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Abstract. This work introduces novel parallel methods for weighted
longest common subsequence (WLCS) and its generalization, all-
substrings WLCS. Previous work developed efficient algorithms for these
problems via Monge matrix multiplication, which is a limiting factor
for further improvement. Diverging from these approaches, we relax the
algorithm’s optimality guarantee in a controlled way, using a different,
natural dynamic program which can be sketched and solved in a divide-
and-conquer manner that is efficient to parallelize.

Additionally, to compute the base case of our algorithm, we develop a
novel and efficient method for all-substrings WLCS inspired by previous
work on unweighted all-substrings LCS, exploiting the typically small
range of weights.

Our method fits in most parallel models of computation, including
the PRAM and the BSP model. To the best of our knowledge this is
the fastest (1− ε)-approximation algorithm for all-substrings WLCS and
WLCS in BSP. Further, this is the asymptotically fastest parallel algo-
rithm for weighted LCS as the number of processors increases.

Keywords: Parallel approximation algorithms · Weighted LCS

1 Introduction

Technologies for sequencing DNA have improved dramatically in cost and speed
over the past two decades [15], resulting in an explosion of sequence data that
presents new opportunities for analysis. To exploit these new data sets, we must
devise scalable algorithms for analyzing them. A fundamental task in analyzing
DNA is comparing two sequences to determine their similarity.

A basic similarity measure is weighted longest common subsequence (WLCS).
Given two strings x and y over a finite alphabet Σ (e.g. {A,C,G,T}), a correspon-
dence between them is a set of index pairs (i1, j1) . . . (i�, j�) in x and y such that
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for all k < �, ik < ik+1 and jk < jk+1. A correspondence need not use all symbols
of either string. We are given a non-negative scoring function f : Σ × Σ → N on
pairs of symbols, and the goal is to find a correspondence (the WLCS) that max-
imizes the total weight

∑�
k=1 f(x[ik], y[jk]). We assume, consistent with actual

bioinformatics practice [23], that the maximum weight σ returned by f for any
pair of symbols is a small constant [10], so that the maximum possible weight for
a correspondence between sequences is proportional to their length. WLCS is a
special case of the weighted edit distance problem [14] in which match and mis-
match costs are non-negative and insertion/deletion costs are zero. This problem
is sufficient to model similarity scoring with a match bonus and mismatch and
gap penalties, provided we can subsequently normalize alignment weights by the
lengths of the two sequences [24]. If f scores +1 for matching symbol pairs and
0 for all others, the problem reduces to unweighted LCS.

A generalization of WLCS is the all-substrings WLCS or AWLCS problem.
In this variant, the goal is to compute a matrix H such that H[i, j] is the weight
of a WLCS between the entire string x and substring y[i..j]. This “spectrum” of
weights can be used to infer structure in strings, such as approximate tandem
repeats and circular alignments [21]. Of course, H includes the weight of a WLCS
between the full strings x and y as an entry.

Throughout the paper, we let |x| = n, |y| = m and assume that n ≥ m.

Sequential Methods. The WLCS problem, like the unweighted version, can be
solved by dynamic programming in time O(nm). In particular, the well-known
Needleman-Wunsch algorithm [14] for weighted edit distance, which is the basis
for many practical biosequence comparison tools [18–20,22], solves the WLCS
problem as a special case. Sub-quadratic time algorithms are also known for the
WLCS problem based on the “Four Russians” technique [13], which works for
integer weights. In addition, there is the work of Crochemore et al. that works for
unrestricted weights and also achieves sub-quadratic time [8]. At the same time,
the sequential complexity of the LCS and WLCS problem is well understood -
results in fine-grained complexity give strong lower bounds assuming the Strong
Exponential Time Hypothesis [1,6,7].

Schmidt [21] showed that AWLCS, which naively requires much more com-
putation than WLCS, can be solved in time O(nm log m) as a special case of
all-substrings weighted edit distance. Alves et al. reduced this cost to O(nm) for
the special case of unweighted all-substrings LCS (ALCS) [4].

Parallel Methods. One way to solve large WLCS problems more efficiently is
to parallelize their solution. Krusche and Tiskin [12] study parallelization of stan-
dard dynamic programming algorithms for LCS. However, the straightforward
dynamic programming approaches for LCS and WLCS do not easily parallelize
because they contain irreducible chains of dependent computations of length
Θ(n+m). The fastest known parallel algorithms for these problems instead take
a divide-and-conquer approach (such as [5]), combining the all-substrings gener-
alization of LCS with methods based on max-plus matrix multiplication as we
will describe.
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Let x1 and x2 be two strings, and let H1 and H2 be AWLCS matrices on
string pairs (x1, y) and (x2, y), respectively. Defining matrix multiplication over
the ring (max,+), H1 × H2 is the AWLCS matrix for strings x1 · x2 and y [25].
Hence, we can compute the AWLCS matrix for the pair (x, y) on p processors
by subdividing x into p pieces xk, recursively computing matrices Hk for each
xk with y, and finally multiplying the Hk together. Given a base-case algorithm
to compute AWLCS in time B(m,n) and an algorithm to multiply two m ×
m AWLCS matrices in time A(m), this approach will run in time B(m, n

p ) +
A(m) log p.

Fast multiplication algorithms exist that exploit the Monge property of
AWLCS matrices: for all 1 ≤ i < k ≤ m and 1 ≤ j < � ≤ n, H[i, j] + H[k, �] ≤
H[i, �]+H[k, j]. Tiskin [25] showed that for the special case of unweighted ALCS,
A(m) = O(m log m), yielding an overall time of O

(
mn
p + m log m log p

)
. Lever-

aging related strategies yields other fast BSP algorithms for unweighted ALCS
with improved per-processor memory and communication costs [3,11].

For AWLCS, A(m) = O(m2) using an iterated version of the SMAWK algo-
rithm [2,17]. No faster multiplication algorithm is known for the general case.
Practically subquadratic multiplication has been demonstrated for specific scor-
ing functions f [17], but the performance of these approaches depend on f in a
difficult-to-quantify manner. In [16] a complex divide-and-conquer strategy was
used to achieve an optimal running time for the pairwise sequence alignment
problem, which is similar but more general than our problem. In our work we
use an alternative divide-and-conquer strategy to obtain a fast parallel algo-
rithm.

Results. This paper introduces a new approach to parallelizing AWLCS and
therefore WLCS. We introduce algorithms that are (1 − ε) approximate. Our
algorithm’s running time improves upon the best BSP algorithms for the prob-
lems and scales to o(m2) in the PRAM setting as the number of processors
increases.

The new algorithm is our main contribution. Our algorithm sketches a
sequential dynamic program and uses a divide-and-conquer strategy which can
be parallelized. This sketch comes with a cost of approximating the objective to
within a 1 − ε factor for any parameter ε ∈ (0, 1). By relaxing the algorithm’s
optimality guarantee, we are able to obtain subquadratic-time subproblem com-
position by building on recent results on parallelizing dynamic programs for
other problems [9]. Additionally, we develop and utilize a new base case algo-
rithm for AWLCS that takes advantage of the small range of weights typically
used [10]. The following theorem summarizes our main result.

Theorem 1. Let W be the largest possible correspondence weight and let p be
the number of processors. For any ε ∈ (0, 1), there is a BSP algorithm running
in time O(B(m, n

p ) + m log2(W ) log2(n) log(p)
ε2 ) and using O(n

p + m log2(W ) log2(n)
ε2 )

local memory per processor that computes a (1 − ε)-approximate solution to the
WLCS problem.
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In the BSP model with p processors and using Schmidt’s algorithm
(B(m,n) = mn log m) for the base case, we obtain a parallel algorithm with
running time O

(
mn log m

p + m log2 W log2 n
ε2 log p

)
, where W is the largest possible

correspondence weight between strings(which, by our assumption of bounded
weights, is O(min(n,m))). As mentioned, this is the first parallel algorithm for
weighted LCS for which the running time scales as o(m2), and also the fastest
(1 − ε)-approximation algorithm for weighted LCS in BSP. In contrast, previ-
ous methods’ running times have a Θ(m2) term that does not diminish as the
number of processors p increases. Our method uses O

(
n
p + m log2 σm log2 n

ε2

)
local

memory per processor, where σ is the highest weight produced by the scoring
function.

Using Schmidt’s algorithm for the base case dominates the running time.
We would like to improve the O(mn log m) running time of the base case to get
as close to O(mn) as possible. We develop an interesting alternative base case
algorithm by extending Alves’s O(mn) algorithm for ALCS [4] to the weighted
case of AWLCS. This is our second major contribution. This algorithm, like our
overall divide-and-conquer strategy, exploits the small range of weights typically
used by scoring functions for DNA comparison.

Theorem 2. Let σ be the highest weight produced by the scoring function f .
There is a sequential algorithm running in time O(σnm) time for computing an
implicit representation of the AWLCS matrix using space O(σm).

Using this algorithm as the base case in Theorem1, we achieve an overall
running time of O(σmn

p + m log2(σm) log2(n) log(p)/ε2).

Algorithmic Techniques. The algorithms developed in this paper leverage two
main techniques. The first is parallelizing a natural dynamic program for a prob-
lem via sketching. Let C(i, j) be the weight of a WLCS between x[1 : n] and
y[i : j]; we want to compute this quantity for all 1 ≤ i < j ≤ m. One
may add a third index to specify Ck(i, j), the weight of a WLCS between
x[1 : k] and y[i : j]. Ck can be computed via the following recurrence:
Ck(i, j) = max{Ck−1(i, j), Ck(i, j − 1), Ck−1(i, j − 1) + f(x[k], y[j])}. But this
recurrence is both inefficient, requiring time O(nm2), and difficult to parallelize,
with dependent computation chains of size Ω(n + m).

To improve efficiency, we abandon direct computation of C(i, j) and instead
compute some D(i, w) which is subsequently be used to derive the entries of
C(i, j). D(i, w) is the least index j s.t. there exists a correspondence of weight
at least w between y[i : j] and x[1 : n]. We compute and store D(i, w) only for
values w that are powers of 1+ε′ for some fixed ε′ > 0. This sketched version of D
effectively represents the O(m2) sized matrix C using O(m log1+ε′ mσ) entries.
Although our sketching strategy is not guaranteed to find the optimal values
C(i, j), we show that it exhibits bounded error as a function of ε′.

A straightforward computation of D(i, w) entails long chains of serial depen-
dencies. Thus, we use a divide-and-conquer approach instead. Let Dr1,r2(i, w)
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store the the minimum index j s.t. a correspondence of weight at least w exists
between y[i : j] and x[r1 : r2]. We will show how to compute Dr1,r3(i, w) given
Dr1,r2(i, w

′) and Dr2+1,r3(i, w
′) for values w′ ≤ w. If we compute D matrices for

non-overlapping substrings of x in parallel and double the range of x covered by
each D matrix at each step, we can compute D1,n(i, w) in a logarithmic number
of steps.

In realistic applications, we seek to compare sequences with millions of
DNA bases; the number of available processors is small in comparison, that
is, p � min(n,m). Speedup is therefore limited by the base-case work on each
processor, which must sequentially solve an AWLCS problem of size roughly
m × n

p . Solving these problems using Schmidt’s algorithm, which is insensitive
to the magnitude of weights, takes time O(n

p m log m). However, Schmidt’s algo-
rithm involves building complex binary trees which proved to have high overhead
in practice. Our second main technique is developing a weight-sensitive AWLCS
algorithm utilizing an efficient and compact implicit representation.

We show that if the scoring function f assigns weights at most σ to symbol
pairs, the matrix C(i, j) can be represented implicitly using only O(mσ) storage
rather than O(m2). Moreover, we can compute this representation in sequential
time O(n

p mσ). The algorithm computes and stores values of the form hs(j),
which is the least index i such that C(i, j) ≥ C(i, j −1)+s, for 1 ≤ s ≤ σ. These
h values indicate where there is an increase of s in the optimal correspondence
weight when the index j increases. The key to the technique is showing that
these values contain information for reconstructing C and how to compute them
efficiently without complex auxiliary data structures.

Roadmap. Section 3.1 presents the main dynamic program which can be paral-
lelized via a divide-and-conquer strategy, while Sect. 3.2 shows how to use sketch-
ing to make this step time and space efficient while retaining (1−ε)-approximate
solutions. Section 3.3 presents our new algorithm for AWLCS which we use as an
efficient local base case algorithm on each processor. Finally, Sect. 4 completes
our analysis.

2 Preliminaries

We denote by x[i : j] the contiguous substring of x that starts at index i and ends
at index j. The goal of AWLCS is to find correspondences of maximum weight
between x[1 : n] and y[i : j] for all 1 ≤ i ≤ j ≤ m. We develop a method to obtain
the weights of the desired correspondences; the alignments can be recovered later
by augmenting the recurrence to permit traceback of an optimal solution. How-
ever, for AWLCS, the weights alone suffice for many applications [21]. Finally,
we denote by W the highest possible weight of a WLCS between x and y, which
we assume to be O(σ min(n,m)). Here σ = maxc,c′∈Σ f(c, c′) is the maximum
possible weight of matching two characters. We note that in practice, σ is a
constant and typically less than 20.

We now define two key matrices utilized in the design of our algorithms.
C(i, j) will denote the maximum weight of a correspondence between x and
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y[i : j]. The AWLCS problem seeks to compute C(i, j) for all 1 ≤ i < j ≤ m.
An alternative way to view these weights is via the matrix D, where we swap
the entry stored in the matrix with one of the indices. Let D(i, w) = min{j |
C(i, j) ≥ w}. If no such j exists, we define D(i, w) = ∞. D stores essentially the
same information as C; a single entry of C(i, j) can be queried via the matrix
D in time O(log W ) by performing a binary search over possible values of w.
However, the matrix D will be a substantially more compact representation than
C once we introduce our sketching strategy.

3 All-Substrings Weighted Longest Common
Subsequence

Here we present our algorithm for AWLCS. Following the divide-and-conquer
strategy of prior work, we initially divide the string x equally among the proces-
sors, each of which performs some local computation using a base-case algorithm
to solve AWLCS between y and its portion of x, yielding a solution in the form
of the D matrix defined above. We then combine pairs of subproblem solutions
iteratively to arrive at a global solution. We first describe the algorithm’s divide
and combine steps while treating the base case as a black box, then discuss the
base-case algorithm.

3.1 Divide-and-Conquer Strategy

Let Dr1,r2 be the D matrix resulting from the AWLCS computation between
strings x[r1 : r2] and y. Our goal is to compute D1,n, which encompasses all of
x and y.

Our algorithm first divides x into p substrings of length n
p , each of which is

given to one processor along with the entire string y. We assume that consecutive
substrings of x are given to consecutive processors in some global linear processor
ordering. If a processor is given a substring x[r1 : r2], it computes the subproblem
solution Dr1,r2 using our new local, sequential base-case algorithm described in
Sect. 3.3. It then remains to combine the p subproblem solutions to recover the
desired solution D1,n. We compute D1,n in O(log p) rounds. In the j’th round,
the algorithm computes O(2log(p)/j) subproblem solutions, where each solution
combines two sub-solutions from adjacent sets of 2j−1 consecutive processors.

Let Dr1,r2 and Dr2+1,r3 be adjacent sub-solutions obtained from previous
iterations. We combine these solutions to obtain Dr1,r3 . To compute Dr1,r3(i, w),
we consider all possible pairs w1, w2 for which w = w1 + w2. For each possible
w1, we use the solution of the first subproblem to find the least index j′ for
which there exists a correspondence of weight w1 between x[r1 : r2] and y[i : j′].
We then use the solution of the second subproblem to find the least j such
that a correspondence of weight w2 = w − w1 exists between x[r2 + 1 : r3] and
y[j′ + 1 : j]. (Clearly, j ≥ j′.) These two correspondences use non-overlapping
substrings of x and y and can be combined feasibly. The exact procedure can be
found in Algorithm1.
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Algorithm 1. Combining Subproblems
procedure Combine(Dr1,r2 , Dr2+1,r3)

for i = 1 to m do
for w = 0 to W do

Dr1,r3(i, w) ← ∞
for w1 = 0 to w do

w2 ← w − w1

j′ ← Dr1,r2(i, w1)
j ← Dr2+1,r3(j

′ + 1, w2)
Dr1,r3(i, w) = min(Dr1,r3(i, w), j)

3.2 Approximation via Sketching

Algorithm 1 solves the AWLCS problem exactly; the cost to combine two sub-
problems is O(mW 2). For unweighted ALCS, W = m; the combine step is
O(m3). To overcome this cost, we sketch the values of w. Sketching reduces the
number of distinct weights considered from W to O(log W ) and hence reduces
the cost to combine two subproblems from O(mW 2) to O(m log2 W ). We analyze
its precise impact on solution quality and overall running time in Sect. 4.

Our sketching strategy fixes a constant ε > 0 and sets β = 1 + ε
log n . Define

D∗(i, s) to be the least j such that there exists a correspondence between x and
y[i : j] with weight w ≥ �βs	. Define D∗

r1,r2
analogously to Dr1,r2 for substrings

of x. To compute D∗
r1,r3

from D∗
r1,r2

and D∗
r2+1,r3

, we modify the algorithm
described above as follows. For each power s s.t. �βs	 ≤ W , we consider each
power s1 ≤ s and compute the least s2 such that �βs1	 + �βs2	 ≥ �βs	. Let
j′ = D∗

r1,r2
(i, s1) and j = D∗

r2+1,r3
(j′ + 1, s2). Then there exist non-overlapping

correspondences with weights at least βs1 and βs2 , and hence a combined cor-
respondence of weight at least βs, between x[r1 : r3] and y[i : j]. We take
D∗

r1,r3
(i, s) to be the least j′ that results from this procedure. In Sect. 4, we for-

mally show that this sketching strategy preserves (1 − ε)-approximate solutions
and analyze the runtime and space usage of our algorithm.

3.3 Base Case Local Algorithm

We now describe a sequential algorithm, inspired by the work of [3], to obtain
the initial matrices Dr1,r2(i, w) for each individual processor.

In theory, one could continue the divide and conquer approach on each local
machine until the entry to compute is of the form Dr1,r1+1(i, w), yielding a simple
base case to solve. However, this procedure proves computationally inefficient
with a fixed number p of processors. Instead, we propose a different base case
algorithm for computing Dr1,r2(i, w) which better fits our setting.

For this section, we will drop the indices r1 and r2 and create an algorithm
for computing D for strings x and y. Each processor applies this same algorithm,
but to different substrings x[r1 : r2].
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The algorithm works in two steps. First, we calculate two sequences of indices,
referred to as the h- and v-indices. Then, we use these indices to compute D(i, w)
for all desired i, w. Intuitively, these indices give compact information about the
structure of the C matrix (and hence the D matrix), specifically the magnitude
of change between weights in adjacent rows and columns of C.

Definition of the Indices. Recall the definition of the AWLCS matrix C, and
let C� be the C matrix corresponding to the strings x[1 : �] and y. Before pro-
ceeding with the definition of the h- and v-indices, we note a lemma concerning
the Monge properties of C�. These properties are well-known; see, e.g., [3].

Lemma 1. For any triple of indices i, j, �, C�(i − 1, j − 1) + C�(i, j) ≥ C�(i −
1, j) + C�(i, j − 1), and C�(i − 1, j) + C�−1(i, j) ≥ C�−1(i − 1, j) + C�(i, j).

The following corollaries result from rearranging terms in the previous
lemma.

Corollary 1. For any i, j, �, C�(i, j)−C�(i, j−1) ≥ C�(i−1, j)−C�(i−1, j−1).

Corollary 2. For any i, j, �, C�(i, j)−C�−1(i, j) ≤ C�(i−1, j)−C�−1(i−1, j).

We now consider the implications of Corollary 1. Fix i, j and � with C�(i, j)−
C�(i, j −1) = s for some s. This s is the difference in WLCS weight if the second
string is allowed one extra character at its end (y[j]), since it is comparing x[1 : �]
with either y[i : j] or y[i : j − 1]. The corollary states that this difference is only
greater for a substring of y that starts at i′ > i instead of i. Therefore, for each
pair of fixed j, �, there exists some minimal i such that C�(i, j) − C�(i, j − 1) is
first greater than s, as it will be true for all i′ > i. For different values of s, there
are possibly different corresponding i which are minimal. Similar implications
can be derived from Corollary 2.

Using this insight, we can define the h-indices and v-indices. These values
h1, . . . , hσ and v1, . . . , vσ are the key to our improved base case algorithm. For
s ∈ [σ], hs(�, j) is the smallest index i such that C�(i, j) ≥ C�(i, j − 1)+ s. That
is, each hs(�, j) for a fixed � and j marks the row of C� where we start to get a
horizontal increment of s between columns j −1 and j. The v-indices are slightly
different; vs(�, j) is the smallest index i such that C�(i, j) < C�−1(i, j) + s. The
v-indices mark the row where we stop getting a vertical increment of s in column
j between C�−1 and C�. The entire matrix C� can be computed recursively as a
function of the indices as follows:

C�(i, j) =

⎧
⎪⎨

⎪⎩

C�(i, j − 1) i < h1(�, j)
C�(i, j − 1) + s hs(�, j) ≤ i < hs+1(l, j)
C�(i, j − 1) + σ hσ(�, j) ≤ i

(1)

C�(i, j) =

⎧
⎪⎨

⎪⎩

C�−1(i, j) + σ i < vσ(�, j)
C�−1(i, j) + s vs+1(�, j) ≤ i < vs(l, j)
C�−1(i, j) v1(�, j) ≤ i

(2)
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The h and v-indices provide an efficient way to compute the entries in D(i, w).
If we can compute C�(i, j) for all i, j, then D(i, w) is the smallest j for which
C�(i, j) ≥ w. The indices actually correspond to a recursive definition of the
values of C�(i, j).

The following intuition may help to interpret the h-indices. consider h1(�, j)
for a fixed � and j. This is the smallest value of i for which C�(i, j) exceeds
C�(i, j−1) by at least 1. Suppose we compare the best WLCS of x and y[i : j−1]
against that of x and y[i : j]. There is a gain of one character (the last one) in
the second pair of strings, so the second WLCS might have more weight. There
is a unique value h1(�, j) of i for which the difference in weight first becomes ≥1.
The uniqueness of this value can be inferred from Corollary 1.

The increment in the WLCS weight due to adding y[j] may become greater as
i increases, i.e., as we allow fewer opportunities to match x to earlier characters
in y. However, the increment cannot exceed σ, the greatest possible weight under
f of a match to y[j]. Note that if hs(�, j) ≥ j, there is no index fulfilling the
condition since the substring y[hs(�, j) : j] has no characters.

Given the h-indices for every �, j, we may compute C�(i, j) for any fixed � as
follows. C�(i, i) = 0 by definition, and C�(i, j+1) can be computed from C�(i, j)
by comparing i against each possible hs(�, i+1). One may then compute D(i, w)
from Cn(i, j). However, one may directly compute D from the h-indices more
efficiently using an approach described in Sect. 3.3.

The v-indices can be interpreted similarly, though the ordering of v1 . . . vσ is
reversed. Consider vσ(�, j) for some fixed � and j. This is the smallest value of i
for which C�(i, j) does not exceed C�−1(i, j) by at least σ. Here, the comparison
is between the WLCS of x[1 : l] and y[i : j] and that of x[1 : l − 1] and y[i : j].
The first WLCS might have more weight, and so there is unique index where the
difference in weight first becomes less than σ. In this case, due to Corollary 2,
the difference between C�(i, j) and C�−1(i, j) can only be less than the difference
between C�(i−1, j) and C�−1(i−1, j). Now vσ(�, j) is the unique value of i after
which the difference can be no more than σ − 1. Similar intuition applies to all
the other v-indices.

We note that the v-indices are not explicitly involved in the procedure for
computing entries of D; however, they are necessary in computing the h-indices.

Recursive Computation of the Indices. We now show how to compute the
h-indices hs(�, j) for all �, j. We first show a general recursive formula for these
indices, then show a more efficient strategy to compute them.

In the formula, hs will always refer to hs(�−1, j) unless indices are specified.
Similarly, vs will always refer to vs(�, j − 1) unless indices are specified.
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Fig. 1. Relationship between four points.

Let d = f(x�, yj), where f is the scoring function. For the general case
�, j > 0:

hs(�, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if d < s : min
z∈[s,σ]

(
max(hz, vz−(s−1))

)

if d ≥ s :

min
(

min
z∈[d+1,σ]

(
max(hz, vz−(s−1))

)
, vd−(s−1)

) (3)

vs(�, j) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if d < s : max
z∈[s,σ]

(
min(hz−(s−1), vz)

)

if d ≥ s :

max
(

max
z∈[d+1,σ]

(
min(hz−(s−1), vz)

)
, hd−(s−1)

) (4)

The base cases are hs(0, j) = j and vs(�, 0) = 0 for all s. The first corresponds
to an empty substring of x, which has an empty WLCS with any substring of y.
The second corresponds to an empty substring of y, which has an empty WLCS
with any substring of x. Recurrences (3) and (4) generalize the recurrences for
h and v for unweighted LCS in [3], which can be recovered as a special case of
our recurrence for σ = 1.

We now describe the calculations for these indices, beginning with the hs(�, j)
calculations. To calculate hs(�, j), we use the entries vs(�, j − 1) and hs(� − 1, j)
(for all possible s) in addition to the value of d. It is useful to visualize the
situation using Fig. 1. In the figure, a represents the weight of the WLCS between
x[1 : l − 1] and y[i : j − 1] for some i. Similarly, u represents the weight of the
WLCS between x[1 : l] and y[i : j − 1], and v is the WLCS between x[1 : l − 1]
and y[i : j]. Finally, t represents the WLCS between x[1 : l] and y[i : j]. The
edges represent the relationship between the WLCS weights. First, u and v are
both at least a. Further, one possible value for t could be a + d, since one may
take the WLCS which corresponds to a and add in the match between x[l] and
y[j], which has weight d. Alternatively, t could also be the same value as either u
or v. If t = u, then y[j] is unused in the WLCS; similarly, if t = v, the character
x[l] is unused.
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The value of hs(�, j) has a natural interpretation: it is the first value of i
for which the difference between t and u is at least s. Recall hs will always
refer to hs(� − 1, j) unless indices are specified; similarly, vs will always refer to
vs(�, j −1) unless indices are specified. Thus, hs is exactly the minimum i where
there is a difference of at least s between v and a. Similarly, vs is the minimum
i where there is a difference less than s between u and a. We will relate t and
u by comparing both to a. Then we can determine the correct hs(�, j) where
t ≥ u + s for any i ≥ hs(�, j).

Suppose we seek to calculate hs(�, j) for a fixed s > d. One possible weight
for t is a + d, but this edge cannot determine hs as u ≥ a, and hence a + d is
not greater than u by at least s. The WLCS which involves a never yields any
information about the minimum i where t ≥ u + s. However, consider an i such
that i ≥ hs(� − 1, j). The edge weight t can have value a + s. In this case, if
i ≥ v1(�, j − 1), then we know that u = a and hence t ≥ u + s. Therefore, if i is
greater than both hs and v1, then the difference between t and u is at least s.
Hence, it would seem that hs(�, j) is just equal to max(hs, v1). However, there
are many other pairs which also fulfill this condition, e.g. if i is greater than
both hs+1 and v2. In general, if i is greater than any hx and vx−(s−1) for some
positive integer σ ≥ x > s, then the difference between t and u is at least s.
Therefore, in the case where s > d the expression for hs(�, j) is the minimum of
the pairwise maximum of such pairs. This is formalized in Eq. (3).

The other case is when we seek to compute hs for a fixed s ≤ d. Here, the
weight a + d is always possible for t. The expression in Eq. (3) is essentially a
truncated version of the expression for s > d. Namely, we need not consider the
pairs involving hs where s ≤ d. (If i ≥ vd−(s−1) then immediately we already
know that t ≥ u + s regardless of whether i is also greater than some h value.)

The vs(�, j) computations are similar. We are interested in the difference
between t and v, so we will relate both t and v to a. First, consider computing
vs(�, j) where s > d. In this case we can again ignore the case where t = a + d.
Recall that vs(�, j) defines the value of i where if i > vs(�, j), then the t < v + s.
Consider the case where only a single important pair of values exist, h1 and vs.
If i is greater than vs then t = u < a + s. A similar property holds if i > h1.
Hence, vs(�, j) is the value of the minimum of vs and h1 if that is the only pair.
Once again, when there are multiple pairs of vs, h1 and vs+1, h2 and so on, the
expression becomes more complex as it becomes the maximum of the minima of
these pairs.

The case for computing vs(�, j) when s ≤ d is similar to the case for the
hs(�, j) computations in Eq. (3) except where the formula is truncated; no pairs
which involve vs for s ≤ d are used. Since a weight of a + d can always be
attained, only hd−(s−1) needs to be checked for any of the lesser vs pairs.

Equations (3) and (4) give a recursive computation for all of the h-indices
and v-indices. There are O(mnσ) total entries to compute, and following the
two equations above yield a O(mnσ2) time algorithm for computing the h- and
v-indices. However, using a clever observation, it is possible to compute these
entries in O(mnσ) time, which we show next.
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Faster Computation of h- and v-Indices. Naively computing the recur-
rences 3 and 4 for each 1 ≤ s ≤ σ takes O(σ2) time. We show how to improve
this to O(σ) now.

We start with the following definitions. For 1 ≤ s ≤ σ define z∗(s) to be the
value such that the following holds: (1) z < z∗(s) =⇒ vz−s+1 > hz and (2)
z ≥ z∗(s) =⇒ vz−s+1 ≤ hz. Similarly, define z#(s) to be the value such that (1)
z < z#(s) =⇒ hz−s+1 < vz and (2) z ≥ z#(s) =⇒ hz−s+1 ≥ vz. These values
are well defined since the sequences h and v are respectively non-decreasing and
non-increasing, so either the inequalities above trivially hold, or there is a point
where the sequences cross. The existence of a crossing point is not affected by
applying an offset to one of the sequences. We will simultaneously compute z∗(s)
and z#(s) while computing new values of hs and vs.

To see why the above definitions are useful, consider substituting them into
(3) and (4). First, consider the calculation of hs when d < s:

hs(�, j) =
σ

min
z=s

(max(hz, vz−s+1))

= min
(

min
z<z∗(s)

max (hz, vz−s+1) , min
z≥z∗(s)

max (hz, vz−s+1)
)

= min
(

min
z<z∗(s)

vz−s+1, min
z≥z∗(s)

hz

)

= min
(
vz∗(s)−s, hz∗(s)

)

where we again use the property that h and v are respectively non-decreasing
and non-increasing. Similar calculations can be done with z#(s) for computing
vs(�, j) and for the case when d ≥ s. This shows that given z∗(s) and z#(s), it
is possible to compute hs(�, j) and vs(�, j) in constant time.

The only remaining task is to compute z∗(s) and z#(s) for each weight s.
This can be done by sweeping through h and v in O(σ) time. We may then
compute hs(�, j) and vs(�, j) for each s in O(σ) time.

Computing the D Matrix. We now show how to compute the entries D(i, w)
directly from the h-indices. The computation requires only the indices hs(n, j);
in this section, we drop the n and refer to these indices simply as hs(j). We
compute the entries of D(i, w) row by row, iterating through one value of i at a
time. At each iteration, we will keep T , a data structure storing pairs of the form
(j, hs(j)). During iteration i, we may insert pairs into T or delete pairs from T ,
maintaining the following invariant:

(j, hs(j)) ∈ T ⇐⇒ j > i and hs(j) ≤ i. (5)

The invariant guarantees two useful properties. First, all pairs in T have hs(j) ≤
i, the existence of such a pair in T means that the difference between C(i, j)
and C(i, j −1) is s. Note that if (j, hs(j)) ∈ T , then clearly (j, hs′(j)) ∈ T for all
s′ < s since hs′(j) ≤ hs(j). Thus, one can think of each pair in T as representing
an increase of 1.
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Algorithm 2. Construct D matrix using the h-indices
T ← ∅
j ← 1, s ← 1
for i = 1, . . . , m do

while hs(j) ≤ i do
if j > i then � Insert pairs w/ j > i.

T.insert((j, s, hs(j))
end if
s ← s + 1
if s > σ then

s ← 1
j ← j + 1

end if
for k ∈ K do � Compute D(i, k) ∀k

(j′, s′, h′) ← T.search by rank(k)
D(i, k) = j′

Remove from T all (j, s, h) where j = i

Second, if the pairs in T are sorted increasingly by j, then D(i, k) is exactly
the jk which corresponds to the pair of rank k within T . This can be shown as
follows: Let j1, j2, . . . jk denote the pairs of rank 1 through k (represented by say
(jk, hs(jk)) within T . Each fixed jx among these means that there is a difference
of 1 between C(i, jx − 1) and C(i, jx). There are k pairs here, each denoting a
difference of 1 between some C(i, jx) and C(i, jx − 1) and there are a total of
k such differences. Note by the invariant, j1 > i. Furthermore, clearly j1 ≤ jk.
Thus, between C(i, i) and C(i, jk) there are a total of k differences of 1 each.
Since C(i, i) = 0 the difference between C(i, i) and C(i, jk) is exactly k. Hence,
jk is exactly the value of D(i, k).

This analysis yields Algorithm 2, where T is a balanced tree data structure.

4 Analysis of Approximation and Runtime

We now formally describe the sketching strategy for the D matrix and prove the
claims about the performance of Algorithm1 under our sketching procedure.

Recall that our sketching strategy fixes a constant ε > 0 and sets β = 1+ ε
log n .

Define D∗(i, s) to be the least j such that there exists a correspondence between
x and y[i : j] with weight w ≥ �βs	. Define D∗

r1,r2
analogously to Dr1,r2 for sub-

strings of x. To compute D∗
r1,r3

from D∗
r1,r2

and D∗
r2+1,r3

, we modify Algorithm 1
as follows. For each power s s.t. �βs	 ≤ W , we consider each power s1 ≤ s and
compute the least s2 such that �βs1	 + �βs2	 ≥ �βs	. Let j′ = D∗

r1,r2
(i, s1) and

j = D∗
r2+1,r3

(j′ + 1, s2). Then there exist non-overlapping correspondences of
weights at least βs1 and βs2 , and hence a combined correspondence of weight at
least βs, between x[r1 : r3] and y[i : j]. We take D∗

r1,r3
(i, s) to be the least j′

that results from this procedure.
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4.1 Quality of the Solution

In Sect. 3.2, we showed how to reduce the space and time requirement of com-
puting the D matrix using Algorithm 1 via sketching. We consider only weights
of the form �βs	 for β = 1 + ε/ log n and so will not obtain the exact optimum.
However, we show that we can recover a (1 − ε) approximation to the optimum.

Computationally, we only need to construct the matrix D∗ in order to extract
solutions to the AWLCS and WLCS problems. However, for analysis purposes
it is useful to define C∗, an approximate version of the matrix C. Let Cr1,r2(i, j)
be the optimal weight of a WLCS between x[r1 : r2] and y[i : j]. Equivalently,
we have Cr1,r2(i, j) = max{w | Dr1,r2(i, w) ≤ j}. This motivates defining C∗ as
follows. Let C∗

r1,r2
(i, j) = maxs{�βs	 | D∗

r1,r2
(i, s) ≤ j}.

We prove the following lemma which shows that the C∗ matrices approximate
the C matrices well, and hence the matrices D∗ implicitly encode good solutions.

Lemma 2. Let x[r1, r2] be a substring of x considered by our algorithm in some
step. Then for all i, j we have

C∗
r1,r2

(i, j) ≥ (1 − ε) Cr1,r2(i, j)

Proof. We prove the following stronger claim by induction. Let � be the level at
which we combined substrings to arrive at x[r1 : r2] in our algorithm. Then for
all i, j we have

C∗
r1,r2

(i, j) ≥
(

1 − ε

log n

)�

Cr1,r2(i, j)

In particular this implies the lemma since we can use the inequality (1 − z)� ≥
1 − �z for all z ≤ 1 and � ≥ 0.

C∗
r1,r2

(i, j) ≥
(

1 − ε

log n

)�

Cr1,r2(i, j)

≥
(

1 − ε�

log n

)

Cr1,r2(i, j) ≥ (1 − ε)Cr1,r2(i, j)

Now to prove the claim by induction on the levels �. Fix a pair of indices i, j
in y. If x[r1, r2] was considered at the first level, then we computed the exact
matrix Dr1,r2 using our base case algorithm, so the base case follows trivially.
Now suppose that we considered x[r1, r2] at some level � after the first. Our
algorithm combines the subproblems corresponding to x[r1, r′] and x[r′ + 1, r2]
that occur at level � − 1. where r′ = �(r1 + r2)/2	. To compute the solution for
r1, r2 and i, j we concatenate solutions corresponding to x[r1, r′] and y[i : j′] and
x[r′ + 1, r2] and y[j′ + 1 : j], for some j′. We get the sum of their weights, but
rounded down due to sketching. Thus we have:

C∗
r1,r2

(i, j) ≥ C∗
r1,r′(i, j′) + C∗

r′+1,r2
(j′, j)

(1 + ε/ log n)
. (6)



382 J. Buhler et al.

Now Cr1,r2(i, j) = Cr1,r′(i, j′′)+Cr′+1,r2(j
′′+1, j) for some j′′, since the solution

corresponding to Cr1,r2(i, j) can be written as the concatenation of two sub-
solutions between x[r1 : r′], y[i : j′′] and x[r′ + 1 : r2], y[j′′ + 1 : j]. Note that
our algorithm chooses j′ such that C∗

r1,r′(i, j′) + C∗
r′+1,r2

(j′, j) ≥ C∗
r1,r′(i, j′′) +

C∗
r′+1,r2

(j′′ + 1, j). Now applying the induction hypothesis to C∗
r1,r′(i, j′′) and

C∗
r′+1,r2

(j′′ + 1, j) we have:

C∗
r1,r′ (i, j′) + C∗

r′+1,r2
(j′, j) ≥ C∗

r1,r′ (i, j′′) + C∗
r′+1,r2

(j′′ + 1, j)

≥
(
1 − ε

logn

)�−1 (
Cr1,r′ (i, j′′) + Cr′+1,r2 (j

′′ + 1, j)
)

=

(
1 − ε

logn

)�−1

Cr1,r2 (i, j)

Now combining this with (6) we have:

C∗
r1,r2

(i, j) ≥
(
1 − ε

log n

)�−1
Cr1,r2 (i, j)

1 + ε
log n

≥
(
1 − ε

logn

)�

Cr1,r2 (i, j),

which completes the proof of the general case.

4.2 Running Time

We now analyze the running time of our algorithm, starting with the combining
procedure in Algorithm 1.

Lemma 3. Let n′ = r3 − r1 + 1 be the number of characters of the
string x assigned to one call to Algorithm1. Let ε′ = ε/2 log(n) and t =
log1+ε′(σ min(n′,m)). Then the procedure described in Algorithm1 uses O(mt)
space and runs in O(mt2) time.

Proof. First note that σ min(n′,m) is an upper bound on the maximum weight
for the instance passed to Algorithm 1. The matrix D contains an entry for
each pair of starting indices and each weight. There are m starting indices. To
prove the space bound, it suffices to show that the number of possible weights
is O(t). Recall that sketching the weights yields an entry for each weight of
the form (1 + ε/2 log2 n)� = (1 + ε′)� for integer �, up to some upper bound
on the weight. Hence, taking t as in the statement of the lemma implies that
(1 + ε′)t ≥ σ min(n′,m), so O(t) different weights suffices.

The bound on the running time follows by noting that each of the O(m)
iterations of the algorithm iterates through all pairs of weights, yielding total
time O(mt2).

O(log(p)) rounds of combining are required to merge the p base-case results
into the final D matrix, since each round reduces the number of remaining sub-
problems by half. To analyze the entire algorithm, we separately consider the
two steps.
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Lemma 4. Let B(m,n) be the running time of a base-case algorithm computing
D. Then our algorithm runs in time B(m,n/p) + O(m log21+ε′(σm) log(p)) on p
processors.

Proof. The base case algorithm is run on subproblems of size n/p × m. Each
of the O(log(p)) rounds of merging has cost O(m log21+ε′(σm)) by the previous
lemma.

Finally, since log1+ε′(σm) = O(log(σm)/ε′) = O(log2(n) log(σm)/ε), our
algorithm achieves the claimed runtime and local memory per processor.
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