� (6)

𝑚𝑚
d2𝑧𝑧′

d𝑡𝑡
2

= 𝐿𝐿 − 𝜇𝜇𝑧𝑧′ (𝑊𝑊 − 𝐵𝐵) sin 𝛼𝛼� (7)

where μx′ and μz′ are the friction coefficients. The last terms in each equation represent the friction forces exerted 
by the surrounding ground (Equation 6) or the side of the roughness element with height δ (Equation 7) on 
the boulder, and is proportional to the boulder's net weight, W − B. Including the added mass effect, because 
the  boulder is fully or partially submerged, the full equations of motion are:

(𝑚𝑚𝑠𝑠 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑓𝑓 )
d2𝑥𝑥′

d𝑡𝑡
2

= 𝐷𝐷 − 𝜇𝜇𝑥𝑥′ (𝑊𝑊 − 𝐵𝐵) cos 𝛼𝛼� (8)

(𝑚𝑚𝑠𝑠 + 𝐶𝐶𝑚𝑚𝑚𝑚𝑓𝑓 )
d2𝑧𝑧′

d𝑡𝑡
2

= 𝐿𝐿 − 𝜇𝜇𝑧𝑧′ (𝑊𝑊 − 𝐵𝐵) sin 𝛼𝛼� (9)

where mf for the partially submerged case is again calculated after Bourke (1988). Equation 8 for along-slope 
sliding and Equation 9 for vertical sliding are applied respectively with the μx′ as a random parameter, and μz′ 
equal to one for simplicity (maybe make this a variable).

2.3.  Drag and Lift Forces

We employ the classical quadratic form of drag and lift forces, 𝐴𝐴 {𝐷𝐷𝐷𝐷𝐷} =
1

2
𝜌𝜌𝜌𝜌{d,𝑙𝑙}𝐴𝐴{d,𝑙𝑙}𝑢𝑢

2 where C{d,l} denotes the 
drag and lift coefficients, A{d,l} is the characteristic area on which the drag or lift coefficient is based, ρ is the 
water density, and u is upstream flow speed. As innocent as the quadratic forms for drag and lift appear, there are 
significant complexities hidden in A{d,l}, C{d,l} and even u.

Here, we take Ad as the boulder's projected wetted area into the flow and Al as the projected wetted area in-line 
with the flow. With the given boulder-axes definition in Figure 1 we can see that at rest for the fully submerged 
case, the area for the drag is a × c and for lift is a × b. For the partially submerged case, however, the area for 
the drag is calculated by a × η, where η denotes the water depth. When the boulder starts moving toward the 
dislodgement position, the boulder's characteristic areas for drag and lift may change. For example, in Figure 2b, 
the height of the area for drag is now much bigger because the rotating boulder is diagonally positioned in the 
flow. However, in the partially submerged case, the area related to the drag force does not change because it is 
simply controlled by the water depth. In the same fashion, the area related to the lift force changes as well. It is 
worth noting that in the partially submerged case, the orientation of the boulder as well as the water depth are 
important when calculating the drag- and lift-related areas.

Another important factor for drag and lift is the respective coefficients C{d,l}. Most commonly, both coefficients 
are determined for bodies at rest. Reported coefficients have been determined either with the help of experi-
ments or numerical models, by analyzing the forces, their respective effective area, and the present flow velocity. 
Therefore, choosing the most accurate value for both lift and drag coefficients is very difficult if not impossible 
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for any given water depth and boulder shape. To mitigate this apparent problem, we assume that the drag and 
lift coefficients are part of the uncertainty that boulder transport problems carry. This assumption enables us to 
employ both drag and lift coefficients as random variables (over given intervals) in a Monte-Carlo framework.

As mentioned earlier, most considerations of the quadratic lift and drag forces are for bodies at rest. However, in 
the problem of interest here the boulder is moving, either rotating toward the dislodgement position or sliding. 
Therefore, the fluid velocity u needs to be adjusted with the help of the respective boulder velocity. In the case 
of sliding, the adjustment is 𝐴𝐴 𝐴𝐴 −

d𝑥𝑥

d𝑡𝑡
 . For rotation toward the dislodgement position, we assume that the velocity 

adjustment can be expressed by the component of the velocity at the boulder's center of mass that is in-line with 
the slope. The velocity in the quadratic drag and lift forces can thus be replaced by 𝐴𝐴 𝐴𝐴 −

d𝑥𝑥′

d𝑡𝑡
|𝐺𝐺 , where subscript G 

marks the center of gravity.

2.4.  Conditions for Boulder Dislodgement

In the case of rotation, the dotted rectangle in Figure 1 illustrates the critical position for permanent dislodge-
ment; namely the location when the static (no flow) moments sum to zero, Ix + Iz = 0, beyond which the boulder 
overturns when the dynamic fluid forcing is removed. Even when rotation occurs, if the sum of the moments in 
Equation 3 become and remain smaller than zero before the boulder reaches this critical position, the boulder will 
move back to its original position (Weiss & Diplas, 2015) and will not dislodge.

For the fully submerged case, the moment levers for the weight and buoyancy are both located at the center of 
mass of the boulder, and when the boulder reaches the critical position for dislodgement, both moments arms 
become zero. However, the situation for the partially submerged case is different because the moment arm for 
the weight is related to the center of mass of the entire boulder (black circle in Figure 2d), but for the buoyancy 
moment arm the reference point is the center of mass only of the submerged part (red circle in Figure 2d). Both 
centers of mass can be situated at different vertical distances from the pivot axis of the boulder rotation.

While this condition is generally applicable to all rotation cases, for the fully submerged case, the critical angle, 
as depicted in Figure 1 is

𝜃𝜃𝑐𝑐 =
𝜋𝜋

2
− 𝛼𝛼 − arctan

(

𝑐𝑐∕2 − 𝛿𝛿

𝑏𝑏∕2

)

� (10)

while Equation 10 is strictly valid only for a fully submerged boulder, we observed a negligible difference in 
predicting dislodgement when using the critical angle condition for the fully submerged case as the critical 
condition for the partially submerged case; specifically, differences between the actual and estimated criteria for 
partially submerged conditions only changed the timing of when the dislodgement occurred but did not change 
whether dislodgement occurred. Because of that fact, we argue the difference can be ignored, and we employ the 
critical angle in Equation 10 in all our computations. If the boulder exceeds the critical angle of rotation, θc, and 
can no longer move back to its original position, we refer to this situation as dislodgement by rotation.

To define a dislodgement criterion for along-slope sliding is more complicated. For simplicity, we refer to the 
case where the boulder slid the distance equivalent to axis b or more during the interaction with the flow as 
dislodgement by sliding. In the situation where neither dislodgement by sliding nor rotation occurs, and to be 
complete, we simply refer to no dislodgement.

2.5.  Other Random Parameters and Monte-Carlo Framework

As stated in Section 2.3, the drag and lift coefficients are treated as random parameters sampled from given 
intervals. In the case of sliding, the friction coefficient is equally difficult to determine robustly. We, therefore, 
treat the friction coefficient as a random parameter following the same arguments as the drag and lift coefficients.

Another important parameter that carries significant uncertainty is the added or virtual mass coefficient Cm, 
especially comparing the fully submerged and partially submerged cases. For simple geometries, such as a sphere 
or cylinder, constants for Cm have been characterized and reported in every Fluid Mechanics textbook. However, 
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rectangular cross-sections, especially in the presence of roughness, have not been well studied. There seems to be 
no standard method for estimating the actual value during the motion process. Therefore, we also treat the added 
mass coefficient Cm as a random parameter.

The remaining random parameters include the bulk density of the boulder ρs, flow depth η, and flow speed u. All 
parameters that are considered random parameters are sampled, in here, with uniform probability between given 
minimum and maximum values.

There are a total of seven random parameters considered herein in the Monte-Carlo framework. Instead of creat-
ing a seven-dimensional parameter space, we chose to randomize each random parameter for each realization. 
The dimensions of the boulder (axes a, b, and c) are important input parameters that, we assume are determined 
in the field with some level of accuracy or estimated with some level of confidence. It should be noted that setting 
up all or either of the boulder dimensions as a random parameter in the Monte-Carlo framework can be accom-
plished with little programming effort.

3.  Results
3.1.  Time Series of Boulder Movement

Figure  3 depicts the motion of a boulder toward the critical conditions for dislodgement for slope angles of 
α = 0° and α = 10°. For the 5 illustrative cases shown in this figure, the mass is constant. The initial positions 
are depicted as solid rectangles; while the dislodgement positions are indicated by a dotted rectangle. A simple 
rotation without roughness δ is shown in Figure 3a (case I refers to α = 0° and case II to α = 10°). Both curves 
end when the critical angle is reached. Comparing cases I and II, we can see how the critical angle increases 
as the slope increases, but also the profound effect the slope has on the time needed for the boulder to reach 
the critical position for dislodgement. In this example, the critical position for dislodgement is reached after 
t(θ = θc) ≡ tc = 1 s for case I and tc = 2.4 s for case II.

Figure 3b shows the impact of roughness. Case I is the same as in Figure 3a. Case III is likewise for a slope 
angle of α = 0°, but additionally includes roughness that exceeds the vertical position of the center of mass. As 
mentioned earlier, it is physically impossible for the boulder to rotate toward the dislodgement position from its 
initial position in this case because a positive moment for the drag, for example, cannot be achieved. For a boulder 
to be dislodged from this position, the boulder has to slide vertically until a positive moment is possible, which at 
a minimum occurs when the vertical position of the center of mass is in line with the pivot point. In this case, we 
can also easily see that for α = 0° (dashed rectangle), the critical angle is 𝐴𝐴 𝐴𝐴𝑐𝑐 =

𝜋𝜋

2
 . The vertical sliding takes time 

and increases the time when the boulder reaches the critical position for dislodgement to tc = 4.0 s.

Figure 3c shows sliding as the dislodgement mode for the case when δ = 0. The critical distance that the boulder 
has to slide is set to half of the boulder width. Case IV refers to the horizontal slope case (α = 0); while the slope 

Figure 3.  Time series of different dislodgement scenarios up to the point when the critical position for dislodgement is 
reached: (a) rotation for slope angles of α = 0° (I) and α = 15° (II) (higher hydrodynamic forcing than in dislodgement 
by sliding case), (b) rotation with vertical sliding when roughness δ > 0.5c (the highest hydrodynamic forcing needed for 
dislodgement), and (c) along-slope sliding for slope angles of α = 0° (I) and α = 15° (II) (the lowest hydrodynamic forcing 
resulting in dislodgement). The curve marked with I in (b) refers to the case I in (a), indicating rotation on a horizontal plane 
for comparison.
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for case V is α = 10°. We can see that the impact of the slope on when the critical position is reached is not as 
dramatic as it is for cases I and II.

3.2.  Dislodgement by Sliding and Rotation

A boulder can dislodge either by rotation or sliding. Dislodgement by sliding is only possible if the roughness δ 
is zero, while rotation is possible for all roughness values. Figure 4 depicts example results with varying slopes 
and roughness values. For these numerical experiments, the boulder bulk density is kept constant at ρ = 1800 kg 
m −3, and the boulder dimensions are 2 × 2 × 2m. The flow depth ranges from 1 to 20m, and the flow speed ranges 
from 0.5 ms −1–15 ms −1. Note that the bulk density of boulders can vary significantly and the value assumed for 
these numerical experiments represents a representative average between very low bulk densities and higher bulk 
densities for boulders. Higher bulk densities for boulders were employed in Cox et al. (2020); while a cautionary 
tale was told in Spiske et al. (2008) how porosity can lower the density significantly.

For Figure 4a, both roughness and slope are zero, which enables dislodgement by sliding alone (green) and by 
both rotation and sliding (orange). For dislodgement by sliding, the flow speed varies between 3.1 ms −1 for the 
lower boundary to the no-dislodgement cases (in blue) and 4.7 ms −1 for the transition to the area in the u − η 
phase space where both dislodgement by both rotation and sliding can occur for flow depths larger than 2.0 m, 
which coincides with the height c of the boulder. For flow depths smaller than 2.00 m, the dislodgement flow 
speed increases linearly from 3.1 ms −1 for η = 2.0–7.9 ms −1 for η = 1.00 m for the transition from no dislodgement 
to dislodgement by sliding; while the transition from dislodgement by sliding only (green) and dislodgement by 
both rotation and sliding (orange) increases from 4.7 ms −1 at η = 2.00 m to u = 10.7 ms −1 at η = 1.00 m. The 
roughness is zero and the slope is 10° for Figure 4b. The transition of constant to linearly increasing flow speeds 
takes place at η = 2.0 m for dislodgement by along-slope sliding and rotation (green). Dislodgement by sliding 
occurs between 3.5 ms −1 and 5.0 ms −1 in the constant part, and increases to the same values as in Figure 4a (lower 
Part 7.9 ms −1, upper Part 10.7 ms −1). Dislodgement by rotation takes place for flow speeds exceeding the upper 
boundary of the dislodgement by sliding interval.

In Figure 4c, where the roughness is 0.8 m and the slope is zero, the transition to a constant flow speed for 
increasing flow depth also takes place at η = 2.00 m. The transition between no dislodgement and dislodgement 
by rotation occurs at a flow speed of u = 5.5 ms −1. The flow speed increases from 5.5 ms −1–7.0 ms −1 from 
η = 2.00 m to η = 1.00 m. In Figure 4d, the roughness is 1.4 m and the slope is 10.0°. In this case, the rough-
ness requires that vertical sliding as described in Section 2.2 lifts the boulder up to a position where it can be 
dislodged. The minimum flow speed for dislodgement is now constant at 7.9 ms −1 for all flow depths.

3.3.  Dependence on Roughness and Slope Angle

Figures 4a–4c indicates the importance of roughness and slope, a topic that was also assessed by Weiss (2012) 
for spherical boulders. Assuming a Froude number Fr = 1.0, Figure 5 depicts dislodgement as a function of 
normalized flow depth and roughness in Figure 5a and normalized flow speed and roughness in Figure 5b for 

Figure 4.  Flow depth - flow speed plot showing no dislodgement (blue), dislodgement by sliding only (green, occurs only when δ = 0.0 m) and dislodgement by 
rotation (orange; includes both rotation and sliding when δ = 0.0 m only) for different roughness values, δ, and slopes, α: (a) δ = 0.0 m, α = 0.0°, (b) δ = 0.0 m, 
α = 10.0°, (c) δ = 0.8 m, α = 0.0°, and (d) δ = 1.4 m, α = 10.0°. Note the boulder dimensions were held constant at 2 × 2 × 2m with a bulk density of ρ = 1800 kg m −3.
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slope angles from −10° to 10°. For the normalized flow depth as the function of roughness, we see that there is a 
nonlinear relationship between flow depth and roughness. Furthermore, we can detect that positive slope angles 
(per definition in Figure 1, uphill) exhibit a higher-magnitude, but over a much narrower band of flow depth,s 
for dislodgement than negative angles (downhill). For positive angles, the narrow flow-depth band becomes even 
more narrow for larger roughness values. Interestingly, for negative slope values, we find that the flow-depth band 
widens as the roughness increases.

The relationship between the normalized flow speed needed for dislodgement and roughness is likewise nonlin-
ear, while, as in the relationship between flow depth and roughness, the flow-speed band for positive slope angles 
has a higher magnitude and is much narrower than for negative flow angles. The width of the flow speed band 
for positive slope angles appears to remain constant; while the flow speed generally increased with increasing 
roughness (roughness/c-axis of boulder). The increase in flow speed occurs in a linear fashion up to a roughness 
of 0.74 and then doubles from there onward to a roughness of 1. The flow-speed band for negative slope angles 
has a similarly complex behavior as its narrowest range occurring at the lowest roughness of 0.17, then the range 
of the flow speed band increases moderately up to a roughness of 0.74.

4.  Discussion and Conclusions
We presented a new model that is based on the conservation of angular momentum for dislodgement by rotation, 
and an adapted version of Newton's Second Law of Motion for dislodgement by sliding. Recall that dislodgement 
by sliding is only possible if there is no obstruction, herein roughness (δ = 0.0 m), in front of the boulder. The 
basic idea of using a time-dependent motion of the boulder to a critical point for dislodgement is extended from 
Weiss and Diplas (2015), especially the rotation part is in comparison to Weiss and Diplas (2015) much more 
complete by considering partially submerged boulders and by considering rectangular prisms rather than spheres. 
It should be noted that the model proposed herein can readily be extended to other geometric shapes as well. An 
important addition to simulating dislodgement by rotation is the inclusion of vertical sliding so that rotation is 
possible even if the boulder's center of mass is initially below the pivot point. Namely, the inclusion of vertical 
sliding enables the flow to lift the boulder upward until its center of mass is at the height of the pivot point, at 
which time a positive moment is possible. As far as we know, no existing boulder models consider this impor-
tant process, which is especially important for quarrying boulders from their original stratigraphic units, such as 
described in Switzer and Burston (2010), and references therein.

Our simulation results presented in Figures 4 and 5, lead to conclusions about the importance of mass, slope, and 
roughness in front of the boulder that are similar to those presented in Weiss (2012), Weiss and Diplas (2015), 
and Weiss and Sheremet (2017). For our presumed boulder shapes, our results indicate that the roughness is a 
much more sensitive parameter compared to the slope. Figure 5 reveals a nonlinear influence of roughness on 

Figure 5.  Normalized flow depth (a) and flow speed (b) for dislodgement by rotation as a function of roughness for a range of slopes (−10° ≥ α ≤ 10°). A Froude 
Number of Fr = 1.0 is assumed in this analysis.
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flow speed and flow depth, but also a nonlinear influence of the slope, which is interesting given the simplicity 
of our approach. While Nott (2003) was the first one to highlight the importance of environmental conditions for 
boulder dislodgement, Cox et al. (2020) discussed shortcomings in approach that was proposed in Nott (2003).

The exhibited constant flow speed threshold for dislodgement over part of the flow depth interval as shown in 
Figure 4, gives rise to the possibility to present the results as a range of possible flow depths for a meaningful flow 
speed interval or Froude number, in the absence of flow depth markers. However, if flow-depth markers exist, it 
can help to better characterize hydrodynamic processes also by means of the Froude number, and thereby also be 
used to check that the ranges of the parameters were chosen to represent the environmental and flow conditions 
sufficiently well.

Aside from our results, the model that we propose is a significant improvement from previous models in that 
the possibility to create ensemble and Monte-Carlo-type simulations enables us to include a range of possible 
transport-related parameters and environmental conditions for boulder transport. Variability of initial conditions 
or environmental parameters can also be sampled from the distributions, creating Monte Carlo simulations. This 
flexibility is important and generates an exploratory model framework that helps us to better understand the 
sensitive parameters of boulder transport, and if combined with field data a more robust inversion of flow condi-
tions for boulder transport, especially for situations in which environmental parameters, such as slope and rough-
ness in front of the boulder have to be estimated with considerable uncertainty.

Data Availability Statement
The code for the model and the scripts to produce all figures can be retrieved from github: https://github.com/
weiszr/MonteCarloBoulder.git and https://zenodo.org/badge/latestdoi/447757657. This research was partially 
supported by NSF-GLD-1630099 and NSF-DGE-1735139.
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