FUSION SYSTEMS WITH BENSON-SOLOMON COMPONENTS
ELLEN HENKE AND JUSTIN LYND

ABSTRACT. The Benson-Solomon systems comprise a one-parameter family of simple exotic fusion
systems at the prime 2. The results we prove give significant additional evidence that these are
the only simple exotic 2-fusion systems, as conjectured by Solomon. We consider a saturated
fusion system F having an involution centralizer with a component C isomorphic to a Benson-
Solomon fusion system, and we show under rather general hypotheses that F cannot be simple.
Furthermore, we prove that if F is almost simple with these properties, then F is isomorphic
to the next larger Benson-Solomon system extended by a group of field automorphisms. Our
results are situated within Aschbacher’s program to provide a new proof of a major part of the
classification of finite simple groups via fusion systems. One of the most important steps in this
program is a proof of Walter’s Theorem for fusion systems, and our first result is specifically
tailored for use in the proof of that step. We then apply Walter’s Theorem to treat the general
Benson-Solomon component problem under the assumption that each component of an involution
centralizer in F is on the list of currently known quasisimple 2-fusion systems.

1. INTRODUCTION

This paper is situated within Aschbacher’s program to classify a large class of saturated fusion
systems at the prime 2, and then use that result to rework and simplify the corresponding part
of the classification of the finite simple groups. A saturated fusion system is a category F whose
objects are the subgroups of a fixed finite p-group S, and whose morphisms are injective group
homomorphisms between objects such that certain axioms hold. Each finite group G leads to a
saturated fusion system Fg(G), where S is a Sylow p-subgroup of G and the morphisms are the
conjugation maps induced by elements of G. Fusion systems which do not arise in this fashion
are called exotic. While exotic fusion systems seem to be relatively plentiful at odd primes, there
is as yet one known family of simple exotic fusion systems at the prime 2. These are the Benson-
Solomon fusion systems Fso1(q) (¢ an odd prime power) whose existence was foreshadowed in
the work of Solomon [Sol74] and Benson [Ben98], and which were later constructed by Levi-
Oliver [LO02, LO05] and Aschbacher-Chermak [AC10]. Here for any odd prime power ¢, the
underlying 2-group S of Fgoi(q) is isomorphic to a Sylow 2-subgroup of Spin,(q), all involutions
in Fgoi(g) are conjugate, and the centralizer of an involution is isomorphic to the fusion system
of Spin;(q).

It has been conjectured by Solomon that the fusion systems Fgoi(q) are indeed the only simple
exotic saturated 2-fusion systems [Gui08, Conjecture 57.12]. Some recent evidence for Solomon’s
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conjecture is provided by a project by Andersen, Oliver, and Ventura, who carried out a systematic
computer search for saturated fusion systems over small 2-groups and found that each saturated
fusion system over a 2-group of order at most 2” is realizable by a finite group. (The smallest
Benson-Solomon system is based on a 2-group of order 2'°.) Theorems within Aschbacher’s
program can be expected to give yet stronger evidence for Solomon’s conjecture, and the results
we prove are particularly relevant in this context. In order to explain this, we now summarize a
bit more of the background.

The major case distinction in the proof of the classification of finite simple groups is given by
the Dichotomy Theorem of Gorenstein and Walter, which partitions the finite simple groups of
2-rank at least 3 into the groups of component type and the groups of characteristic 2-type. A
finite group G is said to be of component type if some involution centralizer modulo core in G has
a component. Here a component is a subnormal subgroup which is quasisimple (i.e. perfect, and
simple modulo its center), and the core O(C) of a finite group C is the largest normal subgroup
of C of odd order. The largest and richest collection of simple groups of component type are the
simple groups of Lie type in odd characteristic. In the classification of finite simple groups, one
proceeds by induction on the group order. Thus, if G is a finite group of component type, one
assumes that the components of involution centralizers in G are known, and the objective is then
to show that the simple group itself is known. More precisely, one usually assumes that a specific
quasisimple group K is given as a component in Cg(t)/O(Cg(t)) for some involution ¢ of G, and
then tries to show that G is known. We refer to such a task as an involution centralizer problem,
or a component problem.

As several involution centralizer problems in 1960s and 1970s gave rise to previously unknown
sporadic simple groups, this suggests that solving such problems in fusion systems is a good way
to search for new exotic 2-fusion systems. Here, we consider an involution centralizer problem in
which the component C in an involution centralizer of F is a Benson-Solomon system, and our
main theorems can be viewed as essentially determining the structure of the “subnormal closure”
of C in F. Thus, we provide the treatment of a problem that has no analogue in the original
classification. The results we prove give additional evidence toward the validity of Solomon’s
conjecture, or at least toward the absence of additional exotic systems arising in some direct
fashion from the existence of Fgo1(q).

Our work is also an important step in Aschbacher’s program. We refer to the survey article
[AO16] and the memoir [Ascl9] for more details on an outline and first steps of his program.
Much of the background material is also motivated and collected in Section 2, which can serve
as a detailed guide to the proof of the main theorems here for readers not familiar with the
classification program. This material has at its foundation many useful constructions from finite
group theory that have been established in the context of saturated fusion systems. In particular,
these constructions allow one to speak of centralizers of p-subgroups, normal subsystems, simple
fusion systems, quasisimple fusion systems, components, and so on. We refer to the standard
reference for those constructions [AKO11].

A saturated 2-fusion system F is said to be of component type if some involution centralizer in F
has a component. Aschbacher defines the class of 2-fusion systems of odd type as a certain subclass
of the fusion systems of component type. The fusion systems of odd type are further partitioned
into those of subintrinsic component type and those of J-component type. The classification of
simple fusion systems of subintrinsic component type constitutes the first part of the program. Our
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first theorem is tailored for use in the proof of Walter’s Theorem [Asc20], one of the main steps in
the subinstrinsic case. We then apply Walter’s Theorem to give a treatment of the general Benson-
Solomon component problem in the second main theorem. As a corollary (Corollary 3), we show
that if F is almost simple (that is, the generalized Fitting subsystem F*(F) is simple) and F has
an involution centralizer with a Benson-Solomon component C & Fg.i(q), then F*(F) = Fso1(q?)
with the involution inducing an outer automorphism of F*(F) of order 2.

To state our main theorems in detail, we introduce now some more notation which we explain
further in Section 2. Fix a saturated fusion system F over the 2-group S. Following Aschbacher,
we denote by €(F) the collection of components of centralizers in F of involutions in S, roughly
speaking. Accordingly, F is of component type if €(F) is nonempty. The E-balance Theorem in
the form of the Pump-Up Lemma (Section 2.5) allows one to define an ordering on €(F), and
thus obtain the notion of a mazimal member of €(F). For C € €(F), we denote by Z(C) the set
of involutions ¢ such that C is a component of C'z(t), roughly speaking, up to replacing (C,t) by a
suitable conjugate in F. Finally a member C € €(F) is said to be subintrinsic in €(F) if there is
H € €(C) such that Z(H)NZ(H) is not empty. This means in particular that H itself is in €(F),
as witnessed by some involution in the center of .

Theorem 1. Fiz a saturated fusion system F over a 2-group S and a quasisimple subsystem C
of F over a fully F-normalized subgroup of S. Assume that C is a subintrinsic, mazximal member
of €(F) and isomorphic to a Benson-Solomon system. Then C is a component of F.

As mentioned above, in the logical structure of Aschbacher’s classification program, Theorem 1
is situated within the proof of Walter’s Theorem for fusion systems [Asc20]. Walter’s Theorem
in particular implies that, if a simple saturated 2-fusion system F has a member of €(F) that is
the 2-fusion system of a group of Lie type in odd characteristic and not too small, then either F
is the fusion system of a group of Lie type in odd characteristic, or F = Fgo1(g). One assumption
of Walter’s Theorem is that each member of €(F) is on the list of currently known quasisimple
fusion systems, i.e. either one of the Benson-Solomon systems or a fusion system of a finite simple
group.

A simple saturated 2-fusion system with an involution centralizer having a Benson-Solomon
component would necessarily be exotic, since involution centralizers in fusion systems of groups
are the fusion systems of involution centralizers (see also Lemma 2.54). Because of the subintrinsic
hypothesis, Theorem 1 does not rule out the possibility of this happening. However, in Section 7,
we apply Walter’s Theorem for fusion systems to solve the general Benson-Solomon component
problem assuming that all members of €(F) are on the list of known quasisimple 2-fusion systems.

Theorem 2. Let F be a saturated fusion system over the 2-group S. Assume that each member
of €(F) is known and that some fixzed member C € €(F) is isomorphic to Fsei(q) for some odd
prime power q. Then for each t € Z(C), there exists a component D of F such that one of the
following holds.

(1) D=C;
(2) D=C, D' # D, and C is diagonally embedded in the direct product DD! with respect to t;
or

(3) D= Fsa(q?), t ¢ D, and C = Cp(t).

The automorphism groups and almost simple extensions of the Benson-Solomon systems were

determined in [HL18]. The outer automorphism group of Fgso(q) is generated by the class of
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an automorphism uniquely determined as the restriction of a standard Frobenius automorphism
of Spin,(q) to a Sylow 2-subgroup, and each extension of Fgi(q) is uniquely determined by the
induced outer automorphism group. So in the situation of Theorem 2(3), for example in the case
in which F is almost simple, the extension D(t) is known and is the expected one.

Corollary 3. Let F be a saturated fusion system over the 2-group S such that D = F*(F)
is simple. Assume that each member of €(F) is known, and that some member C € &€(F) is
isomorphic to Fsol(q) for some odd prime power q. Then D is isomorphic to Fsol(q?). Moreover,

for each t € Z(C), we have t ¢ D, some conjugate of t induces a standard field automorphism on
D, and Cp(t) =C.

Corollary 3 follows immediately from Theorem 2 and the following proposition, which extends
the results of [HL18]. A more precise statement is found in Proposition 2.45 as one of our
preliminary results.

Proposition 4. Let F be a saturated fusion system over the 2-group S such that F*(F) =
Fso1(q?). Then, writing Sy for Sylow subgroup of F*(F), all involutions in S— Sy are F-conjugate,
and there exists an involution t € S — So such that Cp-(r)(t) = Fso1(q)-

We now give an outline of the paper. Section 2 provides the requisite background material,
much of it due to Aschbacher, together with motivation coming from the group case and some
new lemmas needed later on. The various definitions used in later sections are summarized in a
large table in Section 2.10. The proof of Theorem 1 begins in Section 3, where we show that a
subintrinsic maximal Benson-Solomon component is necessarily a standard subsystem in the sense
of Section 2.6. When combined with results of Aschbacher in [Asc19], this allows the consideration
of a subsystem @ which plays the role of the centralizer of C, and with a little more work shows
that the Sylow subgroup @) of Q is either of 2-rank 1 or elementary abelian. Next, in Section 4,
we handle the case in which @) is elementary abelian and prove a lemma regarding the 2-rank 1
case. In Section 5, we handle the case in which @) is quaternion using Aschbacher’s classification
of quaternion fusion packets [Asc17]. Finally, in Section 6 we handle the cyclic case and complete
the proof of Theorem 1. We then prove Theorem 2 in Section 7.

Acknowledgements. We would like to thank Michael Aschbacher for providing us with early
copies of his preprints on the various steps of the program, and for suggesting Lemma 2.54 to us.
We also express our gratitude to the referees for comments and suggestions which led to numerous
improvements to the paper.

2. PRELIMINARIES

2.1. Local theory of fusion systems. Throughout let F be a saturated fusion system over
a finite p-group S. For general background on fusion systems, in particular for the definition
of a saturated fusion system, we refer the reader to [AKO11, Chapter I]. In addition to the
notations introduced there, we will write F7 for the set of fully F-normalized subgroups of S.
Moreover, we write £ < F to indicate that £ is a (not necessarily saturated) subsystem of F.
Conjugation-like maps will be written on the right and in the exponent. In particular, if £ is a
subsystem of F over T" and o € Homz (T, S), then £“ denotes the subsystem of F over T with
Homga (PY, Q%) = {a topoa: p € Home(P,Q)} for all P,Q < T.
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2.1.1. Local subsystems. We recall that, for any subgroup X of S, we have the normalizer and the
centralizer of X defined. The normalizer Nx(X) is a fusion subsystem of F over Ng(X), and the
centralizer Cr(X) is a fusion subsystem of F over Cg(X). These subsystems are not necessarily
saturated, but if X is fully F-normalized, then Nx(X) is saturated, and if X is fully centralized,
then Cr(X) is saturated. Thus, we will often move from a subgroup of S to a fully F-normalized
(and thus fully F-centralized) conjugate of this subgroup. In this context it will be convenient to
use the following notation, which was introduced by Aschbacher.

Notation 2.1. For a subgroup X < S, denote by 20(X) or Ax(X) the set of morphisms a €
Homz(Ns(X), S) such that X* € F/.

Throughout, we will use often without reference that 2(X) is non-empty for every subgroup
X of S. In fact, the following lemma holds.

Lemma 2.2. If X < S and Y € X7 N F/, then there exists a € A(X) with X =Y.
Proof. See e.g. [AKO11, Lemma 1.2.6(c)]. O

If z € S, then we often write Cr(z), Nr(z) and A(x) instead of Cr({x)), Nr({z)) and A((z))
respectively. Similarly, we call = fully centralized (fully normalized), if (z) is fully centralized (fully
normalized respectively). If z is an involution, then the reader should note that Cr(z) = Nx((x)),
and z is fully centralized if and only if (z) is fully normalized.

2.1.2. Normal and subnormal subsystems. Recall that a subgroup T of S is called strongly closed
in F if P¥ < T for every subgroup P < T and every ¢ € Homg(P,S). The following elementary
lemma will be useful later on.

Lemma 2.3. Let T be strongly closed in F and suppose we are given two JF-conjugate subgroups
Uand U’ of S. If T < Ng(U) and U’ is fully normalized, then T < Ng(U").

Proof. By Lemma 2.2, there exists o € A(U) such that U* = U’. Then, as T is strongly closed,
T =T*< Ng(U)* < Ng(U') and this proves the assertion. O

A subsystem & of F over T < S is called normal in F if £ is saturated, T is strongly closed,
E¥ = & for every a € Autz(T'), the Frattini condition holds, and a certain technical extra property
is fulfilled (see [AKO11, Definition 1.6.1]). Here the Frattini condition says that, for every P < T
and every ¢ € Homg(P,T), there are pg € Homg (P, T) and o € Aut z(T) such that ¢ = g o a.

Particularly important cases of normal subsystems include the (unique) smallest normal subsys-
tem of F over S, which is denoted by O (F) (cf. [AKO11, Theorem 1.7.7]), and the normal sub-
system OP(F) of F (cf. [AKO11, Theorem 1.7.4]) over the hyperfocal subgroup hyp(F) of S. This
last theorem shows additionally that there is a one-to-one correspondence between the subgroups
T of S containing hyp(F) and the saturated fusion systems & of F of p-power indezx in F. Here,
a subsystem &£ over T is said to be of p-power index if T > hyp(F) and Aute(P) > OP(Autxz(P))
for each P < T.

Once normal subsystems are defined, there is then a natural definition of a subnormal subsystem
by transitive extension. We will need the following lemma.

Lemma 2.4. If £ is a subnormal subsystem of F over T', then every fully F-normalized subgroup

of T is also fully £-normalized.
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Proof. In the case that £ is normal in F, this is [Asc08, Lemma 3.4.5]. The general case follows
by induction on the length of a subnormal series for £ in F. g

2.1.3. Normal and subnormal closures. In Section 5, we will need to work with fusion system
analogues of normal and subnormal closures in groups. By [Ascll, Theorem 1], given normal
subsystems &; over T; for ¢ = 1,2, one can define a unique normal subsystem & A & of F over
T1 N'T5 which is normal in & and &. By iteration of this process, given normal subsystems
&i,..., &, there is a subsystem A!_, & of F which plays the same role as the intersection of
normal subgroups plays in the theory of groups. For any subgroup @ < S, the normal closure of

Q in F is defined as
N €

EQF,QCE
Set further subg(F, Q) = F, and for each i > 0, define sub;;1(F, Q) to be the normal closure of
@ in sub;(F, Q). Then sub;;1(F,Q) < sub;(F,Q) for each 7 > 0. Since F is finite, the series is
eventually stationary. The subnormal closure F° of @Q is defined to be the terminal member of
this series.

2.1.4. Product systems. We have seen OP(F) as a particularly important example of a normal
subsystem. Conversely, given a normal subsystem £ of F over T and a subgroup P of S, one may
construct the product system £P of F, which contains £ as a normal subsystem of p-power index.
This is a saturated subsystem of F, and furthermore it is the unique saturated subsystem D of
F over TP such that OP(D) = OP(E). See [Ascll, Section 8|, and also [Hen13] for a simplified
construction of £P.

Note however that the uniqueness of the construction of the product depends on the ambient
system JF in which it is defined, as is seen in the following example.

Example 2.5 ([Henl3, Example 7.4]). Let S be a 2-dimensional vector space over F, with ¢ > 3
a prime power, let U be a one-dimensional subspace of S, and let W7 # W5 be two complements
to U in S. Let 1 # A € Fy, and define a; € GL(S) to be the transformation which acts as
multiplication by A on U and which is the identity on W; (i = 1,2). Then 1|y = as|y. So
if we set F; = Fs(S % (o)), then OP(F) = Fy(U x (a1|y)) = Fu(U x {(azly)) = OP(Fa).
Let £ be this subsystem and set P = Wj. Then P is central in S, so fully F;-normalized, and
(EP)r = F1# Fo=(EP)F,.

The following lemma about factorization of morphisms in product systems will be needed later
in Lemma 7.5.

Lemma 2.6. Let £ be a normal subsystem of F over T. Let P < S, X < TP, and ¢ €
Homgg(X,S). Then ¢ = s for some v € Homgp(X,TP) and some s € S.

Proof. We will use the definition of the product given in [Hen13]. By this definition, EP = E(T'P).
Hence, to ease notation we may assume 7" < P. Setting

A°(Q) :== (v € Autr(Q): a of p' order, [Q,a] < QNT, and a|gnr € Autg(QNT))
for every Q < S, the definition of the product says that

ES=(A°(Q): Q< S, QNT &% and EP=(A°(Q): Q< P, QNT € Ep.
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Note that A°(Q)% = A°(Q®) and Q* NT € &° for every Q < S with QNT € &° and every
s € S. Hence, ¢ is of the form ¢ = ¢, for some s € S and some morphism 1 € Homgg(X,S)
such that 1) decomposes as a composition of restrictions of automorphisms in A°(Q) for various
Q < S with @NT € &° (That is, all conjugation homomorphisms induced by elements of
S appearing in a decomposition of ¢ as a morphism in £S can be moved to the end.) Write
Y = (a1|x,)(a2]x,) -+ (aglx, ;) where X = Xo,..., X} and Q1,...,Q} are subgroups of S, and
a; € A°(Q;) is such that (X;_1,X;) < Q; and X", = X;. By definition of A°(Q;), we have
Qi, 8] < QiNT < Q;NP for each f € A°(Q;), and hence a;|g,np € A°(Q; N P). In particular, as
Xop =X < P by assumption, we have X; < Pfori=0,1,...,k. Hence, ¥: X — P is a morphism
in EP. ]

2.1.5. Normalizers of p-subgroups in normal subsystems. We will make use of the following defi-
nition and two lemmas concerning local subsystems in product systems later in Lemma 7.4.

Definition 2.7. Let £ be a normal subsystem of F over T' < S. Then for any subgroup P < S
such that P € (£P)f, we define Ng(P) to be the unique normal subsystem of Ngp(P) over Np(P)
of p-power index.

Notice that the above definition makes sense. For if P € (£P)/, Ngp(P) is saturated. Moreover,
hyp(Nep(P)) < hyp(EP) < T and thus hyp(Nep(P)) < Np(P) with Np(P) is strongly closed in
Ngp(P). So by [AKO11, Theorem 1.7.4], there exists a unique normal subsystem of Ngp(P) over
Nr(P) of p-power index.

As before, the definition of Ng(P) depends on the fusion system F, since EP = (€ P)r depends
on F. For instance, in Example 2.5, P = Wj is normal in F; but not in F5. So Ng(P)r, is
the unique normal subsystem of F; over Ny(P) = U of index a power of p, namely £. But
Nz, (P) = Fs(S), so Ng(P)r, is the unique normal subsystem of Fg(S) over U of p-power index,
namely Fi7(U). Hence, N¢(P)r, and Ng(P)r, are not equal, and indeed are not even isomorphic
to each other.

We write Ng(P)r for Ng(P) if we want to make clear that we formed Ng(P) inside of F. If
p =2 and t is an involution, then we write Cg(t) = Cg(t) £ for Ng((t)).

Lemma 2.8. Let £ be a normal subsystem of F over T < S. If P € F/, then P € (EP) and
Ng(P) is normal in Nx(P).

Proof. Let P € F/ and fix and £ P-conjugate Q of P with Q € (£P)/. By construction of £P, we
have TP =TQ. Let a € A(Q) with Q% = P. As T is strongly closed, we have Np(Q)® < Nr(P).
So Nrp(Q)* = Nro(Q)* = (Nr(Q)Q)* < Nr(P)P = Npp(P). Hence, [Npp(Q)| < [Nrp(P)|.
As @ is fully £P-normalized, it follows that P is fully £P-normalized.

By [Henl13, Theorem 1], OP(Ngp(P))Nr(P) is the unique saturated subsystem D of Ngp(P)
over Np(P) with OP(D) = OP(Ngp(P)). Looking at the construction of normal subsystems of
p-power index given in [AKO11, Theorem 1.7.4], one observes that OP(Ng(P)) = OP(Ngp(P)).
Thus, OP(Ngp(P))Nr(P) equals Ng(P). Hence, if P € F/, our notation is consistent with the one
introduced by Aschbacher in [Ascll, 8.24], where it is proved that Ng(P) is normal in Nz(P). O

Lemma 2.9. Let £ be a normal subsystem of F over T < S. Fiz P < S such that P € (EP)7,
and let o € Homz(Np(P)P,S). Then P? € (EP¥)/, Np(P)¥ = Np(P¥) and ¢| Ny (py induces an
isomorphism from Ng(P) to Ng(P%).
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Proof. 1t is sufficient to show that (Np(P)P)¥ = Np(P¥)P¥ and Ngp(P)? = Ngpe(P?). For if
this is true then, as T is strongly closed, N7 (P)¥ = Np(P¥). So, since ¢ induces an isomorphism
from Ngp(P) to Nepe(P¥), it will take the unique normal subsystem of Ngp(P) over Np(P) of
p-power index to the unique normal subsystem of Ng¢p. (P¥) over Np(P¥) of p-power index.

By [Ascl9, 1.3.2], we have F = (€S, Nx(T')). Hence, it is sufficient to prove the claim in the
case that ¢ is a morphism in Nz(7T') or a morphism in £S.

If ¢ is a morphism in Nx(T'), then ¢ extends to & € Homx(T P, T P¥) with T® = T. Notice that
P = P?% and a: TP — TP¥ is an isomorphism of groups, which induces by the construction
of £P and £P¥ in [Henl3] an isomorphism from P to EP¥. So P¥ = P* € (EP¥)/ and
¢ = a|n,(p)p induces an isomorphism from Ngp(P) to Nepe(P¥). Hence, the assertion holds if
¢ is a morphism in Nz(T).

Assume now that ¢ is a morphism in £S. By the construction of £S and EP in [Henl3|, ¢ is
the composition of a morphism in EP and a morphism in Fg(S). As Fg(S) < Nx£(T') and the
assertion holds if ¢ is a morphism in Nx(7T'), we may thus assume without loss of generality that
¢ is a morphism in £P. However, then TP = TP¥, EP = £P¥ and it follows from P € (£P)f
that (Np(P)P)? = Nrp(P)? = Nrpe(P¥) = Np(P?)P¥. So ¢ induces an isomorphism from
Nep(P) to Nep(P?) = Negpe (P?). So the assertion holds if ¢ is a morphism in £P and thus also
if ¢ is a morphism in £S. As argued above, this shows that the lemma holds. O

2.2. Automorphisms and extensions of fusion and linking systems. At several later
points, we will need to construct various extensions of fusion systems and to determine the struc-
ture of extensions where they arise. For example, if F is a saturated fusion system over S and
£ is a normal subsystem of F, then we want to be able to construct certain subsystems of F
containing £ and determine their structure from the structure of £. In the category of groups,
this is a relatively painless process when the normal subgroup is quasisimple. However, in fusion
systems there are technical difficulties that necessitate in many cases the consideration of linking
systems associated to F and &.

We refer to [AKO11, Section II1.4] or [AOV12] for the definition of an abstract linking system
as used here, and for more details on automorphisms of fusion and linking systems. Fix a linking
system L for F with object set A and structural functors ¢ and 7, which we write on the left of
their arguments. The group of automorphisms of F is defined by

Aut(F) = {a € Aut(S) | F* = F}.

Then Autz(S) is normal in Aut(F), and the quotient Aut(F)/ Autx(S) is denoted Out(F).

An automorphism of £ is an equivalence a.: £ — L that is both isotypical and sends inclusions
to inclusions. Since we do not use those conditions explicitly, we refer to [AKO11, Section III.4]
for their precise meanings. Each automorphism of £ is indeed an automorphism of the category
L, not merely a self-equivalence. We shall write Aut(£) for the group of automorphisms of L.
There is always a conjugation map

c: Autg(S) — Aut(L)
which sends an element v € Autz(S) to the functor ¢, € Aut(L) defined on objects by P —
P7:= P™™) . For a morphism ¢ € Morz(P, R), the map ¢ sends ¢ to ¢7, namely the morphism
Ypv popoy|rrr € Morg(PY, RY),
8
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where, for example, vy|g gy is the restriction of -, uniquely determined by the condition that
dr,s(1) oy =v|r,rv ©6Rrr,s(1) in L. The image of ¢ in Aut(L) is a normal subgroup of Aut(L),
and
Out(L) := Aut(L)/{cy | v € Autz(S)}
is the group of outer automorphisms of L.
There are natural maps fi: : Aut(£) — Aut(F) and p: Out(L) — Out(F) which, at least
when A = F¢, fit into a commutative diagram

1 1 1
Z(F) % Z(8) Z\O(F), 25) —= lim!(ZF) — 1
(2.10) Z(F) — Aut,(S) —— Aut(L) ——— Out(L) —— 1
TS m Iz
1 Autx(S) Aut(F) Out(F) ——1
1 1 1

with all rows and columns exact. Here, Z\i((’)(]: ), Zr) denotes a certain subgroup of the group
of normalized cocycles of the center functor defined on the orbit category of F-centric subgroups
[AKO11, pp.186,174], and ml Zr denotes the corresponding cohomology group. The diagram
is an updated version of the one appearing in [AKO11, p.186]. The last two columns were not
known to be exact until Chermak’s proof of the uniqueness of centric linking systems [Chel3].
For example, by [AKO11, Proposition I11.5.12] the cokernel of the map p injects into lim? Z,
which is zero by [Olil3, Theorem 3.4] or [GL16, Theorem 1]. Then using a diagram chase like
that given in a five lemma for groups, one sees that the penultimate column is also exact.

Lemma 2.11. Let F be a saturated fusion system over S with associated centric linking system
L, and suppose that pi: Out(L) — Out(F) is injective. Then ker(fi) = {cs4(2) | 2 € Z(S)} consists
of automorphisms of L induced by conjugation by elements of Z(S).

Proof. By assumption on y, we see from (2.10) that lim!(Z#) = 0 by the exactness of the third
column. The assertion follows from exactness of the top row (2.10), together with commutativity
of the square containing Z(S) and Aut(L). O

In the situation where F is realized by a finite group G with Sylow subgroup S, there are maps
which compare certain automorphism groups of G with the automorphism groups of £ and F.
For example, there is a group homomorphism £g: Aut(G,S) — Aut(L), where Aut(G, S) is the
subgroup of Aut(G) consisting of those automorphisms which normalize S. Then kg sends the
image of Ng(S) to Im(c) < Aut(L), and so induces a homomorphism x: Out(G) — Out(L).

Definition 2.12. A finite group G with Sylow subgroup S is said to tamely realize F if F = Fg(G)
and the map x: Out(G) — Out(L) is split surjective. The fusion system F is said to be tame if

it is tamely realized by some finite group.
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From work of Andersen-Oliver-Ventura and Broto-Mgller-Oliver, the fusion systems of all finite
simple groups at all primes are now known to be tamely realized by some finite group [AO16,
Section 3.3]. To give one example of the importance of tameness for getting a hold of extensions
of fusion systems of finite quasisimple groups, we mention the following result of Oliver that will
be useful later.

Theorem 2.13. Let F be a saturated fusion system over the finite p-group S and let £ be a
normal subsystem over the subgroup T' < S. Assume that F*(F) = Op(F)E with € quasisimple
and that € is tamely realized by the finite group H. Then F is tamely realized by a finite group G
such that F*(G) = O,(G)H.

Proof. This is Corollary 2.5 of [Olil6]. See also a correction and a strengthening to the results
of [O1i16] in [O1i21]. 0

2.3. Components and the generalized Fitting subsystem. Aschbacher [Ascll, Chapter 9]
introduced components and the generalized Fitting subsystem F*(F) of F. By analogy with the
definition for groups, a component is a subnormal subsystem of F which is quasisimple. Here F
is called quasisimple if OP(F) = F and F/Z(F) is simple. By [Asc11, 9.8.2,9.9.1], the generalized
Fitting subsystem of F is the central product of O,(F) and the components of F. Moreover,
for every set J of component of F, there is a well-defined subsystem Il¢c ;C, which is the central
product of the components in J. Writing E(F) for the central product of all components of F,
F*(F) is the central product of O,(F) with E(F). We will use the following lemma.

Lemma 2.14. If C is a component of F over T then the following hold:

(a) C is normal in F*(F).
(b) If v € Homg(T, S), then C7 is a component of F.

Proof. By definition of a component, C is subnormal and thus saturated. As mentioned above,
by [Ascll, 9.8.2,9.9.1], F*(F) is the central product of O,(F) (more precisely Fo,r)(Op(F)))
and the components of F. It is elementary to check that each of the central factors in a central
product of saturated fusion systems is normal. Hence, every component of F is normal in F*(F)
and (a) holds.

For the proof of (b) let Sy < S such that F*(F) is a fusion system over Sy. The Frattini
condition (applied to the normal subsystem F*(F)) says that we can factorize v as v = 9o «
with 79 € Homp«(7) (T, So) and o € Aut#(Sp). By (a), C?° = C and thus C7 = C*. As F*(F) is
a normal subsystem, « induces an automorphism of F*(F). Thus, C* is normal in F*(F) as C is
normal in F*(F). So C7 = C® is subnormal in F. Hence, C7 is a component of F, since C7 = C
is quasisimple. O

Lemma 2.15. Let F be a saturated fusion system which is the central product of saturated sub-
systems Fi,...,Fn. If C is a component of F, then there exists i € {1,2,...,n} such that C is a
component of F;.

Proof. Assume that C is a component of F which, for all ¢ = 1,...,n, is not a component of
Fi. Let C be a subsystem on T' < S, and let F; be a subsystem on S; for ¢ = 1,...,n. Since F
is the central product of Fi,...,F,, each of the subsystems Fi,...,F, is normal in F. So for

each i = 1,...,n, it follows from [Ascll, 9.6] and the assumption that C is not a component of
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Fi that T centralizes S;. As S = II}'_S;, this yields that T" centralizes S and is thus abelian.
Now [Ascll, 9.1] yields a contradiction to C being quasisimple. O

2.4. Components of involution centralizers. Suppose now that F is a saturated fusion system
over a 2-group S. If F is of component type, then in analogy to the group theoretical case, one
wants to work with components of involution centralizers (or more generally with components
of normalizers of subgroups of S). In fusion systems, the situation is slightly more complicated
than in groups, since only components of saturated fusion systems are defined. Therefore, we can
only consider components of normalizers of fully normalized subgroups. It makes sense to work
also with conjugates of such components. Following Aschbacher [Asc19, Section 6] we will use the
following notation.

Notation 2.16. If C is a quasisimple subsystem of F over T', then define the following sets:

e X(C) is the set of subgroups or elements X of Cg(T") such that Cx(X) contains C.

e X(C) is the set of subgroups or elements X of S such that C* is a component of Nx(X®)
for some a € A(X).

e Z(C) is the set of involutions in X(C).

If we want to stress that these sets depend on F, we write Xr(C), X 7(C) and Zx(C) respectively.
Moreover, we write €(F) for the set of quasisimple subsystems C of F such that Z(C) is nonempty.

Lemma 2.17. Let C be a quasisimple subsystem of F over T and X € /f’(C) Then for any
¢ € Homz((X,T),S) the following hold:

(a) If X? € F/, then C¥ is a component of Nr(X%).
(b) We have X¥ € X(C¥).

Proof. Assume first X¥ € F/. Let a € 2(X) such that C® is a component of Nz(X®). By
Lemma 2.2, there exists 8 € A(X®) such that X*# = X¥. Then Ng(X®)? = Ng(X¥) and
B induces an isomorphism from Nz(X%) to Nz(X¥). So C*? is a component of Nz(X%). As
X8 = X, the map S~ 'a~ !y is a morphism in Nz(X¥). Moreover C*? is conjugate to C¥ under
B~ ta~lyp. Thus, C? is a component of Nz(X¥) by Lemma 2.14. This proves (a). If we drop the
assumption that X¥ € F/ and pick a € 2(X¥), then applying (a) with pa in place of ¢ gives
that (C¥)* = C¥* is a component of Nx(X¥?). This gives (b). O

Lemma 2.18. Let C be a quasisimple subsystem of F over T and let X € /'%(C) be a subgroup of S.
Suppose we are given Y € FT satisfying [X,Y] < X NY and C < N(Y). Then X € X, v)(C).
In particular, if X has order 2, then C € €(Nx(Y)).

Proof. Let 8 € An,(v)(X) so that X? € Nr(Y)7. Let a € A(X?). Then by [Ascl0, 2.2.1,2.2.2],
we have that Y € Nx(XP)f (Ng(Y) N Ng(XP))® = Ng(Y*) N Ng(XP?), and « induces an
isomorphism from NN]__(y)(XB) to Ny, (x80)(Y?). By Lemma 2.17(a), we have that CP is a
component Nz(X?%). So by [Asc19, 2.2.5.2], C#* is a component of Ny, (xsay(Y?). As o induces
an isomorphism from Ny, (y) (X?) to N Ny(x8e)(Y?), this implies that CP? is a component of

Ny (v) (X?). This proves X € .?E'Nf(y) (C) and the assertion follows. O
11



2.5. Pumping up. Crucial in the classification of finite simple groups of component type is the
Pump-Up Lemma, which leads to the definition of a maximal component. As we explain in more
detail in the next subsection, such maximal components have very nice properties generically,
which ultimately allow one to pin down the group if the structure of a maximal component is
known.

The main purpose of this section is to state the Pump-Up Lemma for fusion systems. However,
to give the reader an intuition, we briefly want to describe the Pump-Up Lemma for groups. Let
G be a finite group. To avoid technical difficulties which do not play a role in the context of
fusion systems, we assume that none of the 2-local subgroups of G has a normal subgroup of odd
order. The results we state here are actually true for all almost simple groups, but to show this
one would have to use the B-theorem whose proof is extremely difficult. Avoiding the necessity
to prove the B-theorem is one of the major reasons why it is hoped that working in the category
of fusion systems will lead to a simpler proof of the classification of finite simple groups.

Let t be an involution of G. If O(G) = 1, then the L-balance theorem of Gorenstein and Walter
gives that E(Cg(t)) < E(G), where E(G) denotes the product of the components of G. Further
analysis shows that a component C' of C(t) lies in E(G) in a particular way. Namely, either C' is
a component of G, or there exists a component D of G such that D = D! and C' is a component
of Cp(t), or there exists a component D of G such that D # D' and C = {dd': d € D} is the
homomorphic image of D under the map d ~ dd’. If one applies this property to the centralizer
of a suitable involution a rather than to the whole group G, then one obtains the Pump-Up
Lemma. More precisely, consider two commuting involutions ¢ and a centralized by a quasisimple
subgroup C which is a component of C(t), and thus of Cg,(4)(t). The result stated above yields
immediately that one of the following holds:

(1) C is a component of Cg(a).

(2) There exists a component D of C¢(a) such that D = D! and C' is a component of Cp(t).

(3) There exists a component D of Cg(a) such that D # D! and C = {dd': d € D} is a
homomorphic image of D.

This statement is known as the Pump-Up Lemma. If (2) holds then D is called a proper pump-up
of C. The component C' is called maximal if it has no proper pump-ups.

We now state a similar result for fusion systems, which was formulated by Aschbacher. Again,
the statement is slightly more complicated than the statement for groups, since we need to pass
from an involution a to a fully centralized conjugate of a for the centralizer to be saturated.

Lemma 2.19 ( [Ascl9, 6.1.11]). Let F be a saturated fusion system over a 2-group S and let C
be a quasisimple subsystem of F on T. Suppose we are given two commuting involutions t,a € S
such that t € Z(C) and (t,a) € X(C). Fiz a € A(a), and set a = a®, t = t*, and C = C*. Then
one of the following holds:
(1) (trivial) C is a component of Cx(a), so a € Z(C),
(2) (proper) there is ( € Home,(5)(Cs((a,1)),Cs(a)) and a & -invariant component D of
Cr(a) such that C* is a component of C’D<g<>(t_c), and we have C¢ # D,
(3) (diagonal) there is a component D of Cx(a) such that D # D!, C < Dy := DD, and C is
a homomorphic image of D.

Definition 2.20. Let F be a saturated 2-fusion system and C € €(F).
12



e Whenever the hypotheses of Lemma 2.19 occur, and D satisfies (2) of the conclusion, then
D is a proper pump-up of C.
e C is called mazimal (or a mazimal component) if it has no proper pump-ups.

2.6. Standard components. We explain now in more detail how maximal components play a
role in pinning down the structure of a finite simple group G, and in how far these ideas carry
over to fusion systems. As in the previous subsection, we start by explaining the basic ideas for
groups. For that, assume again that G is a finite group in which no involution centralizer has a
non-trivial normal subgroup of odd order.

Write €(G) for the set of components of involution centralizers of G. Using the Pump-Up
Lemma, one can choose C' € €(G) such that every element D € €(G) which maps homomorphi-
cally onto C' is maximal. For such C', Aschbacher’s component theorem says basically that, with
some “small” exceptions, either C is a homomorphic image of a component of G, or the following
two conditions hold:

(C1’) C does not commute with any of its conjugates; and
(C2’) if ¢ is an involution centralizing C, then C' is a component of Cg(t).

Assuming that (C1’) and (C2’) hold and C/Z(C) is a “known” finite simple group, the structure
of G is determined case by case from the structure of C. The problem of classifying G from the
structure of such a subgroup C is usually referred to as a standard form problem. The key to
solving such a standard form problem is that properties (C1’) and (C2’) imply that the centralizer
Cc(C) is a tightly embedded subgroup of G and thus has (by various theorems in the literature)
a very restricted structure if G is simple. Here a subgroup K of G of even order is called tightly
embedded in G if KN KY has odd order for any element g € G— Ng(K). A standard subgroup of G
is a quasisimple subgroup C' of G such that C' commutes with none of its conjugates, K := Cg(C)
is tightly embedded in G, and Ng(C) = Ng(K). If C is a component of an involution centralizer
which satisfies properties (C1’) and (C2’), then it is straightforward to prove that C is a standard
subgroup. So if G is simple, then with some small exceptions, Aschbacher’s component theorem
implies that there exists a standard subgroup C of G.

We will now explain the theory of standard components of fusion systems, which Aschbacher
[Asc19] has developed roughly in analogy to the situation for groups as far as this seems possible.
For the remainder of this subsection let F be a saturated fusion system over a 2-group .S, and
let C be a quasisimple subsystem of F on 7T. The situation for fusion systems is significantly
more complicated, most importantly since the definition of a standard component of a group
involves a statement about its centralizer, and the centralizer of C in F is currently only defined
in certain special cases. For example, Aschbacher has defined the normalizer and the centralizer
of a component of a fusion system [Asc19, Sections 2.1 and 2.2]. In particular, if C is a component
of Cx(t) for a fully centralized involution ¢, then Cry4)(C) is defined inside Cx(t). If C € €(F),
then this allows us to define a subgroup of S which centralizes C, dependent on an involution

teZ(C).

Notation 2.21 (cf. (6.1.15) in [Ascl9]). Let C be a quasisimple subsystem of F over 7. If
t € Z(C) and a € A(t), then define

Pio = Cogey(C*) N Cs(t)”
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and
-1
Qt = Qt,a = Pt(?{a

By [Ascl9, 6.6.16.1], Q¢ < Cs(t) is independent of the choice of o and so @ is indeed well-
defined. With this definition in place, one can formulate conditions on C which roughly correspond
to conditions (C1’) and (C2’). If C € €(F) fulfills such conditions, then C is called terminal. The
precise definition is given below in Definition 2.23.

Notation 2.22 (cf. (6.1.17) and (6.2.7) in [Asc19]). Let C be a quasisimple subsystem of F over
T.

e A(C) is the set of F-conjugates C; of C such that, writing 7} for the Sylow of C;, we have
T# C X(C) and T# C X(Cy).
o p(C) is the set of pairs (t¥,C¥) such that t € Z(C) and ¢ € Homz((¢,T),5).

Definition 2.23 ( [Asc19, Definition 8.1.1]). A subsystem C € €(F) over T is called terminal if
the following conditions hold:

(CO) T € FT,
(Cl) A(C) =@, and
(C2) If (t1,C1) € p(C), then Qf C X(Cy).

In this definition, property (C2) corresponds roughly to property (C2’) above. Moreover,
assuming (C2), property (C1) should be thought of as roughly corresponding to property (C1’)
above. By Lemma 2.17(b), for any (¢1,C1) € p(C), we have t; € Z(C1) and so @, is well-defined,
i.e. the statement in property (C2) makes sense.

Aschbacher proved a version of his component theorem for fusion systems [Ascl9, Theo-
rem 8.1.5]. Suppose C € €(F) is such that every D € €(F) mapping homomorphically onto
C is maximal. The component theorem for fusion systems states essentially that, with some small
exceptions, either C is the homomorphic image of a component of F, or C is terminal. This
statement is similar to the statement of the component theorem in the group case. However, it
is not clear that the centralizer of a terminal component is defined and “tightly embedded” in F.
This makes it more complicated to define standard subsystems. We will work with Aschbacher’s
definition of a standard subsystem, which we state next.

Definition 2.24 ([Ascl9, Section 9.1]). Let C be a quasisimple subsystem of F over T € F/.
Then C is a standard subsystem of F if the following four conditions are satisfied:

(S1) X(C) contains a unique maximal (with respect to inclusion) member Q.
(S2) For each 1 # X < @ and o € A(X), we have C* I Nx(X).

(S3) If 1 # X < Q and € A(X) with X# < Q, then TP =T.

(S4) Autz(T) < Aut(C).

If C satisfies conditions (S1),(52),(S3), then C is called nearly standard.

Remark 2.25. In the above definition, the first condition (S1) says essentially that the central-
izer of C in S is well-defined. Namely, the unique maximal member Q of X (C) should be thought
of as this centralizer. Given a standard subsystem C of F, this allows Aschbacher [Asc19, Defini-
tion 9.1.4] to define a saturated subsystem Q of F over ) which plays the role of the centralizer

of C in F. More precisely, Q centralizes C in the sense that F contains a subsystem which is a
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central product of @ and C (cf. [Asc19, 9.1.6.1]). Also, by [Asc19, 9.1.6.2], Q is a tightly embedded
as defined in the next subsection (cf. Definition 2.30). We will refer to Q as the centralizer of C
in F.

In general, it is difficult to get control of Cg(7T) when T is the Sylow subgroup of a member
C of €(F). However, Cs(T) < Ng(Q) when C is standard. This inclusion gives much needed
leverage, as is shown in Lemma 2.28 below. Since the method of proof of that lemma is more
widely applicable, we next state and prove a more general result which we feel is of independent
interest. In the proof of Proposition 2.26, we reference a normal pair of linking systems £ < £y
as defined in [AOV12, Definition 1.27]. Also, we take the opportunity to write certain maps on
the left-hand side of their arguments.

Proposition 2.26. Let F be a saturated fusion system over the 2-group S, and let F1 be a
saturated subsystem over S < S. Assume that C is a perfect normal subsystem of Fi over
T € Ff having associated centric linking system L such that

(Z) CS(T) < 51, and
(i) p: Out(L) — Out(C) is injective (see Section 2.2).

Then Cs(T) = Cs, (C)Z(T).

Proof. By assumption, C is normal in /7, so we may form the product system C; := CS in this
normalizer, as in [Asc11l, Chapter 8] or [Henl13]. Then O%(C;) = O?(C) = C since C is perfect,
so by [AOV12, Proposition 1.31(a)], there is a normal pair of linking systems £ < £; associated
to the pair C < C; in which Ob(£;) = {P < S; | PNT € C°}. Note that not only is £ is a
subcategory of L1, but the structural functors §, 7 for £ are the restrictions of the functors for
L1 by definition of an inclusion of linking systems. Because of this, we write J, 7 also for the
structural functors for £;.

Now by the definition of a normal pair of linking systems [AOV12, Definition 1.27(iii)], the
conjugation map c¢: Autg(7) — Aut(L) lifts to a map Autz, (T') — Aut(L), which we also denote
by c. So the existence of the pair £ < £; allows one to define a homomorphism v: S; — Aut(£)

given by the composition S o7, Aut £,(T) 5 Aut(£). This map has kernel
(2.27) ker(v) = Cg, (C)

by [Sem15, Theorem A].

We can now prove the assertion. Clearly Cg, (C)Z(T") < Cs(T). For the reverse inclusion, fix
s € Cg(T). Then v is defined on s by (i). The map fi: Aut(L) — Aut(C) is more precisely defined
by the equation t#(¥) = ¢! (67(t)?T) for all ¢ € Aut(£) and all ¢ € T. Using this for ¢ = v/(s) =
Csp(s)» We obtain for all t € T that t#(*(*) = 521 (7(s) ™ 0 7(t) 0 07 (s)) = o7 (57 (t*)) = t* =,
where the last equality uses s € Cg(T"). The automorphism fi(v(s)) € Aut(C) is thus trivial.
Hence by Lemma 2.11 and assumption on p, v(s) = cs,.(») = v(2) for some z € Z(T). It follows
that v(sz~ 1) is the identity on £. Hence, s2~! € Cg,(C) by (2.27), so s € Cs,(C)Z(T), which
completes the proof. O

Lemma 2.28. Let F be a saturated fusion system over the 2-group S. Suppose C is a standard
subsystem of F over T with centralizer Q over Q. Let L be a centric linking system associated to
C. If pu: Out(L) — Out(C) is injective, then Cs(T) = QZ(T).
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Proof. As @ is fully F-normalized by [Ascl9, 9.1.1], Nx(Q) is a saturated fusion system over
Ng(Q). Further, (S2) says that C is normal in Nz(Q). Finally, by [Ascl9, Proposition 5], Q is
normal in Nz(T') and Cng(g)(C) = Q. In particular, Cs(T) < Ng(Q). Thus, if y is injective,
then Cs(T') = Cny()(C)Z(T) = QZ(T) by Proposition 2.26. O

When considering involution centralizer problems for fusion systems, we generally need to verify
in each individual case that the terminal component we consider is standard. In contrast with
the group case, this is not a straightforward task. Indeed, in some cases a terminal component is
provably not standard. However, it develops that many of these technically difficult configurations
are ultimately unnecessary to treat, because they arise for example in almost simple fusion systems
that are not simple, or in wreath products of a simple system with an involution. Thus, we will
usually need assumptions that go beyond supposing merely that the structure of the terminal
component we consider is known, but also information about the embedding of that subsystem in
the ambient system. Such stronger assumptions can be made if one classifies, as was proposed by
Aschbacher, the simple “odd systems” rather than the simple fusion systems of component type
(cf. [Asc19]). The hypothesis in Theorem 1 that C is subintrinsic should be seen in this context.

Definition 2.29. Let C € €(F). Then C is said to be subintrinsic in €(F) if there exists H € €(C)
such that Zr(H) N Z(H) # 2.

It follows in a fairly straightforward way from results of Aschbacher that a subintrinsic Benson-
Solomon component C is terminal. Rather than use the component theorem for fusion systems, it
is more convenient in our case to show that C is terminal using a part of the argument for [Asc19,
Theorem 7.4.14], which is a major ingredient of the proof of the component theorem. As suggested
above, a nontrivial amount of work is then required to go on and show that C is standard; see
Section 3.

2.7. Tightly embedded subsystems and tight split extensions. Recall from the previous
subsection that a subgroup K of a finite group G is called tightly embedded if K has even order and
K N K9 has odd order for every g € G\Ng(K). This definition does not translate well to fusion
systems as it is, but there exist suitable reformulations. It follows from Aschbacher [Asc19, 0.7.1]
that a subgroup K of G of even order is tightly embedded if and only if the following two conditions
hold:

(T1’) K is normalized by Ng(X) for every non-trivial 2-subgroup X of K.
(T2’) For every involution z of K, 2¢ N K = 2Ne(K),

If K is tightly embedded and @ is a Sylow 2-subgroup of K, then note furthermore that
Na(Q) < Ng(K) and Ng(K) = KNg(Q) by a Frattini argument. This leads to a definition of
tightly embedded subsystem of saturated fusion systems at arbitrary primes.

Definition 2.30 (cf. [Ascl9, Definition 3.1.2]). Let F be a saturated fusion system on a p-group
S, and let Q be a saturated subsystem of F on a fully normalized subgroup @ of F. Then Q is
tightly embedded in F if it satisfies the following three conditions:

(T1) For each 1 # X € @/ and each o € A(X),

O" (No(X))® is normal in Nx(X®).
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(T2) For each X < @ of order p,
X]-' N Q _ XAut]:(Q)Q

where XAUF(@C .— (X% | o € Autx(Q), ¢ € Homg(Xa,Q)}.
(13) Auir(Q) < Aut(Q).

When working with standard subsystems later on, we will need the following lemma on tightly
embedded subsystems.

Lemma 2.31. Let F be a saturated fusion system on S, and suppose Q is a tightly embedded
subsystem of F on an abelian subgroup Q of S. Then Fq(Q) is tightly embedded in F.

Proof. As @ is abelian, by Alperin’s fusion theorem (cf. [AKO11, Theorem 1.3.6]), the following
holds:

(*) The p-group @, and thus the subsystem Fg(Q), is normal in any saturated fusion system
on Q.

Let 1 # X < Q and a € A(X). By (*), we have Q = Ng(X) < No(X) and thus Q =
O¥ (Ng(X)). As Q is tightly embedded, it follows Ng(X)® = Q* = OP (Ng(X))* < Nx(X®). So
(T1) holds for Fg(Q).

Let X < @ be of order p. Again using (*), we have Q < Q. So every morphism in Q extends
to an element of Autg(Q) < Autz(Q), and this implies XAWF(Q)Q — xAutr(Q) Hence, as Q is
tightly embedded, X7 N Q = XAwr(@Q — xAutr(Q) — xAuwr(@)7(@ This shows that (T2)
holds for F(@Q). Clearly (T3) holds for Fo(Q). O

To exploit the existence of standard subsystems, it is useful in many situations to study certain
kinds of extensions involving tightly embedded subsystems. We summarize the main definitions:

Definition 2.32. Let F{ be a fusion system on a 2-group Sjy.

o A split extension of Fy is a pair (F,U), where
— F is a saturated fusion system over a 2-group 5,
— JFg is normal in F,
— O%*(F) = O*(F), and
— U is a complement to Sy in S.
e The split extension (F,U) is tight if Fyy(U) is tightly embedded in F.
e A critical split extension is a tight split extension in which U is a four group.
e JFy is said to be split if there exists no nontrivial critical split extension of Fy; that is, for
each such extension (F,U), the fusion system F is the central product of F with Cg(Fp).

Suppose F is a saturated 2-fusion system and C is a standard component with centralizer Q
on Q. If C is split, then by [Ascl9, Theorem 8], C is either a component of F, or @) is elementary
abelian, or the 2-rank of @) equals 1. We show in Lemma 2.49 that the Benson—Solomon fusion
systems are split. So after showing that a component C as in Theorem 1 is standard, we know that,
unless C is a component of F, its centralizer () in S is either elementary abelian or quaternion or
cyclic. Accordingly, these are the cases we will treat.

Lemma 2.33. Let C be a quasisimple saturated fusion system over the 2-group T, and let (F,U)

be a critical split extension of C over the 2-group S. Then
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(a) Autz(U) =1 and so Ne(U) = Cx(U); and
(b) (u) € F/ and Cr(u) = Cx(U) for each 1 #u € U.

Proof. By definition of critical split extension, U is a four subgroup of S tightly embedded in F
and a complement to T in S. Also, O?(F) = O?(C) = C, as C is quasisimple. Since O?(F) = C,
this means hyp(F) = T'. Since S/hyp(F) = U is abelian, we see from [AKO11, Lemma 1.7.2] that
also foc(F) = T. Thus, Autz(U) = 1, since otherwise T NU = foc(F)NU > [U,Autx(U)] > 1,
which is not the case. This proves the first assertion in (a), and the second then follows from the
definitions of the normalizer and centralizer systems.

Now by definition of tight embedding, U is fully normalized in F. Fix 1 # u € U. By (T2)
and part (a), it follows that «” N U = {u}. However, (3.1.5) of [Asc19] says that (u) has a fully
F-normalized F-conjugate in U, so (u) € F/. Then taking « to be identity in (T1), we see that
U is normal in Nx((u)) = Cx(u), so that Cr(u) < Ng(U) = Cx(U) by (a). This completes the
proof of (b), as the other inclusion is clear. O

2.8. The fusion system of Spin;(q) and Fgo(g). Our main references for Fg1(q) and for 2-
fusion systems of Spin;(g) are [LO02,L0O05, COS08,AC10, HL18].

We follow Section 4 of Aschbacher and Chermak fairly closely [AC10] within this subsection,
except that it will be convenient to restrict the choice of the finite fields F, over which the systems
in question are defined, and to make small changes to notation. For concreteness, we consider a
fixed but arbitrary nonnegative integer [, and set ¢; = 52, Except for the fact that [ is in the role
of “k”, we adopt the notation in [AC10, Section 4], as follows.

Let F be an algebraic closure of the field with 5 elements (thus, we take p = 5 in [AC10,
Section 4]), and let F be the union of the subfields of the form Fgon in F. Let H = Spin,(F), let
T be a maximal torus of H, and let Th~ be the 2-power torsion subgroup of 7T'.

Let W be the subgroup of H defined on page 911 of [AC10], let Wg be the subgroup of W
defined on page 915 of [AC10], and set S = Ty« Wg. Thus, SNW = Wg. The subgroup B of H
is defined just before Lemma 4.4 of [AC10] as the normalizer of the unique normal four subgroup
U of S (see Notation 2.37). Finally, the group K is defined at the top of page 918 as a certain
semidirect product of the connected component B® of B with a subgroup (y,7) = S3, such that
7 € B is of order 2, and such that y is of order 3 and permutes transitively the involutions in
U. A free amalgamated product G = H xp K having Sylow 2-subgroup S is then defined by
an amalgam in [AC10, Section 5], which is ultimately constructed at the top of page 923. Here,
Sylow p-subgroups of infinite groups are defined in [AC10, Definition 1.4] generalizing properties
of Sylow p-subgroups of finite groups in a natural way.

Let 1 be the Frobenius endomorphism of H as defined in (4.2.2) of [AC10] and inducing the
5-th power map on 7', and set ¥; = 1/;2l for each integer [ > 0.

Theorem 2.34. For any choice of integer I > 0, the automorphism oy of H lifts uniquely to an
automorphism o; of the group G that commutes with y, and hence an automorphism that leaves
K invariant. Moreover, Cs(0y) is then a finite Sylow 2-subgroup of Cg(01), and Feys,)(Calor))
is isomorphic to Fso1(qr)-

Proof. The first statement here is shown in Lemma 5.7 of [AC10] and in the paragraph before

it. The second part is Theorem A(3) of [AC10]: it is shown in [AC10, Lemma 7.4(b)] that

Cg(o1) is isomorphic to Cr(07) *cy(0,) Cx (01) and in [AC10, Lemma 7.5(b)] that Cgs(o;) is a
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Sylow 2-subgroup of Cg(0y). Ultimately it is then shown in Theorem 9.9 that Fe(,,)(Ca(0y)) is
isomorphic to the fusion system Fgo1(q;) defined by Levi and Oliver in [LO02,LO05]. O

For the automorphism o; of G given by Theorem 2.34 and for any subgroup X < G, we write
X,, for Cx(oy).

Lemma 2.35. Let o7 be the unique lift of ¥; = @Zle to G. Then for each suchl >0,

(a) X and X,, are invariant under oo for each X € {H,B,K,S,W,T},
(b) o1 centralizes W, and
(c) So; = (Ta)s,Ws, and Sy, is a Sylow 2-subgroup of Hy,.

Proof. Except for the case X = K, all parts of (a) follow from the definitions in [AC10, Section 4],
since the statement just expresses invariance of X under ¢ for X < H. By uniqueness of the lift
in Theorem 2.34, agl = 0y, 80 [00,07] = 1 in particular. Hence, (K,,)?° = Ckoo(0;) = Ky,. Part
(b) is proved in [AC10, Lemma 4.3], while part (b) is proved in [AC10, Lemma 4.9]. O

Thus, as H is of universal type,

H,, = Cg(o1) = Cu(¢y) = Spinz(q1),

and so part (a) of the lemma says for example that (H,,)s, = Spin;(5). Also note that v; acts on
T as t +— t% (by definition of 1), so Ty, is a split maximal torus of H,,, isomorphic to (Cy—1)>.

Notation 2.36 (Fspin(q) and Fsei(q)). Fix I > 0 and set o = oy for short. Write
Ho = Fs,(Ho) = Fspin(q)  and  Fo := Fs,(Go) = Fsol(q)-
Let Z := Z(Sy), a group of order 2. Write z for the involution in Z.

Thus, by Theorem A(3) of [AC10], F, is isomorphic to the exotic fusion system defined by Levi
and Oliver in [LO02,L0O05], and Cr, (z) = H,.

We continue to set up notation for some common subgroups of S,, and we recall the various
parts of the set up appearing in [AC10, §4] that are needed later.

Notation 2.37 (Some subgroups of S,). Set k := [ + 2, and set Tyr := (Th= ), = (Cor)®. This
is the 2*-torsion subgroup of T~ and a Sylow 2-subgroup of the finite abelian group 7,. Let
wo € Wg be the element of order 2 fixed in [AC10, Lemma 4.3]. Thus, wq is centralized by o
by Lemma 2.35(b) and wq inverts Thx. The 2-group S, has a sequence of elementary abelian
subgroups

1<Z<U<E<A,

each of index 2 in the next, with Z = Z(S,) as above, U the unique normal four subgroup of
Se, B = Q1(Tyr), and A = E(wyp), an elementary abelian subgroup of order 16. We also set
Ra’ == CSO_ (E) = T2k <w0> = TQkA

We adopt Notation 2.36 and 2.37 for the remainder of this subsection.

The following lemma collects a number of properties of these subgroups and their automorphism
groups.

Lemma 2.38. The following hold.
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(a) For each ko > 2, Ty, is the unique homocyclic abelian subgroup of S of rank 3 and
exponent 20 and Thry 15 inverted by wy.

(b) Tor is Fy-centric, Sy /Tor = Cy x Dg, and Autg, (Tyr) = Cy x GL3(2).

(c) Ry is characteristic in Sy, and Outr, (R,) = GL3(2).

(d) A is an elementary abelian subgroup of S, of maximum order, and so S, has 2-rank 4.

(e) Autr, (X) = Aut(X) for X e {Z,U,E, A}.

Proof. By Lemma 4.9(b) of [AC10], Ty2 < Thx, is the unique homocyclic subgroup of S of rank 3
and exponent 4. Moreover, for the maximal torus 7" of H, we have T' = Cy(T52), and Sy NT = To
is of rank 3 and of exponent 2. This shows that Th2, and more generally, Thr, = Qp,(Tyx) for
2 < ko < k is the unique subgroup of S of its isomorphism type. Also, wy inverts 7" by [AC10,
Lemma 4.3(a)]. This completes the proof of (a). Again as T' = Cp(T32), one has Cp, (Ty2) =
Ty = Tor x O(Ty), and it follows that Ty is F,-centric. The second statement in part (b) follows
from [AC10, Lemma 4.3(c)], while the third is the content of [AC10, Theorem 5.2].

For the proof of (c), note first that Thx is characteristic in S by (a). So also R, = Cg(1(Thx))
is characteristic in S. Finally, as Ty is fully F,-normalized by (a) and as R, /Ty is of order 2 and
induces Oz(Autr, (Tyx)) on Thr, the restriction map p: Autr, (Rs) — Autr, (Th) is surjective
by the Extension Axiom. Let ¢ € ker(p). Then by [BLO03, Lemma A.8] and the first statement
in (b), ¢ is conjugation by an element of Z(T5x) = To. It follows that ker(p) = Autr,, (R,) is
of index 2 in Inn(R,). Thus, Outr, (R,) = Autr, (Tor)/O2(Autr, (Tor)) = GL3(2) by the last
statement in (b).

Now as E = Q1(Ty) is elementary abelian of order 8 by (a), and wq inverts Thk, it follows
that A is elementary abelian of order 16. There are no elementary abelian subgroups of S of
rank 5 by [AC10, Lemma 7.9(a)], so (d) holds. Finally, we refer to Lemma 3.1 of [LO02] for the
Fr-automorphism groups of X € {Z,U, E, A}, where A is denoted “E*”. O

Lemma 2.39. All involutions in S, are Fs-conjugate.

Proof. This is a direct consequence of the construction of these systems [LO02, Theorem 2.1]
and can be seen as follows. Each involution in H, — Z has —1-eigenspace of dimension 4 on the
orthogonal space for H,/Z(H,) by [LO02, Lemma A.4(b)]. It follows from this that H, has two
conjugacy classes of involutions, namely the classes in Z and in S, — Z. In F, these two classes
become fused by construction (c.f. Lemma 2.38(e)). O

Lemma 2.40. Let F € {F,,Hs}, and let L be the centric linking system for F. Then the natural
map pu: Out(L) — Out(F) is an isomorphism.

Proof. This follows from [LO02, Lemma 3.2] and the obstruction sequence in [AKO11, Proposi-
tion 5.12] (that is, from (2.10) above). O

The choice of ¢; = 52 is motivated by the next two lemmas, especially Lemma 2.41(a).

Lemma 2.41. Let H, be the 2-fusion system of Spin;(q) for some odd q, let I + 3 be the 2-adic
valuation of ¢> — 1, and set H, = Spin,(q;) as above. Then the following hold.

(a) Hq is tamely realized by H,.
(b) With R, as in Notation 2.37, each automorphism of H, that normalizes S, and centralizes
R, is conjugation by an element of E = Z(Ry).
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Proof. Since ¢®> — 1 and ql2 — 1 have the same 2-adic valuation, the fusion systems H, and H,
are isomorphic by [BMO12, Theorem A(a,c)]. The composition Out(H,) — Out(H,) of p with
k (see Section 2.2) is an isomorphism with ¢, = 52 by [BMO19, Proposition 5.16]. Thus, H, is
tamely realized by H, by Lemma 2.40 and the definition of tame (Definition 2.12).

Set k =1 + 2 as before. For the sake of convenience, we make appeals to [BMO19, §5] also for
(b). Note that by choice of ¢;, H, satisfies Hypotheses 5.1(III.1) of that reference. Let o be an
automorphism of H, that normalizes S, and centralizes R,. Since R, > T,x, o centralizes Ths.
Thus, by [BMO19, Lemma 5.9], a € Inndiag(H,) = Inn(H,) Autr(H,), and so there is h € H,
and t € T such that « is conjugation by ht. Then also h € Cy(Ty:) = T, with the last equality
by [BMO19, Lemma 5.3(a)], so that ht € T. However, R, contains the element wg inverting T,
c.f. Lemma 2.38(a), and so it follows that ht € Q1 (Th) = Z(R,). O

Lemma 2.42. The following hold.

(a) The collection {Fso1(qi) | I = 0} gives a nonredundant list of the isomorphism types of the
2-fusion systems Fso1(q) as q ranges over odd prime powers.

(b) The collection {Fspin(qr) | I = 0} gives a nonredundant list of the isomorphism types of
the 2-fusion systems Fspin(q) as q ranges over odd prime powers.

Proof. Part (a) is the content of [COS08, Theorem B]. For each odd prime power ¢, the fusion
system of Spiny(q) is isomorphic to some fusion system in the given collection by Lemma 2.41(a).
Then (b) follows as a Sylow 2-subgroup of Spin;(g;) has order 2'°3! by Lemma 2.38(a,b). O

The next lemma shows that F, has just one more essential subgroup in addition to the essential
subgroups of H,-.

Lemma 2.43. Let P € F2 be an essential subgroup. Then one of the following holds.

(a) Autr, (P) = Auty, (P) and P is H,-essential, or
(b) P=Cs,(U), Autr, (P) = (Auty, (P),cy), and Outg, (P) = S3.

Proof. Recall that an essential subgroup in a fusion system is in particular both centric and
radical. In [LS19], the centric radical subgroups and their outer automorphism groups in ‘H, and
F, are explicitly tabulated. From Tables 1 and 4 there, the only outer automorphism groups
having a strongly embedded subgroup are Ss and a Frobenius group of order 3% - 2. In all cases,
either P is essential in H, and Outz, (P) = Outy, (P) so that (a) holds, or P = Cg_ (U) and
Outz, (P) = Ss. In the latter case, Autg, (P) is generated by Auty, (P) and ¢, essentially by
the construction of y in Section 5 of [AC10], but it is difficult to find a precise statement of this
claim. So instead, we appeal to [LO05] where Cg_(U) is denoted Sp(¢™) on p. 2400, and where
¢y is explicitly constructed as the automorphism 7, of Cg, (U) in [LO05, Definition 1.6]. There,
I, is used to denote Autz, (Cs, (U)) when n = 2. O

The following generation statements will be needed in the process of showing that a subintrinsic
maximal Benson-Solomon subsystem is standard. The generation statement of Lemma 2.44(a) is
the one which is obtained by the construction by Levi and Oliver in [LOO05].

Lemma 2.44. The following hold.

(a) Fy is generated by Hs and Autr, (Cs, (U)).
(b) Fy is generated by Hy and N, (R,).
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Proof. Part (a) follows from Lemma 2.43 and the Alperin-Goldschmidt fusion theorem [AKO11,
Theorem 1.3.6]. AsU < E, R, = Cg,(F) < Cs, (U). Further, Ty is abelian and weakly F,-closed
by Lemma 2.38(a), hence also R, = Cg, (Q21(Th)) is weakly F,-closed. Thus, each element of
Autg, (Cg, (U)) restricts to normalize R, and hence lies in Nx, (R,). This shows that (b) is a
consequence of (a). O

The next lemma augments the results of [HL18] on automorphisms and extensions of the
Benson-Solomon systems.

Proposition 2.45. Let D be a saturated fusion system over the 2-group D such that F*(D) =
Fo = Fsol(qr)-

(a) All involutions in D — Sy are Cp(z)-conjugate, hence D-conjugate.
(b) If f € D — S, is a fully D-centralized involution, then

Cr. (f) = Fo,_, = Fsol(@i—-1)-

Proof. The almost simple extensions of F,, were determined in [HL18]. By [HL18, Theorem 3.10,
Theorem 4.3], we have O?(D) = F,. We may further fix a complement F to S, in D such that
F is cyclic of order 20 with 1 < Iy < [, and such that the conjugation action of F on S, is the
restriction of the conjugation action of a group of field automorphisms of H, to S,. We may thus
assume that |F| = 2, and that F' is generated by the restriction of o;_1 to S,. Write f for the
automorphism o;_1|p, of H,, and also write f for its restriction to S,. Note that o;_; normalizes
H, and S, by Lemma 2.35(a). We also rely on Lemma 2.35(a) at many places in the proof below,
without explicitly saying so. By Lemma 2.41(a) and Theorem 2.13,

(2.46) Cp(z) is the fusion system of the extension H,(f),

a semidirect product.

Recall k = | + 2 as before, and let Hy = Ngy(H,). Then H,/Z(H,) = Inndiag(H,) by
[GLS98, Lemma 2.5.9(b)], and hence H; = H,N7(H,). As Outdiag(H,) has order 2, we may fix
t € Np(H,) — H, with order 2! and powering to z, so that H; = Hy(t). As 0;_; normalizes
H, and T, it restricts to an automorphism of Hy. Set g = 0;_1|m,, so that g has order 4, and
glu, = f has order 2. Set Jy := Hy(g), J := Hy(f), J1 = J1/Cy,(Hy), and J = J/Z(H,). Note
that Cy, (H,) = (g%, 2). Since ¢? centralizes H,, (g*) is normal in H,(g), and H,{g)/{g?) = Hoy(f)

%)
via an isomorphism which sends g{g?) to f. Hence there is an isomorphism H(§) — Hy(f)y = J
which is the identity on H, = H,/Z(H,) = H, and which sends g to f.

By [GLS98, Theorem 4.9.1(d)], Inndiag(H, ) Hy acts transitively on the involutions in Hyg—

HU, and so each involution in Hag is H -conjugate to g or gt Astd =711 = t5 - and 527" —1
has 2-adic valuation /41 = k—1, we see that there is an element u € (tQk ) < H, of order 4, such
that [g,u] = 1, u? = z, and #9 = tu. Then g* = gu™!, so that §* = ga—'. From the isomorphism
ﬁg</g\> = f{fo(f), we conclude that each involution in H,(f) 1s H,-conjugate to either of f or
fa~L. However, the two preimages of fatin H,(f) are fu~' and fu = fu~'z, both of which
are of order 4 as [f,u] = 1. Thus, all four subgroups of H,(f) which contain (z) and are not
contained in H, are H,-conjugate. Since (f, z) is such a four subgroup, it is enough to show that
f is H,-conjugate to fz. But f® = fz where s = t> € H,. This completes the proof that all
involutions in H,f — H, are H,-conjugate, and this implies (a).

It remains to prove (b). We keep the notation from above, writing f for o;_1|g, and for o;_1|g, .
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We first prove that (f) itself is fully D-centralized. By Lemma 2.35(c), the 2-group S, has a
decomposition S, = T5xWg such that f centralizes Wg and acts on Ty via the map ¢ — t%-1. In
particular Cg, (f) = Tox-1Wg is a Sylow 2-subgroup of H,, ,. The centralizer Cy, (f) = Hy,_, is
isomorphic to Sping(g—1) by [GLS98, Theorem 4.9.1(a)], so Cc, () (f) = Cp(f) = Cs, (f)(f) is a
Sylow 2-subgroup of Cy_ s (f). Hence, f is fully Cp(z)-centralized by (2.46), and

(2.47) Cop(x)(f) = Hoy X (f),

by [AKOL11, 1.5.4]. However, all involutions in D — S, are Cp(z)-conjugate by (a), so two invo-
lutions in D — S, are Cp(z)-conjugate if and only if they are D-conjugate. This completes the
proof that (f) is fully D-centralized.

Next, since (f) is fully D-centralized, Cp(f) is saturated. Lemma 2.8 then shows Cx, (f) is
normal in Cp(f), so that Cc,._(f)(2) is normal in Cgy,(f)(2) by Lemma 2.8 applied with Cp(z) in
the role of F. Observe that Cc,. (y)(2) has Sylow group S,,_, = Cs, (f). Consequently, we have

(2.48) CC]:a(f) (z) = Hop -

from (2.47).

Now Lemma 2.9 shows that it suffices to determine C'x, (f) in order to finish the proof of (b).
For if f' € D — S, is another involution fully centralized in D, then any element ¢ of 2Ap(f) with
% = f" will induce an isomorphism Cx, (f) — Cx,(f’) by that lemma.

We argue next within the Aschbacher-Chermak amalgam to show that Cp(f) contains F,, .
Now Fo, , is generated by H,, , and Autg, (Cs,,  (U)) from Lemma 2.44(a). So to prove
that Cp(f) contains F,,_,, we are reduced via (2.47) to a verification that Cp(f) contains
Autr, (Cs,, (U)). Now y (in the notation of Theorem 2.34) acts on Cg,  (U). Viewing y
in the semidirect product of K,(o;_1)|k, and applying Theorem 2.34 with o;_; in the role of oy,
we see that y centralizes oy_1, so that ¢, extends to the automorphism ¢, of Cg,  (U)(f) that
centralizes f. So as Autg, (Cs,,  (U)) is generated by Auty, (U) and ¢, by Lemma 2.43(b),
it follows that Autg, (Cs,, , (U)) is contained in Cp(f). Lemma 2.44(a) with o;_1 in the
role of o shows that Cp(f) contains F,,_,. We have D = F,(f), since F, = O*(D). So also
Cr,(f) = O*(Cp(f)) = O*(Fs,_,) = Fo,_,- This shows that Cx, (f) contains F,, .

Finally, we complete the proof by appealing to Holt’s Theorem for fusion systems [Ascl?7,
Theorem 2.1.9]. The systems Cr, (f) and F,,_, both have Sylow group Cs_(f). Further, all
involutions in F,, , are conjugate by (a), and so 267+ () = z771-1 for the involution z € Z(So,_,)-
Moreover, we showed in (2.48) that Cq, ()(2) = Ho,, < Fo_;- This completes the verification
of the hypotheses of Holt’s Theorem, and by that theorem we have Cr, (f) = F5,_,. O

We close this section by verifying that the Benson-Solomon systems are split. This allows
one, via Theorem 8 of [Ascl9], to severely restrict the Sylow subgroup of the centralizer of a
Benson-Solomon standard subsystem.

Lemma 2.49. F, is split.

Proof. Let (F,V) be a critical split extension of F,, where F is a saturated fusion system over
any finite 2-group S. Let L, be the centric linking system for F,. Note that S/Cs(Fy)S,

embeds in Out(L,) by [Sem15, Theorem A], while Out(L,) is cyclic of 2-power order by [HLI1S,
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Theorem 3.10]. Hence
(2.50) VNCs(Fs)Sy > 1.

Write V' = (u,v) with u € VNCg(Fy)S,. Then either VN Cgs(F,) > 1, or there exist elements
c€ Cg(F,) and 1 #t € S, such that u = ct.

Assume the former case, and set X =V N Cg(F,) > 1. As X commutes with V' and S, and
S = 5,V, we have X < Z(95). Thus, Cr(X) is a saturated subsystem over S which contains F,,
so Cr(X)=F = Nr(X). Applying condition (T1) in Definition 2.30 with Q@ =V, Q = Fy(V),
X =V NCs(F,), and a = idx, we see that V' is normal in F, and hence that V' < Z(F) by
Lemma 2.33(a). Therefore, F is the central product of V = Cg(F,) and F,.

Consider the latter case. As Cs(Fs)NSy < Z(F,) =1 and u is an involution, ¢ is an involution.
Then, as F, has one class of involutions by Lemma 2.39, u is F-conjugate to cz € Z(S). However,
(u) is itself fully F-centralized by Lemma 2.33(a), and so u € Z(S). As (v) is fully F-centralized
and Cr(u) = Cr(v) by Lemma 2.33, we have v € Z(S). But then, using Lemma 2.40 to see
that Proposition 2.26 applies, we have V < Z(S) = Cs(S,) = Cs(F5)Z(S,) by that proposition
applied with F; = F, so that Cs(F,)Sy; = V.S, = S. Thus, F is the central product of Cg(F,)
with F, in this case as well. O

2.9. The known quasisimple groups and quasisimple 2-fusion systems. In this section,
we define the class Chevl[large] of 2-fusion systems that appears in Walter’s Theorem and which
is needed in Section 7, and we prove two lemmas about components and involution centralizers
in known almost quasisimple groups that will be used in Sections 5 and 7. By a known finite
simple group we mean a finite group isomorphic to one of the groups appearing in the statement
of the classification of finite simple groups. By a known quasisimple group we mean a quasisimple
covering of a known finite simple group. Such coverings are listed in [GLS98, Section 6.1]. An
almost simple group is a finite group whose generalized Fitting subgroup is simple. Similarly, an
almost quasisimple group is a finite group whose generalized Fitting subgroup is quasisimple.

Definition 2.51. Let p be an odd prime. Chev(p) is the class of quasisimple groups of Lie type in
characteristic p, i.e, the quasisimple groups K for which there is a simple algebraic group L over
IF, and a Steinberg endomorphism o such that K/Z(K) = Cy(0)" (cf. [GLS98, Definition 2.2.8]),
and

Chev*(p) = Chev(p) — {La2(q) | ¢ = p*, ¢ = 5}
—{*Ga(q) [ ¢ =3*""a>1}
- {?G2(3)'}.

Thus, the groups SLa(q) for ¢ = p® > 5 lie in Chev*(p) (but SL2(3) does not). The above
working definition of Chev*(p) appears to be consistent with that in [Asc20] and [Ascl7], but our
main interest is in Chev|large] below.

We use analogous terminology for the class of known simple, quasisimple, almost simple, and
almost quasisimple 2-fusion systems, respectively. The class of known simple 2-fusion systems
consists of the fusion systems of simple groups whose 2-fusion systems are simple, together with
the Benson-Solomon fusion systems. As was shown in [Asc17, Theorem 5.6.18], the simple groups

whose 2-fusion systems fail to be simple are precisely the Goldschmidt groups, namely the finite
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simple groups which have a nontrivial strongly closed abelian 2-subgroup. By a result of Gold-
schmidt, a Goldschmidt group is either a group of Lie type in characteristic 2 of Lie rank 1, or
has abelian Sylow 2-subgroups. For example, 27(q) is not a Goldschmidt group, so its 2-fusion
system is simple for any odd prime power gq.

In the proof of Walter’s Theorem, and in Section 7 below, the 2-fusion systems of a certain
subclass of Chev*(p) consisting of “large” groups play an important role.

Definition 2.52 ( [Asc20, Definition 1.1]). Let Chev* be the union of Chev*(p) as p ranges over
the odd primes. Chev[large] is the class of quasisimple 2-fusion systems C such that K = Fo(K)
for some finite group K in the collection

Chev* — {L5(¢) | ¢ = £3 (mod 8), e = +1}
~{Galg) | 4 = 3 (mod 8))
—{PQ,(q) | g==+3 (mod 8), e==£1, 5 <n <8}
—{Q¢(g) | ¢= £3 (mod 8)}.

For example, the 2-fusion system of Q7(q), ¢ = £3 (mod 8) is excluded from Chev|large], while
the 2-fusion system of Spin;(q) is a member of Chev[large| for each odd prime power gq.

Lemma 2.53. Let G be a finite group with F*(G) a known quasisimple group. Then for each
involution t € G and each component L of Cq(t)/O(Ca(t)), L is a known quasisimple group.

Proof. This follows from the determination of the conjugacy classes of involutions and their cen-
tralizers in the known almost quasisimple groups in [GLS98]. More precisely, see Tables 4.5.1-4.5.3,
Section 4.9, and Corollary 3.1.4 of [GLS98] for these data with regard to the members of Chev,
Table 5.3 of [GLS98] for the sporadic groups and their covers, and Section 5.2 of [GLS98] for the
alternating groups and their covers. ]

The next lemma says that each component of the 2-fusion system of a group G with O(G) =1
is the fusion system of a component of the group provided the components of G are known finite
quasisimple groups. It was suggested to us by Aschbacher.

Lemma 2.54. Let G be a finite group with O(G) = 1. Assume that for each component K of G,
K/Z(K) is a known finite simple group. Let S € Syly(G) and let C be a component of Fs(G).
Then there exists a component K of G such that C = Feni (K).

Proof. Set F = Fs(G) and € = Fgnp+e)(F*(G)). Suppose C is a subsystem of F on T. As
F*(G) is normal in G, the subsystem £ is normal in F by [AKO11, Proposition 1.6.2].

Assume first that C is not a component of £. Write J for the set of components of F which are
not a component of £, and set D = g ;C’'. Then by [Ascll, 9.13], F contains a subsystem DE
which is the central product of D and £. As C € J, this implies in particular that £ < Cx(T).
Since € = Fgnp+(q)(F*(G)), it follows now from [HS15, Theorem B] that T' < Cs(F*(G)) <
Ca(F*(G)) = Z(F*(G)). In particular, T is abelian, which by [Ascll, 9.1] yields a contradiction
to C being quasisimple. Thus, we have shown that C is a component of £.

As O(G) = 1, F*(Q) is the central product of O2(G) and the components of G. Thus, &
is a central product of Fp, () (02(G)) and the subsystems of the form Fgni (K) where K is a

component of G. Since C is not the fusion system of a 2-group, it follows now from Lemma 2.15
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that £ is a component of Fgni(K) for some component K of G. Set K := K/Z(K). As
O(G) =1, we have that Z(K) < S and Z(K) is contained in the centre of Fgnx (K). Moreover,
Fsnrx(K)/Z(K) = fW(F) Recall that K is a “known” finite simple group. So by [Ascl7,
Theorem 5.6.18], Fgr7(K) is either simple or SN K is normal in K. As the fusion system
Fsnr (K) contains C as a component, it is not constrained by [Ascll, 9.9.1]. It follows thus
from [Hen19, Lemma 2.10] that Fr=g(K) is not constrained, which excludes the case that SN K
is normal in Fgrp(K). Hence, Fsnx(K)/Z(K) = Fgag(K) is simple. In particular, Z(K) =
Z(Fsnx(K)). As K is quasisimple, we have K = O?(K). Therefore, it follows from Puig’s
hyperfocal subgroup theorem [Pui00, §1.1] and [AKO11, Corollary 1.7.5] that O?(Fsnk(K)) =
Fsnr (K). So Fsni (K) is quasisimple and thus, by [Ascll, 9.4], we have C = Fsni (K). O

2.10. Summary of preliminary definitions. For the convenience of the reader, we summarize
in a quick-reference table the most important definitions from Section 2 for following the later
arguments.

Table 1: Summary of Section 2

Notation/Property | Assumption Description Reference
set of @« € Homr(Ng(X), S) with :
= <
A(X) = Ax(X) X<S Yo e 7S Notation 2.1
EQF, PLS unique normal subsystem of
N¢(P) with Nep(P) over Np(P) of p-power Definition 2.7
P e (EP)/ index
quasisimple subnormal subsystem
component of F of T
E(F) central product of the components Section 2.3
of F
. central product of Op,(F) and
" B(F)
set of elements or subgroups X of
X=X
(€) = A7(C) Cs(T) with C < Cx(X)
) ) uzfsilssini lo set of elements or subgroups X of
X(C)=Xx(C) s(Ll1bs stenll) of S such that C® is a component of | Notation 2.16
e ovzr T<s Nzx(X®) for some a € A(X)
Z(C)=ZIr(C) set of involutions in X (C)
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Table 1: Summary of Section 2 (continued from previous

page)
Notation/Property | Assumption Description Reference
set of quasisimple subsystems C of .
¢(F) F with Z(C) # @ Notation 2.16
Ce&F),Da . .
D proper pump-up of ’ hypothesis and conclusion (2) of ..
C subsy‘s}‘zem of the “Pump-Up Lemma” 2.19 hold Definition 2.20
C maximal C eC(F) no proper pump-up of C
P, o C e&(F), Pio = Coge)(C*) N Cs(t)” Notation 2.21
L teZ(C), ol
Qt = Qt,a c Ql(t) Qt,a T Pt,a
set of F-conjugates C; of C over
A(C) some 77 < S such that Tl# C X(C) | Notation 2.22
and T# C X(Cy)
©) set of all (¢¥,C¥) where t € Z(C)
P and ¢ € Homz((¢,T),5)
(C1) T € F/,
C terminal (C2) A(C) # 2, # Definition 2.23
(C3) (11,C1) € plC) — QF <
X(C1)
(S1) X(C) contains a unique
maximal member @)
Ced(F)a (S2) C* < Nx(X*®) for each
C nearly standard subsystem 1#X<Qand aeA(X) Definition 2.24
over T'< S (S3) TP =T for each

C standard

C subintrinsic

1# X <Qand f € AX)
with X% < Q

C nearly standard and
(S4) Autz(T) < Aut(C)
(ensures existence of a

“centralizer” of C, in many cases
fulfilled if C terminal)

there is H € €(C) with
Ir(H)NZ(H) # &

Definition 2.29

27




Table 1: Summary of Section 2 (continued from previous
page)

Notation/Property | Assumption Description Reference

(T1) OP (Ng(X))® is normal in
Nz(X?) for each
1# X € 9/ and a € A(X)
(T2) X7 NQ = XAr(@2C for
Q tightly embedded OQVQS;ISYE“;I? cach X of order p. Definition 2.30
(T3) Autr(Q) = Aut(Q)

((T1)—(T3) hold if Q is the
“centralizer” of standard
subsystem)

3. SUBINTRINSIC MAXIMAL BENSON-SOLOMON COMPONENTS
We assume the following hypothesis throughout this section.

Hypothesis 3.1. Let F be a saturated fusion system over the 2-group S, and let ¢ be an odd
prime power. Suppose C 2 Fgoi(q) is a subsystem of F over the subgroup T' € Ff. Let z € Z(T)
be the involution, set H = C¢(z). Assume C is maximal in €(F) and z € Zx(#H), but that C is
not a component of F.

As we explain in detail in Remark 3.3 below, this hypothesis amounts to assuming that the pair
(F,C) is a counterexample to Theorem 1. The purpose of this section is to prove the following
theorem.

Theorem 3.2. Assume Hypothesis 3.1. Then C is standard.
Proof. This is the content of Lemmas 3.8 and 3.9 below. U

By Lemma 2.42, we may take q¢ = 52 for a unique [ > 0 in Hypothesis 3.1. Since we will be
working in this section with the internal structure of C = Fgo(¢) in some detail, we shall make
the following identifications in order to make it simpler to apply the results of Section 2.8. Here,
o = oy is the automorphism of the Aschbacher-Chermak free amalgamated product appearing in
Theorem 2.34.

Hypothesis 3.1 | Identify with | Reference in §§2.8 | Note
T Se Lemma 2.35(c) | T not to be confused with a max-
imal torus
C Fo Notation 2.36
H Ho Notation 2.36
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We reiterate that the symbol S is now used for the Sylow group in the ambient system F of
Hypothesis 3.1. (Previously, it stood for the Sylow 2-subgroup of the Aschbacher-Chermak free
amalgamated product.)

Remark 3.3. Apart from the assumption that C is not a component of F, Hypothesis 3.1 is a
restatement of the hypotheses of Theorem 1. The assumption z € Z(H) = Zx(H) in Hypothesis 3.1
is equivalent to the condition that C is subintrinsic in €(F), because z is the unique involution in
Z(H) and €(C) = {H}. To see the latter property recall that every involution in T is C-conjugate
to z by Lemma 2.39 and that z is fully normalized, as z € Z(T'). Therefore, each member of €(C)
is C-conjugate to a component of H by Lemma 2.2 and Lemma 2.17. As H is quasisimple, H is
by [Ascll, 9.4] the only component of H. Hence, every member of €(C) is C-conjugate to H. For
each a € Homz(T,T), 2% = z as Z(T') = (z) is characteristic in T', and so H* = H. Hence, H is
the only C-conjugate of H and €(C) = {H}.

Lemma 3.4. Let « € Homz(T,S). Then C* is mazimal in €(F), H* = Cea(2%), 2% € T(H®),
and C* is not a component of F.

Proof. By Lemma 2.14(b), C® is not a component of F as C is not a component of F. As T € F7,
it follows from [Asc19, 6.2.13] that C* is maximal in €(F). As « induces an isomorphism from C
to C*, we have H* = Cea(2“). Since z € Z(H), Lemma 2.17(b) gives z* € Z(H?*). O

Lemma 3.5. C is terminal in €(F).

Proof. By Hypothesis 3.1, C is maximal and subintrinsic in €(F). Condition (CO0) in Defini-
tion 2.23 is T € F/, which holds by Hypothesis 3.1. Assume A(C) # @. Then in the notation
of [Asc19, 6.1.17], the set C+ = A(C)U{C} # C. Since Z(C) = 1, Hypothesis 7.2.1 of [Asc19] holds.
By [Ascl9, Theorem 7.2.5], C is a component of F, contrary to hypothesis. Thus, A(C) = &,
i.e (C1) is verified. Since m(T) = 4 by Lemma 2.38(d), Theorem 7.4.14 of [Asc19] shows that
A(C) = @ (where A(C) is defined as in Notation 2.22).

It remains to verify (C2). Let t € Z(C) and ¢ € Homg((t,T),S) so that (t¥,C?) € p(C).
Fixing 1 # a € Qg, we need to show that a € X(C¥?). Note that a € X(C¥). So if @ is the
unique involution in (a) and @ € X(C¥), then a € X(C¥) by [Ascl9, 6.1.5]. So we may assume
without loss of generality that a is an involution. Fix o € 2(a). It remains to show that C¥* is a
component of Cx(a®) and thus a € X(C¥).

Note first that, by definition of Q, C¥ < Cr(a) and thus C¥* < Cr(a®). By Lemma 2.17(b)
applied with ({t), ¢a) in place of (X, ¢), we have t#® € X(C¥*). Moreover, [t?,a] = 1 by definition
of Qe and thus [t¥%, a®] = 1. Hence, Lemma 2.18 yields C¥* € €(C'x(a®)).

We will argue next that C¥® is subintrinsic in €(Cr(a®)). By Lemma 3.4, we have Cgea (29%) =
HPY and 29 € Z(H?Y). Recall that H?* < C¥* < Crx(a®). In particular, [T%* a%] = 1 and
thus [2¥%,a%] = 1. Hence, by Lemma 2.18 applied with ((z¥%), (a®), H#%) in place of (X,Y,C),
we have 29% € Tr, (o) (H?Y). As 2% € Z(H¥?), this implies that C¥* is indeed subintrinsic in
¢(Cr(a®)) as we wanted to prove.

As we have verified that C¥® is a subintrinsic member of €(Cr(a®)), it follows now from [Asc20,
1.9.2] applied with Cr(a®) in the role of F and with C¥* in the role of M that C¥® is contained
in some component of Cr(a®). Since C¥ is maximal in €(F) by Lemma 3.4, it follows from
Lemma 2.19 applied with (¢¥,C¥) in place of the pair (¢,C) of that lemma that C¥“ is a component

of Cr(a®). As argued above this shows (a). O
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For the remainder of this section, we adopt the following notation for certain subgroups of 7'
After this, we will not need to refer explicitly to any additional notation from in Section 2.8.

Notation below | Subgroup | Reference in §§2.8 | Description
Tor Tox Notation 2.37 unique homocyclic subgroup of T'
of rank 3 and exponent 2*
E E Notation 2.37 Q1 (Tyr)
R R, Notation 2.37 | R = Cr(E) = Ty (wp) for an
involution wq inverting 7ok

Lemma 3.6. The following hold:

(a) The subgroup E is characteristic in R and thus Autxz(R)-invariant. We have Autr(R) =
Cautr(r)(E) Aute(R) and Oz2(Autz(R)) = Cpyiy(r)(E).

(b) We have Ng(R) = Ng(T') = Cs(E)T.

(c) R is fully F-normalized.

(d) We have Outz(R) = O2(Outz(R)) x Outc(R) and Oz(Autz(R)) = Autcyp)(R). In
particular, O?(Autz(R)) = O?(Autc(R)).

Proof. (a): It follows from Lemma 2.38(a) that T, and E = Qq(Ty) are characteristic in
R. Set C := Cpytr(r)(E). Observe that Autz(R)/C embeds into Aut(E) = GL3(2). As
Aute(R)/Inn(R) = GL3(2) and Cpyo(ry(E) = Inn(R), it follows that Autz(R) = C Autc(R).
By Lemma 2.38(a), Ty is homocyclic of rank 3 and exponent 2¥. So as Ty is characteristic in R,
for every 1 <1 < k, the map QZ‘+1(TQk)/QZ‘(T2k) — Qi(TQk)/QZ‘_l(TQk),in(TQk) — $2Qi_1(T2k) is
an isomorphism of Autz(R)-modules. So in particular, C' acts trivially on ;11 (T )/Q(The) for
all 1 < i < k. As |R/To| = 2, C acts also trivially on R/T5x. Hence, C is a 2-group and thus
contained in O2(Autz(R)). As E is an irreducible Aut z(R)-module, it follows C' = Oz(Autz(R)).
This shows (a).

(b): As R is characteristic in 7" by Lemma 2.38(c), we have Ng(T) < Ng(R). By (a),
C Autr(R) is the unique Sylow 2-subgroup of Autz(R) containing Autr(R). As Autg(R) is a 2-
group containing Autp(R), it follows Autg(R) < C Auty(R) and thus Ng(R) < Cs(E)T < Cg(2).
Let now z € Cg(E) < Cg(2). As z € Z(H), there exists a € A(z) such that H* is a component
of Cx(2%). Then 2 € Cs(E®) < Cs(2%) and (H*)*" is a component of Cx(2%) by Lemma 2.14.
So by [Ascll, 9.8.2], either H* = (H*)*", or H and (H)*" form a commuting product. In the
latter case, E% = (E*)*" < Z(H®), a contradiction to Z(H®) = (2*). Hence, H® = (H%)*" and
thus (7%)® = (T*)*" = T®. This implies € Ng(T). So we have shown that Cs(E) < Ng(T)
and thus Ng(R) < Cs(E)T < Ns(T) < Ng(R). This yields (b).

(c): Let v € A(R). Recall from (b) that T < Ng(T) = Ns(R). So in particular, as T € F/,
we have T7 € F/ and Ng(T)? = Ng(T7). Thus, along with 77 € F/, Lemma 3.4 says that
Hypothesis 3.1 holds for C7, 27, and H"” in place of C, z, and H. So we can apply (b) with RY and
T7 in place of R and T to obtain Ng(RY) = Ng(T"). This gives Ng(T7) = Ng(T')” = Ng(R)" <
Ng(R") = Ng(T7) and therefore Ng(R)Y = Ng(R"). Since R is fully normalized, it follows that
R is fully normalized. This shows (c).

(d): By (c) and the Sylow axiom, Autg(R) € Syly(Autz(R)) and so C = Oz(Autz(R)) <
Autg(R). Thus, C = Autcyg)(R). By (b), [Cs(E),T] < Cs(E)NT = Cr(E) = R. Hence,
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[C, Autp(R)] < Inn(R). For each o € Aute(R),
[C, Autr(R)Y] = [C* ", Autp(R)]* = [C, Autp(R)]%,
because C' is normalized by Aute(R). So as Aute(R) = (Auty(R)A"e(B) by Lemma 2.38(c), the

previous equation gives
[C, Aute(R)] = [C, (Autp(R)A )] = ([C, Autp(R)] AR < Inn(R).
This together with (a) implies that (d) holds. O

Notice that Ng(T) < Cs(z) as z is the unique central involution of T'. Hence, if o € 2(z), then
T ¢ Ff as T € Ff. So by Lemma 3.4, replacing (C, T, z) by (C%, T%,2%), we may assume that
z is fully centralized. Moreover, we set

VR = RCS(R) and Q() = CS(T).
Lemma 3.7. The following hold.

(a) We have H < Cr(Qo).

(b) We have Cs(R) = ECs(T), and hence Vg = RCs(T).

(¢) Nn,(r)(VR) is a constrained fusion system and N¢(R) < Ny, (r)(VR)-

(d) Let G be a model for Ny, (g)(Vr) and N := Cg,(Vr/R). Then Ny := (TN) = O*(N)R
is a model for N¢(R).

(e) We have Qo = (z) x Q where Q = Cg,(N1) with Ny as in (d).

(f) If Q is as in (e), then @Q is the unique largest subgroup of S centralized by C. More
precisely, C < Cr(Q), and X < Q for all X < S with C < Cx(X).

(9) If Q is as in (e), then Q is the unique largest member of X(C).

Proof. (a), (b): Recall that E = Z(R). As R < T, clearly ECs(T) < Cs(R), so for (b) we
must show the other inclusion. Since z € R, we have Cs(R) = Ccy.)(R) < Cs(z). Now by
our choice of notation, (z) is fully F-centralized, so Cr(z) is a saturated fusion system on Cg(z).
By Hypothesis 3.1, ‘H is a component of Cr(z). The normalizer of a component is constructed
in [Ascl9, §2.1], and thus, we may form N¢,(.)(H) over the 2-group Ns(T') = Ngy)(T). By
Lemma 3.6(b), Cs(R) < Ng(R) = Ng(T), so we may form the product system H := HCg(R) as
in [Ascl1, Chapter 8] or [Hen13] in the normalizer N, (.y(H). Thus H is a saturated subsystem
of Cr(z) with O2(H) = O2(H) = H = E(#). Since H is tamely realized by H = Spin,(52') by
Lemma 2.41(a), Theorem 2.13 gives an extension H=H Cs(R) of H that tamely realizes H. By
Lemma 2.41(b), each automorphism of H normalizing 7" and centralizing R is conjugation by an
element of E. Hence, Qo < Cg(R) < ECg(H) < ECg(T). This implies Cg(R) = ECg(T) and
Qo =Cg(T)Cs(H) = (2)Cs(H) = Cs(H). The first property gives (b), and the latter property
yields (a).

(c): Since R is fully normalized by Lemma 3.6(c), Nx(R) is saturated. Note that Vg is weakly
closed and thus fully normalized in Nz(R). So Ny, (r)(Vg) is saturated. Clearly Ny (g)(Vr) is
constrained, as Vg is a centric normal subgroup of this fusion system.

We show next that Ne(R) < Ny,(g)(Vr). Let R < P < T and ¢ € Auty,(g)(P). By
Alperin’s fusion theorem [AKO11, Theorem I.3.6], it is enough to show that ¢ extends to an
element of Autz(PVg) normalizing Vi. Let a € 2A(P) and observe that ¢* € Autz(P®). By
(b), VR = RCs(T) < PCs(P). Thus Vg < P*Cg(P) < Nga. As P“ is fully normalized, it
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follows from the extension axiom that ¢ extends to a morphism ¢: P*V§F — S in F. Note
that R = (R®)¥" = R® as R? = R. Since R is fully normalized and thus fully centralized,
we have Cg(R)* = Cg(R™) = Cs(R*) = Cs(R)* and thus ng = R*C5(R)* = V§. So
Y € Autp(PVg) extends ¢ and normalizes V3. Hence, ¢ := Y € Autr(PVg) extends ¢
and normalizes Vg. This proves (c).

(d): Let now Gg and N be as in (d), and set Ny := (T'"V). (The model G for Ny (g)(R) exists
and is unique up to isomorphism by [AKO11, Proposition II1.5.8]. Moreover, Cq,(Vr) < Vg.)
Note that Sy := Ng(R) € Syly(GRr). By (b), [Vr,T] < R. As Vi and R are normal in Gp, it
follows that [Vg, (T¢")] < R and thus Ny < (T9%) < N. Let P < T be essential in N¢(R).
As Outc(R) = GL3(2), we observe that R < P, P/R = Cy x C3 and Outy,(g)(P) = GL2(2) =
S3. In particular, Auty,g)(P) = (Autp(P)AutveP)y - Gince Auty,(r)(P) < Autg,(P) by
(c), it follows that Auty,(g)(P) < Autirepy(P) < Auty(P). Now we conclude similarly that
Autn, (r)(P) < (Autp(P)A"~(P)Y < Autp, (P). As P was arbitrary, the Alperin-Goldschmidt
Fusion Theorem yields that N¢(R) < Fsynn, (N1).

Note that N/Cn(R) embeds into Autz(R). As Cq,(Vr) < Vg, and Cy(R) centralizes Vr/R
and R, Cn(R) is a normal 2-subgroup of N. So it follows from Lemma 3.6(d) that N/Oy(N) =
Oute(R) = GL3(2) and O2(N) = Cy(E) < Cs,(F). Using Lemma 3.6(b), we conclude that
02(N) < Cg(F) < Ng(T) and thus [O2(N),T] < Cr(FE) = R. Since O2(N) and R are nor-
mal in N, this implies [O2(N), Ni] < R. In particular, noting O2(N;) = O2(N) N Ny and
setting N := N/R, it follows that O2(NN7) is abelian. Observe that T/(T N O9(N)) = T/R is
isomorphic to a Sylow 2-subgroup of GL3(2). Thus, TO2(N)/O2(N) is a Sylow 2-subgroup of
N/O2(N) and so TO2(N) is a Sylow 2-subgroup of N. In particular, TO2(N1) = (T'O2(N)) N Ny
is a Sylow 2-subgroup of Nj. Note that TN O2(N1) = TN O2(N) = Cr(E) = R. Thus T
is a complement to O2(N7) in the Sylow 2-subgroup TO2(N;) of Ni. So by a Theorem of
Gaschiitz [KS04, Theorem 3.3.2], there exists a complement Ny of O3(Ny) in N;. We choose
a preimage Ny of such a complement Ny with R < Ny < Nyi. As N/O2(N) =& GL3(2) is simple,
we have N = OQ(N)Nl = OQ(N)NQ. Since OQ(N) NNy = OQ(Nl) NNy = R and OQ(N) is
centralized by Ny, it follows N = O3(N) x Ny. In particular, Ny = O?(N)R is normal in Gg.
A Ne(R) < Fsyom (M) < Fsy (N), we have byp(Ne(R)) < hop(Fsyow (N)) < OX(N). Hence
T = bhyp(Ne(R))R < O?*(N)R = Ny. In particular, Ny = Ny, Oo(Ny) = R, T € Syly(Ny)
and Ni/R = GL3(2). We show next that Ng(R) = Fp(IN1). We have seen already that
Ne(R) < Fr(Np). If P is essential in Fp(Njp), then it follows from N;/R = GLg3(2) that
R<PL T, P/R = 02 X CQ and Out]\h(P) = GL2(2>. As GLQ(Q) = OutNC(R)(P) < OutNl(P),
it follows that Auty, (P) = Aute(P). Hence, we have N¢(R) = Fr(Np). Since Cn, (0O2(N71)) <
NiNCn(E) = N1NO2(N) = O2(Ny), we conclude that N; is a model for N¢(R). This completes
the proof of (d).

(e): We consider now the action of Ni/R = GL3(2) on Ug := Cg(R) = Cy,(R). Note that
E = Z(R) is central in Ur and recall that Ur = ECg(T') by (b). In particular, Ur/®(Cs(T)) is
elementary abelian and thus ®(Ug) < ®(Cs(T)). If EN ®(Ur) were non-trivial, then we would
have E < ®(Ug) as N; acts irreducibly on E. So it would follow that F < Cg(T) contradicting
E £ Z(T). This shows that EN®(Ug) = 1. Set

Ur = Ur/®(Ug).
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As Up = ECS( T) is elementary abelian, there is a complement to E in Ug which lies in Cs(T).
So by a Theorem of Gaschiitz [KSO4 Theorem 3.3.2], applied in the semidirect product Ny X Uf:]/{,
there exists a complement Q to E in UR which is normalized by N;. We choose the preimage @
of Q such that ®(Ug) < Q < Ug.

As [Ur, N1] < [Vg, N] < R, we have [Q, N1] < [Ug, N1] < Ur N R = Z(R) = E. In particular,
[Q,NM] < QNE =1. So [Q,N1] < ®(Ur)NE = 1. Recalling Qo = Cs(T), we conclude
Q < Cg,(N1). Observe that @ has index 2 in Qo = Cg(T) as ENCg(T) = (Z) has order 2.
Hence, since [z, N1] # 1, it follows @ = Cg,(N1) and Qo = (z) x Q. This proves (e).

(f): By (a), Qo centralizes H, and by Lemma 2.44(b), we have C = (H, N¢(R)). So if X <
Qo = Cs(T), then X contains C in its centralizer if and only if it contains N¢(R) in its centralizer.
As N¢(R) = Fp(Ny) by (d) and @ is centralized by Nj, clearly every subgroup of @) contains
Nc¢(R) in its centralizer.

Fix X < Cg(T') with N¢(R) < Cr(X). To complete the proof of (f), we need to show that
X < Q. To prove this let © be the set of all pairs (Y, ¢) such that RX <Y < Vg, ¢ € Autz(Y),
[Y,9| < R, p|x = idx, and ¢|r € Aute(R) has order 7. As Aute(R)/Inn(R) = GL3(2), there
exists an element ¢( of order 7 in Aut¢(R). As Ne(R) < Cr(X), ¢p extends to an automorphism
¢ € Autr(RX) with ¢|x = g, and for such ¢ we have (RX,p) € ©. Thus © # & and we may
fix (Y, ) € O such that |Y| is maximal.

Assume first that Y = Vg. Then ¢ is a morphism in Ny, R)(VR) and thus realized by conjuga-
tion with an element of Gr. Recall that H; = O?(H)R is normal in G and contains 7. Hence,
Q = Cy,(H:) is normal in G and thus g-invariant. As [V, ¢] < R by definition of ©, it follows
[Q, 0] < RNQ =1. As Ugr = ECs(T) = EQ and ¢|g acts fixed-point-freely on E#, it follows
Q = Cyg,(p). By definition of ©, we have ¢|x = idx and thus X < Cy,(¢) = Q. So X < Q if
Y = Vg

Assume now Y < Vg. Recall from above that Nz(R) is saturated. So we can fix o € A, (r)(Y).
Then ¢* € Autz(Y?) and [Y¥ ¢% < R as [Y,¢] < R by definition of ©. Recall also that
¢|r € Aute(R) has order 7. By Lemma 3.6(d), we have O?(Autz(R)) = O?*(Autc(R)). So we
can conclude that ©*|r = (¢|gr)* € O*(Autz(R))® = O?(Autr(R)) < Autc(R). As Ne¢(R) =
Fr(Ny) by (d), there exists thus n € Ny with ¢%|gr = cp|r. Set ¢ = ¢ylv, € Autz(Vg). As
N1 < N, we have [Vg, 9] < R. In particular, as R < Y* < Vg, we have (Y®)¥ = Y. Thus,

= (|ya) o™ € Autz(Y?) is well-defined. Observe also that x|g = idg and [Y*,x] < R, as
Y] < VR, 9] < Rand [Y?, ¢ < R. So x is an element of Cpy,(ye)(R) N Cryeryve) (YY/R),
which is a normal 2-subgroup of Auty . (g)(Y'®). Since Y* € N, #(R)7, the Sylow axiom yields that
Aut g gy (Y?) is a Sylow 2-subgroup of Auty, (r)(Y'®). Hence, there exists s € Nog(g)(Y®) with
Xlye = cslye. So ¢ = 1)|ya o cs|ye extends to p = 1) o 5|y, € Aut(Vg). Since [V, 9] < R, the
automorphism p acts on Vi/R in the same way as ¢s|y,,. So writing m for the order of s, we have
[VRr, p™] < R. Moreover, p extends (¢®)™. Since Y < Vg, we have Y < W := Ny, (Y). Note
that R < Y* < W* < Vg, so W, 0" < [Vgr,p™"] < R and p™|we € Autz(W®). Therefore,
@ = (p"|lwe)* " € Autz(W) with [W,¢] < R* ' = R. Moreover, ¢|r = (¢|r)™ € Aute(R)
has order 7, as ¢|gr € Aut¢(R) has order 7 and m is a power of 2. Also ¢|x = (¢|x)™ = idx
as ¢|x = idx. This shows (W,¢) € ©. As |[W| > |Y| and (Y, ¢) € O was chosen such that |Y|
is maximal, this contradicts the assumption that Y < Vx. So ultimately, we have shown that
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Y = Vi. As argued in the previous paragraph, this yields X < @, and thus completes the proof
of (f).
(g): Since C € €(F), we may fix an involution ¢ € Z(C). We have Z(C) C X(C) C X(C) by

definition of these collections, so (t) € X(C), and also (t) < Q < X(C) by (f). Therefore, Q € X(C)
by [Ascl9, 6.1.5]. O

Lemma 3.8. C is nearly standard.

Proof. By Lemma 3.5(a), C is terminal in €(F). By Lemma 3.7(g), the collection X'(C) has a
unique maximal member. Hence, C is nearly standard by [Asc19, Proposition 7. 0

Lemma 3.9. Autz(7) < Aut(C).

Proof. Let a € Autz(T) and note that & € C'r(z). Recall that z was chosen to be fully normalized.
Thus, as z € Z(H), H is a component of Cx(z). It follows from [Ascll, 9.7] that there is a unique
component of Cr(z) with Sylow group 7', so that H* = H by Lemma 2.14(b). Since T is fully
F-normalized by Hypothesis 3.1, o extends to an automorphism & of QoT = Cs(T)T = Cs(R)T
with the last equality by Lemma 3.7(b). From Lemma 2.38(c), R is characteristic in T, so we have
that R* = R, and hence that & normalizes Cs(R). Thus, o € Ny, (v;,)(R), a model for which is,
by definition, Gr. We may therefore choose g € Ng,(T) such that a = ¢4|7. As N := Cq,(Vr/R)
is a normal subgroup of G, g leaves invariant O?(N)R = (T'V), which is a model for N¢(R) by
Lemma 3.7(d), whence o normalizes N¢(R). Thus, o € Aut((H, Nc(R))) = Aut(C), the equality
coming from the generation statement of Lemma 2.44(b), and now the assertion follows as « was
chosen arbitrarily. O

4. THE CENTRALIZER OF C AND THE ELEMENTARY ABELIAN CASE

We operate from now until just before the end of Section 6 under the following hypothesis and
notation, although we will often state it again for emphasis.

Hypothesis 4.1. Let F be a saturated fusion system over the 2-group S, and let ¢ be an odd
prime power. Suppose C = Fgsoi(q) is a subsystem of F over the subgroup T' € F/. Assume
C € €(F) is standard in F, but that C is not a component of F.

By Theorem 3.2 (and Remark 3.3), if C is a Benson-Solomon system which is maximal and
subintrinsic in €(F), then Hypothesis 4.1 holds or C is a component of F. But we have not
assumed that C is subintrinsic in €(F) in Hypothesis 4.1 and there is no obvious reason that
Hypothesis 4.1 implies this property. This means that the results of Section 3 are generally not
applicable in Sections 4-6.

Notation 4.2. Let Q be the centralizer of C (Remark 2.25), and let @ be the Sylow group of Q.

Thus, in the case where C is subintrinsic in €(F), the group @ was ultimately constructed in
Lemma 3.7(f,g). For future reference, we record the following lemma.

Lemma 4.3. The following hold.

(a) Q is tightly embedded in F, and
(b) Cs(T) = QZ(T).
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Proof. Since C is assumed to be a standard subsystem in Hypothesis 4.1, the subsystem Q exists
and is saturated by [Ascl9, 9.1.4, 9.1.5]. Then Q is a tightly embedded subsystem of F by [Asc19,
9.1.6.2]. Part (b) then follows from a combination of Lemmas 2.28 and 2.40. O

Lemma 4.4. One of the following holds.

(a) Q is elementary abelian, or
(b) Q is of 2-rank 1.

Proof. This is a direct consequence of Hypothesis 4.1, Lemma 2.49, and [Asc19, Theorem 8]. [
Proposition 4.5. Assume Hypothesis 4.1. Then QQ has 2-rank 1.

Proof. The subsystem Q is tightly embedded by Lemma 4.3(a). Assume that @ has 2-rank larger
than 1. Then by Lemma 4.4, @ is elementary abelian and |Q| > 2. Moreover, by Lemma 2.31,
Fo(Q) is tightly embedded in F. By [Ascl9, 9.4.11], we can fix P € Q7 such that P < Ng(Q)
and P # Q. By [Asc19, 3.1.8], we have

PNQ=1.

As C is standard, we have C I N£(Q). In particular, we can form the product CP inside of Nx(Q).
As @ is normal in Nz(Q), we have Q ¢ P°F. Furthermore, if & € Homep (P, TP) then « induces
the identity on PT/T by the construction of CP in [Henl3| and since P = @ is abelian. So
TP = TP“. Hence, replacing P by a suitable C P-conjugate of P, we may assume

P e (cp).
Then by [Ascl9, Theorem 3.4.2], Fp(P) is tightly embedded in CP.

By [HL18, Theorem 3.10], Out(C) is cyclic. Note that Ng(Q) induces automorphisms of C via
conjugation as C < Nx(Q). Moreover, the elements of Ng(Q) inducing inner automorphisms of C
are precisely the elements in TCs(T). Thus, Ns(Q)/TCs(T) is cyclic. Writing z for the unique
involution in Z(T'), by Lemma 4.3(b), Cs(T") = (2)Q and so TCs(T) = TQ. Since P = Q is
elementary abelian of 2-rank at least 2, it follows that P N (TQ) # 1. Let 1 # =z € PN (TQ)
and write x = uv with v € T and v € . Note that v and v commute. As z is an involution, it
follows that u and v have order at most 2. If u = 1 then x = v € PN @ contradicting PNQ = 1.
Hence v is an involution. Let o € Homep(Crp(z), TP) such that 2% € (CP)f. We proceed now
in several steps to reach a contradiction.

Step 1: We show that z¢ € Cg(T) and z% = zv® with v* € Q.

For the proof note first that, as C <Nz (Q), we have T'I Ng(Q) and thus Z(T) = (z) I Ns(Q).
Hence, z is central in Ng(@)) and thus fully centralized in CP. As u € T is an involution and
all involutions in T" are C-conjugate by Lemma 2.39, the element u is C P-conjugate to z. Hence,
there exists ¢ € Homep(Crp(u), TP) such that u¥ = z. Note that z,v € Crp(u), since z = uv
and v and v commute. We obtain z¥ = zv¥, where v¥ € Q < Cg(T), as v € Q and ¢ is a
morphism in Nz(Q). Since z € Z(T), it follows T' < Cg(z¥). Recall that a was chosen such that
x® € (CP)/. Thus, using Lemma 2.3, we can conclude that T < Cg(z®) and so 2z € Cg(T).
Note that u,v € Crp(x) as v and v commute. Moreover, since « is a morphism in Nz(Q), we
have v® € Q < Cs(T). So 2% = u*v® and u® = 2%(v*)~! € Cg(T). As T is strongly closed in
Nz (Q), we have u® € T and thus u* € Z(T) = (z). As u # 1, it follows u® = z and z% = zv®

with v® € Q. This completes Step 1.
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Step 2: We show Ce(z) < Cep(z%).

For the proof, we may assume that z¢ # z. By definition of @, we have C < Cr(Q). By
Step 1, 2* € Q(z). Therefore Ce(z) < Cr(Q(z)) < Cnp(g)(@¥). Let D € Ce(2)/¢ and let x €
Autc, () (D) be an arbitrary element of odd order. Then y extends to some X € Auty . (g)(D{z%))
with (%)X = 2. The order of ¥ equals the order of y and is therefore odd. As z® # z is by
Step 1 an involution centralizing 7', we have z®* ¢ T and thus (D{(z*)) N T = D. Moreover,
clearly [D(z%),x] < D and x|p = x is a morphism in C. By [BLO03, Lemma 6.2], we have
D € C°. So it follows from the definition of CP in [Henl3] that x is a morphism in CP. Hence,
X is a morphism in Cep(z®). By Alperin’s fusion theorem [AKO11, Theorem 1.3.6], C¢(z) is
generated by the collection of automorphism groups Autc,(.)(D) as D ranges over Ce(z)7c. But
Aute, () (D) = OQ(AutCC(Z)(D))AutT(D) since Autr(D) is a Sylow 2-subgroup of Autc, () (D)
for such D, so C¢(z) is generated by Inn(T) together with O?(Autc,(,)(D)) as D ranges over
Ce(2)fe. As T < Cg(x®), it follows that Ce(z) < Cep(x®).

Step 3: We show that P* < Cep(z%) and P*NT < (z).

As remarked above, Fp(P) is tightly embedded in CP. Hence, it follows from (T1) that
P*<INep({(xz)) = Cep(z®). In particular, as Ce(z) < Cep(z®) by Step 2, it follows that P*NT is
strongly closed in C¢(z). As P*NT is abelian, [AKO11, Corollary 1.4.7] gives that P“NT is normal
in Ce(z). Since C¢(z)/(z) is the 2-fusion system of 7(q), which is not a Goldschmidt group,
Cec(z)/(z) is simple by [Ascl7, Theorem 5.6.1] (see also [AOV17, Proposition 1.17]). Therefore,
P*NT < (z) as required.

Step 4: We show that [T, P¥] = 1.
As Ce(2) = O?*(Ce(2)), we have

T =byp(Ce(z)) = ([Y,B]: Y < T, B € Autg,(-)(Y) of odd order).

Let Y < T and 8 € Autg,(,)(Y) of odd order. We will show that [V, 3, P%] = 1, which is
sufficient to complete Step 4. By Step 2, Ce(z) < Cep(x®). As P* < Cep(z®) by Step 3, we
can thus extend 8 to 8 € Autep(Y P®) with (PO‘)B = P®. By the definition of CP in [Henl3]
and since P is abelian, we have [P, ] < P*NT < (z), where the last inclusion uses Step 3. In
particular, [PQ,B, Y] =1. As P* I C¢p(x®) and T centralizes 2 by Step 1, T' normalizes P“.
Hence, again using Step 3, we conclude [V, P*] < [T, P%] < TN P* < (z) and so [Y, P*, 3] = 1.
It follows now from the Three-Subgroup-Lemma that [Y, 3, P%] = [3,Y,Pﬂ = 1. This finishes
Step 4.

Step 5: We now derive the final contradiction.

By Step 4, we have P* < Cg(T). As we saw above, Cg(T') = Q(z) and thus @ has index 2
in Cs(T). Since |P®| = |Q| > 2, it follows P* N Q # 1. However, as Q ¢ P’ the subgroup
P® is an F-conjugate of ) not equal to Q. Hence, by [Asc19, 3.1.8], we have P* N Q = 1. This
contradiction completes the proof. O

We are thus left with the case that @ has 2-rank 1, i.e. is either cyclic or quaternion. We end
this section with a lemma which handles a residual situation occurring in this context. It will
be needed both in Section 5 to exclude the quaternion case and in Section 6 to handle the cyclic
case. When @ is of 2-rank 1, the unique involution in @ lies in Z(C) by (S2). This explains the

choice of notation for it below.
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Lemma 4.6. Assume Hypothesis 4.1 with Q of 2-rank 1. Let t be the unique involution in Q
and fix a subnormal subsystem Fo of F over So < S such thatt € So. Write z for the unique
involution in Z(T). Then the following hold:

(a) (t) is fully Fo-normalized.
(b) If [T,Cs,(t)] # 1, then C is a component of Cr,(t). Moreover,

01 (Csy (Csy (1)) = 21 (Z(Csy (1)) = (t, 2)-

(c) Assume Q < Sp and C < Cr,(t). If (t) < Z(So), then (t) is not weakly Fo-closed in
Z(50).

Proof. As Q is tightly embedded from Lemma 4.3(a), there is a fully F-normalized F-conjugate of
(t) in @ by [Ascl9, 3.1.5]. It follows that (t) is fully F-normalized, since ¢ is the unique involution
in @. So (a) follows from 2.4. In particular, C'z,(¢) is saturated.

In the proof of (b) and (c), we will use that C is normal in C'x(¢) by (S2). In particular C is a
component of Cx(t). In addition, we will use that Cs(7T") = (2)Q from Lemma 4.3(b).

For the proof of (b) assume that [T, Cs,(t)] # 1. By (a) and [Ascl1, 8.23.2], C'r,(t) is subnormal
in Cr(t). So by [Ascll, 9.6], C is a component of Cr (t) as [T,Cs,(t)] # 1. In particular,
T < Cs,(t). As C is normal in Cx(t), we have T'<J Cg(t) and in particular, z € Z(Cg,(t)). As
Cs(T) = (2)Q, we obtain (t,z) < Q1 (Z(Cs,(t))) < N (Cs,(Cs, (1)) < Q1(Cs(T)) = (t,z) and
this implies that (b) holds.

For the proof of (c¢) assume now that @ < Sy, C < Cr,(t), and (t) < Z(Sy) is weakly Fy-closed
in Z(Sp). Then in particular, Sop = Cg,(t) and Cx,(¢) is saturated. As T' < Cg, () is nonabelian,
(b) gives that C is a component of Cr,(t) and Q1(Z(Sp)) = (t,2). As C is normal in Cz(¢), one
easily checks that C is C'r, (t)-invariant (using the equivalent definition of F-invariant subsystems
given in [AKO11, Proposition 1.6.4(d)]). Hence, by a theorem of Craven [Crall], C = O¥ (C) is
normal in Cr,(t). We proceed now in several steps to reach a contradiction.

Step 1: We show that (t) is not weakly Fy-closed. Suppose this is false. Then for every essential
subgroup P of Fy, we have t € Z(Sy) < Cs,(P) < P and t is fixed by Autg,(P). So by Alperin’s
Fusion Theorem [AKO11, Theorem 1.3.6], we have t € Z(Fy). Hence, C is a component of
Cr,(t) = Fo. As Fp is subnormal in F, it follows that C is subnormal in F and thus a component
of F, contradicting Hypothesis 4.1. This completes Step 1.

As shown in Step 1, there exists an Fy-conjugate f of ¢t with f # ¢. Fix such f from now on.

Step 2: We show that f & QT and t is weakly Fp-closed in QT

Assuming f € QT, we would have f € Q1 (QT) < T(t). So f € T or f = ut with w € T. In
the latter case, since t € Q < Cg(T') and f is an involution, u is an involution. By Lemma 2.39,
all involutions in T are C-conjugate. Moreover C < Cr,(t). So if f € T, then f is Fy conjugate
to z, and if f = wut for some involution v € T, then f is Fg-conjugate to zt. In both cases we
get a contradiction to the assumption that ¢ is Fp-closed in Z(Sy). So f & QT. Because of the
arbitrary choice of f, this completes Step 2.

As C is normal in C'g,(t), we can form the product system C(f) (as defined in [Hen13]) in C'r, ()
over the 2-group T'(f).

Step 3: We show that f is C(f)-conjugate to every element of the coset fE.
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Note first that F*(C(f)) = C. As all involutions in T(f) — T are C(f)-conjugate by Proposi-
tion 2.45(a), we see that indeed f is C(f)-conjugate to every element of fFE.

Step 4: We derive the final contradiction.

Since C is normal in Cz(t) and Sy < Cg(t), Sp induces automorphisms of C by conjugation.
As Cg(T) = Q(z) and Aut(C) is cyclic by [HL18, Theorem 3.10], it follows that QT = T'Cg(T) is
normal in Sy and Sp/QT is cyclic. Now let o € Az, (f) with f* =¢. Then « is defined on (f)FE
and, hence t is Fp-conjugate to every member of the coset tE“ by Step 3. Since E¢ is of 2-rank
3, while So/QT is cyclic, it follows that E* N QT # 1. For 1 # e € E* N QT, t is conjugate to
te € QT. This contradicts Step 2. O

5. THE QUATERNION CASE

In this section we show, assuming Hypothesis 4.1, that ) is not quaternion using Aschbacher’s
classification of quaternion fusion packets [Ascl17]. When combined with Proposition 4.5, the
results of this section reduce to the case in which @ is cyclic, which is handled in Section 6.

The Classical Involution Theorem identifies the finite simple groups which have a classical
involution, that is, an involution whose centralizer has a component (or solvable component)
isomorphic to SLa(q) (or SL2(3)) [Asc77a, Asc77b]. With the exception of My, the simple
groups having a classical involution are exactly the groups of Lie type in odd characteristic other
than La(q) or 2Ga(q), where the SLs(g) components in involution centralizers are fundamental
subgroups generated by the center of a long root subgroup and its opposite.

In a group with a classical involution, the collection of these SLy(g) subgroups satisfies special
fusion theoretic properties that were identified and abstracted by Aschbacher in [Asc77a, Hy-
pothesis Q]. More recently, Aschbacher has formulated these conditions in fusion systems in the
definition of a quaternion fusion packet, and his memoir [Asc17] classifies all such packets.

Definition 5.1. A quaternion fusion packet is a pair 7 = (F,{2), where F is a saturated fusion
system on a finite 2-group S, and 2 is an F-invariant collection of subgroups of S such that

(QFP1) There exists an integer m such that for all K € Q, K has a unique involution z(K) and is
nonabelian of order m.

(QFP2) For each pair of distinct K,J € Q, |[K N J| < 2.

(QFP3) If K,J € Qand v € J — Z(J), then v/ N Cs(2(K)) C Ng(K).

(QFP4) If K,J € Q with 2z = 2(K) = 2(J), v € K, and ¢ € Homg,(;)((v), S), then either v¥ € J
or v¥ centralizes J.

We assume the following hypothesis until the last result in this section. (See Section 2.1.3 for
a discussion of normal and subnormal closures in fusion systems.)

Hypothesis 5.2. Hypothesis 4.1 and Notation 4.2 hold with @) quaternion. Let ¢ be the unique

involution in Q. Set Q = @7, denote by F° the subnormal closure of @ in F over the subgroup
S° < S, and set Q° = QP.

A tightly embedded subsystem with quaternion Sylow 2-subgroups, such as the centralizer
system Q in Hypothesis 5.2, always yields a quaternion fusion packet in a straightforward way.

Lemma 5.3. (F,Q) is a quaternion fusion packet.
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Proof. We go through the list of axioms. (QFP1) holds by definition of 2. Note that Q C P* in
the sense of Definition 3.1.9 of [Asc19]. Hence, by [Ascl9, 3.1.12.2], K N J = 1 for each pair of
distinct K, J € Q. This shows that (QFP2) holds, and that any element of S centralizing z(K)
must normalize K, so that (QFP3) also holds. Finally, under the hypotheses of (QFP4), K = J
in the current situation. Fix 1 # v € K and ¢ € Home, (,(k))((v),S). Then z(K) € (v), and
z2(K)¥ = z(K). Also, (v) € P, and K € P*, in the sense of Definition 3.1.9 of [Ascl9]. Since
(V)P N K > 1, we see from [Asc19, 3.1.14] (applied with (v}, ¢, and K in the role of P, ¢, and R)
that (v)¥ < K. This shows that (QFP4) holds. O

Lemma 5.4. Let Fy be a subnormal subsystem of F over the subgroup Sy < S. Assume that
Q < So, and that C < Cr,(t). Then QFo #{Q}.

Proof. Suppose on the contrary that Q7° = {Q}. Then Q is normal in Sy, and so t € Z(Sp).
Let o be a morphism in Fy with t* € Z(Sp). By the extension axiom, we may assume that « is
defined on @, and then Q% = @ by assumption, so that ¢t = ¢. This shows that (t) is weakly
Fo-closed in Z(Sp), contradicting Lemma 4.6(c). O

Lemma 5.5. C is a component of Cro(t). In particular, C is contained in Cro(t).

Proof. For each i > 0 set F; := sub;(F,Q) and write S; for the Sylow of F;. Recall from
Section 2.1.3 that F;+1 < F; for each ¢ > 0, and F° is by definition the terminal member of this
series. By Lemma 4.6(a), (t) is fully normalized in F; for i > 0, so Cr,(t) is saturated for each i.

We assume now that the assertion is false. As C is normal in C'z(t) by (S2), there exists i > 0
such that C is not a component of Cr,_ ,(¢). Fix the smallest such 7. Then C is a component of
Cz,(t). By Lemma 5.4, we have that Q7% # {Q}. Fix Q' € Q7" — {Q}. As Q is tightly embedded
in F (Lemma 4.3(a)), we have @ N Q" = 1 by [Asc19, 3.1.12.2], and we have

by [Ascl9, 3.3.5]. By definition of Fj;1, we have Q' < S;11 and thus Q" < Cs,, (t). As Cs(T) =
QZ(T) by Lemma 4.3(b), it follows [Q',T] # 1, and thus [T,Cg, ()] # 1. Hence, C is a
component of Cx,, (t) by Lemma 4.6(b). This contradicts the choice of i. O

Lemma 5.6. The pair (F°,Q°) is a quaternion fusion packet, F° is the normal closure of Q in
F°, and F° is transitive on €2°.

Proof. Note that (F°,Q°) is a quaternion fusion packet by Lemma 5.3 and [Asc17, Lemma 6.4.2.1].
Recall that F° is the subnormal closure of Q in F. So the second statement follows from the
definition of subnormal closure, while the third holds by definition of Q°. U

Now remove the standing assumption that Hypothesis 5.2 holds.

Proposition 5.7. Assume Hypothesis 4.1. Then Q is cyclic.

Proof. We argue by contradiction, so that @ is quaternion by Proposition 4.5. Hence, Hypothe-
sis 5.2 holds, and so we adopt the notation there. By Lemma 5.6, the pair (F°,Q°) satisfies the
hypotheses of Theorem 1 of [Ascl7]. From that theorem, one of the following holds: either

(1) t € Z(F°), or
(2) t € Oo(F°) — Z(F°), or
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(3) there is a finite group G with Sylow 2-subgroup S° such that F° = Fgo(G), and one of
the following holds,
(a) S° has 2-rank at most 3, or
(b) G € Chev*(p) for some odd prime p, or
(¢) G is quasisimple with Z(G) a 2-group, and G/Z(G) = Spg(2) or QF (2).
Observe that in all cases,
(5.8) C is a component of Cro(t)

by Lemma 5.5.

In Case (1), C is a component of Cro(t) = F°. Hence C is a component of F since F° is
subnormal in F, contrary to Hypothesis 4.1. In Case (2), the hypotheses of [Asc17, Theorem 2]
hold for (F°,9Q°), and then by [Ascl7, Lemma 6.7.3], we have that F° is constrained. Thus,
Cro(t) is also constrained, and hence C < E(Cr-(t)) = 1, a contradiction.

Case (3)(a) yields a contradiction, since QT < S° is of 2-rank 5 by Lemma 2.38(d). In
Case (3)(b), note that Cro(t) is the fusion system of Cq(t)/O(Cx(t)) by [AKO11, 1.5.4]. By
(5.8) and Lemma 2.53, the hypothesis of Lemma 2.54 hold, and so there is a component K of
Ca(t)/O(Cq(t)) such that C is the 2-fusion system of K by that lemma. This contradicts the fact
that C is exotic [LO02, Proposition 3.4].

In Case 3(c) we may assume that Case (2) does not hold, so that ¢t ¢ Z(F°). Then t ¢ Z(G).
As Spg(2) and Qg (2) are of characteristic 2-type and as t ¢ Z(G), we have that Cg(t) is of
characteristic 2. Hence Cro(t) is constrained. We therefore obtain the same contradiction here
as in Case (2). O

6. THE CYCLIC CASE AND THE PROOF OF THEOREM 1

In this section, we finish the proof of Theorem 1. Using Theorem 3.2 and Proposition 5.7,
one quickly reduces to the case that C is standard and the centralizer @ of C in S is cyclic. We
therefore assume the following hypothesis and notation for most of this section.

Hypothesis 6.1. Hypothesis 4.1 and Notation 4.2 hold with @ cyclic. Write Z(T) = (z),
Ql(Q) == <t>, St = Cs(t), and ]:t = O]-‘(t).
Lemma 6.2. Assume Hypothesis 4.1. Then the following hold.

(a) (t) € F7,

(b) Cs(T) = Q(2),

(¢) n(Cs(Sh)) = 2 (Z(S)) = (¢, 2),

(d) ift € Z(S), then (t) is not weakly F-closed in Z(S), and

(e) t is not F-conjugate to z.

Proof. Parts (a), (c), and (d) follow from Lemma 4.6 applied with Fo = F, while (b) is just a
recollection of Lemma 4.3(b).

It remains to prove (e). As @ is cyclic, we have @ = Q. By (T1) in the definition of tight
embedding (Definition 2.30), we have Q = Q < F;. Further, Q@ = Cg,(C) by [Ascl9, 9.1.6.3].
Write quotients by @ with bars. Note that Cg,(C) is trivial by [Lyn15, Lemma 1.14], and C = C.
Thus, F*(F;) = C is isomorphic to a Benson-Solomon system. By [HL18, Theorem 4.3], this

quotient is therefore a split extension of C by a 2-group of outer automorphisms, and in particular,
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O?(F;) = C. It follows that O?(F;) < QC. Since O%(QC) = C and since O%(0%(F;)) = O*(F),
we have that O?(F;) = C. Hence, t is fully normalized and not in the hyperfocal subgroup of F;,
while z® is contained in the hyperfocal subgroup of H* < Cr(2?%) for every a € A((z)). Thus, ¢
and z are not JF-conjugate. ]

Lemma 6.3. If Hypothesis 6.1 holds, then C is not subintrinsic in €(F).

Proof. Assume on the contrary that C is subintrinsic in €(F). As argued in Remark 3.3, this
means that z € Zr(H) where H = Ce(z).

Assume first that ¢ ¢ Z(S). Then S; < S, so that S; < Ng(S;). Fix a € Ng(S;) — S;. Then
t* =tz and 2* = z by Lemma 6.2(c,e).

As z € Tr(H), we may pick a € (z) such that H is a component of Cr(2%). Since 2z = z,
we may define @ := a® € Cg(2%). Then (H*)® is a component of Cr(z) on (T%)* = (T%)*.
However, if (H%)® # H*, then since Sylow subgroups of distinct components commute, we would
have [(T*)*,T%] = 1 and thus T® < Cg,(T) < Q(z) by Lemma 6.2(b), and we would be forced
to conclude that T is abelian. Since this is not the case, @ normalizes T'%, which implies that a
normalizes T'. Hence, by (S4) in Definition 2.24, conjugation by a restricts to an automorphism
of C. Ast € F/ by Lemma 6.2(a), it follows from [Asc19, 9.1.6.3] that Q = Cs,(C). Thus, a acts
also on Q = Cyg,(C), so that t* = ¢. This contradicts the choice of a.

We have shown that ¢ € Z(S). So Lemma 6.2(c) yields V := Q1(Z(S)) = Q1(Z(S:)) = (t, 2),
while Lemma 6.2(e) says that ¢ is not F-conjugate to z. Notice that Autz(V) is by the Sylow
axiom of odd order, since S centralizes V. As Aut(V) = S3 and every element of Aut(V') of order
3 acts transitively on V7 it follows that Autz(V) = 1. If t is F-conjugate to an element of Z(S)
under an F-morphism «, then by Lemma 2.2, o can be assumed to be an F-automorphism of
S, which thus restricts to an element of Autz(V'). This shows that (t) is weakly closed in Z(S),
contradicting Lemma 6.2(d). O

We are now in the position to complete the proof of Theorem 1, so we now drop the standing
assumption from the beginning of Section 4 that Hypothesis 4.1 holds.

Proof of Theorem 1. If F is a counterexample to Theorem 1, then we may choose the notation
such that Hypothesis 3.1 holds (cf. Remark 3.3). So by Theorem 3.2, Hypothesis 4.1 holds.
Adopt Notation 4.2. Thus, Proposition 5.7 yields that @ is cyclic, so that Hypothesis 6.1 holds.
However, now Lemma 6.3 yields a contradiction to the assumption that C is subintrinsic. O

7. GENERAL BENSON-SOLOMON COMPONENTS

In this section, we apply Walter’s Theorem for fusion systems [Asc20, Theorem] to treat the
general Benson-Solomon component problem under the assumption that all components in invo-
lution centralizers are on the list of currently known quasisimple 2-fusion systems, and we thus
complete the proof of Theorem 2. We stress that the proof of Walter’s theorem relies in turn on
our Theorem 1.

Throughout this section, let 7 be a saturated fusion system over a 2-group S.

The reader is referred to Section 2.9 for more information on the class of known quasisimple

fusion systems, as well as for the definition of the subclass Chev[large]. The following theorem is
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essentially a restatement of Theorem 2. For if Theorem 7.1(2) holds, then it follows from [Ascll,
10.11.3] that C is diagonally embedded in DD! with respect to t.

Theorem 7.1. Let F be a saturated fusion system over the 2-group S. Assume that all members
of €(F) are known and that some fized member C € €(F) is isomorphic to Fgo1(q) for some odd
q. Then for each t € Z(C), there exists a component D of F such that one of the following holds.

(1) D=C;
(2) D=C, Dt # D, tc (DD t))! and C = Cppi(t); or
(3) D= Fso(q®), t ¢ D, t € (D(t))] and C = Cp(2).

It is worth remarking on a few technical points: if ¢ € S normalizes a component D of F,
then D is normal in E(F)(t) and thus we may form D(t) inside of E(F)(t). Moreover, if ¢ is
fully D(t)-normalized, then Cp(t) = Cp(t)gF)q is defined (cf. Definition 2.7). Whenever we
write Cp(t), we mean implicitly that ¢ normalizes D. If D is a component of F with D # D!,
then similarly DD* is normal in E(F)(t), thus we may form DD'(t) = (DD'(t))p(r and, if
t € (DDH(t))f, then also Cppt(t) = Cppr () EF) @) -

The remainder of this section is devoted to the proof of Theorem 7.1. As Walter’s theorem for
fusion systems is applied twice in the proof, we restate that theorem here.

Theorem 7.2 (Walter’s Theorem for fusion systems, [Asc20]). Suppose that all members of €(F)
are known and that there exists L € €(F) such that L is in Chevllarge]. Let t € Z(L) such that t
is fully F-centralized. Then there exists a component D of F such that one of the following holds.

(1) D € Chev][large] and L € Comp(Cp(t));

(2) L =E(Cppt(t)) is a homomorphic image of D, so D € Chev|large];

(8) L is the 2-fusion system of Spin,(q), L = Cp(t), and D = Fgo1(q) for some odd prime
power q; or

(4) L is the 2-fusion system of SL2(9), L € Comp(Cp(t)), and D is the 2-fusion system of a
finite group D such that either D = 2A,, or D/Z(D) = L3(4) and Z(L) < ®(Z(D)).

As in the statement of Walter’s Theorem, £ in this section is always some type of fusion
subsystem, and not a linking system. We will not need to make any explicit reference to linking
systems in this section.

We continue now with three technical lemmas that will be needed in the proof of Theorem 7.1.

Lemma 7.3. Assume all members of €(F) are known quasisimple 2-fusion systems, and fic a
fully centralized involution z of F. Then all members of €(Cx(z)) are known.

Proof. Given a fully centralized involution ¢ in Cz(z) and a component K of C¢,(.(t), it follows
from [Asc20, 1.3] that there is a component £ of Cz(z) such that either £ is a homomorphic image
of £, or L is t-invariant, ¢ does not centralize £, and K € Comp(Cry(t)). In the former case, K is
known, so assume the latter case. Then K is a component in the centralizer of some involution in
an almost quasisimple extension L(t) of £ € €(F). By assumption and Theorem 2.29 of [AO16],
either £ is a Benson-Solomon system, or L is tamely realized by a finite quasisimple group. If Lis a
quasisimple extension of Fg1(q), then £ = Fgo1(q) by a result of Linckelmann [HL18, Theorem 4.2].
Thus Lemma 2.39 and Proposition 2.45 yield that K is either the fusion system of Spin;(q) (if ¢
is inner) or a Benson-Solomon system (if ¢ is not inner). Hence, K is known in this case. On the

other hand, if £ is tamely realized by a finite quasisimple group L, then L£(t) is tamely realized
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by an extension L(t) of L by Theorem 2.13. Hence, components in centralizers of involutions in
L(t) are known by Lemma 2.53, and so K is known by Lemma 2.54. O

Lemma 7.4. If M is a saturated subsystem of F such that O*(M) is a component of F, then
(M) CE(F).

Proof. Let M be a saturated subsystem of F over the subgroup M < S such that D := O%(M)
is a component of F. Write D for the Sylow subgroup of D. Fix C € €(M) and t € Zy(C).
We will show that C € €(F). By definition of Zy((C) and by Lemma 2.17(b), replacing (¢,C) by
(t*,C%) for some suitable o € 2Ap(t), we may assume that (t) is fully M-normalized and C is a
component of Cy(t).

As D is a component of F, the normalizer Nz (D) is defined in [Ascl9, Definition 2.2.1]. By
construction, this is a subsystem of F over Ng(D). Moreover, by [Asc19, Theorem 2.1.14, 2.1.15,
2.1.16], Nx(D) is a saturated, D is normal in Nz(D), and every saturated subsystem of F in
which D is normal is contained in Nz(D). In particular, M < Nx(D). Observe that D is also
normal in F(F)(t) and thus E(F)(t) < Nz(D). By [Hen13, Theorem 1], (D(t)) n(p) is the unique
saturated subsystem ) of Nz(D) over D(t) such that O%()) = O*(D) = D. Thus, (D{t)pm =
(D)) nrp) = (D(t))EF)ry and we will denote this subsystem by D(t). As a consequence,
Cp(t)m = Cp(t) p(F)@ and again we will denote this subsystem just by Cp(t).

As (t) is fully M-normalized, it follows from Lemma 2.8 (applied with M and D in place of F
and &) that (t) is fully D(t)-normalized and Cp(t) is a normal subsystem of Ca(t). Recall that C is
a component of C'y(t) and write T for the Sylow of C. Observe that C = O%(C) < O*(Cum(t)) < D
and thus T' < Cp(t). By [Ascll, 9.1.2], T is nonabelian and thus [T, Cp(t)] # 1. Hence, [Ascll,
9.6] gives that C is a component of Cp(t).

Let ¢ € Ap(ry@(t) so that t¥ € (E(F)(t))/. Note that E(F)(t) = E(F)(t¥). By Lemma 2.9
applied with E(F)(t) and D in place of F and &, we have (t¥) € (D(t?))/, Cp(t)? = Cp(t¥), and
¢lcp () induces an isomorphism from Cp(t) to Cp(t¥). Thus C¥ is a component of Cp(t¥).

By Lemma 2.8 applied with E(F)(t), D and (t¥) in place of F, £ and P, we have Cp(t¥) <
Cr(F)@e)(t?). So C¥ is subnormal in Cg(r)w)(t¥) and thus a component of Cr(r)w)(t?). As
t? € (B(F)(t)/, it follows from Lemma 2.8 applied with E(F)(t?) and E(F) in place of F
and & that Cgr)(t?) < Cprype)(t¥). Writing E for the Sylow subgroup of E(F), we have
T¢ < Cp(t?) < Cg(t?). As T¥ is nonabelian, it follows thus from [Ascll, 9.6] that C¥ is a
component of Cg(r)(t¥).

Let now a € Ax(t¥). By Lemma 2.9, t¥¢ is fully E(F)(t¥*)-centralized, C(t¥)* = Cg(t*%),
and a@|c, ey induces an isomorphism from Cgr)(t¥) to Cgz) (t7Y). So C¥* is a component of
Cp(F)(t¥*). By Lemma 2.8, Cp(r)(t¥*) Q Cx(t¥*) and thus C¥“ is a component of Cx(t¥%). In
particular, t#* € X(C¥*) and so t € X(C) by Lemma 2.17(b) applied with t#%, C¥® and (palrp) ™
in place of X, C and . This implies C € €(F) as required. O

Lemma 7.5. Let C € €(F) be a subsystem over T < S. Fixt € Z(C) and let v € Homz((T\t),S).
If there exists a component D of F such that one of the conditions (1), (2), or (8) in Theorem 7.1
holds, then there exists a component D of F such that the same condition holds with t7, C7 and
D in place of t, C and D.

Proof. By Lemma 2.14 the claim is clear if (1) holds, so suppose (2) or (3) holds for some com-

ponent D of F. Write Sy < S for the Sylow subgroup of E(F) and D for the Sylow subgroup
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of D. By [Ascl9, 1.3.2], we have F = (E(F)S, Nx(Sp)). So it is sufficient to show the assertion
when v is a morphism in E(F)S or in Nz(Sp). However, if v is a morphism in E(F)S, then by
Lemma 2.6 applied with (v, E(F), So, (t), (T,t)) in place of (¢, &, T, P, X), we can write 7 as the
composition of a morphism in E(F)(t) and a morphism in Fg(S) < Nx(Sp). Thus, it is enough
to show the claim if 7 is a morphism in E(F)(t) or in Nz(Sp). Notice that our assumption implies
C < E(F) and thus (T, t) < Sp(t).

Suppose that (2) holds. Assume first that + is a morphism in E(F)(t). Then Sy(t) = Sp(t7).
As Sy normalizes every component of F, the action of ¢7 on the components of F coincides
with the one of t. So D! = D!". In particular, D # D! and DD' = DD'. Note that (2)
implies in particular T'= Cppt(t), so v is defined on (Cpp:(t),t). Thus, Lemma 2.9 applied with
E(F)(t) and DD! in place of F and & gives that t7 is fully normalized in DD!(t?) = DD (¢7)
and C = Cppt (t7) = Cppev (t7). So (2) holds with ¢7 and C7 in place of t and C, i.e. the assertion
is true for D = D.

Assume now that « is a morphism in Nz(Sp). Then v extends to o € Homz({Sp,t),S). So
by Lemma 2.14(b), D := D is a component of F. Clearly, D & D =~ C = C7. Notice that
D = (D) = (DY)®. In particular, D! # D and €Y = C* < (DD')* = DD'". Moreover,
induces an isomorphism from E(F)(t) to E(F)(t?) which takes ¢ to ¥ and DD' to DD'". Thus,
o induces an isomorphism from DD!(t) to DD (+7). This implies that (2) holds with 7, C* and
D in place of ¢, C and D.

Suppose now that (3) holds and assume again first that « is a morphism in E(F)(t). As
observed above, D is normal in E(F)(t). As t ¢ D, it follows that ¢ ¢ D. Note moreover
that So(t) = So(t7). In particular, as Sp(t) normalizes D, we have D" = D. As C = Cp(t) by
assumption, we have Cp(t) = T and thus v € Hompg(r) ) ((Cp(t),t), So(t)). Hence, by Lemma 2.9
applied with E(F)(t) and D in place of F and £, we get that (t7) € (D(t?))f and C7 = Cp(t) =
Cp(t7). So the assertion holds in this case for D = D.

Assume now that v is a morphism in Nz(Sp) and choose a morphism o € Hom (S (t), S) which
extends . Then D := D" is a component of F over D := D®, and « induces an isomorphism from
E(F)(t) to E(F)(t") which takes D to D and ¢ to t?. Hence, ¥ ¢ D and D' = D. Moreover,
« induces also an isomorphism from D(t) = (D(t))g ) to DY) = (@(t'y))E(;)m). As t is
fully D(t)-normalized, it follows that ¢ = t* is fully D(t7)-normalized. Moreover, @ induces an
isomorphism from Cp(t) to Cﬁ(l”)(ﬂ)' Observe also that Cp(t)* = Cpa(t*) = Cp(t7). So a
takes the unique normal subsystem of Cp ) () over Cp(t) of 2-power index to the unique normal
subsystem of C@(m(ﬂ) over Cp(t7) of 2-power index. In other words, we have Cp(t)* = Cx(t")

and thus C7 = C* = Cp(t)* = Cp(t7). So (2) holds with ¢7, C7 and D in place of t, C, and D. [

Proof of Theorem 7.1. Let F be a counterexample having a minimal number of morphisms. Fix
C € €(F) and t € Z(C) such that C = Fg,1(q) and none of the conclusions (1), (2), or (3) hold for
any choice of D. Let T" be the Sylow of C, and write Z(T') = (z). Set H = C¢(z).

We may and do assume that (z) is fully F-centralized and that (¢) is fully C'z(z)-centralized.
This follows in the standard way by choosing 8 € 2((z), choosing v € ﬂcf(zg)(tﬁ), setting ¢ = [,
and replacing z by z¥, t by t¥, and C by C?. In this process, note that Lemma 2.17(b) shows that

we still have t¥ € Z(C¥). Also by Lemma 7.5 applied with ¢! in the role of v, if there exists D
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such that one of the conclusions (1)~(3) holds with (¢#,C? D) in place of (t,C,D), then one of
the conclusions (1)—(3) holds with respect to ¢,C and some suitable D.

Fix a € (t). Then
(7.6) 2% € Cr(t*)’ and the map a: Cer(2)(t) = Coppey(27) is an isomorphism
by [Ascl0, 2.2]. Moreover, Lemma 2.17(a) yields
(7.7) C® is a component of C'x(t%).

If there exists a component D of F such that one of the conclusions (1)—(3) holds with (¢*,C%)
in place of (¢,C), then it follows from Lemma 7.5 that for some (possibly different) choice of D,
one of the conclusions (1)—(3) holds. As this would contradict our assumption, it follows that
(7.8) there does not exist a component D of F such that one of the conclusions

(1)—(3) holds with (t*,C%) in place of (t,C).

Since for any component D, neither conclusion (1) nor (2) holds with (¢t*,C%) in place of
(t,C), it follows from [Asc20, 1.3] and the fact that the Benson-Solomon systems have no proper
quasisimple coverings [HL18, Theorem 4.2] that there is a unique t*-invariant component D of F
containing C* such that D # C* and C% € Comp(Cp ey (t*)). In particular, t* € Zp ey (C). All
members of €(D(t*)) are known by Lemma 7.4. Moreover, notice that D is the unique component
of D(t*). So if D(t) is not a counterexample, then conclusion (3) holds with (t*,C%) in place of
(t,C) contradicting (7.8). Hence D(t*) is a counterexample, and so F = D(t*) by minimality of
F. This implies that

(7.9) F*(F) = O*(F) = D is quasisimple.
It is possible at this point that F = D.
We first prove that

(7.10) #H is a component of Cc (. (t).

Recall that (2®) is fully C'x(t*)-normalized by (7.6) and that C* is subnormal in Cz(t%) by (7.7).
Fix a subnormal series C* = Fy J --- < F, = Cx(t*) for C*. Then (2%) is fully F;-normalized
for each i by Lemma 2.4. Also, HY = Cca(2%) 9 Cr(2%) < -+ < Coppey(27) is a subnormal
series for H in Cg 4oy (2%) by application of [Ascll, 8.23.2] and induction on n. Hence, H is a
component of C¢,(,)(t) by the isomorphism in (7.6).

We next apply Walter’s Theorem in Cz(z). Recall that we took ¢ to be fully C'z(z)-centralized.
By (7.10), H € Chevl[large] is a component of C¢,(.)(t), so t € Zo,(;)(H). All members of
¢€(Cx(z)) are known by Lemma 7.3. Thus, the hypotheses of Walter’s Theorem (Theorem 7.2)
are satisfied with Cx(z), H, and t in the roles of F, £, and t. Let M € Comp(Cx(z)) be
as given by Theorem 7.2 (in the role of D). Since H is not the 2-fusion system of SLy(9),
we are not in Theorem 7.2(4). Consider the case that (1) or (3) of Theorem 7.2 holds. Then
H = O*(H) < O*(M(t)) = M, so z is an element of the Sylow of M. Since M < Cx(z2), it
follows that (z) is strongly M-closed. Thus, z € Z(M) in this case by [AKO11, Corollary 1.4.7(a)].
As Fso1(q) has a trivial center, this shows that conclusion (3) of Walter’s Theorem does not hold.
Hence, in any case, Theorem 7.2(1) or (2) holds. Further, as Spin;(q) has no proper quasisimple
2-coverings [GLS98, Tables 6.1.2,6.1.3], neither does H [BCGT07, Corollary 6.4]. So if (2) holds,
then ‘H = M. Therefore,

(7.11) M € Chevllarge], z € Z(M), and H isomorphic to a subsystem of M.
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We next apply Walter’s Theorem with F, M, and z in the roles of of 7, £, and ¢. Recall that we
took z to be fully F-centralized. So by (7.11) and assumption on €(F), the hypotheses of Walter’s
Theorem apply. By (7.9), D is the unique component of F, and C = O?(C) < O*(F) = D. By
(7.11), H is isomorphic to a subsystem of M, so M is not the 2-fusion system of SLy(9). Thus,
Theorem 7.2(1), (2), or (3) holds. In particular, either D € Chevl[large| or D is isomorphic to a
Benson-Solomon system.

Assume the former holds, namely D € Chev[large]. All members of Chev|large| are tamely
realized by some member of Chev*(p) for some odd prime p by [BMO19], so we may fix D €
Chev*(p) tamely realizing D. By Theorem 2.13, we may further fix a finite group G with Sylow
2-subgroup S such that F*(G) = D and F = Fg(G). As C* is a component of Cx(t%), we obtain
from Lemmas 2.53 and 2.54 the contradiction that C is not exotic.

Therefore, D is isomorphic to a Benson-Solomon system. Assume first that t* € foc(F). Then
F = D. In particular, Z(S) is the only fully normalized subgroup of S of order 2 by Lemma 2.39.
Hence, Z(S) = (t*) as (t*) is fully F-normalized. So Cz(t%) is the 2-fusion system of Spin,(q’) for
some odd prime power ¢, which contradicts (7.7). Hence, t* ¢ foc(F) and so t* ¢ D. Applying
Proposition 2.45, we see that D = Fg.(q?) and Cp(t*) = C. Therefore, (3) holds after all with
(t*,C%) in place of (t,C), a contradiction to (7.8). O
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