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Abstract—1If the public’s adherence to social distance mea-
sures remained steady during an outbreak, the number of
cases would have a single peak followed by a sharp decline
according to standard epidemiological models. Nonetheless,
during COVID-19 the initial rise and fall in the number of cases
followed new waves of cases in many localities. In this paper,
we explore a standard susceptible-exposed-infected-recovered
(SEIR) epidemiological model coupled with an individual be-
havior response model that modulates the contact rate. A game
with payoffs determined by the state of the disease captures
the public’s incentive to comply with the social distancing
measures. We use replicator dynamics to model the response
to changes in incentives. Using SEIR dynamics coupled with
replicator dynamics, we identify a set of dynamics that can
lead to growing oscillations in the number of cases until herd
immunity is reached. According to the dynamics, an increase in
the number of infected individuals changes the payoffs such that
the public’s cooperation level eventually increases. Increased
cooperation levels is followed by a reduced number of cases
in the community, which then reduces the public’s incentive
to cooperate. The decrease in the cooperation levels causes the
number of cases to rise again. These waves correspond to cycles
between cooperation and defection behavior, and the rise and
fall of the number of the infected individuals. The proposed
model also provides a proper tool to study the effects of the
public health policies that aim to curb the growth in number
of cases by providing incentives to cooperate.

I. INTRODUCTION

Peak-centered paradigm spurred by Farr’s law [1] and
conventional compartmental epidemic models for emergent
infectious diseases became obsolete during the COVID-19
outbreak where many localities experienced multiple peaks
with subsequent peaks larger than the initial one. These
observations have brought focus on the role of public behav-
ior. Indeed, recommended public health polices and public’s
compliance with these measures have evolved over time, as
indicated by Google mobility data and documented by recent
studies [2], during the pandemic. These changes in behaviors
and multiple peaks observed elicit further investigation into
the relation between behavior changes and disease spread
dynamics.

Standard epidemic models represent individuals in com-
partments according to the state of the disease they are
in, e.g., susceptible, exposed, infected, recovered [3]-[5].
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Fig. 1. An SEIRS model coupled with evolutionary behavior feedback.
(Top) Cooperation with social distancing measures depend on the game
payoffs and replicator dynamics. (Bottom) Cooperation level of the pop-
ulation (z) determines the transmission rate in the SEIRS dynamics. The
payoff parameters depend on the current ratio of infected (z) through the
environment state (n).

According to these models, if the inherent transmission rate
of the disease is faster than the healing rate, the disease
would grow exponentially in a predominantly susceptible
population until a certain fraction of the individuals become
immune, i.e., until herd immunity is reached. After herd
immunity, some individuals would still get infected but the
number of daily cases would begin to decrease exponentially.
These models lead to a ‘single-peak’ in theory.

Public’s willingness to cooperate with the recommended
public health measures, i.e., social distance, has direct effects
on the disease spread and depends on the risk perception of
the disease [6], [7]. If enough people cooperate, then the
disease can go to a decline phase before herd immunity is
reached. This decline in the number of cases can reduce the
incentive to comply with the public health recommendations.
In such a setting, a drop in cooperation with the public
health measures can lead to resurgence of the disease in the
population.

In this paper, we propose a mechanistic model for public’s
cooperation with the recommended measures that is coupled
with the disease prevalence. The cooperation level of the pop-
ulation evolves according to replicator dynamics, in which
the frequency of cooperators in the society increases if the
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benefit of the cooperation is larger than defection (not taking
the public health measures). The payoff from cooperating
depend on the public’s current cooperation level and the
disease prevalence, i.e., a function of the number of cases.
We consider payoffs such that defection is the dominant
strategy when the environment is good, i.e., disease-free.
As the disease prevalence increases, i.e., as the environment
becomes risky, payoffs change such that cooperation is
preferred—see Figure 1(Top).

We model the disease progression in the society using an
SEIRS model where the flow from susceptible to an infected
state is proportional to the product of fraction of individuals
in susceptible and infected states [8]. The frequency of
cooperators in the society regulate this flow. In addition, we
consider loss of immunity, that is recovered individuals may
transition back to being susceptible after some time—see
Figure 1(Bottom).

We identify the disease free and endemic equilibria of the
evolutionary social distancing model with disease feedback
and study their stability properties. In particular, we find that
in the endemic equilibrium in which a positive fraction of
the population cooperates, the endemic disease level depends
on how fast the payoffs change as a function of the number
of cases. When the society is more responsive to changes in
the number of cases, the number of cases is lower at the en-
demic equilibrium. In characterizing the disease and behavior
trajectories for general payoff matrices, we identify growing
surges until herd immunity is reached in settings where the
selection strength for cooperators is strong when the disease
prevalence is high. This behavior, recently documented in
evolutionary games with environmental feedback [9], [10], is
termed as the oscillating tragedy of the commons stemming
from Hardin’s tragedy of the commons in populations driven
by selfish interests [11]. We also identify that the total
outbreak size tends to decrease as the sensitivity of the public
to changes in the case counts increases.

In our model we use social distancing behavior in general
terms to refer to any behavior that aims to limit the risk
of an interaction, e.g., wearing masks, standing 6ft. apart
etc, similar to some of the earlier epidemic models that
incorporate individual behavior response [12]-[21]. Some
of the recent compartmental disease spread models that
incorporate behavior response, e.g., [17], [19], showed that
behavior changes can drive the epidemics toward exhibiting
oscillations and plateaus. Similar to the model proposed
here, an evolutionary dynamics driven behavior coupled with
disease spread dynamics is proposed in [19], [21], [22].
These models, similar to the one proposed here, can exhibit
diminishing or growing oscillations until herd immunity.
Our contribution involves a characterization of all possible
dynamics that can arise based on the set of all possible payoff
values (games). In addition, we provide a characterization of
the stability of the disease free state, and identify endemic
equilibria in which endemic disease level is modulated by the
public’s cooperation level. The evolutionary game-theoretic
modeling framework is amenable to any compartmental
epidemic model, not just SEIR, and thus can be relevant

in modeling other infectious disease outbreaks. Lastly, the
model can be used to estimate population’s perception of
the costs and benefits of social distancing measures using
publicly available data, e.g., hospitalization counts, which
then can be used to forecast the disease trajectory or can aid
in designing public health communication campaigns.

II. EVOLUTIONARY SOCIAL DISTANCING WITH DISEASE
FEEDBACK IN AN SEIRS MODEL

We consider an SEIR model with loss of immunity, i.e., an
SEIRS model, where upon contracting the disease from an
infectious individual, the susceptible (s) individuals transi-
tion to exposed (e), infected (2), recovered (r) and then back
to susceptible state due to loss of immunity, respectively—
see Fig 1. We use s, e, 7, and r to represent the fraction of
the population in the corresponding compartment.

We represent the environment with n, which is a linear
transformation of the fraction of infected,

n(i) =ny — €l 1

where ng € [0,1] and € > 0 are constants. The constant
no is the risk perception of the population when there is no
infection (¢ = 0). The constant € is the rate of decrease in the
environment state per increase in the fraction of infected. In
a sense, € measures the sensitivity of the public to changes
in the case numbers. Throughout the paper, we choose ng
and e such that n(i) > 0 for all ¢ values. Note that when
no =1 and e =1, n(0) € [0,1] since 7 € [0, 1].

The current state of the environment determines the in-
centives of individuals captured by a symmetric 2 X 2 game
where the strategies are cooperation (C) and defection (D),
and the payoff is given by

o RO So Rl Sl
A, =(1-n) |:TO PJ +n {T1 P1:| ) 2)

The payoff above is a convex combination of two games.
When the environment is bad, the game payoffs are given
by the first matrix Ay above. When the environment is good,
the game payoffs are given by the second matrix A; above.
As per (1) and the fact that ¢ = 0 is the good environment,
the payoff matrix when the environment is given by A,
with elements defined as R,, = (1 — ng)Ro + noR1,
Sne = (I —ng)So + noS1, Tny = (1 —no)To + noTh,
and P,, = (1 — ng)Po + noPy. In the good-environment,
we assume R,, < T,, and S,, < P,, which ensures
that defection from taking the recommended public health
measures is a dominant strategy. We will refer to A, or
Aj as the prisoner’s dilemma game. We do not impose any
restrictions on the payoffs in the bad-environment game Aj.

Given the game A,, the payoffs of a cooperator and
a defector in a population with x € [0,1] fraction of
cooperators are respectively given by

fe(z,n) = Rz + S, (1 — x), and 3)
fo(z,n) =T,z + P,(1 —x), )

where R,,, S,, T, and P, are as previously defined for
any environment value n € [0, 1]. We assume the fraction of
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cooperators in the population evolve according to replicator
dynamics [23],

& =x(1 —z)(fe(z,n) - fp(z,n)). o)

According to the replicator dynamics, the fraction of cooper-
ators increases if the payoff of a cooperator is larger than the
payoff of a defector, i.e., if fc(z,n) > fp(x,n). Through
the dependence of n on the disease prevalence 7 in (1), the
fraction of cooperators depend on the state of the disease.

The fraction of cooperators x captures the ratio of in-
dividuals complying with the recommended public health
measures, i.e., social distancing, in the population. The
modified SEIRS dynamics with social distancing behavior
is as follows

§=—B(l—x)i-s+p-m (6)
e=081—-2x)-i-s—n-e, 7
i=n-e—a-i, (8)
r=Qq-t— -, )]

where 3, 1, a, and p are disease specific positive valued
parameters respectively representing the rate of infection,
incubation, healing, and immunity loss. In (6), an increase in
the frequency of cooperators x reduces the transmission rate.
This reduction in turn leads to a reduction in the infection
level, which means a better environment. A better environ-
ment changes the payoffs moving the payoffs closer to A;
in which the defection is a dominant strategy. The constants
ng and € in (1) determine how close the game gets to A; and
how fast the game approaches Aj as a function of the ratio
of infected in the population, respectively. We analyze the
equilibria of the dynamics (5)-(9) and the emerging dynamics
with respect to these parameters next.

ITII. EQUILIBRIA OF SEIRS DYNAMICS WITH SOCIAL
DISTANCING

The feasible region of the dynamics in (5)-(9) is A =
{(e,i,r,x) € Ri|0 <e+i+r <1,0<z <1}, which
is positively invariant, i.e., given any non-negative initial
solution in A, the dynamics remain in A. We note here that
s(t) +e(t) +i(t) +r(t) =1 for all ¢ > 0 and the dynamics
in (6) is redundant. We restrict our analysis to the A region.

A. Disease-free equilibria (DFE)

The population is disease free when e(t) + i(t) = 0 for
all ¢ > 0. In the disease free setting where ¢ = 0, there are
three values that make @ = 0 in (5) are {0, z;,,¢, 1} where

P’ng _S’ﬂg

int — 10
Fint Rn07T7lo+(Pno ( )

- Sno)

is obtained by finding the value of = such that fc(z,ng) —
fp(x,np) = 0 in (5). Note that when ¢ = 0, we have n = ng
by (1). Based on the assumption that A, is a prisoner’s
dilemma game (R,, < T}, and S,, < P,,), we have either
Tint > 1 or x;ne < 0. Thus, the interior equilibrium
does not exist. Accordingly, we have the following disease
free equilibria pg := (¢ = 0,i = 0,7 = 0,2 = 0) and

p1 = (e =0,i = 0,7 = 0,2 = 1). Next, we analyze the
stability of the two equilibria.

Lemma 1 Consider the two DFE pg and p1. If § —a <0,
then pg is locally stable. The equilibrium p1 is not stable.

Proof: The Jacobian matrix of (5)-(9) at an arbitrary point
p = (e, i,r,x) is given by

-n B(l—xz)s 0 —pPis
n -« 0 0

=0 o 4 0 (11)
0 Bh(ami,n) 0 Bhéxm,n)

where s = 1—e—i—r, and we define h(z,n) as the replicator
dynamics in (5) to simplify exposition. At point p = pg, we
have 24| = 0 and Z2GE | = fe(0,m0) — fp(0,mo).
The characteristic equation at pg is given by

(At 1) (P — S + N (0 -+ @+ X) — B) =0 (12)

When § — a < 0, all the solutions to the above equation
have negative real parts.

At point p = p;, we have ahsfi’") lpp = 0 and
6hé“;’") pr = —fe(1,n0)+ fp(1,n0). Then the characteristic

equation at p;p is given by

()\ + ,UJ)(SnO - Pn,o + /\)(T) + )\)(Oé + A) =0

13)

which has a positive solution, A = P,,, —S,, > 0. Thus p;
is not stable. ]

According to the model, the disease spread can completely
stop if the fraction of cooperators in the population is 1
(z = 1). The above result shows that this equilibrium point
p1 is unstable. The reason for the instability of p; is the
replicator dynamics, and the assumption that the defection is
the dominant strategy in the good environment. Despite the
instability of p;, the disease-free states (e = 0 and ¢ = 0) is
asymptotically stable if 5 — « < 0 as we state next.

Lemma 2 If § — a < 0, then the disease free manifold
Dy ={p € Ale+i =0} is globally asymptotically stable.

Proof : The set Dy is positively invariant. Consider the
Lyapunov function V' = e+ where V' > 0 for any e+4 > 0
and V = 0 for all p € Dy. Differentiating V' along the
dynamics, we get
Ui ai(B

—e—i—z—az(a(l—x)s—l) (14)
where s = 1 — e — ¢ — r. Given the assumption, we have
V < 0 for all p € A\ Dy. Moreover, V(p) = 0 when
p € Dy since i = 0. Thus, the global asymptotic stability
follows by La Salle’s invariance principle. [ ]

The above result implies that if the inherent disease
dynamics is such that the disease will be eradicated, i.e.,
8 — a < 0, the behavior dynamics do not affect the stability
of the disease free state.
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B. Disease-free equilibrium in the absence of loss of immu-
nity

We consider SEIR dynamics where ¢ = 0 in (6)-(9).
In this setting, we cannot have a sustained epidemic, i.e.,
i(c0) = 0. Still, a large fraction of the population can be
infected by the time the disease disappears. In this setting,
we care whether the disease will invade or die out quickly.
Considering the change in e 4 7 in (14), we have that the
exposed and infectious individuals will decay exponentially
if there exists a time #¢ such that S(1 — z(to))s(to) < «
for t > to. If B(1 — z(to))s(to) > « at time ¢, the disease
will grow exponentially around time ¢y. If 8 < «, we have
that 8(1 — z) < « for any x € [0, 1]. Thus, the disease will
exponentially decrease for any initial condition = and s if
8 < «a [24].

If B > «, then for initial conditions where x =~ 0 and
s =~ 1, the disease will grow exponentially. In this setting,
the population reaches herd immunity when s(t) = «a/p.
After herd immunity is reached, the fraction of exposed
and infected individuals will exponentially decrease to zero
regardless of the social distancing actions in the population.

C. Endemic equilibria

In this section, we characterize the fraction of individuals
in each compartment when the disease is endemic, i.e.,
e(o0) > 0 and i(oc0) > 0.

Lemma 3 Suppose f — a > 0. We have the following
endemic equilibrium under full defection, i.e., x* = 0,

* o Q. o * Q.
s*=—,e"=—i", "= (11— =), rF=—1", (15
B 5 Iz
— i
where ¢y 1= P,

The proof follows by letting z* = 0 and solving for
the s,e,i,r values that make the right hand side of the
SEIRS dynamics in (6)-(9) equal to zero. In this endemic
equilibrium, the behavior has no effect since all individuals
are defecting. Indeed, we recover the standard SEIRS model
where the endemic equilibrium (15) is stable when 5—a > 0.

When the population is fully cooperating, i.e., when
z* =1, there does not exist an endemic equilibrium, which
means the disease will be eradicated. Next, we focus on the
interior fixed point of the replicator dynamics that satisfy
fe(z,n)— fp(x,n) = 0. For a given « € (0, 1), we have the
environment value that makes fe(x, nint) — fp (2, Nint) =0
as follows,

(1 — x)55p0 + 20rT,
1—2x)(dps, + (55130) + x(drRr, + OrT,)

where dsp, = So — Fo, 0rt, = Ro — To, 0ps, = P1 — 51
and drr, = 11 — R;. Given the n;,; value, we have the

(16)
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Fig. 2. Sustained oscillations and stable endemic equilibrium with loss of
immunity (Left) u = 1/45 and (Right) 4 = 1/90. Top figures shows infec-

tion ratio ¢ and cooperation frequency x values over time. Bottom figures
show the phase plot of 7 and x. Payoff and disease parameters, and initial

L. . |35 1 _10.5 1 _
conditions are as follows: Ag = 2 0.25 VAL = 1 1.95| ™0 =
0.8, = 2,8/a = 4,7 = 1,s(0) = 0.95,e(0) = 0.02,i(0) =

0.03,7(0) = 0,z(0) = 0.5. Starting from near equilibrium levels in ¢ and
x, the oscillations grow and then decline before converging to the endemic
infection levels. The interior equilibrium of cooperation frequency becomes
stable at a faster loss of immunity (compare left and right).

where ¢ is as defined in Lemma 3. We have the fraction of
cooperators given by
al
r=1——-.
Bs
In the above equations we expressed e, r, and s in terms of
¢ which is written in terms of n;,; given in (16). From the
equations in (17), we can solve for x in (18) after substituting
1 into the equation for s, and then substituting the right hand
side of the equation for s into (18) to get,

(18)

« €

r=1—-—
ﬂ € — Co(no - nint)

19)

where n;,; is given in (16). In the general case, the equation
above leads to a quadratic equation. Below we characterize
the endemic equilibrium for a specific class of payoffs.

Lemma 4 Consider the following payoff matrix at a given

n value
T P R S
(1—n){R S}—i_n{T P]'

where R > S, and T > P. Assume 3 —a > 0 and ng > 0.5,
then the endemic equilibrium is as follows,

A, = (20)

following set of equations that is satisfied by an endemic ¢ T co(no —0.5) R s L 0.5 =
equilibrium, B ) n’ Y P
nog — Nint « (0% (21)
=——,e=—1, r=—1%, s=1—co1, 17)
€ n and ©* = 1— %m with constant cq := m
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Summary of the dynamics given all possible combinations of payoff matrix values in a bad environment. The plots inside each region show a

,e = 2,n9 = 0.8,s(0) = 0.99,¢(0) = 0.01,4(0) = 0,7(0) = 0,2(0) = 0.7,8/a = 5, = 0,n = 1. From the Oscillating

characteristic phase Tlot between ¢ and x for the corresponding payoff matrix values. Payoff and disease parameters, and initial conditions are as follows:

T

. . . 3.9 1 2.7
TOC moving counter clockwise, these matrices are: 9 0'25} s [ 9

1.25

3 1 3 1 2.5 1 .
} s |:3.2 125} s [3.2 0.25] s { 9 0.25].The number of oscillations

increase as the strength of selection for cooperators in replicator dynamics increases, eventually yielding growing oscillations.

Proof: Given the payoffs in (20), we have that n;,; =

0.5 for any x value. The relations in (21) follow from the
equations in (17) when we plug in n;,: = 0.5. [ ]
The specific class of games, we consider has a form of
symmetry such that cooperation is a Nash equilibrium when
n = 0, and defection is a Nash equilibrium when n = 1.
Moreover, the embedded symmetry makes sure that n;,; =
1/2 regardless of the value of x. We see the effect of the
rate of decrease in the environment state € on the endemic
equilibrium levels. When ¢ is larger, there is a larger change
in the payoffs per unit change in the fraction of infected.
That is, the population responds stronger to the change in the
fraction of infected. According to the endemic equilibrium
in (21), a larger € leads to smaller fraction of exposed and
infected, and thus a larger fraction of susceptible individuals.
The symmetry in the payoffs in (19) also makes sure that
the swing from cooperation dominant to defection dominant
payoffs is at the ‘right balance’ to induce another wave of
infections. Indeed, when the ratio (77 — Ry)/(P1 — ) is
equal to (Ry — Tp)/(So — Py), periodic oscillations around
the interior equilibrium are observed in the coupled evolu-
tionary dynamics considered in [9]. In [9], the environmental
dynamics is a first-order differential equation that increases
with enough cooperators and otherwise depletes. Here, we
observe a similar phenomenon of sustained oscillations when
the environment dynamics follow (8) in an SEIRS model—
see Fig. 2. The payoff parameters in Fig. 2 are such that
(Th — Ry)/(PL — S1) = (Ro — To)/(So — Py). Moreover,

observe that as the average loss of immunity increases from
w = 1/45 to p = 1/90, the interior equilibrium z* > 0 is
no longer stable.

IV. MULTIPLE PEAKS UNTIL HERD IMMUNITY IN THE
ABSENCE OF LOSS OF IMMUNITY

The loss of immunity is at least 6 months in COVID-19
infections barring new variant introductions, meaning that p
is much smaller than the values considered in Fig. 2. In this
section, we characterize the trajectories of ¢+ and x when loss
of immunity is ignored (¢ = 0) under general payoff matrix
values for the bad environment state, i.e., Ag.

There are four cases considering relative values of R
and Tp, and Py and Sj that may affect the game type and
the evolutionary dynamics. First, Ay is an anti-coordination
game when Ry < Tp and Sy > FPy. In an anti-coordination
game, there exists a mixed Nash equilibrium, i.e., an interior
fixed point of the replicator dynamics in the form given in
(10) replacing ng with 0. Second, Ay is a coordination game
with Ry > Ty and Sy < Py. The coordination game also has
a mixed Nash equilibrium, i.e., an interior fixed point of
the replicator dynamics in the form given in (10) replacing
no with 0. The mixed Nash equilibrium is unstable under
replicator dynamics. In the third case, we have cooperation
dominant game when Ry > Ty and Sy > Py. The fourth
scenario is the defection dominant setting with Ry < T and
So < Fo.

We summarize the characteristic dynamics of each region
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in Fig. 3. We note here that we do not consider loss of
immunity, i.e., p = 0, thus the disease eventually reaches
an exponential decline phase once herd immunity is reached
in all the scenarios as per the discussion in Section III-B. In
the coordination and defection dominant scenarios for Ag, we
observe that there is a single peak, and the population defects
starting from x(0) > O—see the tragedy of the commons
(TOC) in top-left and bottom-left quadrants of Figure 3. The
defection is faster when the game is defection dominant. In
the event that A, is an anti-coordination game, we observe
a response from the public in increasing the fraction of
cooperators when the number of the cases ¢ increases. This
response leads to diminishing oscillations in the number of
cases. However, the increase in the cooperator frequency is
not strong enough to induce multiple oscillations before herd
immunity is reached—see Figure 3 bottom-right quadrant.
In the cooperation dominant case, the increase in cooperator
frequency is stronger leading to multiple diminishing oscil-
lations in the region where

Th—R _ Ry—Tp

P =S~ So—-P
Note that in Fig. 2, we analyzed the same case in which the
above relation is satisfied with an equality when the loss of
immunity exists. There, the system converged to an endemic
equilibrium after growing and then declining oscillations.
Coincidentally, when the inequality above is reversed, we ob-
serve growing oscillations until herd immunity is reached—
see Fig. 3 top-right. As in [9], we term this phenomenon as
oscillating tragedy of the commons (oscillating TOC).

(22)
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Fig. 5. Multiple diminishing and growing oscillations as a function the
sensitivity parameter ¢ and reward at bad environment state Rg. Payoff
and disease parameters, and initial conditions are as follows: Ag =

Ro o 11 4, = [05 1},no=o.8,6/a=4,n=1,s(0)=

2 02|’ 1125
0.99,¢(0) = 0.01,i(0) = 0,7(0) = 0,2(0) = 0.7. (Left) Ry =

3.8 corresponds to diminishing oscillations scenario. (Right) Rg = 4.0
corresponds to oscillating TOC scenario. Increasing sensitivity parameter e
from 0.5 (Top) to 0.8 (Bottom), less severe but higher number of peaks are
observed.

size, defined as the cumulative number of infected, i.e.,
r(00). Fig. 4 shows the outbreak size in different regions as
a function of the strength of change in the environment with
respect to 4, i.e., €. As € increases, the payoffs change faster
with changes to the case numbers. Here, the general trend
is that the outbreak size decreases as the public becomes
more sensitive to the fraction of infected, i.e., as € increases.
However, the decrease in the outbreak size is not monotonic,
especially for the oscillating TOC region. This is because
oscillations grow faster as e increases. In such a setting,
the outbreak size depends largely on where the oscillations
are when the herd immunity is reached. For instance, if
the fraction of cooperators is relatively large when herd
immunity is reached, the outbreak size tends to be smaller.

The time to reach herd immunity depends on the size
of the peaks. In standard epidemic models without social
distancing, the number of cases decreases exponentially after
the peak in number of cases is reached. Intuitively, when the
public social distancing behavior changes fast with respect
to the disease prevalence, we would expect to observe larger
number of lower peaks. This is because the disease would be
suppressed by the increasing frequency of cooperators early,
which then would remain a large number of the population
susceptible in the next surge. Comparing different € values
in Figs. 5 (a) and (c) or (b) and (d), we have larger number
of lower peaks in (c) or (d) when € is larger, which confirms
this intuition. Similarly, when the reward from cooperation
in the bad environment (Rg) increases, the selection strength
for cooperators is larger in bad state, suppressing the peak
sizes. Comparing Figs. 5 (a) and (b) or (c) and (d), we see
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that peaks of the case counts are smaller when Ry is larger.

V. CONCLUSIONS

We proposed a disease spread model with an evolutionary
social distancing response to disease prevalence. The current
state of the disease determined the payoffs of individuals in
the society. We used evolutionary game theory to model the
change in compliance of individuals to the recommended
public health measures. The behavior of individuals deter-
mined the transmission rate of the disease regulating the
flow of individuals from a susceptible to an exposed state
in the SEIRS model. By focusing on game payoffs, we
identified disease trajectories where multiple growing peaks
are observed before herd immunity is reached when there
is no loss of immunity. Moreover, when the loss of immu-
nity was small, we observed growing and then decreasing
oscillations around the endemic equilibrium levels of the
disease. Together these results seek to understand human
behavior related mechanisms that may be driving the multiple
peaks and oscillations observed during infectious disease
outbreaks. Lastly, the model provides a framework for es-
timating the public’s evaluation of the cost and benefits of
social distancing measures using publicly available data, e.g.,
hospitalizations or morbidity numbers. Quantifying public’s
inclination to adhere to public health recommendations can
be used in forecasting disease trajectory or can aid in public
health communication campaigns.
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