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ENHANCED DISSIPATION AND HORMANDER’S HYPOELLIPTICITY

DALLAS ALBRITTON, RAJENDRA BEEKIE, AND MATTHEW NOVACK

ABSTRACT. We examine the phenomenon of enhanced dissipation from the perspective of Hormander’s classi-
cal theory of second order hypoelliptic operators [31]. Consider a passive scalar in a shear flow, whose evolution
is described by the advection—diffusion equation

Of +b(y)0af —vAf=00nT x (0,1) x Ry
with periodic, Dirichlet, or Neumann conditions in y. We demonstrate that decay is enhanced on the timescale
T ~ vy~ WNFD/(N+3) \yhere N —1 is the maximal order of vanishing of the derivative b’ (y) of the shear profile

and N = 0 for monotone shear flows. In the periodic setting, we recover the known timescale of Bedrossian
and Coti Zelati [8]. Our results are new in the presence of boundaries.
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1. INTRODUCTION

The advection—diffusion equation
of+u-Vf—vAf=0 (1.1)

describes the evolution of a passive scalar f which is transported by a divergence-free velocity field w and
simultaneously diffuses. It is well known that the interplay between transport u - V and weak diffusion vA
(0 < v <« 1) may cause solutions of (1.1) to decay more rapidly than by diffusion alone. This phenomenon
is known as enhanced dissipation.

Our goal is to clarify the relationship between enhanced dissipation and Hérmander’s classical theory
of hypoelliptic second order operators, developed in [31]. We restrict our attention to the class of shear
flows u = (b(y), 0). Enhanced dissipation within this class has already been studied by Bedrossian and Coti
Zelati in [8]. We will sharpen and extend their results, though perhaps the main interest of our work is in the
method we employ, which is a new application of the old ideas of Hérmander.

We consider (1.1) on the spacetime domain © x (0, +00), where 2 = T x D and D = T or (0,1).
By convention, we identify functions on the torus T := R/Z with functions satisfying periodic boundary
conditions on (0,1). When D = (0, 1), we impose homogeneous Dirichlet or Neumann conditions on
{y = 0,1}. The shear profile b € C°°(D) is assumed to have precisely M > 0 critical points. When
M > 1, we denote these by y;, 1 <7 < M. We further require that the maximal order of vanishing N; € N
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at y; is finite:
b®) (y;) =0forall 1 <k < N; (1.2a)
BN () #0. (1.2b)
Let N = maxj<;<y N;,or N = 0when M = 0.
Since u - V = b(y)0, in (1.1), the z-averages

N0 = [ e
satisfy the one-dimensional heat equation

O (f) = vyy(f) =0

and in general decay only on the diffusive timescale ~ 1. To extract an enhanced dissipation timescale, it
is necessary to subtract ( f). Without loss of generality, we thus require that the initial data f;,, satisfies

(fin)(y) == /Tfin(w,y) dez=0.

It is instructive to extract the dissipation timescale in the Couette example b(y) = y posed for (z,y) €
(R/277Z) x R. In this case, (1.1) is explicitly solvable, as was already known to Kelvin in [35]. Upon taking
the Fourier transform, we have

Of — kdpf + (k> + n>)f =0.

The solution is

Flkym,t) = et RIS o (e oy k). (13)
The factor e~*/**t*/3 dominates for large times and yields the enhancement timescale 7' ~ /3, since

|k| > 1 when we disregard the & = 0 modes. The fundamental solution on R? x R was also famously
computed by Kolmogorov [37] (see also Hormander’s introduction [31]).
In [8], Bedrossian and Coti Zelati identified the following enhanced dissipation timescales depending on

the shear profile:
N+1

T~y N3 (1.4)
in the periodic-in-y setting, up to a factor (1+ log »~1)? which was removed by Wei [44]. The enhancement
is measured in terms of the ‘flatness’ of the shear profile at its critical points. Since the Couette flow has no
critical points, the above timescale for N = (0 matches the timescale extracted from (1.3). These timescales
are essentially sharp, as demonstrated by Drivas and Coti Zelati in [18]. In the Neumann setting, Bedrossian
and Coti Zelati obtain the same timescale except in the monotone case N = 0, in which the timescale
T ~ v~2 (up to a logarithmic correction) is obtained instead of 7' ~ v~1/3. We demonstrate that the
enhanced dissipation timescale is, at worst, (1.4) in the Dirichlet and Neumann settings for all N € Nj.

To better clarify the connections to hypoellipticity, we consider the hypoelliptic advection-diffusion equa-
tion proposed in [8]:

Ouf +b(y)0uf — vy f = 0. (1.5)

The PDEs (1.1) and (1.5) are actually equivalent in the following sense: If f is a solution of (1.5) with initial
data fi,, then g = e” t0zz f is a solution of (1.1). In the sequel, we focus only on smooth solutions of (1.5):
For each f,, € C°(Q) satisfying the periodic, Dirichlet, or Neumann boundary conditions, there exists a
unique smooth solution f € C([0, +00); L2(Q)) N C>=(£2 x (0, +00)) to (1.5) satisfying f(-,0) = fi, and
the desired boundary conditions. Smoothness up to t = 0 would require additional compatibility conditions
on fin. We assume that (f) = (fin) = 0.

Our main theorems are the following:
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Theorem 1.1 (Enhanced dissipation). There exist dy,vg > 0 and C' > 1, depending only on b, such that the
solution f of (1.5) with periodic, Dirichlet, or Neumann conditions satisfies

N+1
1FCo )2y < Cllfinll oy exp (—dov ¥55t)
forallt > 0andv € (0,1p).

Theorem 1.2 (Gevrey-in-x smoothing). There exist do,vg > 0 depending only on b such that the solution

f of (1.5) is instantly Gevrey-p regular for all p > & ; 3 and v € (0,v9):

Hexp <doy%|8x|%t> f('vt)‘

L) Sop [ finll 20 -
Remark 1.3 (Improvements). Theorems 1.1 and 1.2 improve the main theorems of Bedrossian and Coti
Zelati [8] and Wei [44] in the following ways:

e We treat Dirichlet conditions in addition to periodic and Neumann conditions.
e In the Neumann setting, we improve the timescale from 7' ~ v~ /2 in [8] to T ~ v~ /3 when N = 0,
and we remove the additional logarithmic factors when N € Nj.
In the periodic-in-y setting, p = % is also possible in Theorem 1.2, as demonstrated by Wei [44] using
resolvent estimates and a Gearhardt—Priiss-type theorem.

Remark 1.4 (Generalizations). Our approach generalizes, with minimal effort, to divergence-form oper-
ators 0y (a(y)0y-) satisfying a € L*>°(D) and a > ¢ > 0. It is also possible to generalize to operators
div(A(y)V-). The norms in the ‘interpolation inequality’, Proposition 4.5, would need to be adjusted to
incorporate z derivatives.! Doing so would allow us to treat circular flows w = rQ(r)ey in an annulus
ro < r < ry, where (2 has finitely many critical points. It is also possible to generalize to shear flows which

. _N+1 . . . . .
vary on the enhancement timescale »~ ¥+3 though the time translation symmetry is convenient in the proof
of Proposition 4.5. We view these generalizations as an indication that, in a certain sense, Hormander’s
method is robust.

The most naive approach to Theorem 1.1 is to try to generalize the L? energy estimate for the heat

equation 0;f = vAf onT? x R, :

1d

2dt

where Cp = 472 is the Poincaré constant and f has zero mean. This differential inequality implies || f H%Q <

e Vt/CP|| finl|32. For the hypoelliptic PDE (1.5), —v||9, f||3 , appears on the right-hand side of the energy

estimate, and we lack a Poincaré inequality for this quantity. The goal of hypoellipticity is precisely to

extract differentiability-in-z and, thus, a Poincaré inequality, from the L? energy estimate and the PDE. In
this way, we salvage the naive approach.

The desire to reproduce (1.6) is also a motivation for hypocoercivity. We compare the two approaches
after we sketch the main idea.

1172 = —vIIVFli2 < =CplvllfII72 (1.6)

In the classical terminology, a partial differential operator P with smooth coefficients on an open set
U c R%is hypoelliptic if distributional solutions of Pu = f are smooth in U for f € C®(U). Let
Xo, X1,..., X be smooth vector fields on U. In [31], Hérmander characterized hypoellipticity for second
order operators

J
L=) X:X;+Xp.
Jj=1
IRoughly speaking, one should measure IV fllz2 and || Xo f]| 2 ;-1 instead of ||Oy f||z2 and || Xo f]|, 2
tx,y t,

r—1.
mHU
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L is hypoelliptic if and only if the Lie algebra generated by {X; }}7:0 spans R? at every point 2y € U.
Perhaps the main observation in [31] is that regularity ‘along’ two vector fields X and Y implies regularity
along their commutator [X, Y] and sum X + Y, up to certain controllable errors.

Hormander’s theorem implies that solutions to (1.5) on T? x R are smooth, but it does not evidently
imply Theorem 1.1. Rather, we revisit Hormander’s scheme (i) in a more quantitative manner, (ii) with
boundary, and (iii) in the singular limit as v — 0T. On the other hand, our problem admits technical
simplifications that, we hope, illuminate the original analysis in [31].

Our work is partially inspired by the recent work of Armstrong and Mourrat [3], who applied Hormander’s
methods in the context of the kinetic Fokker—Planck equation. Hormander’s analysis was also also recently
revisited by Bedrossian and coauthors in [7, 9] in the context of stochastic differential equations.

Sketch. Let us provide an exposition of the main steps in our proof. Consider a smooth solution f: ) x
R, — R to (1.5) with periodic or homogeneous Dirichlet or Neumann boundary conditions and smooth
initial data fi, satisfying (fi,) = 0. Using the boundary conditions, the basic energy estimate is

1 ! 1
S0+ [ [ 102 dvdyds = Jfuls vz o0.
0 JQ

This energy estimate furnishes two crucial pieces of information, which, to avoid more notation, we present
here only for Dirichlet boundary conditions. Evidently,

2 2
V||f||L%yz(H(%)y(Q><R+) = Hfin||L2 . (L.7)
Then (1.7) and the PDE itself X f := (0; + b(y)0,)f = v0y, f give
-1 2 2
XS I sy S Il (1.9
As in [3], we could define a norm || - || ;1. based on the quantities controlled in (1.7) and (1.8), though
hyp

it is not strictly necessary.> Hypoellipticity is subsequently extracted from embedding theorems for Hﬁ;;?
Notably, we have

Proposition 1.5 (Subelliptic estimate and Poincaré inequality, Dirichlet case).

N1 N1 _
vV || f 22y + v HfHé(l?/(Nw)(QT) Sb VHfH%sz&y(QT) VX Iz gy (19

where Qp = Q x (0,T), T = TQV_%, v < vy, and vy, Ty > 0 depend only on the shear profile b.

The quantity ||- || QU(V+D) is a Besov-type norm measuring 1/(N + 3)-differentiability in the direction 0,
O

and it controls || f|| 72 when (f) = 0 as above. In the terminology of [3], (1.9) is a Hormander inequality.
See Theorem 4.6 for the periodic, Dirichlet, and Neumann settings.

With (1.9) in hand, we conclude the proof of exponential decay according to a Gronwall-type argument
along a discrete set of times (see Section 5). The discrete-in-time proof is natural in the following sense. For
the Couette example (1.3), the differential inequality d/ac|| f(-,¢)[|7, < —Cov' || f (-, t)]17, would imply

1fC 03, < e_COVI/St”finH%Q, which is false, as we see from the solution formula (1.3). Indeed, the

superlinear decay in the term e™” k*£*/3 indicates that ‘nothing happens’ until the ‘crossover time’, which

is proportional to »~"/3. In light of this, the prefactor C' > 1 in Theorem 1.1 and the scaling of T in
Proposition 1.5 are essential.

2Membership in H }1};}; is actually equivalent to solving the PDE with RHS in Lin v !

3Asa consequence, after the initial energy estimate, time no longer plays a distinguished role. It is possible to distinguish the
role of time in a ‘parabolic’ Hormander method; see, for example, Bedrossian and Liss [9].
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Sample Hormander inequalities. To convey the main idea of the embedding (1.9), we demonstrate a
simple embedding on R?, which is an analogue of (1.9) for the PDE yd, f — vy, f = g. To quantify the
fractional differentiability, we define the following Besov-type seminorms based on finite differences:

Fllgy = sup A7Y|f(a,y +h) = f(@,y)lle2
v heR\{0}
Ifllgre = sup h7YIf(z + sgn(h)h?y,y) — f(z,y)ll12
YOz heR\{0}

£l s = sup ATHIf(z + 1%, y) = fla,9)ll
or  heR\{0}

We evidently have || f HQ}3 S I fll 21 (see the characterization of Sobolev norms by finite differences in
ztly

Evans [22]). The quantity || f|] QY2 which measures 1/2 derivative in the y0, direction, will be controlled by
yOz

the ‘interpolation inequality’ below. The analogous estimate for the heat equation is f € L% H ; NH, tl H; lc
H,”L2 onRY x (0, 7).

In the following, we require that the terms on the right-hand side of the inequalities (1.10), (1.12)
and (1.15) are well defined and non-vanishing (which is necessary in the optimization steps). Ultimately,
we will demonstrate

Lemma 1.6 (Sample subelliptic estimate). In the above notation,
2 1
£ gy < A1 g D U (1.10)

The explains, in part, the emergence of the powers of v in the main theorem. If we suppose || f|| 26 <

v and ||f|| L2 < '/, then we recover ||f]| QY < v~'/%, analogous to the time-dependent subelliptic

estimate (1.9) with N = 0. If we replace y0,. f by yN +19, f in (1.10), then we would expect

1l gyaven S Hfo;:,lHyN“c? fo;;y,l, (1.11)

though we do not demonstrate this here (see Farkas and Lunardi [23] for similar estimates).

The subelliptic estimate (1.10) follows from combining the ‘bracket inequality’ and the ‘interpolation

inequality’. The bracket inequality is based on the identity e~ Bte—AteBteAt — ot*[ABIHO() for vector
q y q y y

fields A, B. In the proof, this inequality manifests in (1.14), where the O(#3) term vanishes due to the
special structure of 9, and y0,.

Lemma 1.7 (Sample bracket inequality). In the above notation,
1 2
1£lgs S 1015 19150 - (1.12)

Proof. Let h € R. If we demonstrate
1/3 < 1/2 .
17z S 17y, + WAl ges (113)
then we consider f)(x,y) = f(Az,y) and optimize A > 0 to complete the proof. We write
+f@+ (y+ R y) = fle+ (y + h)h?y +h)
+ e+ (y+h)h*y +h) — f(z,y +h)
First, we treat the terms based on ‘flowing’ in the direction F0,:

1f (@ + (y + )% y) = fo+ (y+ Ry + h) |2 = | f (g +h) = fle,y)] S hlifllgy, -

(1.14)
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Second, we treat the terms based on ‘flowing’ in the direction Fyd,:

If(z+ 1 y) = fle+ (v + W% y)le = 1 f( + (y + WR* y + h) = Flo,y + )2 S BlIFllgue -
Combining the estimates completes the proof of (1.13). U

The interpolation inequality is more difficult (see Section 5 in Hérmander’s paper [31]), and we delay the
proof to Appendix A:

Lemma 1.8 (Example interpolation inequality). In the above notation,

1 1
£ llgr S U1 i 02 (1.15)

The main difficulty in (1.15) can be seen in the following way. Let X = 8, and e"*Xo f = flx+h2y,y).
To achieve ||"*Xo f — f 2 < h2, one differentiates the left-hand side in h. Then

d
Tl — F13 = an(e" N0 f — £, Xof).

which is estimated by duality: Xy f € L?L,Hy_ Land e’ Xof — f € L?L,H?} However, ||0y f|| .2 is not generally
preserved under the flow of Xy, as we must commute 9, with "*Xo_ The chain rule gives ayeh2X0 f=

h20,eh”Xo f+ eh*Xo Oy f, and the situation looks bleak because 0, f is uncontrolled in L?. Hoérmander’s
method involves the above computation for a smooth function S, f, obtained by mollifying f in the direction
[Y, Xo] = 0, at scale £ > 0. The additional mollification makes it possible to exploit the small prefactor k2.
The complete proof is contained in Appendix A.

Further difficulties. Foremost is the Taylor remainder term, which vanished in the calculation (1.14). In
our setting, the left-hand side of the analogous bracket calculation contains f(z + (b(y + h) — b(y))h?,y)
rather than f(z + b'(y)h?,y). This error is estimated in terms of further commutators. That is, to control
1/3 derivative in the direction b'(y)9,, we already require control of 1/4 derivative in the direction b (y)0,,
1/5 derivative in the direction b3 d,, etc. Eventually, these errors can be absorbed by applying the trick
[Y, Xo] = [e71Y,eX(] to introduce small constants.

The interpolation inequality also exhibits a ‘cascading effect’ and requires mollification along the vector
fields [Y, Xo], [Y, [Y, Xo]], etc. Finally, the boundaries in y when D = (0, 1) and in the time ¢ restrict the
‘admissible finite differences’ h € R\ {0}. One requires |h| < ho with judicious v-dependent choices of hy.
We emphasize that the more tedious calculations present in this paper essentially result from either Taylor
remainders, interpolation, or admissible finite differences. The scaling with respect to 7 which produces the
enhanced dissipation timescale is already visible in the discussion following Lemma 1.6 and is unrelated to
these technicalities.

Comparison with hypocoercivity. A commonly used method to prove enhanced dissipation [8] is hypoco-
ercivity, whose mathematical framework was developed by Villani in [43]. Hypocoercivity has roots in
kinetic theory* and was later adapted to PDEs of fluid dynamics in [24, 6]. Its premise is to design a new
energy functional ® which satisfies the differential inequality P < —Cyd. Commonly, ® is equivalent to
|- 1%, andis ‘augmented’ by certain commutators; for example,

T,y

O[f] = I£113 + av® 10, f13 + 2601205 f, 8, ) + €02 113

in the Couette case with suitable weights 0 < ¢ < b < a < 1. We should interpret 0, as the commutator
[0y, y0,] above. Perhaps the main advantage of hypocoercivity is that it is elementary, consisting only of
well-chosen energy estimates and integration by parts.

Hypocoercivity naturally lives at higher regularity ~ L{°H %,y than Hormander’s method, which lives
at the level of the basic energy estimate ~ LI?OL?W N Ltsz; As a consequence, hypocoercive methods
encounter two technical difficulties that are absent from our approach:

4See also the weighted energy method of Guo in [27].
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e [? stability estimates require further arguments that exploit the smoothing. In [24, 8], this is addressed
by passing through the resolvent formalism: The hypocoercivity method estimates the pseudospectrum
and, therefore, the semigroup. It is this step which contributes the logarithmic correction, which can be
removed by the Gearhardt—Priiss-type theorem of Wei in [44].% In the monotone shear case, one can use
the smoothing more directly [15]. A different choice, popular in nonlinear problems, is simply to consider
stability in more regular spaces [6].

e Hypocoercivity may not always generalize well to boundaries, which is why [8] does not achieve the
optimal timescales in the Neumann case.

Finally, we mention that hypocoercivity’s main purpose is not to capture hypoelliptic regularization, al-
though in the shear flow case it can be recovered by studying the equation mode-by-mode in x; see (2.6)
in [8] for a definition of the corresponding functional ®;. In our method, the enhanced dissipation is essen-
tially a consequence of the hypoelliptic regularization, in the sense that the subelliptic estimate (1.9) controls
a norm measuring fractional regularity in x using the energy estimates (1.7) and (1.8) and leads directly to
the timescale (1.4) by a Poincaré inequality in .

Existing literature. /. Enhanced dissipation. In [14], Constantin, Kiselev, Ryzhik, and Zlato$ investigated
enhanced dissipation in broad generality in terms of spectral properties of the operator w - V. This work was
recently revisited and quantified by Coti Zelati, Delgadino, and Elgindi in [16] and Wei in [44]. Shear flows
are not relaxation enhancing in the sense of [14].

Shear flows are steady solutions of the two-dimensional Euler equations and (forced) Navier-Stokes equa-
tions. The corresponding linearized equations are

0w + b(y)Opw — V' (y)0ptp = vAw, AP = w, (1.16)

where w is the vorticity perturbation. Compared to (1.1), (1.16) contains the additional non-local term
—b"(y)0,) which complicates the analysis. This term vanishes for the Couette flow b(y) = y, and we
can extract the inviscid damping and enhanced dissipation directly from the solution formula in (1.3). No-
table papers on nonlinear stability of the Couette flow include [10, 11, 12, 34]. Other important flows are the
Poiseuille (pipe/channel) flow b(y) = y(1 — y) [19], Kolmogorov (sinusoidal) flow [6, 45, 46], and Oseen
vortices [24, 21, 20, 39, 25].

When considering passive scalars in an infinite pipe, one refers to Taylor—Aris dispersion [42, 2]. This
topic was recently reexamined via center manifolds and hypocoercivity in [5].

Passive scalars in power law circular flows were considered by Dolce and Coti Zelati in [17].

Passive scalars in shear flows with non-local diffusion were recently investigated by He [29] by resolvent
methods.

2. Hypoellipticity. Hormander’s theorem was reproved using pseudodifferential operators by Kohn in [36],
and it is Kohn’s proof which Hérmander includes in his monograph [32], see Chapter 22. We mention also
the stochastic proof reviewed in [28]. Otherwise, the literature is immense, and we refer to [13] for a survey
on Hormander’s vector fields and the books [30, 38] on microlocal analysis.

3. Kinetic equations and regularity techniques. Recent work on kinetic equations has illuminated connec-
tions between Hormander’s hypoellipticity and regularity techniques in the style of De Giorgi—Nash—Moser.
In [41], Silvestre derived a priori Holder estimates for the Boltzmann equation, and follow-up work of Sil-
vestre and Imbert [33] obtained weak Harnack and Holder estimates for a large class of integro-differential
equations, including the Boltzmann equation without cutoff. Golse, Imbert, Mouhot, and Vasseur [26] stud-
ied the Harnack inequality for kinetic Fokker-Planck and Landau equations. For open questions and a pre-
sentation of these and related programs of research, we refer to Mouhot [40].
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2. PRELIMINARIES

Following the convention specified in the introduction, the torus T may be regarded as the set (0, 1) with
periodic boundary conditions. Furthermore, unless specified otherwise, functions f and w are qualitatively
smooth, though they are only measured in low regularity.

Definition 2.1 (Flow Maps and Pullbacks). Letr E C D be open and (t1,t2) be given. Let X be a Lipschitz
vector field defined on T x E x (t,t3). For E C E open, (t1,13) C (t1,t3), and o € (01, 02), consider the
function

(ﬁ(d,l‘,?;,t): (0'1,0'2) x T x E X (t~1,t~2) — T x E x (tl,tg)
defined as the solution to the ordinary differential equation6
9ot = X (), 9(0,2,y,t) = (z,y,t).

Then for each o € (01, 09) and any measurable function u : 2 x (0,1) — R, we may define the action of
the associated pull back exp(c X)) on u by

exp(oX)u(z,y,t) = u(exp(oX)(z,y,1)) = u(¢(o, z,y,1)) .
Throughout the paper, we shall use the following notation and shorthand for particular vector fields.

Definition 2.2 (Vector Fields). We fix notation for the following vector fields. A and B are allowed to be
arbitrary Lipschitz vector fields as defined in Definition 2.1, and b € C°°(D) satisfies (1.2).

[A,B] = (adA)B = AB— BA (2.1a)
Y =v'29, (2.1b)

Xo = 0 + b(y)d, 2.1c)
Zy = [, Xo] = vV (y)0s (2.1d)
Zi =Y, Zp_1] = V"6 (y)0, k>2. (2.1e)

We shall frequently refer to the flow maps and pull backs induced by the vector fields defined above. For
example, in the case of Y and X, these flows maps are simply translations along the trajectories of Y and
Xy, defined by

exp(oY )u(z,y,t) = u(z,y + ov'?t),  exp(oXo)u(x,y,t) = u(x + ob(y),y.t + o).

Definition 2.3 (Parameters). For 0 < k < N + 2, we shall use the notation
1 1
- = 2.2

Sk '
Note that by the definition of my, we have my1 = 1 + my. In addition, for 0 < k < N + 1, we define an
increasing sequence of positive numbers

Sk

0<Co<61<"'<Ck_1<ck<ck+1<"'<CN+1<OO. 2.3)

_NAL _NA4L
While we shall specify the exact values of the ¢, later, each ¢y, satisfies ci Ry vV N3, and cg =v N3,

%In making this definition, we have implicitly assumed that the flow remains contained in T X E X (t1, t2), a condition which
will be satisfied for every vector field considered in this paper.

7See conditions (2.8), (3.4), (3.5), (3.6), and (3.7), which culminate in the choice of the ¢ ’s in Corollary 3.3.
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We shall use sj, my, and ¢, to define a number of Besov-type norms. The parameter s; specifies an index
of differentiability, while c;, quantifies the magnitudes of the finite differences allowed in each Besov-type
norm. These spaces are complicated by (1) the fact that they are By -type Besov norms with ¢ = +o0,
(2) finite differences must stay within the space-time domain under consideration, and (3) an extension
procedure would be non-trivial (for example, Xyu cannot be extended by a simple even reflection in time).

Definition 2.4 (Besov Spaces). We define the following fractional Besov-type seminorm along the vector
fields X:

_ —1 2
ullx = L o (llexp(o Xo)u = ull 120 (0,219

+ Hexp(—02X0)u - “HL%QX(c%/%C%)) )

Foru € L%xHyl(Q x (0,c2)) (qualitative assumption), we define the seminorm

lully = "0yl L2(x 0,02, -

This norm is appropriate in Dirichlet, periodic, or Neumann settings, and by the analysis in Evans p. 292—
293 [22] is equivalent to

lully = sup o7 (flexp(0Y )u — ull p2(ry(0,1/2)x (0,2))

+lexp(=0Y)u — ull g2 10, 1)x (0.2)) ) -

That is, ||u|lv =~ ||u|v. Forg € L%x(Hl)Z(Q x (0,c3)) (Hy_1 = (H&)Z in the Dirichlet setting), we define
the dual seminorm
HQHY*(Qx(o,Cg)) = sup / gudz dy dt < oo
lully=1/2x(0,c§)
whereu € L}  H ; (Q2x(0,c2)) ((H})y in the Dirichlet setting). This definition is suitable for the integration
by parts in Section 5.
Consider a vector field Z = c(y)0, and s > 0. For a free parameter oz > 0, we define

_ 1 1/s
U||ps = sup o Hexpa Zu—u‘ . 2.4)
H ||QZ c€(0,07) L2(2%(0,¢3))
If c(y) = 1, we set 05, = 008 so that
_ “1 1/s
ullns = sup o Hexp o0z )u — u‘ . (2.5)
| HQBI o€(0,00) ( 2 L2(Q2x(0,c5))

For k > 1, set 0z, = ci, the precise value of which will be determined later. Then define
-1 .
lllz, = llullgy @xo.2) = Sup o llexp (o™ Z)u — ul| L2 0,c2)) -
The @ stands for ‘quotient’. Let us make an analogy for such spaces in the periodic single variable case
x € T. We have that Q})w and H' are equivalent [22]. When s € (0, 1) is not an integer, we have that ng
and B§ - are equivalent.

Before recording a few simple properties of these spaces, let us first set some notation. Recalling (1.2),
let U; be a sufficiently small neighborhood of y; so that for & > 2,

W) >0, w= |J U,
{i:N;=k—1}

Bk = inf
yeEUy

8Due to the periodicity in x, finite differences for ¢ > 1 cannot contribute to the supremum.
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and

M
— 3 / — .
Bl_y1£51|b(y)\>o, Ml—(O,l)\i:UlUZ.

The next lemma asserts that Uf;, is the set of y-values on which Zj, is coercive in the x-direction, and By is
the lower bound on the coercivity.

Lemma 2.5 (Comparable norms). Let A(y) : D — R be a smooth function, and let Uy, and By, be defined
as above.

(1) If A(y) satisfies 0 < A < Aj, then for any value of o a9, we have that
lullgs, e A7 lullgs - 6
If in addition 0 49, > Ay $>1and 0 < Ay < A < Ay, we have the two-sided bound
lullgs, S lullgs, S Afllulgs - )
(2) Fork > 1and
k/g Sk
oz (V2By) 2, 2.58)

we have that

Sk X
(uk/sz) HlukuHQgF < eully, < (Vk/z

Sk
(k) .
b HLoo(D)) lellgz - 29)

Proof. Since time plays a passive role in this argument, we shall suppress the time dependence. We first
prove (2.6) following Hormander’s Lemma 4.1 [31]. After making the identification o = o'/s in (2.4), we
may write that

2 exp(GA()On)u — ull3a o 0.2)

— 5—28][ B | exp(c A(y)dy)u — uH%Q(QX(Ovcg))dh
0<h<&

IA

5——23][ / lu(z +GA(Y),y) — u(z + hAr,y)|* dz dy dt dh
0<h<5 JQx(0,c3)
_1_5—28][ / |u(z 4+ hA1,y) — u(z,y)|? de dy dt dh
0<h<5 JQx(0,c3)

< 5_28][ / lu(x +5A(Y),y) — u(z + hAy,y)|? dxdydtdh—kA%sHuHés . (2.10)
0<h<5 JOx(0,c3) Oz
In order to estimate the first integral, we define the new variables

Aty

©=z+hA, h=h+35 2.11)
Ay

Using (2.11), we have that

0<h<5 JQx(0,c3)
S 'O,V—Qs . 2][ B / ‘u(ajl — EA17y) — U(Z'/,y)ﬁ d.Z'/ dy dt d/}vl
—54/4,<h<5 JQx(0,c3)

< 5—28 . 2][ - A%S};% ||uHQg
—5A/a, <h<5 -

< AP Jlullg; - 2.12)
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Combining (2.10) and (2.12) we have that
2 < A2s 2
lulld, < AP Nully; . 2.13)

which proves (2.6).
To prove the lower bound in (2.7), we use that one may assume that o € (0, 1) in (2.5) and again make
the identification & = o'/* to write that

AZS Hu||és = A% sup 5_25][ / lu(x +7,y) — u(z,y)* dedy dt dh .
2 5€(0,1) 0<h<gA; ' JOx(0,c2)

Adding and subtracting u(x + hA(y), y) this time gives that

5_23][ / lu(z 4+ 7, y) — u(z,y)|* de dy dt dh
0<h<GA;' JOx(0,c?)
<o ][ / lu(x +5,y) — u(z + hA(y),y) | dz dy dt dh
0<h<GA;" JOx(0,c3)

+ 5‘25][ / lu(x + hA(y),y) — u(x,y)|* dedy dt dh. (2.14)
0<h<FA; ' JQx(0,c3)
To bound the second term, we make the change of variables h = h'/* and obtain

2 ][ / lulz + hA), ) — u(z, y)|? dz dy dt dh
0<h<GA;" JOx(0,c3)

1

g2 ('&Agl)_l .= / B / |u(z —i—iNLl/SA(y),y) — u(a:,y)]2 dx dy dt h'/*=1 dh
5 Jo<h<(5A; ") JOx(0,c3)

_ 1 ~ ~
0‘23‘1-A0-—/ - R [ull3ys  dh
5 Jo<h<(GA,Y)s Az

- 2
Ss Ag ’ ”U”waz

IN

~S
which gives the desired bound in (2.7). Notice that in order to appeal to the ||u||wa norm, we have used

that h < (FAGY)* < A3® < oag,.
For the first term from (2.14), we use the change of variables

Aly)”

which is well defined by the assumption that A(y) > Ay > 0. Then the first term from (2.14) may be
estimated as

52 ][ / lu(x +&,y) — u(x + hA(y),y)|? dx dy dt dh
0<h<GAy* JQx(0,c3)
2

=0 S/ ][ lu(x’ — ' A(y),y) — u(a, y)|2 dh’ dx’ dy dt
Ox(0,e3) JeA(y) " <h/<5A;?

¥ =z + A(y)h, h=h + (2.15)

1

<25 %74y = / /~ lu(z’ — ' A(y),y) — u(a',y) PR~ dh da’ dy dt
5 Jax(0,c5) J|h|<Aq

1 ~ ).
<2524y - - /~ Wl dh
§ Jih<Ag* A0
_ 2
58 AO 2s ”uHquax (2.16)

Note that after making the change of variables h'/s = —K above, we have again used the assumption that
|h] < Ay® < 049, to appeal to the HuHqua norm.
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Finally, the proof of (2.9) follows from (2.7) after using the definition of U/, By, and Zj,. ]
We shall use the following fractional Poincaré and interpolation inequalities.

Lemma 2.6 (Fractional Poincaré and Interpolation). The following two estimates hold:
(1) Ifue @p and 0 < s' < s < 1, then adopting the usual notation for (u)(y,t), we have that’

lw =€) (s )l 2o (0,2)) + 1ull L2 0.2y (m2)) S lully, -
(2) If0<s1<s5<1,0<0<1,ands = 0sy+ 0ss, then
lullgs, < Hu”Q‘Sl HUHQsz
”u”Hé(T L2) < Hu”Hn(T L2) HUHHSQ(T L2) :

Proof. To prove the first inequality, we appeal to Jensen’s inequality, the lower bound on |z — Z|~!1* for
z,z € T, and the bound on w in Q3 to write that

”u(x7y7t) - <u>(y7t)”%2(ﬂ><(o,cg)) = ///]T 0.1)x u(m,y,t) - ]’[Eu(gﬁ%t) dz
X

S/// ][ lue,98) — w@ 5, O gy i
Tx(0,1)x |$_$| .
1— mHUl‘-FO’ y,t) —u(T,y, )HL% _
// / . do dT dt
Tx(0,c3) |U|

~ 2
_ 2 1 lu(z +o,y, )—u(x,y,t)HLii
<)/ o2 dodt

) 1 |O_|28
< Ml / o

< Ml - 2.17)

2
dy dx dt

The implicit constant depends only on s, s’ € (0,1) and in particular is independent of u. Notice that the
second line is precisely the norm of v in L? <(0, 1), H s' (']I‘; Lg)), concluding the proof.
When s; > 0, the third inequality follows from writing

lu(z,y) — u(@,y)| Ju(z,y) - w(@, )| |ulz,y) — u(F,y)200

|z — §|1+2s o |z — 5‘6(1+251) = g‘(l—e)(1+2sz) ’

(2.18)

1
where T = x4+ o, and then applying Ho6lder’s inequality with L and LT=7. The case 51 = 0 and the second
inequality are similar, and we omit further details. O
3. BRACKET INEQUALITIES

The arguments in this section are based on the following equality, which may be checked directly. To
streamline calculations, we adopt the convention, locally in Section 3, that Zy = X, and |[ul|z, = [Jul|x.
Then for & > 0,

exp(—e0™ Zy) exp(—e LoY) exp(ea™ Zy,) exp(e Lo Y )u(x, y, t) — u(z, y,t)

3.1
=u (w + eo™ 2 [ b®) (y 4 e o) — pF) (y)] .Y, t) —u(z,y,t). G-D

9For a definition of Banach-space valued Sobolev functions, one may for example refer to Amann [1].
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Using the heuristic that
€O'mk1/k/2 b(k) (y + 6_101/1/2) o b(k) (y)] ~ Ukaer% b(k-i—l)(y)

and ignoring terms from the Taylor expansion which have been hidden inside the ~ symbol, we would
expect to control |uHZk+1 using [|uy and [ul|z, . The leftover terms in the Taylor expansion will in fact

be controlled by “higher brackets,” meaning ||uHZ] for j > k + 2. The ¢ accounts for the fact that the Zj,

and Y norms allow for finite differences of variable magnitude and helps us rebalance inequalities to absorb
remainder terms.

Lemma 3.1 (Bracket inequality). If0 < k < N and €1 satisfies the technical condition (3.7), then for an
implicit constant independent of the choice of €j.1, we have the estimate

N+1
~1 i(k—j+1)
lullz,., S e llullz, + ety luly + > e ™ Jullg,
j=k+2
k—N—1 N+2 (N+2) )3N+2
(= | ) g - (32)

Remark 3.2. We check in Corollary 3.3 that such a choice of €5 is possible, and then we fix values for
€k+1 and also ¢4 1.

Notice that we assume control over the norm ||u||x, which we show in Section 4 is controlled by the a
priori estimates enjoyed by solutions to (1.5).

Proof of Lemma 3.1. To ensure that the finite differences stay inside the domain, which has non-trivial
boundary in ¢ as well as in y for the Dirichlet and Neumann cases, we subdivide 2 into regions T x I x J,
where I € {(0,1/2),(1/2,1)} and J € {(0,¢</2), (¢5/2,c2)}. We only write the case when I = (0,1/2) and
J = (0, /2). The cases with I = (1/2,1) follow upon replacing Y by —Y", and the cases with J = (¢3/2, c3)
follow upon replacing X by —X. We divide the remainder of the proof into steps. In the first step, we write
out the Taylor expansion corresponding to (3.1). In the second step, we use the admissible ranges of ¢ to
derive the constraints (3.4), (3.5), and (3.6) on €41 in terms of cj. Finally, the last step bounds each term
using the appropriate Besov norm. The parameter k is fixed throughout the rest of the proof, and we simply
write ¢ rather than 1.

Step 1. From Taylor’s theorem, we have that

N+1 1y 2y o) )
j —1_ 1\ N—k+2
+ Ek+2 myAY b (y )+O((€ ov’?) >,
j

where the prefactor on O ((6_10'1/1/ )N _k+2) is bounded from above by Hb(N +2) H 1+ Multiplying through
by e0¥ 21"/ and rearranging, it follows that

ok 3, b+ () = eght2M2 <b(k) (y + e Lov'?) — p®) (y))
N1 42,0/

k—j+1p(5) N+4
(j—k;)!E bWY(y) + O (c™ ),

where now the prefactor on O(o™¥+4) is bounded from above by = —1,%57 Hb(N +2) H J00- From (2.2) and
(3.1), it follows that (recall that when k£ = 0, Zy = X))

exp(0™+1 Zy 1 )u — u = exp(—ea™ Z),) exp(—e oY) exp(ea™ Zy) exp(e 'oY)Ru —u, (3.3)
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where the remainder operator R is defined by

N+1 ch—j+1
= — 0" Z; Hoy)u,
Ru j_lgﬂ exp < = k)!o* ]> exp(HO;)u

and H(y,o) = O(o™N+2) with prefactor bounded above by h=N-1,%5 Hb(NH) HLoo' Notice that each
of the above transformations is volume preserving, but the transformations induced by Z;, 7 > 1, and H
preserve the domain T x I x J, while the transformations induced by X and Y do not and will be estimated
separately.

Step 2. The left-hand side of (3.3) must be measured in L? for o € (0, cx+1), which necessitates that the

same range of o is admissible in the right-hand side. Since all admissible values of ¢ are positive, we may
track the largest value of o, which for 7, is ¢ 1. In order for exp(s_laY) to be well defined, we need

v

N|=

ok < (3.4)
In order for exp(ec™* Zj,) to be well defined, we need
ecpty <t (3.5

We require that the term with exp(H )u must be well defined for o € (0, cx11). However, this term will be
bounded using the ng *2 norm, for which any values of o are admissible. The other terms in the remainder
for k + 2 < j < N + 1 require that
J
mck_i_l < Cj . (36)

Since the first and third conditions provide lower bounds on € and the second provides an upper bound, we
1

consolidate the three conditions by imposing that
m; 1 1k Mk
max | 2cp1v'/?, max Gk - ’ <e< Gk ) (3.7)
k4+2<j <N+1 ¢j (j — k) Ch+1
Notice that the right hand side involves an upper bound in terms of ¢ and ck41, while the left hand side

involves lower bounds with powers of ¢; in the denominator where j > k + 2, and so we shall pick our
sequence of ‘cy’s in increasing order with respect to k.

Step 3. To estimate the left-hand side of (3.3) in L2(']I' x I x J), we introduce a telescoping sum on the
right-hand side and apply the triangle inequality:

| explo™ 1 Zesr)u —
< ||exp(—e0™ Zx) exp(—e ' oY) exp(ec™ Z;) exp(e~'oY) Ru
—exp(—e oY) exp(ea™* Zy,) exp(s_laY)RuHL2
+ Hexp(—&?_laY) exp(ea™ Zy) exp(e " oY) Ru — exp(ea™* Zy) exp(zs_laY)RuHL2
+ Hexp(z—:amk Z) exp(e oY) Ru — exp(s_lcrY)RuHL2
+ Hexp(e—:_lo*Y)Ru - RuHL2 + ||Ru — ul| 2 -
Let « = 1;—(. Changing variables in the integrals on the right-hand side of the previous inequality yields
llexp (o™ 2 Z1)u — ul| p20py 1 )
< llexp(—e0™ Zi)u = ull p2(ry 13 (ciome 1.y + || exp(—e oY u — uHL2(’]I‘><(€*11/1/20+I)><(€wmk +7))
+ [lexp(ea™ Zi)Ju — u”L2(']1'><(a*11/1/20+I)><J) + [lexp(e ™ oY Ju — uHLQ(TxIXJ)

+ HRU - u||L2(’]1‘><I><J) :
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Hence,
-1
[exp(o™™ 1 Zp 11 )u — UHLQ(’EXIXJ) S 1Ru — u”L2(T><I><J) + o™ HU”zk +oe ully - 3.8

To estimate || Ru — ul| L2(Tx1x.7)» We again introduce a telescoping sum and change variables:

N+1 ck—j+1 ‘
[Ru = ull p2ry sy S Z exp <—m0m” Zj> —u + llexp(H Oz )u — ul| 27y 1 1)
iohte J : L2(TxIxJ)
ey sj(k—j+1) E—N—1, N2 |, (N+2) SN+2
S Zk: oe " lully 4o (5 vz b HLoo> HuHQgiwz.
j=k+2

3.9
Here, we have applied estimate (2.6) from Lemma 2.5 with s = sy42, A(y) = h(y)o™N+2 for some un-

known function h(y) depending on the exact form of the remainder H(y, o), and A; = v Hb(N +2) H .
to estimate the term containing H 0,.. Combining (3.8) and (3.9) completes the proof.

Corollary 3.3 (Improved bracket inequality, choice of ¢, and conditions on vg). Forall 0 < k < N + 1,
e>0,andv < 1,

N+2

lullz, < ellullx +C(eb) Jully + C(e,b) (73

SN+2
pV+2) H ) lull gsw+2 - (3.10)
L Oz

Proof. The proof proceeds in steps according to the value of a dummy parameter ¢ € {1,..., N + 1}, so that

when / reaches the terminal value N + 1, we derive several conditions on 1y and conclude the proof. We
_ N41
begin by choosing ¢y = v 2(¥+3)

Step 1. Choose ¢y so that (2.8) is satisfied for k£ = 1. Now choose ¢1 in (3.2) (level £ = 0) so that

N+1
Ni2 SN+2
lully, <l + Ce)| Tty + 3 g, + ("5 [242]_)™ s ]
j=2

and so that (3.5) is satisfied at level £k = 0. This choice of £y may be made independently of v as long as
we have chosen c; to be a v-independent multiple of cy. As a result of the choices of ¢y, ¢1, and €1, we
have additional new lower bounds on all ¢, for m > 2 from (3.6). Note that our choices and the resulting
additional lower bounds may depend on b and ¢, but are independent of v.

Step 2. Choose ¢, so that the new lower bound from (3.6) is satisfied for ; = 2 and k£ = 0, and so that
(2.8) is satisfied for £ = 2. Now choose &5 in (3.2) so that for k£ = 1, 2,

N+1
N+2 SN+2
lullz, < %/l + (e, lully + >l + (5 o)) fulggys |
‘7:
and so that (3.5) is satisfied at level £ = 1. Notice that the sum crucially begins at ;7 = 3 in the above

inequality. As a result of the choices of €5 and co, we have additional new lower bounds on all ¢, for m > 3
from (3.6) which are v-independent, provided that ¢ is a v-independent multiple of c;.

Step k. Assume that Steps 1, ..., k—1 have been completed successfully, thus fixing choices of cg, ..., cx—1
and 1, ...,ex_1. Choose ¢, so that all lower bounds resulting from choices of ¢ for &’ < k from (3.6) are

satisfied, and so that (2.8) is satisfied at level k. Now choose ¢, in (3.2) so that for k = 1,2, ..., k,

(2k N+1

—1)e
0l + 3l + (+
]:

Ni2
HUHZE < 2

SN+2
b(N+2)H Oo) HUHQ2N+2:| s

and so that (3.5) is true at level £ — 1. The sum in the above inequality now begins at k£ + 1, and we have
additional new lower bounds an all ¢,,, for m > k + 1 from (3.6).
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Conclusion. Upon reaching k = N + 1, the sum in the above inequality is empty, and we thus conclude

the proof after ensuring that v, and by extension vy, is small enough so that (3.4) is satisfied for all k. Note
_ N4l
that this is possible since ¢y = v 20V K V_%, and each subsequent c; was chosen so that (2.8), (3.5),
ksy,
and (3.6) were satisfied. The latter two conditions are v-independent and the first depends on I/_Tk, which

__N41
is increasing in k£ and bounded above by v 2(3+3) O

Proposition 3.4 (Subelliptic estimate, Poincaré inequality, and choice of vy). For all v < vy < 1 and
€ > 0, we have that

N +1'
v (= (lzaxtacy + lellgens ) Sl + €O luly G
where the implicit constant is independent of v and e but depends on b.

Proof. From Lemma 2.5 and Lemma 2.6, we have that for k£ > 1,
s
Il < (V2Br) " 1wl -

Since v**#/2 < p=* T V%12 for all k > 1, we obtain using Corollary 3.3 that

N+1
N+l
lellgern o w2555 S fullg,
” k=1 (3.12)

Nt2 SN+2
<o ellullx + C(e, b) |Jully + Cl(e, b) (y > ||p(V+2) HLOO> \

allgexes
We then apply the fractional Poincaré inequality from Lemma 2.6 to v — (u) to deduce that
N+2 SN+2
lu=()llzz S e llullx + CE B fully +Cleb) (V5 o0 ) fullgovie . 3113)

Applying the fractional interpolation inequality from Lemma 2.6 to the ||u|| gN+2 term on the right-hand
0z
side of (3.12) and (3.13) and using that

N+2

C(e, b) <y7

b(N+2)H >3N+2 < 1
LOO

if v < vy < 1 concludes the proof. Note that we have chosen v so that the above inequality is satisfied
and the conditions on v from Corollary 3.3 are satisfied.
n

4. INTERPOLATION INEQUALITY

The estimates in the previous section relied on an iteration written in terms of norms with positive indices
of differentiability. However, the a priori estimate for (0; + b(y)0,) u from (1.5) is in the space Y™, which
in the Dirichlet-in-y case one may identify with Ltszy_ L up to a v-dependent factor. Combined with the

estimate for u in LixH;, one may heuristically expect, by interpolation, that “(9; + b(y)@z)l/ “ue Ling.
” We will show that such an interpolation inequality is possible by following Hérmander’s arguments in
Section 5 of [31]. Note that Corollary 3.3 and Proposition 3.4 control a number of norms of u by a large
constant times ||u||y and a small constant times ||u||x, and so it will be acceptable to use these quantities

when estimating [|u/|x.

Definition 4.1 (Mollification). For 1 < k < N + 1, let Z. be defined as in (2.1d) and (2.1e), and sy, and
my. be defined as in (2.2).
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(1) Let ¢ € C3°(—1,1) be a smooth, even, non-negative function with unit L norm. We set

(. y. ) = /R (exp (1™ 0 Zi) ) (&, y, ) (o) do

= / u(x + ™o P (), y, ) (o) do . (4.1)
R

Note that since ¢ is even, ¢y, is self-adjoint on L3(Q x (0,c2)).
(2) Let ® € C§°(—1,1) be a smooth, even, non-negative function with unit L* norm. We set

Bz, y,t) = / (exp(™ 22/ [0 | 1oed, ) (e, y, ) D(a') da’
R

= / u (x + nmNHgy,y% 16N F2)| oo, 5, t> (') da'’ 4.2)
R
and note that ®,, is self-adjoint on L2(92 x (0, cg)) as well.
(3) Forn>0and1 < j < N + 1, define ¢, >;u by

N+1

dnzju =[] ons®yu. 4.3)

k=j
When j = 1, we simply write ¢ u, and when j = N + 2, we define ¢y, >;u = @, u.

Remark 4.2. Since the smoothing operators are mollifications-in-z for each fixed ¢ and y, they actually
commute. Moreover, we have

[X07 qbn,k]u = [eXp(TX(]), ¢n7k] u=20 ) (44)
with the same equalities holding for ¢, >; and ¢,,.

Lemma 4.3 (Commutator Identity). Let Z, Zy be smooth vector fields, and recall from (2.1a) that (adZy)Z
denotes the vector field [Zy, Z]| = ZyZ — Z Zy. Let M € Ny. Define

exp(—7adZy)Zu = exp(—7Zy)Z exp(1Zp)u(x,y,t) (4.5)
Then we have the identity
o ()" "
exp(—71adZy)Zu = Z x (adZo)k Zu(z,y,t) +/ (adZo)M T Zu(z,y, t)(r — )M ds.  (4.6)
k=0 0

Proof. Consider the formal identity

O (_\k
eXP(—TZQ)Z GXp(TZ())u = Z ( ];) (adZ())kZu, (4.7)
k=0

which can be ‘checked’ by differentiating the left-hand side & times with respect to 7, evaluating at 7 = 0,
and comparing with the Taylor series on the right-hand side. Since the series may not converge, we instead
truncate the Taylor series to order M, which, after using the integral form of the remainder term, leads
directly to (4.6). ]

Lemma 4.4 (Mollification Estimates). With ¢, defined as in Definition 4.1, the following estimates hold.
(1) Let n? < <i/2 be given. Then

N+1
[l fnu — UHL2(Q><(0703)) S0 (Z ullz, + HUHQZNH) : (4.8)
k=1 !
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(2) For0 <7 <n? <cif

llexp(7X0) eXp(—TadXO)Y¢ﬁ¢ﬁu||L2(Q><(0,c%/2))
N+1

N+2
Sl + 3 il + (v

with a similar estimate holding if T is replaced with —1 and the time interval (0, /2) is replaced
with (¢3/2, c3).

SN+42
HN+2) HLOO) lullgera 4.9)

The estimate (4.8) is used to control the terms (4.16) and (4.18) in the proof of Proposition 4.5 (Interpo-
lation inequality), whereas (4.9) is used to control the more involved term (4.17).
Proof of (4.8). We may write ¢,u — u in a telescoping sum as

N+1

Gpu — u = H Ok Ppu —u
k=1
N+1 N+1 N+1

_.jz: (I]:¢nku — II ¢mku> +’II ¢mk® u— II ¢mku,
k=1

Using again that convolution is a bounded operator from L2(2 x (0, c3)) to itself, it suffices to estimate in

L2(Q x (0,c?)) the quantities
O U — U, Qu —u
for 1 < k < N + 1. This is achieved by writing

|onru(z,y,t) — u(z, vy, )HLz(Qx(Oc 2))

/ / // exp(on™ Z)u(z, y,t) — u(z,y.t))* ¢(0) do da dy dt
- /o | /0 /]1‘ /R (exp ()™ Z)u(,y,t) — ul,y,1))* $(@"™ )my,a"™ " d& da dy dt

2
<’ llullz, -

with a similar estimate for ®,,. Note that since ¢ is compactly supported in (—1, 1), we may assume 7 = o°¢
is contained in the interval (0, 1), and so exp((con)™* Zi)u is well defined since on < n < ¢/v2 < ¢, for
all £ > 1by (2.3). n

Proof of (4.9). To make our situation more concrete, we exploit the identity
exp(—1adX)Y =Y + 7721 = v'29, + 7'V (),

which does not include any translations in time. Since exp(7X() consists of a volume-preserving diffeo-
morphism in the x variable and a shift in the time variable, it will suffice to estimate

“GXP(_TadXO)Y¢n¢nu|’L2(Qx(o,cg)) = (Y +72) ¢n¢nuHL2(Qx(0,cg)) :

Step 1. Estimating Y ¢, ¢,u. To commute Y past the mollifications, we will demonstrate

N+1
N+2
Y, ¢77,2j¢7772j]u‘|L2(Q><(()7cg)) N ||u||Y + Z ||u||z,C + <V 2
k=1

SN+2
HN+2) HLOO) lull g+ (4.10)

using decreasing induction on j and beginning with the case j = N + 2. Since Yu is clearly bounded in L?
by the right-hand side of (4.10), this will then produce an estimate for Y ¢,,¢,u which matches (4.9).
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Beginning with the case j = N + 2, recall from (4.3) that ¢, >y 2 = ®,,. Then since Y differentiates
in y and ®,, mollifies in z, ¥ in fact commutes with both operators, demonstrating the base case of the
induction. Therefore, we may assume that 1 < j < N + 1 and that (4.10) holds for j/ > j. We calculate that

= OnjPnilYs On.2jt10n i1l + [V, 6y bl Gn. 25410025110
Due to the induction hypothesis, we may immediately bound the first term, so we focus on the second term.

We may expand this term using a modification of Lemma 4.3 with Zy = Z; and Z = Y in which we have
applied exp(n™i (0 — 0*)Z;) to both sides:

Y // exp (1™ (0 — 0*) Z;) by > j10n,>j41u(, Y, t) $(0)p(0™) dodo™
]R2
- //}R2 exp (™ (o0 — ") Z;) Y b >j110n>j+1u(z,y,t) p(0)p(c™) dodo™
@ // [exp (1™ (0 — %) Z;) exp (=™ (0 — 0*)adZ;) Y by > j416m > j41u(, Y, 1)
R2

—exp (" (0= 0%) Z;) Y ¢y 110y 25 01u(x, y, 1) | (o) p(0”) dodo™

@9 //11%2 exp (0" (0 — ™) Z;)

X (_n\km;
% Z (—=n)
k=1
Notice that the infinite series representation is well defined since

—@dZ)Y = Zjy,  (adZ;)?Y = — (adZ;) Zjp1 = — 36D (1), 072 b0 (y)0,] =0,

(J - U*)k k * *
x (adZ;)" Y ¢y > 5410y, >j41u(w,y,t) ¢(0)p(0™) dodo™ . (4.11)

and so the only non-zero term in (4.11) is the term in the series for k£ = 1.
It will suffice to obtain an L? bound for

Zi10n,>j110n,>j1u(T, Y, t) 4.12)
for 1 < j < N + 1. In fact, we will estimate a version of this term for 5 > 0, as the 7 = 0 case will be
required shortly. We begin by relabeling j with0 < j < N +1asjwithl <j < N +2in(4.12). Then we
analyze how the derivatives ‘hit’ the mollifiers: For 1 < 7 < N + 2, we have'®

Zjby,>j0n>ju(z,y, )

N+1 N+1
= Z; H Gn Py H Ok Py u(z,y,t)
k=j k=3

N+1

_ /R i, @) ,E $(on)p (o)

N+1 N+1
X Zj-u|x+ y%HbWH)HLmnmN“ (' —2*) + Z VPR () (o, — of), y,t | da! da H doy, doj,
k=j k=j

N+1

:/ . <I>($/)<I>($*) H o(ok) (o) yj/Qb(j)(y)
R2(N+3—3) i

10The notation Z 5 - u(---) below emphasizes that the differential operator Z; is applied to the object u(- - ), in contrast to

(Zw)(-+).
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N+1 N+1
X Oyu | x+v = Hb (N42)|| oo ™42 (g2 )+ Z VPO E) (™ (o — o)yt | da da H doy, doy, .
k=j

We need to multiply this expression by 1%~ and then bound the resulting object by the right hand side of
(4.9). Towards this end, we first convert the //>b1) ()9, to "™ <80j - 8U;f>, yielding

N+1

nmfl_mj/ <80J. — 80%> ulz+vz Hb (NH2)|| poo™N+2 (2 — %) + Z VPR ()™ (o — 0F) ,y, t
R2(N+3-3) ’ e
N+1 N+1
x & H d(or)p(or) | da’ dz* H doy, doy,
k=j
N+1
1BP —77_1/ ulz+v's Hb (NH2)|| oo™ N+2 (g2 )+ Z VPO E) (g™ (o — o) Lyt
R2(N+3—7)
N+1 N+1
X ®(2") P (z") (agj . ac,;) H $(or)d(o}) | da’ dz* ] doy, dog
k=j
N+1
e N 1 E T e > ™ = )
R2(N+3—7)
N+1
—u @+ 5 PN ez @l — 2ty + Y VB () ok — o) Lyt
k=j+1
N+1 N+1
X ®(a") P (z") (agj . ac,;) H $(or)d(of) | da’ da* [ doy. dof. (4.13)
k=j

Notice that the second-to-last term, which may be subtracted for free due to the fact that we have differenti-
ated with respect to o — o7, crucially gives a finite difference along Z; in the z variable. Now since oy, — o,
is at most of order one, we have a finite difference of order ™ multiplied by ™!, and so we can then apply
Jensen’s inequality and integrate in L?(Q x (0, c3)) to control the L? norm of the right-hand side of (4.13)
by [ul,.

It remains to treat the case j = N + 2, in which we must bound Z 4 2®, ®;u. The argument is similar,
and we omit further details.

Step 2. Estimating TZ1¢,¢nu. Notice that Z1 ¢, ¢, is precisely what we calculated in the previous step
for 5 = 1. The only difference in the calculation is that instead of multiplying by a power of 7, we multiply
by 7. But by the assumption that 7 < 12, we pick up a prefactor of ! exactly as in (4.13). We omit further

details.
O
Proposition 4.5 (Interpolation inequality). For a constant independent of u, we have the estimate
Nl N+2 SN+2
N2 (N
il 5 Wby + ol + 3z, + G o2 ) g - @4

Proof of Proposition 4.5. For n < ¢ /\/2, we wish to demonstrate that

/ (exp(n*Xo)u — u)? dz dy dt + / (exp(—n*Xo)u — u)? da dy dt < n*Mlu)?®, (4.15)
Qx(0,2/2) Qx (3 /2,c3)
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where we have used M[u] to denote the right hand side of (4.15). We focus on estimating the first term on
the left-hand side of (4.15), since the second term is similar. We split up the integrand as

/ (exp(ano)u — u)2 dx dy dt
Qx(0,c3/2)

< / (exp(n*Xo)u — exp(n2X0)¢nu)2 dx dy dt (4.16)
Qx(0,c3/2)
+ / (exp(n2X0)¢nu — (bnu)z dx dy dt 4.17)
Qx(0,c3/2)
- / (pnu —u)? dxdydt. (4.18)
Qx(0,c3/2)

The first and third terms on the right-hand side may be bounded by appealing to (4.8). Focusing then on the
second term and substituting in the variable 7 for values 7 < 7?, it will suffice to show that

d

— (exp(TX0)ppu — ¢nu)2 dx dy dt < M(u)? .
AT Jox(0,63/2)

Calculating the left-hand side, we write that

4 / (exp(7Xo)ppu — <;577u)2 dx dy dt
At Jax(0,c2/2)

2 gl e b)) — dyu(t)
Qx(0,c2/2)
X (Op + b(y)0z) Ppu(t + 7,2 + 7b(y), y) dx dy dt
= 2/ [pyult, x,y) — dpu(t — 7,2 — 7b(y), y)] (O + b(y)0z) Pyu(t, z,y) dz dy dt
Qx(0,c2/2)

—2 / [yt 2.) — dyult — 7.7 — b(y),y)] by (Xow) (t, 2, y) du dy dt
Qx(0,c2/2)

2 / (Syults 2,) — dyult — 7.2 — (), y)] [Xo, &) ult,z,y) de dy dt .
Qx(0,c2/2)

The second term in the last equality vanishes after appealing to (4.4). To estimate the first term, first note
that from (4.1), we may convert the convolution of (9; + bd,.) u with ¢, into convolution with ¢, on the
other term in the integrand. We then appeal to (4.4) to commute ¢,, past the exp(—7X(). Using the bound
on dyu + bo,u in Y*, we see that the proof will be complete if we can estimate

Y (¢pdnu — exp (—7Xo) dppdnu)

Appealing to Lemma 4.3 to rewrite this expression and then to (4.9) concludes the proof. U

Using Proposition 4.5, we may immediately obtain an improved subelliptic estimate. Indeed, after em-
ploying the higher bracket inequality to absorb the |[u||,, terms as in the proof of Corollary 3.3 and the
subelliptic estimate to absorb the ||ul| Q°N+2 term as in the proof of (3.11), we obtain the following.

e

Theorem 4.6 (Improved subelliptic estimate). For all v < vy < 1, we have that

N+1
Y ANF) <||u— (u)]| 12 + \|u||Q;N+1> So [ Xoullys + llully (4.19)

for an implicit constant which is independent of v but depends on b.
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5. PROOFS OF THEOREMS 1.1 AND 1.2
Proof of Theorem 1.1. Fort > 0, we define the time-translated seminorm
NV,
lullv = v 10,ull 2@ sy

with an analogous definition for Y *(¢). For solutions of (1.5), we have the identity

to
£t Bagy = 1 Cot) ey = —2 / 1Y £ 8) |22 ds 5.1)

For k € N, setting t; = 0 and to = k‘c% we can deduce from (5.1) that

k-1
Do F ey < Iinlizg
i=0

We now have the crucial estimate

(15)
[Y?£llx- = sup

u

1 Xof [y

/ Y2f - udzdydt
Qx(0,c3)

(5.2)
IBP
= sup

<Y fllizex0.2)

/ Y[ Yudxdydt
Qx(0,c3)

where the supremum is over u € L7, H,(Q x (0,¢3)) (Hy)y in the Dirichlet case) satisfying [Jully = 1,
see Definition 2.4. Notice that the boundary conditions satisfied by f and the test function u allow the above
integration by parts. Applying (5.2) and Theorem 4.6 (Improved subelliptic estimate) to time translates of
the solution, we obtain

k-1
NEloooo N+1 9
v NE3 ”f”L2(Q><(O,kcg)) = VUNES Z; HfHLZ(QX(icg,(i-i-l)cg))
1=
k-1
2
<20, 11 ie2)
i=0
< Gyl fulf2(q) - (5.3)
We estimate the left-hand side from below using the monotonicity of the L? norm for solutions of (1.5) and
N+1
the choice 6(2) = V_N—IB from Corollary 3.3:
KILFC k) |2y < kcRuN+s  inf 2,0 < UV | f]]2 4
If(, CO)HLZ(Q) S Repy Nt 1(I]1k 2 1£( )||L2(Q) S Ut HfHL?(Qx(o,kcg)) : G4

Combining (5.4) with (5.3), we have

KIFC ke Z2) < Cbll finllZay -
Taking kg sufficiently large yields

15C ko) By < < I fnlZaca -
We iterate this estimate to obtain, for an integer multiple j > 0 of k:o 5

1, dkoci)IF2 () < €77l finll72(q) -
The monotonicity of the L? norm for solutions of (1.5) gives

-1 N+l 2
1)) < eexp (—thg v ) Lfinl2a()

for any ¢ > 0, which concludes the proof of the theorem. U
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Proof of Theorem 1.2. . Let q: [0, +00) — [0, +00) be a decreasing function satisfying
D a*(27) < +oo.
JEN
For example, we may set q(j) = (log(2 + | j|)) . We require the following characterization of the

Besov space Q0 . U et (A””) j>0 be a suitable sequence of Littlewood-Paley projections onto dyadic annuli

in the x-direction in frequency space satisfying > >0 Aju = wu for functions u: Q x (0, cO) — R with
(u)(y,t) = 0. Then

jglg 278 A?‘u LQ(QX(O’C(%)) ~g ||UHQ(‘%Q€(QX(O,C(2))) . (55)
Using this equivalence, we have that
ol a2 el aciosy = 3 WEGRD [ ity 0 dyas
k€2ﬂZ
< 2233 2 2] HALE
;] L2(x(0,c3))

2
Ssq HuHng(QX(O,Cg)) :

The subelliptic estimate (3.11) combined with the energy estimates gives
Nl 2 2 24112
VN3 HfHQ;i\r+1(Q><(0,c(2))) gb Hfin”L2 - Hf('7CO)HL2(Q) !

By the energy estimate, the above embeddings, and a sum over the intervals (nc3, (n + 1)c3) for n € Ny,
we have

VN+3 Nb ||f1nH%2 .

L2(QxR+)

Let ¢t > 0. By the pigeonhole principle or Chebyshev’s inequality, by choosing C' sufficiently large, we can
ensure that there exists a measurable set A C (0,¢) with |A| > ¢/2 which consists of times t € A C (0,t)
satisfying

0.7 (0u]) ||

[ioe 7 at2:D 5.8, < 1 HE Il

1
Since |0, | V43 ¢(|0,|) f also satisfies (1.5), we have that the left-hand side is monotone decreasing in time.
This guarantees the smoothing estimate

o (a0l < oty N || 2
| ac| Q(| x|)f(7t) 2Q) v HflnHL2

forany ¢ > 0. One may continue smoothing by applying the estimate again to the function |9, | N3 q(|0z]) f (-, t).
Specifically, we may obtain

162175 2 10:1) (. )

which is more convenient for summing. For given ¢ > 0, we may iterate this smoothing estimate & times on
intervals of length ¢ /k. This gives

—1,-1, -
L2(Q) < Co27 Ty NS HflIl”L2 ’

Cy itk g=k y Nk <27F | finll 12 -

L2(Q)

[loaisa.0] e

HEor discussion of real-valued Besov spaces and equivalences, one may refer to Bahouri, Chemin, and Danchin [4]. For vector-
valued and Banach space-valued analogues, one may refer to Amann [1], which contains (5.5) in Section 5.
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for all t > 0 and k& > 0. By Stirling’s formula for k%, the Taylor series of exp, and the triangle inequality,
we have

Nl o2
e (o A5 102 ¥ (0el)t) 7000, o S Wl
where 119 < Cjy ! This gives the desired Gevrey smoothing. U

APPENDIX A. PROOF OF SAMPLE INTERPOLATION INEQUALITY

Proof. It suffices to prove the (apparently) weaker inequality
gz S MW 2 iy + 1900 fll 2 (A.1)

yOx
for all f € C§°. After rescaling in y, we have
HfHQ;/; S A2 + A 90w fll 2 gy

Optimizing A gives the full inequality. The optimization step is possible because, by assumption, each term
on the RHS of (A.1) is non-zero.
For ¢ > 0, consider the mollification-in-z at scale ¢3:

Sef(z,y) =17 /R f(x— s, y)p(t3s) ds.

We will require the properties

ISef = Fllzz S 1Sl gy (A2)
and
19:Se 12 5 €211l g (A3

Let h € R. We expand
2 2 2
1" 9% f — fllge < [|€" V0 f — V02 Syf | e

+ "V S, f — Sy f |12

+ [|Sef — flizz-

The first and third terms on the right-hand side are estimated in the same way, namely, by the property (A.2)
of the mollification operator. We focus on the second term. We have

02 5, — 11 = 4BV 51, V0,51 ) = ARGV 1Sy ),
which is estimated by H! / H! duality:
BV S5 f,yde )| S hlle™™ % ;S fll 2y N9z f 2y -
It remains to estimate h||8yeh2yaf Sy ShfllL2. We have

ho e’ 0 S: 8y, f = h30,e" V0§18, f + he¥%: 0,55 S, f — hdySiShf .

The second and third terms are estimated in L? by h||d, f|| 2. For the 1st term, we allow 9, to hit the
mollifier and use the property (A.3):

2 % _
h3(| 0™ ¥ S Sp f iz S B3T3 FIl e S LI e
Qa, Qa,

~

for h < ¢. This gives

d 2
%Ileh WeSef — Sefll72| S (Pl fll 2 gy +f\|f\|Q;f)lly8foL3H;1 -
In particular, for A = ¢, we have

h2yo,
€™ % Sy f — SeflIz2 S W (I fll 2y + £ 1l oo 1y Fll 2 gy
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Combining all estimates with h = ¢, we have

h2y0s
"9 f = flIZa S A F s + B2z g + 1l ) 190e fll 2
O Tty Oz Y

or
\If\léu; S ||f||22(13/3 U ez + 1l gue ) 1y0e fl 2 17,0
Yoz z T
< 2/3 /3 ) o 1/3 2/3 .
S IIfIIQényHQ;gw 1 2 1900 fll 2 gy + ||f||Q'19yHfHQ?ngx?HyameL%Hy1 ,
Then Young’s inequality produces (A.1). U
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