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Abstract Observation of charge asymmetry by comparing
electron and positron, or muon and anti-muon, scattering on
a hadronic target presently serves as an experimental tool
to study two-photon exchange effects. In addition to two-
photon exchange, real photon emission also contributes to
the charge asymmetry. We present a theoretical formalism,
explicit expressions, and a numerical analysis of hard photon
emission for the charge asymmetry in lepton- and antilepton-
proton scattering. Different kinematic conditions are con-
sidered, namely, either fixed transferred momentum squared
or a fixed lepton scattering angle. The infrared divergence
from real photon emission is treated by the Bardin–Shumeiko
technique and canceled with the soft part of the two-photon
exchange contribution extracted and calculated using Tsai
approach. All final expressions are obtained beyond the ultra-
relativistic approximation with respect to the lepton mass that
allows to evaluate numerically of the considered effects not
only for ultrarelativistic leptons (JLab) and but for moder-
ately relativistic (MUSE) kinematics, too.

1 Introduction

The most precise measurements allowing us to study a quark-
gluon structure of hadrons come from experiments on lepton-
proton scattering, when a structureless pointlike particle – a
lepton – interacts with the simplest hadronic structure – a
proton. A rather small value of the fine structure constant,
α ∼ 1/137, makes the electromagnetic interaction amenable
to a perturbative treatment in the context of quantum field
theory.
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The fundamental observables characterizing the internal
structure of the proton are its electric and magnetic form
factors. However, the measurements of their ratio in unpo-
larized and polarized electron elastic scattering data differ
up to three times at Q2 ≈ 6 GeV2 [1–4]. The attempts rec-
onciling the unpolarized and polarized measurements have
mostly focused on improved treatments of radiative correc-
tions (RC) [5–8], particularly on the theoretical estimation
of the two-photon exchange contribution (see review [9] and
references therein).

The interest to investigation of higher-order QED effects
[10] was furthered by a so-called ”proton radius puzzle”
coming from the different outcomes of the measurements in
electron-proton systems [11,12] and in the muonic hydrogen
[13]. The result of a recent experiment PRAD [14] with 1.1
and 2.2 GeV electron beams is rather close to the muonium
spectroscopy experiment and therefore disagrees with pre-
vious electron-proton scattering data. This unexpected issue
required new efforts for theoretical and experimental inves-
tigations. Particularly, a MUSE experiment is currently tak-
ing data at PSI [15] with incoming electron and muon beam
momenta 115, 153, and 210 MeV, and PRAD-II using 3 dif-
ferent beam energies of 0.7, 1.4 and 2.1 GeV is in a plan-
ning stage at JLab [16]. In theory, an unified treatment of
both chiral and radiative corrections to the low-energy elas-
tic lepton-proton scattering processes has been performed in
Heavy Baryon Chiral Perturbations Theory [17].

In the loop integration with respect to the additional virtual
particle momenta for the two-photon exchange sub-process,
a virtuality of one photon tends to zero reaching a so-called
soft limit that produces the infrared divergence.The latter
should be canceled with the corresponding soft term from
real photon emission. Since both the virtual and real soft
photon terms are reduced to overall factors in front of the
Born cross section independently of hadronic structure, in
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many cases real photon emission is estimated within the soft
photon approximation only.

It should be noted that rather important uncertainties arise
from emission of hard unobserved photons. The first sys-
tematic approach for the calculation of hard photon emission
was presented by Mo and Tsai [18]. Based on this approach
Monte-Carlo generator ESEPP for hard photon simulation
in elastic lepton- and antilepton-proton scattering [19] was
developed.

However, one essential limitation in their calculations con-
sists in the approximate approach for the treatment of the
soft photon contribution. As a result, their final expressions
depend on an artificial parameter � that was introduced to
separate the photon momentum phase space into the “soft”
and “hard” parts. In numerical calculations on one hand this
parameter should be chosen as small as possible to reduce the
region evaluated approximately, but on another hand it cannot
be chosen too small because of possible numerical instabili-
ties in calculating hard-photon emission. In 1977 Bardin and
Shumeiko in their paper [20] shown one of the solutions to
the problem.

Recently, in our work [21] we demonstrated the influence
of hard photon emission on the charge asymmetry in elastic
lepton- and antilepton-proton scattering at fixed transferred
momentum squared. This a charge-odd contribution comes
from the interference of real photon emission from lepton
and hadron legs. For cancellation of infrared divergence two-
photon exchange is considered in soft photon approximation
only. In the second paper [22], a dramatic difference between
RC with hard photon emission from the leptons in elastic
lp-interaction for fixed Q2 and scattering angle was demon-
strated.

Here, we continue the studies from these papers by con-
sideration of charge-odd hard photon emission presented in
[21] for two different kinematic constraints: either by fix-
ing lepton’s scattering angle or the transferred momentum
squared. We also provide details of the calculations, explicit
expressions as well as numerical comparison of charge asym-
metries induced by real photon emission for two different
observables, namely, Q2 and a scattering angle. Similar to
the previous work [6,10,21,22] the infrared divergence from
real photon emission is separated by the Bardin-Shumeiko
approach [20]. All calculations have been performed beyond
the ultrarelativistic limit, that allow to apply the obtained
results for MUSE experiment [15] where a moderately rela-
tivistic muon beams are used.

Here, as in the previous work [21] we will consider the
two-photon exchange sub-process only within the soft pho-
ton approximation. It should be noted that there is some arbi-
trariness in the extraction of the infrared divergence: only
asymptotic behavior at the low virtual/real photon energy is
important. In practice, two conventions are commonly used
for the infrared part of the two-photon exchange process. The

first one is from Tsai [23] and has to be expressed through
the three-points integrals while the second expression was
presented in the work of Maximon and Tjon [5] and led to
calculations of the four-points integrals. In this paper we will
reproduce the detailed calculation of Tsai’s expressions that
was used for numerical analysis in [21]. For this purpose we
use dimensional regularization without any discussion of the
difference between Tsai and Maximon-Tjon approaches that
can be found in the review [9].

Another relevant issue is evaluation of multi-soft photon
contribution. Since at the lowest order soft photon radiation is
factorized in front of Born contribution, it was suggested by
Yennie, Frautschi and Suura [24] to use an exponential pro-
cedure for summing up soft photon emission in all orders.
Shumeiko [25] demonstrated that a similar multi-soft pho-
ton effect allows to avoid a divergence in the region of pion
threshold for deep inelastic scattering. A more detailed analy-
sis of the problem that justified the exponentiation procedure
in QED collision processes may be found in Ref. [26]. This
contribution is important for elastic charged lepton-nucleon
scattering, especially for tight kinematic cuts that select soft
radiation. Soft-photon exponentiation is included in most of
the experimental analysis procedures, while this article is
focused on hard-photon emission that is often omitted in
data analysis.

During our calculation we assume that there is no any
excited states of the intermediated proton in two-photon
exchange. As a result, the protonic propagator is taken as
an elementary fermionic one. The second assumption is that
the on-shell proton vertex,

�μ(q) = γμF1(−q2) + iσμνqν

2M
F2(−q2), (1)

works properly within off-shell region. Here σμν = i[γμ, γν]
/2, q is a four-momentum of the incoming photon. The Dirac
(F1) and Pauli (F2) form factors can be expressed through
the electromagnetic ones:

F1(−q2) = GE (−q2) + τpGM (−q2)

1 + τp
,

F2(−q2) = GM (−q2) − GE (−q2)

1 + τp
, (2)

where τp = −q2/4M2.
In order to avoid misunderstandings and make this arti-

cle self-consistent, we have to rewrite some rather important
equations from our previous works [21,22].

The rest of the paper is organized in a following way. In
the next section Born contribution is considered. The explicit
expressions for the soft photon extraction from two-photon
exchange by Tsai method are presented in Sect. 3. The con-
tributions of the unobserved hard real photon emission both
for fixed Q2 and fixed angle are obtained in Sect. 4 with
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detailed discussion of infrared divergence extraction by the
Bardin-Shumeiko approach. Numerical results using MUSE
and JLab experimental conditions as an example can be found
in Sect. 5. A brief discussion and conclusions are presented
in the last Section. The details of three-point loop integral
calculations responsible for the infrared divergence in two-
photon exchange contribution are considered in Appendix
A. The explicit expressions for the physical quantities asso-
ciated with real photon emission are presented in Appendix
B. The details of the soft real photon treatment can be found
in Appendix C.

2 Born contribution

Let us consider Born contribution to the unpolarized elastic
l± p scattering:

l±(k1) + p(p1) −→ l±(k2) + p(p2), (3)

where k1, p1 (k2, p2) are the initial (final) lepton and proton
four-momenta respectively (k2

1 = k2
2 = m2, p2

1 = p2
2 =

M2). Despite we consider this process in the target rest frame
reference system (p1 = 0), it will be useful to introduce some
invariants:

S = 2p1k1, Q2 = −(k1 − k2)
2 = −q2, X = S − Q2,

λS = S2 − 4m2M2, λX = X2 − 4m2M2. (4)

Similar to our previous work [22] in the present paper we
will interest in two types of the cross section: dσ/dQ2 and
dσ/d cos θ .

The considered contribution is presented by Feynman
graphs in Fig. 1 and can be described by the following matrix
elements:

M−
b = ie2

Q2 ū(k2)γ
μu(k1)Ū (p2)�μ(q)U (p1),

M+
b = ie2

Q2 ū(−k1)γ
μu(−k2)Ū (p2)�μ(q)U (p1), (5)

where e = √
4πα. Since the squares of these two matrix

elements are identical it is not possible to distinguish the
lepton-proton from antilepton-proton scattering processes on
the one-photon exchange (Born) level. Their contributions to
the cross section are even regarding replacement l− ↔ l+
and can be written similar to [22]

dσB = 1

2
√

λS
|M∓

b |2d�2, (6)

where the phase space looks like:

d�2 = (2π)4δ4(p1 + k1 − p2 − k2)
d3k2

(2π)32k20

d3 p2

(2π)32p20

= dQ2

8π
√

λS
=

√
λXd cos θ

8π(S + 2M2 − cos θX
√

λS/λX )
.

(7)

(a) (b)

Fig. 1 Feynman graphs for the lowest-order contribution to elastic l− p
(a) and l+ p (b) scattering

After simplest calculations for our future purposes Born con-
tribution to the cross section can be presented in different way
with respect to [22]:

dσB

dQ2 = 2πα2

λSQ4

2∑

i, j=1

θ B
i j Fi (Q

2)Fj (Q
2),

dσB

d cos θ
= jθ

dσB

dQ2 , (8)

where

jθ =
√

λSλ
3/2
X

2M2(SX − 2m2(Q2 + 2M2))
, (9)

and the quantities θ B
i j have a form:

θ B
11 = S2 + X2 − 2Q2(M2 + m2),

θ B
12 = θ B

21 = Q2(Q2 − 2m2),

θ B
22 = Q2

2M2 (SX + M2(Q2 − 4m2)). (10)

3 Soft photon extraction from two-photon exchange

The matrix elements with the two-photon exchange contribu-
tion in elastic l∓ p scattering can be separated into the direct
M∓

2γ d and cross M∓
2γ x terms, as it is depicted in Fig. 2a,

b respectively. Each of these contributions can be presented
through the loop integration as it was shown in our previous
work [21]:

M−
2γ d = e4

(2π)4

∫
d4l

l2(l − q)2 ū(k2)γ
ν
/k1 − /l + m

l2 − 2k1l
γ μu(k1)

×Ū (p2)�ν(q − l)
/p1 + /l + M

l2 + 2p1l
�μ(l)U (p1),

M+
2γ d = e4

(2π)4

∫
d4l

l2(l − q)2 ū(−k1)γ
μ

/l − /k1 + m

l2 − 2k1l
γ νu(−k2)

×Ū (p2)�ν(q − l)
/p1 + /l + M

l2 + 2p1l
�μ(l)U (p1),

M−
2γ x = e4

(2π)4

∫
d4l

l2(l − q)2 ū(k2)γ
ν
/k1 − /l + m

l2 − 2k1l
γ μu(k1)

×Ū (p2)�μ(l)
/p2 − /l + M

l2 − 2p2l
�ν(q − l)U (p1),
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(a) (b)

Fig. 2 Feynman graphs for the direct (a) and cross (b) two-photon
exchange within l− p-scattering. The similar graphs for l+ p scatter-
ing processes have an opposite direction for the leptonic arrows and a
negative sign for its momenta

M+
2γ x = e4

(2π)4

∫
d4l

l2(l − q)2 ū(−k1)γ
μ

/l − /k1 + m

l2 − 2k1l
γ νu(−k2)

×Ū (p2)�μ(l)
/p2 − /l + M

l2 − 2p2l
�ν(q − l)U (p1).

(11)

The interference of these matrix elements with Born ones

dσ∓
2γ = 1

2
√

λS
[M∓

b (M∓
2γ d + M∓

2γ x )
†

+(M∓
2γ d + M∓

2γ x )M∓ †
b ]d�2 (12)

give odd regarding replacement l− ↔ l+ contribution to the
elastic l∓ p cross section

dσ+
2γ = −dσ−

2γ . (13)

However, as it was mentioned in Introduction, from the
presented above contribution we are interested here only in
the soft photon parts coming from the situation when one of
two-photons has a low virtuality at l → 0 or l → q. These
terms are rather important since they contain the infrared
divergence that has to be canceled with corresponding diver-
gence from the real photon emission.

Therefore in each of the matrix elements from (11) taking
into account F1(0) = 1 we can extract two contributions
following Tsai suggestion [23]:

M∓
2γ {d,x} I R = M∓

2γ {d,x}
∣∣∣
l→0

+ M∓
2γ {d,x}

∣∣∣
l→q

. (14)

Here

M∓
2γ d

∣∣∣
l→0

= ∓ e2

8π2 M∓
b KI R(k1,−p1),

M∓
2γ d

∣∣∣
l→q

= ∓ e2

8π2 M∓
b KI R(k2,−p2),

M∓
2γ x

∣∣∣
l→0

= ± e2

8π2 M∓
b KI R(k1, p2),

M∓
2γ x

∣∣∣
l→q

= ± e2

8π2 M∓
b KI R(k2, p1). (15)

The detailed calculation of the infrared three-point integrals

KI R(a, b) = −2ab

iπ2

∫
(2πμ)4−ndnl

l2(l2 − 2al)(l2 − 2bl)
, (16)

where μ is a free parameter of a mass dimension presented
in Appendix A shows that KI R(k1,−p1) = KI R(k2,−p2)

are complex quantities while KI R(k1, p2) = KI R(k2, p1)

are real ones.
After replacing M∓

2γ {d,x} → M∓
2γ {d,x} I R in Eq. (12) one

can find that the real part of soft photon contribution extracted
from two-photon exchange contains the infrared divergence
PI R defined by Eq. (A.4):

dσ I R ∓
2γ

dQ2 = ∓α

π

(
Re[KI R(k1,−p1) + KI R(k2,−p2)]

−KI R(k1, p2) − KI R(k2, p1)

)
dσB

dQ2

= ∓α

π
δ I R2γ (S, X)

dσB

dQ2 . (17)

As it was shown in Sect. 4 of our previous work [22] the
calculation of the additional virtual particle contributions to
the leptonic current come to the ultraviolet divergence. The
latter can be removed by virtue of shifting a constant factor
when the exchange photon virtuality is fixed i.e. Q2 = Q2

0. In
many cases, such as [22], for which Q2

0 = 0, this subtraction
procedure is called an on-shell (mass-shell) renormalization
scheme.

Despite the fact that Eq. (17) does not contain the ultravi-
olet divergence a physical requirement of on-shell renormal-
ization scheme comes from vanishing asymmetry at Q2 → 0
can be provided by the difference δ I T2γ (S, X) and its value at

X = S (or Q2 = 0). As a results the required contribution
has a form:

dσ̂ I R ∓
2γ

dQ2 = ∓α

π
δ̂ I R2γ

dσB

dQ2 , (18)

where

δ̂ I R2γ = δ I R2γ (S, X) − δ I R2γ (S, S)

= 2(SLS − XLX )

(
PI R + log

m

μ

)
+ δ2γ , (19)

and

LS = 1√
λS

log
S + √

λS

S − √
λS

,

LX = 1√
λX

log
X + √

λX

X − √
λX

. (20)

The infrared free part reads:

δ2γ = S√
λS

[
2Li2

√
λS − S + 2M2

2
√

λS

+ log
2λS(S + √

λS)

m2(S − 2M2 + √
λS)2

log
S + √

λS

2M2

+ log
M

m
log

S + √
λS

S − √
λS

− 2Li2
S − 2m2 + √

λS

2
√

λS

]
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+ X√
λX

[
2Li2

X + √
λX − 2m2

2
√

λX

−1

2
log2 X + √

λX

X − √
λX

+ log
(X + √

λX )(X − 2M2 + √
λX )2

8M2λX

× log
X + √

λX

2M2 − 2Li2
2M2 + √

λX − X

2
√

λX

]
. (21)

Notice, that in ultrarelativistic approximation for m → 0

δ̂ I R2γ =
[

4PI R + log
SX

μ4

]
log

S

X
− 2Li2

[
1 − M2

S

]

+2Li2

[
1 − M2

X

]
. (22)

Taking into account that PI R = log(μ/λ), S = 2ME
and X = 2ME ′ we immediately find the agreement of the
obtained result with Eq. (2.20) of the review [9].

4 Real photon contribution

In this section the odd regarding replace l− ↔ l+ contribu-
tion from real photon emission

l±(k1) + p(p1) −→ l±(k2) + p(p2) + k(k) (23)

to the unpolarized elastic l± p scattering is considered. It
consists of the interference between the matrix elements with
the real photon emission from the lepton and proton legs as
it is presented in Fig. 3.

For the description of real photon emission three addi-
tional variables has to be introduced. We choose the standard
set [6,22] of them: inelasticity v = (p1 + k1 − k2)

2 − M2,
τ = kq/kp1 and φk is an angle between (k1,k2) and (k,q)
planes in the rest frame (p1 = 0).

As it was shown in [22] the upper kinematical limit over
the inelasticity depends on fixed variable. Namely, for fixed
Q2 the maximum inelasticity value is

vq =
√

λS

√
Q2(Q2 + 4m2) − 2m2Q2 − Q2S

2m2 , (24)

while for the fixed scattering angle

vθ = S + 2m2 − m

M

√
(S + 2M2)2 − λS cos2 θ. (25)

On the other hand, the contribution of hard real photon emis-
sion can be controlled by applying a cut vcut on the inelas-
ticity in the single-arm measurement of the scattered lepton
only. Therefore, keeping in mind the inelasticity maximum
values, for an upper limit of this quantity both for fixed Q2

and scattering angle we will use vcut as an experimentally
observable variable.

(a) (b)

(c) (d)

Fig. 3 Feynman graphs for real photon emission from the lepton (a, b)
and proton (c, d) legs within l− p-scattering. The similar graphs for l+ p
scattering processes have an opposite direction for the leptonic arrows
and a negative sign for its momenta

The matrix elements corresponding to real photon emis-
sion in l∓ p scattering have a form:

M−
l R = − ie3

t
ū(k2)εα�

μα
l R u(k1)Ū (p2)�μ(q − k)U (p1),

M+
l R = ie3

t
ū(−k1)εα�̄

μα
l R u(−k2)Ū (p2)�μ(q − k)U (p1),

M−
hR = ie3

Q2 ū(k2)γμu(k1)Ū (p2)εα�
μα
hRU (p1),

M+
hR = ie3

Q2 ū(−k1)γμu(−k2)Ū (p2)εα�
μα
hRU (p1), (26)

where t = −(q − k)2 = Q2 + τ R, R = 2p1k = v/(1 + τ),
εα is the photon polarized vector, and

�
μα
l R =

(
k1α

kk1
− k2α

kk2

)
γ μ − γ μk̂γ α

2k1k
− γ α k̂γ μ

2k2k
,

�̄
μα
l R =

(
k1α

kk1
− k2α

kk2

)
γ μ − γ α k̂γ μ

2k1k
− γ μk̂γ α

2k2k
,

�
μα
hR = �μ(q)

/p1 − /k + M

2p1k
�α(−k)

−�α(−k)
/p2 + /k + M

2p2k
�μ(q). (27)

The part of the cross section with the interference between
real photon emission from hadron and lepton lines reads:

dσ∓
R = 1

2
√

λS
(M∓

l RM∓ †
hR + M∓

hRM∓ †
l R )d�3, (28)

123



  156 Page 6 of 15 Eur. Phys. J. A           (2022) 58:156 

where the phase space has a form:

d�3 = d3k

(2π)32k0

d3k2

(2π)32k20

d3 p2

(2π)32p20

×(2π)4δ4(p1 + k1 − p2 − k2 − k).

(29)

One can verify directly that the interference terms for l− p
and l+ p have an opposite sign

dσ+
R = −dσ−

R . (30)

4.1 Contribution to dσ/dQ2

The phase space for fixed Q2 can be presented as:

d�3 = dQ2vdvdτdφk

28π4(1 + τ)2
√

λSλq
. (31)

Here λq = (Q2 + v)2 + 4M2Q2, and the radiative cross
section can be decomposed in terms of variable R introduced
above:

dσ∓
R = ∓ α3dQ2dvdτ

2Q2t (1 + τ)λS

2∑

i, j,k=1

lui jk∑

l=ldi jk

θ li jk(Q
2, τ )Rl−2

×Fi (0)Fj (Q
2)Fk(t). (32)

The lowest and upper limits in the sum over l read:

ld1 jk = 1,

ld212 = ld221 = 2,

ld211 = ld222 = 3,

lu111 = lu112 = lu121 = lu211 = 4,

lu122 = lu221 = lu212 = lu222 = 5. (33)

Explicit expressions for θ li jk(Q
2, τ ) integrated over φk can

be found in Appendix B.
In order to estimate this contribution to the elastic process,

it is necessary to integrate dσ∓
R over three variables of the

unobservable photon: v, t and φk . However, since the expres-
sions (28) contain the infrared divergence at i = l = 1 and
v = 0 (or R = 0), straightforward integration is not possible.

This infrared contribution has to be extracted but in a rather
arbitrary way keeping the same asymptotic behavior at v →
0. In order to treat this divergence analytically following the
Bardin–Shumeiko approach [20], in the i = l = 1 term
the variable t should be changed to Q2 both in the photon
propagator and the argument of the form factors. As a result
this infrared term factorizes in front of the Born cross section:

dσ I R ∓
R = ∓ α

π2 dσB
vdvdτdφk

2(1 + τ)2
√

λq
FI R, (34)

where

FI R = −1

2

(
k1α

k1k
− k2α

k2k

)(
p1α

p1k
− p2α

p2k

)
. (35)

This replacement allows us to perform the treatment of the
infrared divergence analytically since the arguments of the
form factors in (34) do not depend on photonic variables. For
this purpose it is necessary to separate the factorized infrared
term into the soft δS and hard δH parts

dσ I R ∓
R

dQ2 = ∓α

π
(δS + δH )

dσB

dQ2 (36)

by introducing of the infinitesimal inelasticity v̄

δS = 1

π

v̄∫

0

dv

∫
d3k

k0
δ((p1 + q − k)2 − M2)FI R,

δH = 1

π

vcut∫

v̄

dv

∫
d3k

k0
δ((p1 + q − k)2 − M2)FI R . (37)

Such separation allows us to calculate δH for n = 4 and to
simplify the integration for δS in the dimensional regulariza-
tion by choosing the individual reference systems for each
invariant variable to make them independent of the azimuthal
angle φk .

The analytical integration of δS using the dimensional reg-
ularization – as presented in Appendix C – gives

δS = 2(XLX − SLS)

(
PI R + log

v̄

μM

)
+ S

4

√
λSL

2
S

− X

4

√
λX L

2
X + S√

λS
Li2

(
2
√

λS

S + √
λS

)

− X√
λX

Li2

(
2
√

λX

X + √
λX

)
+ Sφ(k2, p1, p2)

−Sφ(k1, p1, p2), (38)

where the infrared divergent term PI R is defined by Eq. (A.4)
and the arbitrary parameter μ has a dimension of mass. A
rather compact analytical expression for Sφ can be found in
Appendix B of the work [22].

For the calculation of δH we integrate directly with respect
to the photonic variables v, t and φk . The first integration over
the azimuthal angle gives:

δH =
vcut∫

v̄

dv

τ
q
max∫

τ
q
min

dτ

1 + τ

FI R

R
, (39)

where the limits of variable τ are defined as in [22]

τ
q
max/min = Q2 + v ± √

λq

2M2 , (40)

and the expression for FI R is presented in Eq. (B.2).
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Since R = v/(1 + τ) the second integration over τ gives:

δH =
vcut∫

v̄

dv

v
JH (S, X, v), (41)

where

JH (S, X, v) = X

γ3
log

X − v + γ3

X − v − γ3
+ X

γ2
log

X + γ2

X − γ2

−SLS − S

γ1
log

S − v + γ1

S − v − γ1
, (42)

and

γ1 =
√

(S − v)2 − 4m2(M2 + v),

γ2 =
√
X2 − 4m2(M2 + v),

γ3 =
√

(X − v)2 − 4m2M2. (43)

Taking into account that

JH (S, X, 0) = 2(XLX − SLS), (44)

after an identical transformation, Eq. (41) can be split into
two parts δH = δ1

H + δ̄H with

δ1
H =

vcut∫

v̄

dv

v
(JH (S, X, v) − JH (S, X, 0)),

δ̄H = 2(XLX − SLS) log
vcut

v̄
, (45)

where the integrand in δ1
H is finite for v → 0. Since, as men-

tioned above, the arbitrariness in a choice of a subtracted
infrared expression is only constrained by its asymptotic
behavior at v → 0, we can drop δ1

H term.
As a result, the contribution with the real photon emission

can be split into finite and infrared divergent parts:

dσ∓
R

dQ2 = dσ∓
R

dQ2 − dσ̄ I R ∓
R

dQ2 + dσ̄ I R ∓
R

dQ2

= dσ∓
F

dQ2 + dσ̄ I R ∓
R

dQ2 (46)

where

dσ̄ I R ∓
R

dQ2 = ∓α

π
(δS + δ̄H )

dσB

dQ2 (47)

does not depend on the separation parameter v̄ introduced in
Eq. (37).

After integration of the extracted infrared term over φk

and τ keeping v-dependence only in the denominator, the
finite part of hard photon emission reads:

dσ F ∓
R

dQ2 = ∓ α3

2Q2λS

vcut∫

0

dv

⎡

⎢⎢⎣

τ
q
max∫

τ
q
min

dτ

(1 + τ)t

×
2∑

i, j,k=1

lu2 jk∑

l=ldi jk

θ l2 jk(Q
2, τ )

R2−l
Fi (0)Fj (Q

2)Fk(t)

−4
JH (S, X, 0)

vQ2

∑

i, j=1,2

θ B
i j Fi (Q

2)Fj (Q
2)

⎤

⎥⎥⎦ . (48)

The sum of Eq. (47) and Eq. (18)

dσ∓
I R

dQ2 + dσ∓
box I R

dQ2 = ∓α

π
δV R

dσB

dQ2 (49)

is infrared free since

δV R = δ̂ I R2γ + δS + δ̄H = 2(XLX − SLS) log
vcut

mM

+δ2γ + S

4

√
λSL

2
S − X

4

√
λX L

2
X

+ S√
λS

Li2

(
2
√

λS

S + √
λS

)

− X√
λX

Li2

(
2
√

λX

X + √
λX

)

+Sφ(k2, p1, p2) − Sφ(k1, p1, p2) (50)

does not depend on PI R .
Finally, the lowest order of the charge-odd contribution to

the elastic lepton-proton scattering has a form:

dσ∓
odd

dQ2 = dσ∓
F

dQ2 ± α

π
δV R

dσB

dQ2 . (51)

4.2 Contribution to dσ/d cos θ

The phase space for fixed angle θ reads:

d�3 = Jθ (v)
vdvd cos θdτdφk

28π4(1 + τ)2
√

λSλv

, (52)

where λv = (Q2
R(v) + v)2 + 4M2Q2

R(v) and

Jθ (v) = λS − vS − Q2
R(v)(S + 2M2)

(S + 2M2)2 − λS cos2 θ

×
(
S + 2M2

cos θ
+ M

√
λS

M (S − v + 2m2)

)
. (53)

The square of transferred momentum for the radiative pro-
cess with a fixed scattering angle is expressed through the
inelasticity v as it was obtained in our previous work [22]:
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Q2
R(v) = 1

(S + 2M2)2 − λS cos2 θ

×
[
(S + 2M2)(λS − vS) − λS(S − v) cos2 θ

−2M
√

λS

√
D cos θ

]
, (54)

where

D = M2(λS + v(v − 2S)) − m2(λS sin2 θ + 4vM2). (55)

It should be noticed that Q2
R(0) = Q2 and Jθ (0) = jθ .

After some algebra similar to the previous subsection we
find that:

dσ∓
odd

d cos θ
= dσ∓

F

d cos θ
± α

π
δV R

dσB

d cos θ
. (56)

The finite part reads:

dσ∓
F

d cos θ
= ∓ α3

2λS

vcut∫

0

dv

⎡

⎢⎢⎣Jθ (v)

τθ
max∫

τ θ
min

dτ

t Q2
R(v)(1 + τ)

×
2∑

i, j,k=1

lu2 jk∑

l=ldi jk

θ l2 jk(Q
2
R(v), τ )

R2−l
Fi (0)Fj (Q

2
R(v))Fk(t)

−4
jθ

vQ4 JH (S, X, 0)

2∑

i, j=1

θ B
i j Fi (Q

2)Fj (Q
2)

⎤

⎥⎥⎦ , (57)

where the range of τ at fixed θ is defined by

τ θ
max/min = Q2

R(v) + v ± √
λv

2M2 . (58)

5 Numerical results

For understanding the distinguish between radiative
effects for incoming lepton and antilepton similar to the work
[22] we present a ratio of RC for particle (dσ−

RC/dζ ) and
antiparticle (dσ+

RC/dζ ) to the Born cross section:

δ∓
RC = dσ∓

RC/dζ

dσB/dζ
(59)

both for fixed Q2 (ζ = Q2) and the scattering angle (ζ =
cos θ ). Here the quantities dσ∓

RC/dζ contain from the sum of
the charge-even RC calculated in [22] and dσ∓

odd/dζ defined
by Eqs. (51) or (56) in dependence on ζ .

Notice, that for the radiative process the scattering lepton
energy k20 depends on the inelasticity v in relation to the
selected variable. So for fixed Q2

k20 = X − v

2M
(60)

while for fixed scattering angle

k20 = S − Q2
R(v) − v

2M
. (61)

For the parametrization of the proton form factors the
results of Kelly’s paper [27] is used.

From Fig. 4, where the relative RC (59) as a function of
the scattering lepton kinetic energy are presented for parti-
cle (blue curves) and antiparticle (red curves) scattering at
MUSE kinematic conditions [15], it can be seen that RC
are greater for antilepton than for lepton and their difference
reaches maximum value at large scattering angles and soft
photon emission.

Using above presented results the positively defined
charge asymmetry can be written as

Aζ = dσ+
odd/dζ − dσ−

odd/dζ

dσeven/dζ
, (62)

where the even cross section include Born contribution and
RC to the lepton line that was found in [22].

The dependence of this asymmetry on the scattering lepton
kinetic energy for different lepton beams presented in Fig. 5
at MUSE kinematic conditions [15] at different scattering
angles. As can be seen, the asymmetry reaches its maximum
value for the lightest lepton with the highest of the initial
and scattering lepton energies at the maximum θ . At the soft
photon region its behavior is almost identical both for fixed
Q2 and for fixed θ and has a maximum difference for these
two observables at low scattering electron energy and high
θ . The asymmetry value for fixed θ is always less than its
value for fixed Q2.

Another rather interesting quantity is the dependence of
e+ p/e− p cross section ratio

R = dσeven/dξ + dσ+
odd/dξ

dσeven/dξ + dσ−
odd/dξ

(63)

on the virtual photon polarization ε. According to [28], ε

beyond the ultrarelativistic approximation has a form

ε =
(

1 + 2(1 + τp)
(Q2 − 2m2)

4k10k20 − Q2

)−1

. (64)

Since for radiative processes the scattered lepton energy
depends on the inelasticity as shown in Eqs. (60, 61), set-
ting any cut on v leads to ε restriction.

The obtained dependence at JLab kinematic conditions is
shown in Fig. 6. For soft photon emission the cross section
ratio reaches its maximum value, and, similar to the work
[29], increases with decreasing ε. For hard photon emission
the ratio decreases with decreasing ε for fixed Q2 and increas-
ing ε for fixed scattering angle.
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Fig. 4 Relative RC vs the value of the scattering lepton kinetic energy
for elastic e∓ p and μ∓ p scattering, beam momenta is equal to 115 MeV,
153 MeV and 210 MeV for θ = 20o (1), 60o (2), 100o (3). Blue (red)

lines correspond to lepton (antilepton) scattering while solid (dashed)
lines correspond to fixed Q2 (cos θ)
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Fig. 5 Charge asymmetry defined in (62) vs value of the scattering particle kinetic energy for elastic e∓ p and μ∓ p scattering with the beam
momenta 115 MeV, 153 MeV and 210 MeV. The solid (dashed) correspond fixed Q2 (cos θ)

6 Conclusion

The contribution of hard photon emission to the charge asym-
metry in lepton- and antilepton-proton scattering was calcu-
lated and numerically compared for fixed Q2 and fixed scat-
tering angle beyond the ultrarelativistic limit keeping lepton
mass during the whole process of calculation.

During the calculation only two assumptions are used: (I)
We did not consider any excited states in the intermediated
proton in two-photon exchange, that allows to use a standard
fermionic propagator; (II) The on-shell proton vertex with
the Dirac and Pauli form factors is applicable within off-shell
region.
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Fig. 6 Ratio of e+ p/e− p cross sections defined in (63) as a function
of ε at Q2 = 0.85 GeV2 and Q2 = 1.45 GeV2 for the different electron
beam energies k10 defined in the rest frame (p1= 0). The solid (dashed)
line corresponds to fixed Q2 (cos θ). An upper dotted line represents
soft photon emission. The lowest dotted lines correspond to the pion
production threshold

Two-photon exchange was analytically calculated in soft
photon approximation using Tsai approach and dimensional
regularization of the infrared divergence. The infrared diver-
gence from real photon emission was treated by the Bardin–
Shumeiko technique that allow to rid dependence of the final
results on any artificial parameter for soft scale separation.

The numerical results presented for kinematic conditions
of MUSE experiment at PSI and Jefferson Lab measurement
shown that the asymmetry reaches its maximum value at the
soft photon emission and significantly drops for hard real
photon emission.

We believe that the results presented here and in our pre-
vious work [22], such as the derivation of the essential for-
mulae, the sets of the explicit expressions are quite transpar-

ent and useful for studying both the treatment of hard pho-
ton emission and soft photon extraction from two-photon
exchange. Moreover, the implementation of the obtained
results into Monte-Carlo generator ELRADGEN [30,31]
allows to develop an alternative to the generator ESEPP
[19] for the simulation of hard photon emission in lepton-
and antilepton-proton scattering in rather wide kinematical
region from low Q2 - relevant to “proton radius puzzle” - to
high Q2 where the form factor ratio problem was observed.
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Appendix A: Calculation of the three-point loop integrals

Here we present the details of calculation of the three-point
loop integrals defined by Eq. (16).

Using Feynman parametrization we find that

KI R(a, b) = −4ab

iπ2

1∫

0

dy

1∫

0

dx
∫

x(2πμ)4−ndnl

(l2 − x2c2
y(a, b))3

(A.1)

with cy(a, b) = ay + b(1 − y).
The integration over l in n-dimensional space gives:

KI R(a, b) = 2ab
� (3 − n/2)

(2
√

πμ)n−4

1∫

0

dy

1∫

0

dxxn−5cn−6
y (a, b).

(A.2)

After integration over x , and the expansion of the obtained
expressions into the Laurent series around n = 4 result in:

KI R(a, b) = ab

1∫

0

dy

c2
y(a, b)

[
2PI R + log

c2
y

μ2

]

= 2ab

1∫

0

dyKy(a, b), (A.3)

where the term representing the infrared divergence in the
dimensional regularization reads

PI R = 1

n − 4
+ 1

2
γE + log

1

2
√

π
. (A.4)

After substitution into (A.3) photon mass regularization
PI R = log μ/λ we immediately find that our definition of
KI R(a, b) is equal to K (pi , p j ) defined by Eq. (I.5) of [23].
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Taking into account that c2
y(k1,−p1) = c2

y(k2,−p2) =
ζd(y) and c2

y(k1, p2) = c2
y(k2, p1) = ζx (y), where

ζd(y) = y(m2y − S(1 − y)) + M2(y − 1)2,

ζx (y) = y(m2y + X (1 − y)) + M2(y − 1)2 (A.5)

we will consider only two integrals, namely Kd = KI R(k1,

−p1) = KI R(k2,−p2) and Kx = KI R(k1, p2) =
KI R(k2, p1), that defined in the following way:

Kd = − S

2

1∫

0

dy

ζd(y)

[
2PI R + log

ζd(y)

μ2

]
=

1∫

0

dyKd(y),

Kx = X

2

1∫

0

dy

ζx (y)

[
2PI R + log

ζx (y)

μ2

]
=

1∫

0

dyKx (y).

(A.6)

The expression ζd,x (y) can be presented in the following
way:

ζd,x (y) = M2

yd,x
1 yd,x

2

(y − yd,x
1 )(y − yd,x

2 ), (A.7)

where

yd1 = 2M2

2M2 + S + √
λS

, yd2 = 2M2

2M2 + S − √
λS

,

yx1 = 2M2

2M2 − X + √
λX

, yx2 = 2M2

2M2 − X − √
λX

. (A.8)

It should be noted that for all S > 2mM the quantities yd1,2

belong to the region of the integration: 1 > yd2 > yd1 > 0. As
a result, according to Eq. (A.7) the function ζd(y) is positive
for the two segments of the integration, namely 0 < y < yd1
and yd2 < y < 1, and negative between them. Moreover at
the points y = yd1,2 the integral over y in Kd defined by Eq.
(A.6) diverges.

To perform the integration over y the method suggested by
Kahane [32] is used. For this purpose the integration region
is broken up into five segments as it is shown in Fig. 7. The
contours C2 and C4 are chosen such that ζd(y) has negative
imaginary parts.

The integration for the regions C1, C3 and C5 can be
expressed via Spence’s dilogarithm

Li2(x) = −
x∫

0

log |1 − y|
y

dy (A.9)

in a following way

KC1
d = lim

δ1→0

yd1 −δ1∫

0

dyKd (y) = S

4
√

λS

×
[

2

(
2PI R + log

√
λS

μ2

)
log

δ1(S + 2M2 + √
λS)

2

4M2
√

λS

Fig. 7 Path integration over y for Kd

+ log2 δ1 + 2 log
S + 2M2 + √

λS

2
√

λS
log

√
λS(S + 2M2 + √

λS)

2(S + M2 + m2)2

− log2 M2

√
λS

− 4Li2
S + 2M2 + √

λS

2
√

λS
+ 2

3
π2

]
,

KC3
d = lim

δ1,2→0

yd2 −δ2∫

yd1 +δ1

dyKd (y) = − S

4
√

λS

×
[

2

(
2PI R + log

√
λS

μ2

)
log

δ1δ2(S + M2 + m2)2

λS

+ log2 δ1 + log2 δ2 − 2 log2 S + M2 + m2

√
λS

+2

3
π2 + 2iπ log

δ1δ2(S + M2 + m2)2

λS

]
,

KC5
d = lim

δ2→0

1∫

yd2 +δ2

dyKd (y) = S

4
√

λS

×
[

2

(
2PI R + log

√
λS

μ2

)
log

δ2(S + 2m2 + √
λS)

2

4m2
√

λS
+ log2 δ2

+ 2 log
S + 2m2 + √

λS

2
√

λS
log

2m4

√
λS(S + 2m2 + √

λS)

− log2 m2

√
λS

+ 4Li2

√
λS − S − 2m2

2
√

λS

]
. (A.10)

The integration along C2 and C4 is done by replacing
y → r1 = yd1 − δ1 exp(−iθ) and y → r2 = yd2 − δ1 exp(iθ)

respectively:

KC2
d = lim

δ1→0

π∫

0

dθ
dr1

dθ
Kd(r1)

= − S

4
√

λS

[
π2 + 2iπ

(
2PI R + log

δ1
√

λS

μ2

)]
,

KC4
d = lim

δ2→0

π∫

0

dθ
dr2

dθ
Kd(r2)

= − S

4
√

λS

[
π2 + 2iπ

(
2PI R + log

δ2
√

λS

μ2

)]
.

(A.11)

Summing up the integral over all five segments we
obtained that:

Kd =
5∑

i=1

KCi
d = S

4
√

λS

[(
4PI R + 4 log

m

μ
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− log
S + √

λS

S − √
λS

)
log

S + √
λS

S − √
λS

+ 4Li2

√
λS − S − 2m2

2
√

λS

− 4Li2
S + 2M2 + √

λS

2
√

λS

+ 2 log
S − √

λS

2M2 log
(S − √

λS)(S + 2M2 − √
λS)

2

8M2λS

− 2π2 − 4iπ

(
2PI R

+ log
δ1δ2(S + m2 + M2)

μ2

)]
. (A.12)

As opposed to ζd(y) in the region 0 < y < 1 the other
function ζx (y) is always positive since yx2 > yx1 > 1 for
2mM < X < M2 + m2 and yx1 > 1 > 0 > yx2 for X >

M2 + m2. For both these situations we have:

Kx = X

4
√

λX

[(
4PI R + 4 log

m

μ

+ log
X + √

λX

X − √
λX

)
log

X + √
λX

X − √
λX

+ 4Li2
2M2 + √

λX − X

2
√

λX

− 4Li2
X + √

λX − 2m2

2
√

λX

− 2 log
X + √

λX

2M2 log
(X + √

λX )(X − 2M2 + √
λX )2

8M2λX

]
.

(A.13)

Appendix B: Explicit expression for θ li j k(Q
2, τ)

The quantities θ li jk(Q
2, τ ) read:

θ1
111 = 4(S2 + X2 − 2Q2(m2 + M2))FI R,

θ2
111 = 4Sp((Q

2 − 2M2)F + 2m2Fd − (Q2 + τ S)F1+)

+τQ2(4(m2 + M2) − Q2)(τ Fd + F1+)

+2((1 + τ)(5Q2 − 6S) + 2(4 − τ)m2 − 2τM2)FI R

+2(2S2 + (Q2 + τ S + 4m2)Q2)F1+ + 4

1 + τ

×(Sp((Q
2 + 2M2)F − 2m2Fd ) + (2m2Q2 − SX)F1+),

θ3
111 = 2τ(2(Sp + X)F + (τ 2(M2 + m2)

−(1 + τ)(τQ2 + 4m2))Fd + (τ (4S − Q2 + m2 + M2)

+2S + 3Q2)F1+) + 2(4 + 8τ + 5τ 2)FI R

+4((Q2 + 2m2)F1+ + (4M2 − Q2)Fz1 − (S + Q2)F)

+ 4

1 + τ
(XF − Q2Fz1 ),

θ4
111 = −τ(4(1 + τ)F + 4Fz1 + (2 + 4τ + 3τ 2)(τ Fd + F1+)),

θ1
112 = 4Q2(Q2 − 2m2)FI R,

θ2
112 = 2Q2τ

[
SpF − m2F1+

1 + τ

−τ(Q2 − 2m2)Fd − (Q2 − m2)F1+
]

+ τ(5Q2 − 8m2)FI R,

θ3
112 = 2τ(S + Sp)F + 2τ 2FI R + τ

2

[
τ 2(8m2 − 5Q2)Fd

−(5τQ2 + 4(1 − τ)m2)F1+
]

− 8Q2Fz1

− 2τ

1 + τ
((Sp + X)F − Q2Fz1 − m2F1+),

θ4
112 = −6τ Fz1 − τ 3(τ Fd + F1+),

θ1
121 = 4Q2(Q2 − 2m2)FI R,

θ2
121 = τQ2

[
2τ(2m2 − Q2)Fd + 3FI R + 2(3m2 − Q2)F1+

+ 2τ

1 + τ
(m2F1+ − SpF)

]
,

θ3
121 = 2(1 + τ)Q2F + τ 2(FI R

−3

2
Q2(τ Fd + F1+)) − 2Q2

1 + τ
(F + 2Fz1 ),

θ4
121 = − τ 3

2
(τ Fd + F1+),

θ1
122 = 2Q2

M2 (SX + M2(Q2 − 4m2))FI R,

θ2
122 = 1

4M2

[
Q2

(
8Q2SpF + τ 2(Q2(Q2 − 4M2)

+16m2M2)Fd + (16m2(Q2 + τM2)

+2Q2((3τ − 2)S − 2τM2) + (6 + τ)Q4 − 8τ S2)F1+

− 4τ

1 + τ
(Sp((Q

2 + 2M2)F − 2m2Fd )

+(2m2Q2 − SX)F1+)

)
+ 2(8m2(Q2 − τM2) + 2Q2(2τM2

−(3 + 4τ)S) + (5 + 3τ)Q4 + 2τ S2)FI R

]
,

θ3
122 = 1

8M2

[
4Q2((6τ S + (1 + τ)(2M2 − 5Q2) − 2X)F

+4M2Fz1 ) + (4(Q2 + S)(2Q2 − S) + 16m2(M2 + 3Q2)

+2τ(8m2(Q2 − M2) + 9Q4 + 2S2) + τ 2(Q4 − 8M2Q2

+22Q2S − 8S2))F1+ + τ(τQ2(τ (Q2 − 8M2) − 4Q2)

+16m2(τ 2M2 − (1 + τ)Q2))Fd + 2((1 + τ)(16m2

+τ(11Q2 − 6S)) + 2τ(4Q2 + τM2) + 6Q2)FI R + 4

1 + τ

×((SX − 4M2m2)F1+ − Q2(Sp + 2M2)F − 4M2Q2Fz1 )

]
,

θ4
122 = 1

4M2

[
4(τ 2(S − 2Q2) − τ(Q2 + S) + Q2)F + 4Q2Fz1

+τ(8m2 + (1 + 2τ)Q2)(F1+ − τ(1 + τ)Fd )

+τ 2(τ (2S − M2) + 2(1 + τ)X)F1+

−τ 3(Q2 + τM2)Fd + 4τ(τ + 1)2FI R

]
,

θ5
122 = −1 + τ

4M2

[
τ 2(2F + (1 + τ)(τ Fd + F1+)) − 4Fz1

]
,

θ3
211 = 2(Q2 + (τ − 1)S)F − 2Q2Fz1 + τ 2FI R

+ 2

1 + τ
(XF − Q2Fz1 ),

θ4
211 = −τ(2Fz1 + τ 2

2
(Fdτ + F1+)),

θ2
212 = τ Sp

4M2

[
(2Q2(Q2 + 4m2) + (τ − 1)(λS + λX ))Fd − Q2SpF1+
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− 1

1 + τ
(Q2SpF1+ − 2Q2(Q2 + 4M2)F − (λS + λX )Fd )

]
,

θ3
212 = 1

4M2

[
2(4τ X (Q2 + M2) + Q2(τQ2 − 4Sp))F

+4Q4Fz1 + (τ 3((Sp + 8m2)M2 − 3Q4 + 8Q2S − 6S2)

+2τ(Q2 + 4m2)(2τ X − Q2) + τ Sp((1 − τ)M2 − Q2))Fd

+(8m2Q2 + 2τλS + τQ2(6S − 4Q2 − M2)

−τ 2(Q2(M2 − Q2) + 4X2))F1+
− τ

1 + τ
(Q2(M2(8Fz1 − Fd ) + 2Q2(F + 2Fz1 ))

+(2M2S − Q2Sp)(4F + Fd ) + (λS + λX − M2Q2)F1+)

]
,

θ4
212 = 1

4M2

[
2(τ − 1)(τ Sp − 2(τ + 2)Q2)F + 8(Q2 − τM2)Fz1

+τ 2(4(1 + τ)(τ S − 2m2) − τ 2M2

−(1 + 5τ + 3τ 2)Q2)Fd + τ(τ (2(1 + 2τ)S − τM2)

−(3 + 5τ + 3τ 2)Q2 + 8m2)F1+
]
,

θ5
212 = 1 + τ

4M2 (4Fz1 − τ 2(2F + (1 + τ)(τ Fd + F1+))),

θ2
221 = τ Sp

4M2

[
Q2SpF1+ − (2Q2(Q2 + 4m2)+(τ − 1)(λS + λX ))Fd

+ 1

1 + τ
(2Q2(4M2 + Q2)F + (λS + λX )Fd − Q2SpF1+)

]
,

θ3
221 = 1

4M2

[
4Q2((τM2 − (1 + 2τ)Sp)F + 4Q4Fz1

+τ(2(Q2 + 4m2)(Q2 − 2τ X) + 2τ 2(XSp + λX )

+(1 − τ + τ 2)M2Sp)Fd + (2τ 2(XSp + λX )

+Q2((1 + τ)(8m2 − τM2) − 2Q2 − 4τ Sp))F1+
]

+ τ

4(1 + τ)
(Q2(4F + 8Fz1 + F1+) − SpFd ),

θ4
221 = 1

4M2

[
2((1 + τ)(2 + 5τ)Q2 − 2τ(2 + 3τ)S)F

+4(1 + 2τ)Q2Fz1 + τ 2(2(1 + τ)(Q2 − 2τ X + 4m2)

−τ 2(Sp + M2))Fd + τ((1 + τ)(8m2 − 6τ X)

−τ 2(Q2 + M2))F1+
]
,

θ5
221 = τ(τ + 1)

4M2 (4(1 + τ)F + 4Fz1 + τ(1 + 2τ)(τ Fd + F1+)),

θ3
222 = 1

4M2

[
Q2(2(Q2 + 2M2)(4Fz1 − τ F) − Sp(τ (1 + τ 2)Fd

+4(3 + τ)F)) + (τ (1 + τ)(λS + λX )

−(2 + τ)Q2(Q2 − 8m2))F1+ + τ

1 + τ

(
Q2(Sp(4F + Fd )

−2(Q2 + 2M2)(F + 2Fz1 )) − (λS + λX )F1+
)]

,

θ4
222 = 1

4M2

[
4(3 + 3τ + τ 2)Q2F + 4(3 + 2τ)(Q2Fz1 − τ SF)

+τ 2((1 + τ)Q2 − 2τ 2X)Fd

+τ(2(2 + τ)(4m2 − τ S) − (3 − τ − 2τ 2)Q2)F1+
]
,

θ5
222 = 1 + τ

4M2 (2τ(2 + τ)F + 4(1 + τ)Fz1 + τ 3(τ Fd + F1+)). (B.1)

Here Sp = S + X = 2S − Q2, and F and Fi (i = d, 1+, z1, I R) can
be expressed through the invariant as

F = 1√
λq

,

Fd = 1

2π
√

λq

2π∫

0

dφk

z1z2
= 1

τ

(
1

C2
− 1

C1

)
,

F1+ = 1

2π
√

λq

2π∫

0

dφk

(
1

z1
+ 1

z2

)
= 1

C1
+ 1

C2
,

Fz1 = 1

2π
√

λq

2π∫

0

z1dφk

= Q2(Sp − v) + τ(S(Q2 + v) + 2M2Q2)

λ
3/2
q

,

FI R = R2

2π
√

λq

2π∫

0

dφkFI R = τ 2SpFd − (2 + τ)Q2F1+
2(1 + τ)

, (B.2)

where FI R is defined by Eq. (35), while z1,2 = kk1,2/kp1 depends on
φk as

z1 = 1

λq

[
Q2(Sp − v) + τ((Q2 + v)S + 2M2Q2) − 2M

√
λz cos φk

]
,

z2 = 1

λq

[
Q2(Sp − v) + τ((Q2 + v)(X − v) − 2M2Q2)

−2M
√

λz cos φk

]
,

λz = (τ
q
max − τ)(τ − τ

q
min)(Q

2(S(X − v) − M2Q2) − m2λq ), (B.3)

and τ
q
max/min defined by Eq. (40).

At last

C1 =
√

4m2M2(τ
q
max − τ)(τ − τ

q
min) + (Q2 + τ S)2 ,

C2 =
√

4m2M2(τ
q
max − τ)(τ − τ

q
min) + (Q2 + τ(v − X))2 . (B.4)

Appendix C: Calculation of δS

The real photon phase space in the dimensional regularization has a
form

d3k

k0
→ dn−1k′

(2πμ)n−4k′
0

= 2πn/2−1k′n−3
0 dk′

0 sinn−3 θkdθk

(2πμ)n−4�(n/2 − 1)
, (C.1)

where θk is defined as the spatial angle between the photon three-
momentum and k′

1,2 or k′
s,x that are introduced below, and μ is an

arbitrary parameter of the dimension of a mass. Here and later the upper
prime index means that the energy or three-momentum is defined in the
system p1+q = 0.

The Feynman parametrization of the propagators in FI R :

FI R = 1

4k′2
0

1∫

0

dy

[
2

1 − xβ1
− 2

1 − xβ2
− S

k′2
s0(1 − xβs)2
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+ X

k′2
x0(1 − xβx )2

]
= 1

4k′2
0

1∫

0

dyF(x, y), (C.2)

where y is the Feynman parameter, x = cos θk , βi = |k′
i |/k′

i0 for
i = 1, 2, s, x , k′

s0 = yk′
10 + (1 − y)p′

10 and k′
x0 = yk′

20 + (1 − y)p′
10.

After substituting it into definition of δS in (37) and, using δ function,
integration of the obtained result over the photon energy we found that

δS = 1

2(4μ
√

π)n−4�(n/2 − 1)

1∫

−1

dx(1 − x2)n/2−2

×
1∫

0

dyF(x, y)

v̄∫

0

dv

v

( v

M

)n−4
. (C.3)

Then, the integration over v, and expansion of the obtained expres-
sion into the Laurent series around n = 4 result in

δS = δ I RS + δ1
S, (C.4)

where

δ I RS = 1

2

[
PI R + log

v̄

μM

] 1∫

0

dy

1∫

−1

dxF(x, y) (C.5)

and

δ1
S = 1

4

1∫

0

dy

1∫

−1

dx log

(
1 − x2

4

)
F(x, y). (C.6)

Here PI R is the infrared divergent term defined by Eq. (A.4). Since
k′2
s0 − |k′

s |2 = m2
y(S) and k′2

x0 − |k′
x |2 = m2

y(X) where

m2
y(S) = y(1 − y)S + y2m2 + (1 − y)2M2, (C.7)

the integration over x and y variables in δ I RS is performed explicitly:

δ I RS = 2(XLX − SLS)

[
PI R + log

v̄

μM

]
, (C.8)

where the quantities LS , and LX are defined by Eqs. (20).
For the covariant analytical integration in δ1

S we express the initial
and final lepton energies through the invariants:

k′
10 = X

2M
, k′

20 = S

2M
. (C.9)

As a result,

δ1
S = 1

4
S
√

λS L
2
S − 1

4
X

√
λX L

2
X

+ S√
λS

Li2

(
2
√

λS

S + √
λS

)
− X√

λX
Li2

(
2
√

λX

X + √
λX

)

+Sφ(k2, p1, p2) − Sφ(k1, p1, p2). (C.10)

The function Sφ can be expressed through the integration over x and
y as

Sφ(k1,2, p1, p2) = k1,2 p1

2

1∫

−1

dx

1∫

0

dy
log[(1 − x2)/4]
k′2
s0,x0(1 − xβs,x )2

.

(C.11)

The explicit expression for Sφ can be found in Appendix B of [22].
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