Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

Ran$Net: An Anti-Ransomware Methodology based on Cache
Monitoring and Deep Learning

Xiang Zhang*, Ziyue Zhang*, Ruyi Ding, Cheng Gongye, Aidong Adam Ding and Yunsi Fei
Northeastern University
Boston, Massachusett, United States
{zhang.xiang1,zhang.ziyue,ding.ruy,gongye.c,a.ding,y.fei}{@northeastern.edu

ABSTRACT

Ransomware has become a serious threat in the cyberspace. Ex-
isting software pattern-based malware detectors are specific for
certain ransomware and may not capture new variants. Recogniz-
ing a common essential behavior of ransomware — employing local
cryptographic software for malicious encryption and therefore leav-
ing footprints on the victim machine’s caches, this work proposes
an anti-ransomware methodology, Ran$Net, based on hardware ac-
tivities. It consists of a passive cache monitor to log suspicious cache
activities, and a follow-on non-profiled deep learning analysis strat-
egy to retrieve the secret cryptographic key from the timing traces
generated by the monitor. We implement the first of its kind tool to
combat an open-source ransomware and successfully recover the
secret key.

CCS CONCEPTS

« Security and privacy — Side-channel analysis and counter-
measures; Software security engineering.

KEYWORDS

Anti-Ransomware, Cache Timing Analysis, Deep Neural Network

ACM Reference Format:

Xiang Zhang*, Ziyue Zhang*, Ruyi Ding, Cheng Gongye, Aidong Adam
Ding and Yunsi Fei. 2022. Ran$Net: An Anti-Ransomware Methodology
based on Cache Monitoring and Deep Learning. In Proceedings of the Great
Lakes Symposium on VLSI 2022 (GLSVLSI "22), June 6-8, 2022, Irvine, CA, USA.
ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3526241.3530830

1 INTRODUCTION

Ransomware incidents have become increasingly prevalent target-
ing the Nation’s government entities, healthcare systems, schools,
and critical infrastructures [1, 2]. Victims have to pay ransom to
hackers so as to obtain the key to unlock their valuable files, which
has been “locked" by the ransomware distributed by attackers after
the victim system is infected.

* indicates equal contribution.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

GLSVLSI 22, June 6-8, 2022, Irvine, CA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9322-5/22/06...$15.00
https://doi.org/10.1145/3526241.3530830

487

Pattern-based anti-virus malware detectors recognize instruc-
tion sequence [5] or function calls [3, 6] employed by malwares.
However, such detection can be evaded by obfuscated malwares
with no more recognizable patterns [7, 11, 13]. Different from prior
work that tries to detect the early stage of ransomware infection so
as to prevent its execution, our work focuses on detecting a later
stage, the most essential step of ransomware execution - encryption
via the local symmetric cryptographic software with a secret key,
which is erased from the system before extortion. Our work targets
recovering the key from system activities collected by a specially
designed monitor. This is the key insight of our work.

In this paper, we propose Ran$Net - an anti-ransomware method-
ology built upon system cache monitoring and deep learning tech-
niques. The cache monitor collects critical data access information
of the encryption algorithm execution, leaking the key informa-
tion. We then design a deep learning tool to analyze the timing
traces and retrieve the secret key, turning the power of conventional
side-channel cache timing attacks against ransomware.

The most common cache timing attacks include Prime+Probe [9],
Flush+Reload [14], Evict+Time [8], and Flush+Flush [4] with dif-
ferent side-channel granularity. However, the prior cache timing
attacks pose strict requirements on the attack set-up, where the
monitor has to synchronize with the victim in terms of program
execution, an unrealistic assumption for independent monitor and
victim (ransomware). Typically a summary timing sample is gen-
erated for each run. Our cache monitor leverages the common
multi-core or multi-threading environment in modern computing
platforms, and runs concurrently to other applications as a system
watchdog. When the victim application is executed, the monitor
is triggered to monitor the cache state. Our monitor collects much
finer-grained memory access information of the victim during its
execution, a trace with many timing samples, which facilitates more
powerful attacks based on deep learning techniques.

The contributions of the proposed Ran$Net include:

e We design a cache timing monitor for ransomware. The
two-level monitor first tracks activation of the victim soft-
ware, then runs concurrently in parallel to the ransomware
execution and achieves good observation resolution.

e We propose a non-profiled differential deep learning analy-
sis (DDLA) strategy for secret key retrieval from the cache
timing traces, without any prior knowledge of the victim
device. A convolutional autoencoder is first used to extract
leaky features from the timing traces, followed by multi-layer
perceptron (MLP) networks to predict cache line access.

The rest of the paper is organized as follows. Section 2 provides
background on cache monitors, deep learning attacks, and non-
profiled DDLA strategy. We illustrate our proposed cache monitor

https://doi.org/10.1145/3526241.3530830
https://doi.org/10.1145/3526241.3530830

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

for ransomware in Section 3. We describe our experiments for
running Ran$Net and present results in Section 4. Finally, we discuss
future work in Section 5.

2 BACKGROUND

This section presents the background on cache monitoring, ran-
somware, and deep neural networks for side-channel attacks.

2.1 Cache Monitor

The Ran$Net monitor is built upon Flush+Flush cache timing at-
tack [4], which claims that a special X86 instruction - c1flush -
experiences different timing depending on the state of the target
cache line. Given a virtual memory address, this instruction flushes
the memory block that contains the given address from all the on-
chip caches. If it does exist in the cache hierarchy, all the cache
lines at different levels will be invalidated (flushed), taking longer.
If it is not in caches (has been flushed from the cache hierarchy
before), it takes a shorter time. The time difference is about 9-12
cycles, depending on processor architectures. Although the timing
side-channel is not very strong, the Flush+Flush monitor incurs
less cache misses compared to Flush+Reload attacks and therefore
can run faster. We adapt the Flush+Flush cache monitor and im-
prove the distinguishability and resolution of the side-channel, with
details given in Section 3.2.

Our new monitor observes the cache access information during
the execution, rather than only the cache state at the end of the
execution. Therefore, the monitor generates timing traces with
much more detailed finer-grained information, i.e., a sequence of
many accesses and nonaccesses, rather than a simple summary
of whether the cache line has been accessed or not. Such traces
facilitate deep learning models for attacks, which can be much more
powerful than the conventional statistical cache timing attacks.

We pick RAASNet as an ransomware example [12], a demonstra-
tion written in Python. After the ransomeware infects the system,
targeted files are encrypted by AES-128 in CBC mode. RAASNet
depends on Pycryptodome, one popular cryptographic library in
Python, which is shared on the victim system. We also use CONDA
to manage our Python environment, dependency and packages.

2.2 Deep Neural Network for Side-channel
Attacks

Key-retrieval side-channel attacks can be considered as a classifi-
cation problem which neural networks are privileged to address.
Given an input X € X, a neural network aims to parameterize a
function fy : X — S I that computes the prediction score vector
S=(51, .0 Sl(Hl) for all classes H € H, and the classification prob-
lem can be well solved when the neural network picks out the right
class with the highest score. A neural network is composed of three
types of layers: an input layer (the first layer); an output layer (the
last layer, whose output is the prediction score vector S); and hidden
layers in between. Each layer processes a vector product between
its input and a vector of trainable parameters contained in its com-
putational units called neurons. A loss function that measures the
classification error of fy over the training set is minimized through
forward-backward propagation.

488

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

2.3 Non-profiled Differential Deep Learning
Analysis on Cache Timing Leakage

DNNs have been used in profiling power side-channel attacks,
where a decoy system with a known key is used for training. We
turn the power of side-channel attacks against ransomware exe-
cution, where in realistic scenarios, there is no such knowledge
and therefore non-profiled SCA for anti-ransomware is desired. We
follow the strategy of Differential Deep Learning Analysis (DDLA)
presented in CHES2019 for power side-channel attacks [10], and
propose augmentations to make the attack practical for our cache
timing traces obtained by the cache monitor.

Algorithm 1: Differential Deep Learning Analysis

Input :CAE latent feature set L4 = {[;}1<;<n;
Corresponding ciphertext bytes (¢]")1<;<N;
An MLP structure M;

Output: The correct key k..

Split LA into a training set L4 and a validation set L42;

for k € K do

Initialize trainable parameters of M;
Compute the series of labels (H; x)1<i<N;
Perform an MLP training on the training set
S4 = (L4, {H; x }1<i<n,): MLP(My, S41) with
cross-entropy loss function CEy (541)
Record the validated loss CE (542) of model My,
end

Return:k, = argmin(CE (§42)) for k € K

The DDLA artificially splits the measurement dataset (timing
traces) into a training subset and a validation subset. While there is
no knowledge of correct labels on training subset, DDLA assumes
one kg value at a time and produces pseudo labels over the training
subset and builds a DNN model under this specific key hypothesis.
This process is repeated for all candidates in the key space K.
For one key byte, 256 DNN models have to be built in training
phase, while the prior profiled attack only builds one model. A
distinguisher is used to select the optimal DNN model over the
validation dataset, which corresponds to the correct key value.

Since training 256 convolutional neural network (CNN) models
is computation-intensive, we propose to reduce the complexity by
first training a common convolutional part in an unsupervised way,
using a convolutional autoencoder (CAE), followed by training 256
fully connected multi-layer perceptron (MLP) networks. The CAE is
trained to reconstruct the signal traces, where the low-dimensional
features in the bottleneck layer of the well-trained autoencoder are
used as inputs for the follow-on MLPs, which are easier to train
than CNN . Such extracted features should contain most of the key-
related leakage information and also be free from random shifting
along the time.

Take an AES encryption for example, the select function that
involves a key byte and a ciphertext byte in the last round to attack
is: Vi = [Sbox_l(clf" ® k)/16], where m is the ciphertext byte
index (€ [0,15]), i is the execution index. The label function for
the DDLA is over both the execution index and the assumed key
byte value, H; ;.. We summarize the new DDLA strategy for MLP
training and key byte retrieval as follows:

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

Note that due to the data structure of AES T-tables, we can
actually retrieve corresponding four key bytes which operate on
a selected T-table in the last round of AES encryption from one
DDLA process.

3 RANSNET CACHE MONITOR

In this section, we introduce our novel Ran$Net monitor. We first
present the threat model in Section 3.1. We then describe our cache
monitor in Section 3.2. The monitor is triggered only when the
encryption starts, and runs concurrently with the ransomware to
generate measurement traces while probing the cache state. We
also analyze the properties/capabilities of the cache monitor in
Section 3.3 with comparison to prior monitors.

3.1 Threat Model

Our threat model is based on real ransomware incidents. Hack-
ers have infected a victim computer with a ransomware through
some distribution channel. The ransomeware employs local crypto-
graphic libraries to encrypt selected target files, with a pre-generated
secret key, which is erased from the victim system after the encryp-
tion is done and before the extortion alert. The ransomware runs
with user-level privilege.

To protect against ransomware, our victim system is equipped
with the Ran$Net monitor, which coordinates with the slightly
augmented cryptographic libraries to capture useful cache activities.
The monitor is only triggered when the symmetric encryption
software of the library is activated. The cache monitor also runs
in the user mode on the victim’s computer. It does not access the
ransomware code or data at any time. We assume the ransomware
uses AES-CBC mode with T-Table implementation which is the
most popular standard symmetric encryption scheme.

3.2 Ran$Net Cache Monitor

Our cache monitor is based on the special X86 instruction - c1flush.
For AES, there are four T tables and each table is stored in 16
memory blocks (with the typical cache line size of 64 bytes). If the
monitor chooses the first memory block of Te0, it keeps running a
large loop as shown in Listing 1. Each loop iteration runs c1flush
Te@[0] and reads the time stamp (rdtscp) and logs it in an array.
The execution time each c1flush takes can be calculated by the
differential between the time stamps of the current iteration and
the prior iteration.

Listing 1: Ran$Net Cache Monitor

1. for i:=1 to NUM_LOOPS do
2. begin

3. clflush Te0[0];

4. array[i] = rdtscp;

5. end

We next describe how to mount our monitor against certain
cryptographic library (augmented). Looking into common crypto-
graphic libraries such us Openssl and Pycryptodome, AES is com-
posed by two functions: set_up_AES_key () and AES_encrypt().
The function set_up_AES_key() derives sub-keys for each round
from a master key (secret), and the function AES_encrypt () per-
forms encryption with sub-keys. In Ran$Net, we use function

489

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

set_up_AES_key() as a trigger to activate the cache monitor, as
shown in Figure 1. This requires slight instrumentation of the func-
tion by hooking. The hook function contains a monitor trigger
before the original set_up_AES_key() function. In Linux, we can
use function wrapper and some system tricks, such as LD_PRELOAD
or command hijack, to perform the function hooking. Once the
cache monitor starts tracking the states of the cacheline, consid-
ering the victim file is typically of multiple AES blocks (at size of
16 byte), we do need some recognizable "markers" for each block.
We insert a few c1flush instructions in AES_encrypt () function
before each data block encryption. Experiments show that such
mechanism generate markers on the cache traces to distinguish
block-wise encryptions.

Rarsvo
Create Malware
e — - Malware
was i
executed L
Generate Master set_up_AES_key ()
AES key
~ M=
Encrypt files
AES_encrypt ()
Collect
traces
DDLA p CAE
B (—m (Cache
ey = 4—[“— — imi
Recovery<_ d Wheol g . & Timing
—m Traces

Figure 1: Ran$Net Methodology

Our cache monitor runs concurrently with the ransomware en-
cryption after being triggered, shown in Figure 1. It generate a trace
with timing samples, falling into three levels, as demonstrated by a
sample trace shown in Figure 2. The timing samples at the middle
level, ~90 cycles, correspond to the few clflush instructions in-
serted before each AES block encryption and are used as markers.
The timing samples at the highest level, ~300 cycles, between two
batches of marker samples indicate how many times the selected
cache line has been accessed by the block encryption. The timing
samples at the lowest level, ~ 70 cycles, also between two batches
of markers, indicate non-access activities by the block encryption
on the monitored cache line. As shown in Figure 2, subtraces for
each block encryption can be easily partitioned, which consist of
detailed access and non-access information during the cipher exe-
cution. What is more, the timing side-channel is very strong, the
difference between the high timing points and the low timing points
is ~230 cycles, much larger than the previously reported 9 — 12 cy-
cles with the conventional cache monitors. The experimental setup
is on an Intel 4-core i7-7700 processor (with Kaby Lake architecture)
and Ubuntu 20.04.3 LTS.

3.3 Capability Analysis of the Cache Monitor

We next investigate two properties of Ran$Net cache monitor distin-
guishability of the timing side-channel and the monitor resolution.

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

Memory

accesses

250

N
=3
=3

Markers
between
blocks

CPU cycle

-
&
<

=
S
°©

v
=)

©

1000 1500 2000 2500

Samples

Figure 2: An example timing trace for running RAASNet
when one cache line is monitored

Timing Side-channel - The cache monitor observes timing differ-
ence and infers memory accesses of the victim. The distance
between the two timing distributions determines the distin-
guishability of the side-channel.

Monitor Resolution - As our cache monitor runs concurrently
with the victim application and the meaningful information
leakage lies in the high timing samples, the speed of the
monitor relative to the victim memory accesses determines
the resolution: the probability that two consecutive memory
accesses can both be recognized.

3.3.1 Distinguishability of the Timing Side-channel. As shown in
Figure 2, we observe two sets of timing samples in addition to the
block markers: high indicates access to the monitored cache line by
the victim and low indicates nonaccess. We run a microbenchmark
to look into the two timing distributions to examine the timing
side-channel.

We run our monitor concurrently to a sequence of memory
access instructions (both CLFLUSH and memory load are on the
same virtual address), and collect timing of each flush instruction.
The two timing distributions are depicted in Figure 3a, which ap-
pear to be far apart with their means at 70 cycles and 300 cycles,
respectively. This shows that on our experimental platform, the
distinguishability of the timing side-channel is high and a thresh-
old of 200 cycles can be used to infer access or nonaccess from the
samples with an accuracy up to 96%. By comparison, for the prior
Flush+Flush cache monitor, where two flush instructions sandwich
a victim execution, and two timing distributions are obtained for
the victim access versus no-access of the selected cache line, as
shown in Figure 3b. The difference of the means is only 10 cycles,
and the distributions are hard to distinguish.

3.3.2 Monitor Resolution. With the high distinguishability of the
timing side-channel, we can accurately identify a victim memory
access when it is captured by our cache monitor. However, if two
or more consecutive victim accesses happen too closely in time, the
concurrent cache monitor may not capture all of them as it takes
time for each flushing activity of the monitor.

For AES-128, there are a total of 40 lookup operations to the
same T table, distributed into 10 rounds. We vary the combination
of the plaintext and key, and for each combination we consider
the first two lookup operations that hit the selected cache line
being monitored. We label these two lookup operations as {i; } and

490

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

0.30] —— Access

0.6 —— Access 0.25 == Nonaccess
305 i == Nonaccess 50.207
503 20.10
02 1 = ;

01 i 0.0 /[

0.0 0.00

0 100200300400500600700 200 250 300 350 400 450
clock cycle clock cycle
(a) Our monitor (b) Prior Flush+Flush

Figure 3: Timing distributions of our monitor vs. the prior
F+F monitor

{iz}, where i1, iz € [1,40] are the lookup indexes, and the distance
between them is defined as A = iy — ij.

We compute the probability for different number of accesses dis-
tinguished from the timing traces (where Ny = 2 is the correct
number while others are either overcounting or undercounting),
when the distance between the access indexes is varying. We sum-
marize the probability matrix in Table 1, where HT stands for victim
and monitor were pined to the same physical cores but different
logic cores, and NonHT means the two processes are pinned onto
different physical cores. When the lookup operation index distance
is less than 3, as shown in the first two rows of Table 1, the proba-
bility that both the two accesses are distinguished is low, and the
probability to observe at least one access is very high. When the
distance is great than or equal 3, the probability to distinguish both
them is above 80% and the probability to capture at least one access
is about 90%.

Table 1: Distribution of Access,;s under different distance
between two consecutive accesses to the same cache line

Distance P(Access,ps = N|HT) P(Access,ps = NINonHT)
A N=2[N=1[N=0[N>2[[N=2][N=1[N=0[N>2
1 53.1% | 40.7% | 2.6% 3.6% 09% | 91.9% | 7.1% 0%
2 68.6% | 23.0% 1.7% 6.7% 4.1% | 88.8% | 6.9% 0.3%
3 81.5% | 6.4% 0.3% | 11.9% || 83.4% | 11.3% | 2.0% 3.3%
>3 85.5% | 7.7% 0.5% 6.3% 88.6% | 7.5% 2.7% 1.2%

This result indicates that our concurrent cache monitor is able to
capture round — level access with high accuracy, but is less reliable
to differentiate accesses within each round.

4 EXPERIMENTS

In this section, we present experimental results for our proposed
Ran$Net. We illustrate how we utilize the CAE to capture shifting
signals in the cache timing traces and reduce the computational
complexity of the signals using sensitivity analysis. We evaluate
the DDLA on CAE features.

4.1 Trace Collection

The RAASNet ransomware experimental setup is Python 3.7 with
Pycryptodome 3.11. A test file of size 160K bytes (10,000 data blocks)
is encrypted by AES-CBC. Figure 4 depicts the subtrace for three
blocks’ encryption in a long trace collected by the monitor. We
partition them into segments by the markers, shown in Figure 5.
We use a timing threshold of 200 cycles to binarize the timing
samples to 1 and 0, respectively, as shown Figure 6. Thousands of

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

CPU cycle
-1
g
CPU cycle
8
8

CPU cycle
°

280

310

310 320

400

500
samples

Figure 4: Partial cache trace (3 blocks)

segments can be generated from one trace and are fed to the follow-
on deep learning tool for key retrieval. Note that each segment
subtrace contains about 200 time points with small variation.

4.2 Feature Exaction Using CAE

Although our segment subtrace contains about 200 points, many
of them do not carry useful information for AES T-table accesses.
In addition, the real key-bearing signal (samples) may be a moving
target in the subtrace and shifting in time. We propose to employ
the convolutional autoencoder (CAE) to filter useless features and
address the moving signal issue. Figure 7 shows the structure of a
CAE, which consists of a convolutional encoder for feature com-
pression and a deconvolutional decoder for reconstruction. The
bottleneck layer outputs features at a reduced size.

Figure 7: Convolutional autoencoder for feature extraction

To reach a minimal mean-square-error reconstruct loss, the
Adam optimization is chosen with a batch size of 64 and the learning
rate is set to 5 x 1074, ReLu is selected as activation function in both
convolutional layers and deconvolutional layers. We use Random-
Normal weight initialization. We find out that for the bottleneck
layer, the smallest size (10 nodes) leads to the same performance
as other larger sizes. Figure 7 shows the first 50 samples of one ex-
ample input trace, which is recovered with almost no errors by the
autoencoder, with the bottleneck layer outputting only 10 features.

4.3 Last-round Access Prediction using CAE
features and Sensitivity Analysis

Based on the resolution analysis given in Section 3.3.2, the raw cache
timing trace for each block contains round-wise access information
on the monitored cache line. To assess if the same information

Figure 5: Partitioned to segments

491

500 510 520 540 550

Figure 6: Binarized segments

persists in the CAE features, we train 10 MLPs all with the same
input - the CAE extracted features, but with different output, one
for the access of the monitored cache line in each round. If four
related operations in a round access the cache line (no matter how
many times), the label of the MLP is 1; otherwise 0. We then use
the models to predict the access result of the monitored cache line
by the corresponding round execution. Each MLP model is used
to predict round-wised access pattern of the monitored cacheline.
Figure 8 shows the prediction accuracy of all 10 MLP models, it
verifies that MLP trained with CAE features are able to infer the
round-wise access and, in particular, predict the first/last round
access with > 80% accuracy (50% for random guess).

0.85

0.80

0.75

5070
©0.65
35
;50.60
0.55
0.50
0.45

—— 1, Round
2,4 Round
= 3,5 Round
—— 44 Round
= 5 Round
—— 6 Round
7t Round
~—— 8 Round
9, Round
—— 104 Round

0.40

0 10 20 30

Epoch

40 50 60

Figure 8: Validation accuracy of MLP round access predic-
tions using CAE features as the input

Next we conduct a sensitivity analysis on the 10-th MLP (which
predicts the last-round access) together with the CAE encoder part.
This illustrates where are the points of interest on the raw traces,
from which our DNN model extracts most leakage information for
the target byte operation. Figure 9 shows the changes of access
probability (lower part) output by the full neural network (CAE
encoder + 10-th MLP) after we flip the value of input trace at each
time point (upper part). In the example, monitored cacheline is
accessed during the 4-th (29-th time point), 6th(30-th time point),
and 10th(33-rd time point) round. It shows that the most sensitive
time point is 33-rd point, where the predicted access probability de-
creases to 31.3% when the sample is flipped from ‘1’ to ‘0’, resulting
in misclassification to “nonaccess". The sensitivity analysis shows
that our trained CNN model is able to locate the time point on
the input trace corresponding to the target last-round byte access,

Session 6B: Special Session - 2: Application-oriented Hardware Security

Challenges and Solutions

despite its location varying in difference traces, and extracts the
leakage information for inference.

Processed 0/1 trace (single trace)

Last Round
Access

0/1 signal

Predicted Access Probability

Large decrease

J\ |—' on P(Access)

—e— P(Access)
Probability threshold

0 10 20 30 40 50 60 70
Timepoint

Figure 9: Sensitivity analysis of a processed timing trace

4.4 Improved Non-profiled DDLA Attacks

To recover the AES key used by a ransomware infection, we conduct
DDLA on the CAE-features in the attack phase of Ran$Net, i.e.,
train 256 models each with the same CAE-features but a unique
set of pseudo-labels under corresponding key hypothesis. In the
attack/evaluation, validated cross-entropy loss is used to rank the
key guess. In the following experiments, we first target the 14" h
byte of last round key. We partition the attack dateset into a subset
with 80% traces for training and another subset with 20% traces for
validation. Figure 10 shows the values of validated cross-entropy
loss for 256 neural networks in the non-profiled attack. Each neural
network is trained under a distinct key hypothesis. The result shows
that model trained under the correct key hypothesis corresponds
to the lowest validation loss. It implies that only the correct model
captures the leakage signal, while other wrong models are fitting the
random noises. What is more, after selecting the correctly trained
neural network, we can use it to recover the key-value of the rest 3
related bytes.

4.5 One Attack Model for Four Subkey Bytes
Recovery

For the first key byte (14‘"), the MLP model corresponding to the
correct key (k¢) learns the mapping from the input traces to the
memory access pattern of the target lookup operation in the last
round precisely. This MLP model can be regarded as a profiled model
for the other three subkey bytes related to T-table 0 (2nd gth 10th
key byte), and can be used directly in the attack phase to recover
them. Figure 11 plots success rates of recovering four bytes in the
non-profiled attack. The success rate of recovering all the four key
bytes by the MLP model reaches 100% as |S%| = 1350, while some
bytes can be recovered with a little less number of traces. Compared
to the prior Flush+Flush attack [4], our non-profiled DDLA attack
requires only 10% measurement traces, and one model is used for
four key bytes, another 75% reduction in the attack complexity.

5 CONCLUSION

In this work, we propose Ran$Net, an anti-ransomware methodol-
ogy based on cache monitoring and deep learning. The Ran$Net

492

GLSVLSI °22, June 6-8, 2022, Irvine, CA, USA

0.245{ B R 1.0
;j i dite)]I’T | 0.3

0.240{ M N A ‘
5 1 o6
guzss- m0.4

—— Byte 14
Byte 10t

= Byte 6"
+ Byte 2"
—— Four bytes

0.230{ 0.2

0.225 4 1!
0 50

200 400 600 800 1000 1200 1400
Sample

100 150 200 250 0

Key Guesses
Figure 10: DDLA for Cache

Timing Traces (Validated CE
for 14" byte)

Figure 11: Success rates for
4 key bytes recovery of AES-
CBC in Ransomware

monitor is able to capture high-resolution memory access patterns
of a victim during its execution. With such high-dimensional de-
tailed leakage, deep learning is exploited to learn the leakage and
retrieve the secret. We adopt convolutional operations to address
the signal shifting issue. The non-profiled attack is much more
efficient than prior cache timing attacks. Similar cache monitors
can also be built on other processors with counterpart instructions.
Our future work will apply this framework to other systems (e.g.,
with ARM processors or AMD processors), other cryptographic
algorithms (ECC etc.), to extend the use of our methodology.

Acknowledgment: This work was supported in part by National
Science Foundation under grant # 1916762 and Center for Hardware
and Embedded System Security and Trust (CHEST) industry funds.

REFERENCES

[1] Internet Crime Complaint Center. 2021. Internet Crime report 2020.
/Iwww.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf.

Casey Crane. 2020. Recent ransomware attacks. https://www.thesslstore.com/bl
og/recent-ransomware-attacks-latest-ransomware-attack-news/.

P. R. Lakshmi Eswari and N. Sarat Chandra Babu. 2012. A practical business
security framework to combat malware threat. In World Congress on Internet
Security (WorldCIS-2012). 77-80.

Daniel Gruss, Clémentine Maurice, Klaus Wagner, and Stefan Mangard. 2016.
Flush+Flush: A Fast and Stealthy Cache Attack. In Detection of Intrusions and
Malware, and Vulnerability Assessment. 279-299.

Kai Huang, Yanfang Ye, and Qinshan Jiang. 2009. ISMCS: An intelligent instruc-
tion sequence based malware categorization system. In 2009 3rd International
Conference on Anti-counterfeiting, Security, and Identification in Communication.
509-512. https://doi.org/10.1109/ICASID.2009.5276989

Jonghoon Kwon and Heejo Lee. 2012. BinGraph: Discovering mutant malware
using hierarchical semantic signatures. In 2012 7th International Conference on
Malicious and Unwanted Software. 104-111. https://doi.org/10.1109/MALWARE.
2012.6461015

Philip O’Kane, Sakir Sezer, and Kieran McLaughlin. 2011. Obfuscation: The
Hidden Malware. IEEE Security Privacy 9, 5 (2011), 41-47. https://doi.org/10.
1109/MSP.2011.98

Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache Attacks and Coun-
termeasures: The Case of AES. In Topics in Cryptology, David Pointcheval (Ed.).
1-20.

Colin Percival. 2005. Cache Missing for Fun and Profit. In In Proc. of BSDCan.
Benjamin Timon. 2019. Non-profiled deep learning-based side-channel attacks
with sensitivity analysis. IACR Transactions on Cryptographic Hardware and
Embedded Systems (2019), 107-131.

Xabier Ugarte-Pedrero, Mariano Graziano, and Davide Balzarotti. 2019. A Close
Look at a Daily Dataset of Malware Samples. ACM Trans. Priv. Secur. 22, 1, Article
6 (jan 2019), 30 pages. https://doi.org/10.1145/3291061

Leon Voerman. 2021. Open-Source Ransomware As A Service for Linux, MacOS
and Windows. https:/github.com/leonv024/RAASNet.

Wei Yan, Zheng Zhang, and Nirwan Ansari. 2008. Revealing Packed Malware.
IEEE Security Privacy 6, 5 (2008), 65-69. https://doi.org/10.1109/MSP.2008.126
Yuval Yarom and Katrina Falkner. 2014. FLUSH+RELOAD: A High Resolution,
Low Noise, L3 Cache Side-Channel Attack. In USENIX Security Symp. 719-732.
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/prese
ntation/yarom

https:
[2]
(3]

—_
o

(12]

(13

[14

https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.ic3.gov/Media/PDF/AnnualReport/2020_IC3Report.pdf
https://www.thesslstore.com/blog/recent-ransomware-attacks-latest-ransomware-attack-news/
https://www.thesslstore.com/blog/recent-ransomware-attacks-latest-ransomware-attack-news/
https://doi.org/10.1109/ICASID.2009.5276989
https://doi.org/10.1109/MALWARE.2012.6461015
https://doi.org/10.1109/MALWARE.2012.6461015
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1109/MSP.2011.98
https://doi.org/10.1145/3291061
https://github.com/leonv024/RAASNet
https://doi.org/10.1109/MSP.2008.126
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom
https://www.usenix.org/conference/usenixsecurity14/technical-sessions/presentation/yarom

	Abstract
	1 Introduction
	2 Background
	2.1 Cache Monitor
	2.2 Deep Neural Network for Side-channel Attacks
	2.3 Non-profiled Differential Deep Learning Analysis on Cache Timing Leakage

	3 Ran$Net Cache Monitor
	3.1 Threat Model
	3.2 Ran$Net Cache Monitor
	3.3 Capability Analysis of the Cache Monitor

	4 Experiments
	4.1 Trace Collection
	4.2 Feature Exaction Using CAE
	4.3 Last-round Access Prediction using CAE features and Sensitivity Analysis
	4.4 Improved Non-profiled DDLA Attacks
	4.5 One Attack Model for Four Subkey Bytes Recovery

	5 Conclusion
	References

