
A Cross-Platform Cache Timing Attack Framework
via Deep Learning

Ruyi Ding1, Ziyue Zhang2, Xiang Zhang1, Cheng Gongye1, Yunsi Fei1, Aidong A. Ding2
1Department of Electrical and Computer Engineering, 2Department of Mathematics

Northeastern University, Boston, MA, USA
{ding.ruy, zhang.ziyue, zhang.xiang1, gongye.c, y.fei, a.ding}@northesatern.edu

Abstract—While deep learning methods have been adopted in
power side-channel analysis, they have not been applied to cache
timing attacks due to the limited dimension of cache timing data.
This paper proposes a persistent cache monitor based on cache
line flushing instructions, which runs concurrently to a victim
execution and captures detailed memory access patterns in high-
dimensional timing traces. We discover a new cache timing side-
channel across both inclusive and non-inclusive caches, different
from the traditional “Flush+Flush” timing leakage. We then
propose a non-profiling differential deep learning analysis strategy
to exploit the cache timing traces for key recovery. We further
propose a framework for cross-platform cache timing attack
via deep learning. Knowledge learned from profiling a common
reference device can be transferred to build models to attack
many other victim devices, even in different processor families. We
take the OpenSSL AES-128 encryption algorithm as an example
victim and deploy an asynchronous cache attack. We target three
different devices from Intel, AMD, and ARM processors. We
examine various scenarios for assigning the teacher role to one
device and the student role to other devices, and evaluate the cross-
platform deep-learning attack framework. Experimental results
show that this new attack is easily extendable to victim devices
and is more effective than attacks without any prior knowledge.

Index Terms—Side-channel attacks, Deep learning, Computer
architecture

I. INTRODUCTION

Microarchitectural side-channel attacks (SCAs) have gained
increasing attention in the security community. These attacks
exploit programs’ data-dependent footprints on the shared on-
chip resources, including caches [1], translation look-aside
buffer [2], and branch prediction unit [3], to infer the secret in-
formation. Cache timing is one of the most popular microarchi-
tectural side-channels, and various attacks have been developed
against cryptographic algorithms, including Prime+Probe [4],
Flush+Reload [5], Evict+Time [6], and Flush+Flush [7]. They
differ in the granularity of target microarchitecture and system
setup for adversary and victim. Cache timing attacks threaten
the confidentiality of many common cryptographic algorithms.

One limitation of existing cache timing attacks is most
of them pose strict requirements on the attack set-up, where
the spy has to synchronize with the victim during execution,
which is an unrealistic assumption. Another limitation is the
side-channel leakage is mostly a timing sample that indicates
the cache status, which has inherent algorithmic noise and

This work was supported in part by the National Science Foundation under
grants SaTC-1929300 and IUCRC-1916762, and CHEST (Center for Hardware
Embedded System Security and Trust) industry fund.

makes the attacks less effective. In this work, we address these
two issues by proposing a new persistent cache monitor that
runs concurrently to the victim execution in a non-invasive
manner, without any synchronization, and also developing a
deep-learning based cache timing attack to utilize the new cache
timing traces generated by the monitor. The cache monitor is
based on the Flush+Flush principle, and captures finer-grained
memory access information during the entire victim execution
in high-dimensional timing traces. These timing traces enable
convolutional neural networks (CNN) for cache timing attacks,
for the first time, while CNNs have been adopted in power
side-channel attacks in prior works [8]. Moreover, we propose
a cross-platform cache timing attack framework by profiling
one common reference device to build a general teacher model.
When retraining it on other target victim devices, the adversary
can use fewer timing traces to attack.

The contributions of our work include:

• We design a persistent cache monitoring tool for common
processor families such as Intel X86, AMD X86, and
ARM. The monitor runs concurrently with the victim
program and achieves good observation resolution.

• We propose a non-profiled differential deep learning attack
(DDLA) to exploit cache timing traces. The method takes
the traces as inputs and outputs key-related predictions
without prior knowledge or victim device profiling.

• We propose a cross-platform attack by pretraining a refer-
ence model. There are two advantages of the methodology:
portability - one model can be transferred to many other
models for distinctly different victim devices; effectiveness
- the number of traces required for the victim devices can
be smaller than directly DDLA.

The rest of the paper is organized as follows. Section II
provides background information on cache timing attacks, deep
learning and cross-platform attack. We illustrate our proposed
cache monitor and cross-platform attack framework in Section
III. We describe our experiments over three different devices
and present the experimental results in Section IV. Finally, we
discuss countermeasures and future work in Section V.

II. BACKGROUND

This section presents the background on cache timing at-
tacks, deep learning for SCAs, and cross-platform pretraining.

676978-3-9819263-6-1/DATE22/ c©2022 EDAA

Authorized licensed use limited to: Northeastern University. Downloaded on August 26,2022 at 14:14:18 UTC from IEEE Xplore. Restrictions apply.

A. Conventional Flush+Flush Cache Timing Attack

Cache timing attack [9] typically consists of an online phase
and an offline phase. During the online phase, the attacker sets
up a monitor to probe the shared cache status and derives mem-
ory access information of the victim application. The common
cache monitors include Prime+Probe [4], Flush+Reload [5] and
Flush+Flush [7], and the spy has to synchronize with the victim
so that the spy can capture whether a certain cache line/set has
been accessed by the victim or not, i.e., generating binary infor-
mation. Conventional cache attacks employ statistical analysis
tools to process the binary information, e.g., a hypothesis test is
run to find correct keys which yields the smallest discrepancy
between the prediction and measurements.

In this paper, we take the 16-byte Electronic Code Book
(ECB) mode T-table implementation of AES encryption from
OpenSSL [10] as an example. The algorithm consists of ten
iterative rounds and each round includes four look-up opera-
tions on each of the four T-tables. Each T-table is at a size of
1KB - occupying 16 cache lines with the normal cache line
size of 64 bytes. Due to algorithmic complexity, normally the
last-round is being attacked to retrieve the secret key byte by
byte. The statistical tool attributes memory accesses monitored
to the last-round, even though it is actually a summary for the
entire execution, resulting in inherent high noise in the coarse-
grained cache timing information. The last-round table look-up
operation can be expressed as ci = Tek[sj] ⊕ ki, where ci is
the ith byte of the output ciphertext, ki is the ith byte of the
last-round key, sj is the jth byte of the last-round input state.
If information about sj can be derived from the cache timing
information, the key byte ki can be recovered with the ci.

The recent Flush+Flush cache timing attack [7] utilizes the
timing difference an X86 user-level instruction, clflush,
experiences due to the state of the target cache line. Given
a virtual memory address, the instruction flushes the memory
block with this address from all on-chip caches. If the memory
block is in caches, it takes a longer time to invalidate the cache
lines. Otherwise, shorter time. The counterpart instruction on
ARM processors is dc civac [11]. In Section III-B, we
develop a Flush+Flush cache monitor and discover a different
cache timing side-channel, which gives more clear memory
access information.

B. Deep Neural Network and Model Pre-training

Deep neural network (DNN) parameterizes a non-linear
function from a given input X to an output y. Two widely
used DNN structures are Multi-Layer Perceptrons (MLP) [12]
consisting of fully-connected neurons, and Convolutional Neu-
ral Network (CNN) [13] consisting of convolutional, pooling,
and dense layers. For a classification task, the output layer will
be connected to a softmax layer, which normalizes the output
scores and computes the probability distribution of each class.
With a training dataset, a selected DNN model (with structure
and hyperparameters set) will be fed with inputs and labels, and
the parameters (weights, biases, kernels, etc.) will be iteratively
trained. During training, a loss function is used to measure the
error between the network outputs and the labels. A trained

DNN model can be used on the testing dataset for inference
like classification and object detection.

Model pre-training is a technique to initialize a neural
network for a new task by using parameters from a well-
trained model. Pre-training is proven to improve the model
generalization when the target dataset is smaller than the
reference dataset [14]. In Section IV-D, we demonstrate a
cross-platfrom cache attack framework with pre-training which
reduces the number of traces usage from victim devices.

C. Deep Learning Based Side-Channel Attacks
Deep learning methods are effective in capturing the depen-

dency between device power consumption or electromagnetic
emanation and the sensitive data value, and have been employed
in side-channel power and EM attacks [15], [16]. Generally,
there are two classes of deep learning based SCAs:

• Profiling SCAs are the most powerful attacks be-
cause the adversary can profile the target device (or an
identical copy) with known keys and labels. The DNN
model is trained to fit the device directly, and will be used
for attacking the same device or similar devices when the
key is unknown.

• Non-profiling SCAs are weaker as the adversary
only has access to the leakage dataset on the target device
with an unknown key, without prior knowledge about the
device. The recent work [16] introduces Differential Deep
Learning Analysis (DDLA) for power side-channel attacks
under a non-profiling setting. As there are no known
labels, pseudo-labels can be used where each assumes a
hypothesized key value, and DNN models will be trained
accordingly. Some distinguishers are used to pick the best-
performing model, which yields the correct key value.

So far the deep learning models have been used for power
side-channel attacks and realize cross-device SCA [17]. There
is only one prior work [18] that uses DNN models to quantify
the effectiveness of traditional cache timing attacks rather
than improving real attacks. Our cross-platform cache attack
framework has two contributions: a persistent cache monitor to
generate finer-grained timing traces, and a non-profiling deep
transfer learning attack methodology, which can apply to many
different victim devices, even with a different Instruction Set
Architecture (ISA) from the reference device.

III. CROSS-PLATFORM DEEP LEARNING CACHE ATTACK

In this section, we describe our cross-platform cache timing
attack framework based on deep learning.

A. Threat Model
In our attack model, the victim is a program that operates

on secret information, e.g., ciphers from open-source libraries
like OpenSSL with a private key. The goal of the adversary
is to retrieve the secret key. On any device, a spy program
runs a cache monitor concurrently with the victim applica-
tion, leveraging the commonly available multi-core or hyper-
threading environments. The spy program is in user mode and
has no direct interaction with the victim, except for sharing
microarchitectural resources including last-level caches. Prior

Design, Automation and Test in Europe Conference (DATE 2022) 677

Authorized licensed use limited to: Northeastern University. Downloaded on August 26,2022 at 14:14:18 UTC from IEEE Xplore. Restrictions apply.

asynchronous cache attacks [19] utilize cache monitors based
on “Evict+Timing” or “Prime+Probe”, and rely on special
distributions of the plaintexts. Our cache monitor is based on
“Flush+Flush,” and there is no requirement for the plaintexts
or ciphertexts distribution.

In order to perform cross-platform attacks, we need a com-
mon reference device and a set of target (victim) devices. The
reference device is profiled in a white-box fashion, i.e., the
key is arbitrarily set and known while cache timing traces are
obtained. When training DNN models for the reference device,
the labels are derived with the known key value. For a target
device, it is the realistic black-box attack scenario - a dataset of
cache timing traces are collected from victim execution, while
the key used is unknown and is for the attacker to recover.

B. Persistent Cache Monitor
We set up a persistent cache monitor based on

Flush+Flush [7], as shown in Algorithm 1. The spy runs
iteratively, and in each iteration it flushes a target cache line
followed by reading the system time stamp counter (on X86,
the instruction is rdtsc or rdtscp). The execution time
of each flush instruction can be calculated by the differential
between the timestamps of the current iteration and the prior
one. The output of the cache monitor is a timing trace,
consisting of points of timing values. Note to deal with
out-of-order execution, we use the instruction rdtscp which
has weak ordering effect, and the array writing instruction also
has serialization effect.

Algorithm 1: Persistent Cache Monitor
Input : max number of iterations to explore: Mit

Output: cache timing trace: DT
1 for iter = 0 to Mit do
2 Flush(TargetCL);
3 T [iter] = Read(TimeStampCounter);
4 end
5 for iter = 1 to Mit do
6 DT [iter − 1] = T [iter] - T [iter − 1]
7 end
8 return DT

Assuming the target cache line is also used by the victim,
with the prior synchronous “Flush+Flush” cache monitor, the
spy would observe a 10-cycle timing difference depending on
whether the target cache line exists in caches or not. However,
we observe a much larger timing difference, around 200 cycles,
for our monitor setup. We attribute this large timing difference
to the concurrent (asynchronous) setup, and discover a new tim-
ing side-channel. For X86 Intel processors, the last-level cache
is inclusive and shared by multiple cores. When the victim
runs AES execution on one core while the spy runs continuous
flushing instructions on another core, they issue memory access
instructions simultaneously (the 40 lookup operations on one
T-table of AES and the many instructions flushing one selected
T-table cache line). However, their requests have to enter a
common bus queue before accessing the L3 cache. If a flush

instruction (from the spy) is after a load instruction (from the
victim) while the load is an L3 cache miss, the flush instruction
has to wait for the load instruction to fill the L3 cache, i.e.,
experiencing a cache miss delay. For other architectures such
as AMD and ARM, their last-level caches are non-inclusive
while similar timing side-channel still exists. When the victim
core is loading a cache line, the flush instruction of the spy
(from another core) will hold in the write buffer temporarily,
i.e., it will also experience a cache miss delay.

C. Differential Deep Learning Analysis on Cache Timing
Traces

We adopt the Differential Deep Learning Analysis (DDLA)
strategy, originally proposed for power SCA [16], and apply
it onto our cache timing traces generated by the persistent
cache monitor. For a given dataset of cache timing traces (each
corresponding to an encryption run with a plaintext/ciphertext
under the same unknown key), to feed them as inputs to a
chosen DNN model, the labels for the models are unknown as
the label is key value dependent. The attacker has to guess all
the possible key values (256 for a key byte), and trains 256
DNN models with the pseudo labels, hkg , calculated with a
key hypothesis kg from the key space K. By monitoring any
cache line of a T-table, we can retrieve corresponding four key
bytes which operate on the T-table. Assuming for mth byte,
cm = Tek[sj]⊕km, with the observed cm value and a guessed
km value, the index sj is calculated and used to determine
if it falls into the index range for the target cache line. The
label hm

kg
indicates whether this operation has accessed the

chosen target cache line or not, with hm
i,kg

= 1 meaning access
and hm

i,kg
= 0 meaning no-access (Line 2 of Algorithm 2).

As the key space for one-byte is K = [0, 255], we build 256
models correspondingly (Line 3). We use the training loss as
the distinguisher function and select the key byte value (model)
with the lowest loss (Line 6).

Algorithm 2: Differential Deep Learning Analysis on
Cache Timing Traces
Input : Cache timing traces X := {xi}

Corresponding ciphertexts bytes C := {cmi }
A key byte search space K.
i ∈ [1, N] is index of traces
m ∈ [0, 15] denotes mth key byte

Output: Predicted correct mth key byte k̂mc
1 for each kg ∈ K do
2 Calculate Hm

kg
:= {hm

i,kg
} with kg and cmi ∈ C for

all traces
3 Train a DNN model Mkg on {X , Hm

kg
}

4 Compute the testing loss Lm
kg,test

of model Mkg

5 end
6 return k̂mc = argmin(Lm

kg,test
) for kg ∈ [0, 255]

D. Cross-Platform Cache Timing Attack
The cross-platform cache timing attack consists of two

phases: a profiling phase on the reference device and an attack

678 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Northeastern University. Downloaded on August 26,2022 at 14:14:18 UTC from IEEE Xplore. Restrictions apply.

phase on the victim device. In the profiling phase, a common
reference device is set with known key values. The cache
timing traces are used to train one teacher model, which fits
the reference device and its traces well. In the attack phase, for
the victim device with an unknown key, we obtain another set
of cache timing traces. Then a DDLA is conducted to recover
the correct key. However, the models in DDLA are not built
from scratch. Instead, they are student models with the same
structure of the teacher model and initialized by its parameters.
Profiling Phase: During profiling, the reference device is a
white box under the control of the attacker with a known private
key. For AES encryption, by monitoring one cache line of one
T-table, the attacker can build a teacher model for one related
key byte, which is applicable to the other three related bytes
as well. For example, if we monitor the first cache line of Te0,
the related four key bytes are {2, 6, 10, 14}. We choose to
target the 2nd key byte, with the involved operation as c2 =
Te0[s10] ⊕ k2. If s10 falls into [0,15], this operation accesses
the target cache line. We denote the cache timing traces from
the reference device as Xt. For a trace, we denote the label
yt ∈ {0, 1}, which indicates if the last-round operation of c2 =
Te0[s10]⊕k2 has indeed looked up the monitored cache line. A
teacher CNN model can be trained to map Xt onto yt, denoted
as ft(Xt,yt). Although the teacher model is built for the 2nd

key byte, it also apply to the other three key bytes {6, 10, 14}
in attack with the corresponding ciphertext bytes plugged in.
Attack Phase: In the attack phase, we are facing a victim
device with a different architecture and an unknown encryption
key. We would like to explore knowledge gained in the teacher
model to help build student models for the victim device.

With the dataset of victim cache timing traces, Xs, instead
of performing DDLA directly, as shown in Algorithm 2, we
incorporate pre-trained teacher models. When training each
DNN model Mkg (Line 3 of Algorithm 2), the model is
initialized with the same structure and parameters as the teacher
model Mt to get a student model Ms,kg . During training,
we freeze middle layers and the end layer and only retrain
beginning layers based on the victim dataset {Xs, ys,kg

}. The
algorithm for the attack phase only needs to update Line 3 of
Algorithm 2 to be: Transfer the teacher model Mt to a student
DNN model Ms,kg with {Xs, Hm

s,kg
}. This is anticipated to

require fewer traces than the direct DDLA. How to divide the
layers of teacher model for freezing and retraining is to balance
direct transferring due to similarity between the datasets and
devices and learning due to specific features of victim dataset.

IV. EXPERIMENTS

In this section, we present experimental results of our cross-
platform cache timing attacks on three families of devices, Intel,
AMD, and ARM CPUs.

A. Trace Collection
Considering the similarity of cache structures on different

processors (e.g., common cache line size is 64 bytes), we
believe cache side-channel information gathered by a cache
monitor on different CPU platforms will be similar to each
other. We pick three platforms: a 4-core ARM Cortex-A72

on a Rasberry Pi-4 board, a 12-core AMD Ryzen 9 3900X
on a desktop, and a 4-core Intel i7-7700 processor on a
laptop. The monitors all run 200 flush instructions continuously
for each victim execution, which is an OpenSSL AES ECB
encryption. The spy and the victim are pinned to different
cores. Fig. 1 presents three cache timing traces collected from
the three devices, where the victim is running with the same
plaintext and key and the spy is monitoring the same cache
line. The selected cache line is accessed by the AES execution
three times, in 3rd, 4th, and 10th round. For each timing
traces, we see a number of high points (corresponding to the
number of accesses) and many low points (meaning no-access)
interleaving with the high points. The ARM trace and Intel
trace have the correct number of high points, while the AMD
trace is less accurate - only 2 high points can be distinguished.
Our hypothesis is the first two accesses are too close and the
monitor only captures one. The timing side-channel also varies
on the three architectures. For ARM, the high and low point
are 300 cycles versus 100 cycles - for Intel, 300 versus 70 -
and for AMD, 550 versus 300.

To compare the different resolutions of the monitors on the
three devices, we run 10, 000 memory accesses continuously
and vary the number of cycles (NOPs) between two loads. The
result is shown in Fig. 2, where the X axis is the time interval
between two loads, and the Y axis shows how many high points
(load accesses) have been captured by the monitor. We can see
that the monitor on AMD runs the slowest, causing the low
monitoring accuracy as shown in Fig. 1 (c).

B. Building DNN Models
For unaligned cache timing traces, convolutional neural

network is suitable. We train a CNN to map the traces Xt

to the true last-round access (with the key known) by the
target operation yt. With grid search optimization, we choose
the structure of CNN: two convolutional layers, and one fully
connected layer. The training dataset is balanced and has 5000
traces with a length of 200 points. We use 80% samples for
training and 20% for testing. The model is compiled with
optimizer ADAM and uses cross-entropy as the loss function.
The training losses and accuracies for the three reference
models are shown in Fig. 2. Among the three processors, Intel
X86 has the best performance with a test accuracy of 89.2%.
ARM has an accuracy of 83.5% and AMD has the lowest
accuracy, 73.4%, due to the low resolution shown in Fig. 2(c).
Similar observations are made for the training losses.

C. Non-profiled Direct DDLA Attacks
In the realistic scenario of attacking a target device, it has

to be non-profiled as the key values are unknown and yet to
be retrieved. We apply DDLA directly in the attack phase for
each platform, i.e., train multiple models each with pseudo-
labels according to a key candidate. We use the model loss
values as the distinguisher to rank the key candidates (models).
Taking Intel X86 processor as an example, we target the 2nd key
byte. Fig. 4 shows the key distinguishing result for it. We use
the same dataset as IV-B while assuming the key is unknown.
The plot depicts the training losses of the 256 models each for

Design, Automation and Test in Europe Conference (DATE 2022) 679

Authorized licensed use limited to: Northeastern University. Downloaded on August 26,2022 at 14:14:18 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60
0

100

200

300

400

500

600

700

800

ARM

(a) ARM trace

0 20 40 60
0

100

200

300

400

500

600

700

800

Intel x86

(b) Intel trace

0 20 40 60
0

100

200

300

400

500

600

700

800

AMD

(c) AMD trace

Fig. 1: Timing traces from different platforms. The red lines are thresholds to classify high (victim access) and low (no-access)

0 50 100 150 200 250 300 350 400

time interval(cycles)

0

20

40

60

80

O
bs

er
ve

d
Pe

rc
en

ta
ge

(%
)

ARM
Intel x86
AMD

Fig. 2: Cache monitor resolution
for three platforms

0 20 40 60 80

number of epochs

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Pr
ed

ic
ti

on
A

cc
ur

ac
y

ARM
Intel x86
AMD

Fig. 3: Model training and accurac-
ties for different platforms

0 50 100 150 200 250

Key Candidates kg

0.60

0.62

0.64

0.66

0.68

0.70

Tr
ai

ni
ng

Lo
ss

kc

Fig. 4: Direct DDLA for Intel
Traces (distinguisher for 2nd byte)

a hypothesized key byte value, where the marked correct key
value corresponds to the lowest model loss. The plot shows that
only the deep learning model for the correct key byte value is
fitting to leakage signals, while other models for incorrect key
byte values are fitting to random noises. Using the same traces
but different pesudo labels, the same process can be applied to
other three key bytes, 6th, 10th, 14th.

D. Cross-Platform Attacks
In general, distinctively different systems and environments

may make cross-platform cache attacks hard to realize. In
our attacks, the model outputs, access or no-access of a target
last-round operation on a selected cache line, are the same for
different platforms due to one important fact: the cache line size
is the same. The pre-trained parameters of the reference model
for one device increases the model convergency and reduces
the number of training traces for other victim devices.

To analyze the performance of cross-device learning, we
collect 200 unlabelled timing traces for each target device. Note
that this number (for the victim device) is much smaller than
what we use in IV-B for the reference device. Fig. 5 shows the
testing accuracies of the best transferred student model (with
only the first convolutional layer retrained), corresponding to
the correct key value in DDLA, where one reference model
is transferred for the other two platforms. The transferring
between ARM and Intel has the best accuracy, over 80%. From
any reference device to AMD CPU, the student models only
achieve accuracies around 65%. This is because the teacher
model is trained on more clean devices (with lower noise), and

cannot handle the high system noise of AMD timing traces
well. Interestingly, when the teacher model for the AMD CPU
is transferred for the other two devices, the student models
achieve high accuracies over 80%.

For a victim device, we consider and compare three attacks:
the traditional statistical Flush+Flush attack, a direct DDLA
attack, and a cross-platform attack that fine tunes a pre-trained
model from a reference device. Our victim device is Intel CPU,
and the reference device is ARM for cross-platform attack. In
Fig 6, we plot change of the correct key rank (including both
the average and the variance) along the number of traces for
the three attacks. For the tradition statistical attack method with
a synchronous “Flush+Flush” monitor, it requires more than
50, 000 traces to achieve good attack performance (the rank
goes down to 0). With our persistent cache monitor and DDLA,
the number of traces decreases to 1, 600. Furthermore, by cross-
platform pre-training and parameter tuning, the attacker only
needs 500 victim traces to retrieve the correct key.

V. DISCUSSIONS AND CONCLUSIONS

This work demonstrates that enabled by the persistent cache
monitor, deep learning can be used for cache timing attacks, and
cross-platform attacks also work. To the best of our knowledge,
this is the first application of deep neural networks and cross-
platform pre-training in cache timing attacks.

To protect systems against the deep learning cache tim-
ing attacks, both hardware and software techniques can be
considered to fail the cache monitor or obfuscate cache ac-
cess patterns. As one prerequisite for Flush+Flush attack is

680 Design, Automation and Test in Europe Conference (DATE 2022)

Authorized licensed use limited to: Northeastern University. Downloaded on August 26,2022 at 14:14:18 UTC from IEEE Xplore. Restrictions apply.

0 20 40 60 80 100 120 140

number of epochs

0.60

0.65

0.70

0.75

0.80

Pr
ed

ic
ti

on
A

cc
ur

ac
y

ARM
AMD

(a) From Intel to Others

0 20 40 60 80 100 120 140

number of epochs

0.55

0.60

0.65

0.70

0.75

0.80

Pr
ed

ic
ti

on
A

cc
ur

ac
y

Intel x86
AMD

(b) From ARM to others

0 20 40 60 80 100 120 140

number of epochs

0.650

0.675

0.700

0.725

0.750

0.775

0.800

0.825

Pr
ed

ic
ti

on
A

cc
ur

ac
y

ARM
Intel x86

(c) From AMD to others

Fig. 5: Testing accuracies of two transferred student models from a teacher model, with a different reference device

(a) Statistical method (b) DDLA and transfer attack

Fig. 6: Average rank of correct keys for different attacks

shared memory, the OS can disable shared memory, with some
performance loss. Alternative cache monitors, such as those
based on Prime+Probe, can still be employed to monitor victim
execution. However, Prime+Probe is coarser-grained, targeting
cache set instead of the cache line, and it would be running
much slower and the monitoring resolution may not be high
enough to capture useful memory access details.

As our cache monitor tracks the entire execution, obfuscation
(randomization) of the memory or cache access pattern of
victim application makes it hard to monitor useful information
leakage. The prior work that randomizes the locations of
sensitive data in memory [20] will make the monitor lose the
target. Other secure cache architecture designs, like RCache
and PCache [21], map memory blocks to random cache sets.
However, our flush-based monitor may still work as it only
requires virtual addresses, and the hardware memory controller
automatically maps the memory address to the cache index.

As the deep learning framework is sensitive to outliers and
monitor resolution, we can have more specific countermeasures.
Random memory accesses can be added into the victim (AES),
and the DDLA model accuracy can reduce significantly (for
AES, from 89.2% to 58.6%). Also, a platform with low-
resolution timers and slow flush instructions (like AMD pro-
cessors) can have better resistance to the deep learning attack.

The future work includes investigating other cache mon-
itors such as Prime+Probe based ones, drastically different
cache structures (e.g., different cache line size), other non-
cryptographic victim applications, and also evaluation of vari-
ous countermeasures.

REFERENCES

[1] O. Aciiçmez, “Yet another microarchitectural attack: exploiting i-cache,”
in Proc. ACM Workshop on Computer Security Architecture, Nov. 2017.

[2] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation leak-aside
buffer: Defeating cache side-channel protections with tlb attacks,” in
USENIX Security, Aug. 2018.

[3] O. Aciiçmez, Ç. K. Koç, and J.-P. Seifert, “On the power of simple branch
prediction analysis,” in Proc. ACM Symp. on Information, Computer &
Communications Security, 2007.

[4] C. Percival, “Cache missing for fun and profit,” in In Proc. of BSDCan,
2005.

[5] Y. Yarom and K. Falkner, “Flush+reload: A high resolution, low noise,
l3 cache side-channel attack,” in USENIX Security Symp., Aug. 2014.

[6] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: The case of aes,” in Topics in Cryptology, D. Pointcheval, Ed.,
2006, pp. 1–20.

[7] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+flush: A fast
and stealthy cache attack,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, 2016, pp. 279–299.

[8] G. Zaid, L. Bossuet, A. Habrard, and A. Venelli, “Methodology for
efficient CNN architectures in profiling attacks,” IACR Trans. on Cryp-
tographic Hardware & Embedded Systems, vol. 2020, no. 1, 2020.

[9] S. Briongos, P. Malagón, J.-M. de Goyeneche, and J. M. Moya, “Cache
misses and the recovery of the full aes 256 key,” Applied Sciences, vol. 9,
no. 5, 2019.

[10] “OpenSSL - Cryptography and SSL/TLS Toolkit,”
https://www.openssl.org/.

[11] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice, and S. Mangard, “Armaged-
don: Cache attacks on mobile devices,” in USENIX Security Symp., 2016.

[12] D. Svozil, V. Kvasnicka, and J. Pospichal, “Introduction to multi-layer
feed-forward neural networks,” Chemometrics and intelligent laboratory
systems, vol. 39, no. 1, 1997.

[13] S. Lawrence, C. L. Giles, A. C. Tsoi, and A. D. Back, “Face recogni-
tion: A convolutional neural-network approach,” IEEE Trans. on Neural
Networks, vol. 8, no. 1, 1997.

[14] D. Hendrycks, K. Lee, and M. Mazeika, “Using pre-training can improve
model robustness and uncertainty,” in Int. Conf. on Machine Learning,
2019.

[15] L. Masure, C. Dumas, and E. Prouff, “A comprehensive study of
deep learning for side-channel analysis,” IACR Trans. on Cryptographic
Hardware & Embedded Systems, 2020.

[16] B. Timon, “Non-profiled deep learning-based side-channel attacks with
sensitivity analysis,” IACR Trans. on Cryptographic Hardware & Embed-
ded Systems, 2019.

[17] D. Das, A. Golder, J. Danial, S. Ghosh, A. Raychowdhury, and S. Sen,
“X-deepsca: Cross-device deep learning side channel attack,” in Proc.
Annual Design Automation Conf., 2019.

[18] T. Zhang, Y. Zhang, and R. B. Lee, “Analyzing cache side channels using
deep neural networks,” in Proc. Annual Computer Security Applications
Conf., 2018.

[19] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and countermea-
sures: the case of aes,” in Cryptographers’ track at the RSA conference.
Springer, 2006.

[20] Z. H. Jiang, Y. Fei, A. A. Ding, and T. Wahl, “Mempoline: Mitigating
memory-based side-channel attacks through memory access obfuscation,”
IACR Cryptol. ePrint Arch., vol. 2020, no. 653, 2020.

[21] Z. Wang and R. B. Lee, “A novel cache architecture with enhanced
performance and security,” in IEEE/ACM International Symp. on Microar-
chitecture, 2008, pp. 83–93.

Design, Automation and Test in Europe Conference (DATE 2022) 681

Authorized licensed use limited to: Northeastern University. Downloaded on August 26,2022 at 14:14:18 UTC from IEEE Xplore. Restrictions apply.

