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ABSTRACT

Urban planning refers to the efforts of designing land-use configura-
tions. Effective urban planning can help to mitigate the operational
and social vulnerability of a urban system, such as high tax, crimes,
traffic congestion and accidents, pollution, depression, and anxi-
ety. Due to the high complexity of urban systems, such tasks are
mostly completed by professional planners. But, human planners
take longer time. The recent advance of deep learning motivates us
to ask: can machines learn at a human capability to automatically
and quickly calculate land-use configuration, so human planners
can finally adjust machine-generated plans for specific needs? To
this end, we formulate the automated urban planning problem into
a task of learning to configure land-uses, given the surrounding
spatial contexts. To set up the task, we define a land-use configu-
ration as a longitude-latitude-channel tensor, where each channel
is a category of POIs and the value of an entry is the number of
POIs. The objective is then to propose an adversarial learning frame-
work that can automatically generate such tensor for an unplanned
area. In particular, we first characterize the contexts of surround-
ing areas of an unplanned area by learning representations from
spatial graphs using geographic and human mobility data. Second,
we combine each unplanned area and its surrounding context rep-
resentation as a tuple, and categorize all the tuples into positive
(well-planned areas) and negative samples (poorly-planned areas).
Third, we develop an adversarial land-use configuration approach,
where the surrounding context representation is fed into a genera-
tor to generate a land-use configuration, and a discriminator learns
to distinguish among positive and negative samples. Finally, we
devise two new measurements to evaluate the quality of land-use
configurations and present extensive experiment and visualization
results to demonstrate the effectiveness of our method.
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1 INTRODUCTION

Urban planning is an interdisciplinary and complex process that
involves with public policy, social science, engineering, architec-
ture, landscape, and other related field. In this paper, we refer urban
planning to the efforts of designing land-use configurations, which
is the reduced yet essential task of urban planning. Effective urban
planning can help to mitigate the operational and social vulnerabil-
ity of a urban system, such as high tax, crimes, traffic congestion
and accidents, pollution, depression, and anxiety.

Due to the high complexity of urban systems, such planning
tasks are mostly completed by professional planners. But, human
planners take longer time. The recent advance of deep learning,
particularly deep adversarial learning, provide a great potential
for teaching a machine to imagine and create. This observation
motivates us to rethink urban planning in the era of artificial in-
telligence: What roles does deep learning play in urban planning?
Can machines develop and learn at a human capability to auto-
matically and quickly calculate land-use configurations? In this
way, machines can be planning assistants and human planners can
finally adjust machine-generated plans for specific needs.

All of the above evidence has shown that it is appealing to de-
velop a data-driven Al-enabled automated urban planner. However,
three unique challenges arise to achieve the goal: (1) How can we
quantify a land-use configuration plan? (2) How can we develop a
machine learning framework that can learn the good and the bad
of existing urban communities in terms of land-use configuration
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policies? (3) How can we evaluate the quality of generated land-use
configurations? Next, we will introduce our research insights and
solutions to address the challenges.

First, as we aim to teach a machine to reimagine the land-use
configuration of an area, it is naturally critical to define a machine-
perceivable structure for a land-use configuration. In practice, the
land-use configuration plan of a given area is visually defined by a
set of Point of Interests (POIs) and their corresponding locations
(e.g., latitudes and longitudes) and urban functionality categories
(e.g., shopping, banks, education, entertainment, residential). A
close look into such visually-perceived land-use configuration can
reveal that the land-use configuration is indeed a high-dimensional
indicator that illustrates what and where we should put into an
unplanned area. There is not just location-location statistical auto-
correlation but also location-functionality statistical autocorrelation
in a land-use configuration. To capture such statistical correlations,
we propose to represent a land use configuration plan as a latitude-
longitude-channel tensor, where each channel is a specific category
of POIs that are distributed across the unplanned area, and the
value of an entry in the tensor is the number of POIs. In this way,
the tensor can describe not just the location-location interaction of
POIs, but also location-function interaction of POIs.

Second, after we define the quantitative version of a land-use
configuration, our second question is that how we can teach a
machine to automatically generate a land-use configuration? We
analyze large-scale urban residential community data, and identify
an important observation: 1) an urban community can be viewed
as an attributed node in a socioeconomic network (city), and this
node proactively interacts with surrounding nodes (environments);
2) the coupling, interaction, and coordination of a community and
surrounding environments significantly influence the livability, vi-
brancy, and quality of a community. Based on this observation, we
propose to convert the land-use configuration planning problem as
anew objective: to teach a machine to generate a land-use configura-
tion tensor given the surrounding context/area. In other words, the
problem is reduced into the objective of learning a conditional prob-
ability function that maps a surrounding context representation to
a well-planned configuration tensor, instead of a poorly-planned
configuration tensor. The recently emerging deep adversarial learn-
ing provides a great potential to address the reduced objective.
We reformulate the task into an adversarial learning paradigm, in
which: 1) A neural generator is analogized as a machine planner
that generates a land-use configuration; 2) The generator gener-
ates a configuration in terms of a pattern feature representation
of surrounding spatial contexts; 3) The surrounding context rep-
resentation is learned via self-supervised representation learning
collectively from spatial graphs. 4) A neural discriminator is to clas-
sify whether the generated land-use configuration is well-planned
(positive) or poorly-planned (negative). 5) A new mini-max loss
function is constructed to guide the generator to learn from the
goods of well-planned areas and the bads of poorly-planned areas.

Third, it is traditionally a very challenging open question to
evaluate the quality of a generated land-use configuration. The most
solid and sound validation is to collaborate with urban developer
and city governments to implement an Al-generated configuration
into an unplanned area, and observe the development of the area in
the following years. However, this is not realistic. In this paper, we
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exploit two strategies to assess the generated configurations: 1) We
build one scoring model that outputs the score of a configuration
by learning from training data. Specifically, we utilize a machine
learning model to learn the data distribution of the original land-
use reconfiguration samples. Thus, after we obtain the generated
solutions, the scoring model has the ability to give a score. 2) We
invite experienced regional planning experts to evaluate the quality
of the generated solutions. In this paper, we let human experts to
perform analysis on multiple case studies.

In summary, in this paper, we develop an adversarial learning
framework to generate effective land-use configurations by learn-
ing from urban geography, human mobility, and socioeconomic
data. Specifically, our contributions are: 1) We develop a latitude-
longitude-channel tensor to quantify a land-use configuration plan.
2) We propose a socioeconomic interaction perspective to under-
stand urban planning as a process of optimizing the coupling be-
tween a community and surrounding environments. 3) We refor-
mulate the automated urban planning problem into an adversarial
learning framework that maps surrounding spatial contexts into a
configuration tensor by a machine generator. 4) Although evalua-
tion is challenging, we develop multiple aspects to conduct exten-
sive experiment and visualization with real-world data to show the
value of our method.

2 PROBLEM STATEMENT AND FRAMEWORK
OVERVIEW

2.1 Definitions

2.1.1  Central area and its Contexts. In this paper, a central area is a
square area that is centered on a geographical location (i.e., latitude
and longitude), where is an unplanned area. In this study, the area
of a central area is 1km?2. The contexts of a central area wrap the
residential community from different directions.

Context1 Context2 | Context3

“Contextd : | Central | Contexts
SWooDs| : Area )

Context6 [ “Context7[? Context8’

Figure 1: The geographical definitions of a central area and
its surrounding spatial contexts.

Figure 1 represents the spatial relationship between a central area
and its contexts. In addition, we find that there are many POIs in
the central area and its contexts. Intuitively, the future development
of an unplanned area is affected by its contexts.
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2.2 Problem Statement

Urban planning is a complex field. An excellent urban planning
solution requires experts who own the amount of specific urban
planning knowledge and experiences to spend much time designing.
In order to reduce the heavy burden of the experts and generate
suitable urban planning solutions objectively, we propose an au-
tomatic urban planner that produces excellent solutions based on
the context environments. Here, we simplify the meaning of urban
planning into land-use configuration, which makes the question
easier to model. Formally, assuming a virgin area is R, the contexts
of R are [C1 ~ Cg], and the land-use configuration plan is M that
structure is a multi-channel image, one channel represents one
POI category data distribution. Given the explicit feature F that de-
scribes the situation of the context environments, where the matrix
F € R8*K 8 is the number of contexts and K is the dimension of
the explicit feature vector of each context.
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Figure 2: An overview of the proposed framework. The pro-
posed framework includes four steps: 1) we first collect mul-
tiple data sources such as urban community related data
(housing prices), point of interests data, and human mobility
data (taxicab GPS traces). We then propose a spatial graph
representation learning to learn the representation of sur-
rounding contexts. Later, we develop an adversarial land use
configuration machine to automate planning and generate

recommended configurations.
The purpose of our framework is to take the explicit feature

vector F as input and output the corresponding excellent land-use
configuration solution M.

2.3 Framework Overview

Figure 2 shows an overview of our proposed method (LUCGAN).
This framework has two main parts: (i) learning representation of
the contexts of the virgin area; (ii) generating an excellent land-use
configuration solution for the virgin area. In the first part, we first
extract explicit features of the contexts from value-added space, POI
distribution, public and private transportation conditions. Then,
we construct a graph structure to capture the geographical spatial
relationship between the virgin area and its contexts. Afterward,
we map the explicit features of contexts to the graph as attributes
of corresponding nodes. The attributed spatial graph incorporates
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all characteristics of contexts together. Next, we utilize variational
graph auto-encoder (VGAE) to obtain the latent representation of
the contexts. Thus, we get the final representation of the contexts
of virgin areas through the first part. In the second part, we input
the latent representation of the contexts, excellent land-use config-
uration samples, and terrible land-use configuration samples into
an extended GAN. The extended GAN is capable to generate the
land-use configuration solution based on the contexts embedding.
Moreover, we customize a new GAN loss which makes the model
learns the distribution of excellent plans and keeps away from the
terrible plans. Finally, when the model converges, the generator
of the extended GAN can produce suitable and excellent land-use
configuration solutions in an objective angle based on the latent
context embedding.

3 AUTOMATIC PLANNER FOR LAND-USE
CONFIGURATION

In this section, we first introduce how to quantify surrounding con-
text/area. Then, we detail the measurement of how to evaluate the
quality of land-use configuration solutions. Finally, we describe how
to train a generative model to learn an automated urban planner.

3.1 Explicit Feature Extraction for Context
Environments

The land-use configuration solution of an unplanned area has a
strong relationship with its contexts. For example, if there are many
commercial zones in the contexts of the unplanned area, we should
avoid the redundancy of the same category POI in the planning.
This is because we can make the unplanned area owns different
function compared with its contexts, which is beneficial for the
development and communication among the virgin area and its
contexts. Thus we grab the intrinsic characteristics of the contexts
completely by extracting multiple explicit features.

There are lots of indicators to describe context environments.
Here, we select four views to capture the features of the contexts:

(1) Value-added Space. In common, the variation of house
price reflects the value-added space of one area. Thus, we
calculate the changing trend of house price of the contexts
[C1 ~ Cg] in continued six months. Here, we take the con-
text C1 as an example to explain the calculation process.
First, We obtain the housing price list among ¢ months.
Then, we calculate the changing trend of house price by
using the current house price value subtract the previous
house price value. So we get the changing trend of C; as
vy = [U%, v%, . vi_l], where ui represents the value of the
changing trend at i-th month. Finally, we collect the house
price changing trend of all contexts together. The collected
result is denoted as V = [vy, va, ..., vg], where the matrix
Ve RSXt—l.

(2) POI Ratio. Since various POIs provide diverse services to
residents, the ratio of different types of POIs is a good in-
dicator for indicating the functions of the area. Therefore,
we calculate the POI ratio of the contexts [C; ~ Cg]. Here,
we take Cp as an example to explain the calculation process.
First, we sum up the count of each POI category to form
a feature vector. Then, we divide each item in the feature
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vector by the sum of all POI categories. We obtain the POI
ratio of C1, denoted by r1 = [rll, r%, ey ri"], where ri repre-
sents the ratio of i-th POI category in C1 and m is the total
number of POI categories. Finally, we collect the POI ratio
of all contexts together. The collected result is denoted as
R = [r1,ra,..., 18], where the matrix R € R8X™M_ m is the
number of POI categories.

(3) Public Transportation. Public transportation is one pop-
ular travel mode due to its convenience and cheapness. So
public transportation is a vital factor to be considered to
describe the human mobility patterns. Thus, we extract fea-
tures that related to public transportation to describe the
public traffic situation of the contexts C1 ~ Cg. We take C1
as an example to show the calculation details. We calculate
the feature vector of public transportation from five perspec-
tives: (1) the leaving volume of C1 in one day, denoted by
o%; (2) the arriving volume of C; in one day, denoted by 0%;
(3) the transition volume of C; in one day, denoted by 0:15; 4)
the density of bus stop of C1, denoted by 0‘%, which reflects
the number of bus stop in per square meter; (5) the average
balance of smart card of C1, denoted by o?, which shows
the economic expenditure of people in the travel field. The
public transportation feature vector of C; can be denoted as
[o%, o%, . o?]. Finally, we collect the public transportation
feature vectors of all contexts together. The collected result is
denoted as O = [01, 02, ..., 08], where the matrix O € R8X3,

(4) Private Transportation. Taxi is another important tool for
people traveling. The taxi trajectory data reflects the people’s
flow count and the traffic congestion situation of an area.
Thus, we explore the features of the private transportation
condition of the contexts [C; ~ Cg]. Here, we take C; as
an example to illustrate the calculation process. We count
the features of private transportation from the following 5
perspectives: (1) the leaving volume of C; in one day, denoted
by u% ; (2) the arriving volume of C1 in one day, denoted by
u%; (3) the transition volume of C; in one day, denoted by
uil)'; (4) in C1, the average driving velocity of a taxi in one
hour, denoted by u‘ll; (5) in Cq, the average commute distance
for a taxi, denoted by u?; Then, the feature vector of private
transportation can be denoted as [u%, u% ui’]. Ultimately,
we collect the private transportation feature vectors of all
contexts together. The collected result is denoted as U =
[u1,us, ..., ug], where the matrix U € R8%3,

After that, we obtain the explicit feature set of the contexts
C1 ~ Cg.The set contains four kinds of features [V, R, O, U], which
describe the context environments from four perspectives.

3.2 Explicit Features as Node Attributes:
Constructing the Spatial Attributed Graph

The context environments wrap the residential community from
different directions, resulting in spatial correlation among areas.
Such phenomenon motivates us to exploit spatial graphs to capture
such spatial correlations. Specifically, Figure 3 shows the graph
structure, where the blue nodes represent the contexts; the orange
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node is the residential community; the edge between two nodes
reflects the connectivity between them.

Figure 3: The graph structure between residential commu-
nity and its surrounding spatial contexts.

Then, in order to fuse the spatial relationship and explicit features
of the contexts, we construct a spatial attributed graph structure.
Formally, we map the explicit features to the spatial graph based
on the corresponding context node as the node attribute. Figure 4
expresses the construction process of the spatial attributed graph.
This graph not only contains the explicit feature vector of the
contexts but also includes the spatial relations among them.

Explicit Feature Set

Mapping‘

Figure 4: The illustration of constructing spatial attributed
graphs: Each feature vector is mapped to the corresponding
nodes by a column-wise strategy.

3.3 Learning Representation of the Spatial
Attributed Graph

Figure 5 shows that we develop a spatial representation learning
framework to preserve and fuse the explicit features and spatial
relationship in the contexts. Formally, we denote the spatial attrib-
uted graph G by G = (X, A), where A is the adjacency matrix that
expresses the accessibility among different nodes; X is the feature
matrix of the graph, here, X = [V, R, O, U], and the concatenation
direction is row-wise. In order to get the latent graph embedding z,
we minimize the reconstruction loss between original graph G and
the reconstructed graph G by an encoding-decoding framework.

The encoder part owns two Graph Convolutional Network (GCN)
layers. The first GCN layer takes X and A as input and output the
feature matrix of low-dimensional space X. Thus, the encoding
process can be formulated as:

X = GCN1 (X, A) = RELU(D 2 AD"2XW) 1)
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minimize reconstruction error

Graph

E — Auto
Encoder

'

B

Latent Embedding

Figure 5: The proposed representation learning model to ob-
tain surrounding context representations by minimizing the
reconstruction loss of spatial attributed graphs.
where D is the diagonal degree matrix, W is the weight matrix of
the GCN1, and the whole layer is activated by RELU function.
Owing to the latent embedding z is sampled from a prior Normal
Distribution, the second GCN layer is responsible for assessing the
parameters of the prior distribution. Formally, the second GCN
layer takes X and A as input and then outputs the mean value u
and the variance value 82. So the calcuation process of the second
GCN layer can be formulated as:

11,10g(82) = GCNo (X, A) = D"2 AD 2 XW, @)

where Wy is the weight matrix of GCNa. Next, we use the repa-
rameterization trick to approximate the sample operation to obtain
the latent representation z:

z=p+d8Xe 3)
where € ~ N(0,1).

The decoding module takes the z as input and then outputs
the reconstructed adjacent matrix A. So the decoding step can be
formulated as:

A= o(zzT) (4)
where o represents the decoding layer is activated by sigmoid
function. Moreover, zz! can be converted to ||z| ||ZT“ cos 0. The
inner product operation is beneficial capture the spatial correlation
among different contexts.

During the training phase, we minimize the joint loss function
L that is denoted as:

Loss between A and A
————

Kl alpal + Sa-i ®
=

KL Divergence between g(.) and p(.)

L=

IP]=

where N is the dimension of z; S is the total number of the nodes
in A; q represents the real distribution of z; p represents the prior
distribution of z. £ includes two parts, the first part is the Kullback-
Leibler divergence between the standard prior distribution N (0, 1)
and the distribution of z, and the second part is the squared error
between A and A. The training process try to make the A close to
A and let the the distribution of z similar to (0, 1).

Finally, we utilize global average aggregation for z to get the
graph level representation, which is the latent representation of all
context environments.
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3.4 Land-use Configuration Quantification and
the Quality Measurement

Land-use configuration indicates the location of different types of
POIs, which expects an appropriate format of quantification for
accommodating with a learning model. To that end, we regard the
POI distribution of one area as the land-use configuration And
then, we construct a multi-channel tensor to represent the land-use
configuration, where each channel is the POI distribution across
the geospatial area corresponding to one POI category. Figure 6
shows an example of a land-use configuration. We first divide an
unplanned area into n X n squares, then we sum up the number of
each POI category in each square respectively. Here, one POI cate-
gory constructs one channel of the land-use configuration solution.
We obtain a land-use configuration as a multi-channel tensor.

n

——

store
dwelling

~“‘market

)

Figure 6: The construction of longitude, latitude, channel
configuration tensor where the value of each entry is the
number of POIs with respect to a specific category in a spe-
cific latitude range and a specific longitude range.

Next, the other big challenge is how to evaluate the quality
of land use configuration of the residential community? Because
the urban planning is a complex field, urban planning specialists
always evaluate the quality of land-use configuration solution from
multiple aspects. In our framework, we provide a quality hyper-
parameter Q for users, they can set the value of Q to distinguish the
quality of land-use configuration solution. In our experiment, we
choose the POI diversity and the check-in frequency of an area as
the quality standard. Formally, we first calculate the total number
of mobile check-in events of an area, denoted by freq, and the
diversity of POI of an area, denoted by div. We then incorporate the

two indicators into together by Q = % [20]. If Q > 0.5,
the solution is regarded as an excellent solution. Otherwise, it is

justified as a terrible solution.

3.5 Generating Excellent Land-use
Configuration Solution by GAN

Generative adversarial networks (GAN) is a popular deep generative
model. The framework of this technique is suitable to generate
realistic data samples via an adversarial way. In the computer vision
field, GAN achieves tremendous achievements. So, here, we utilize
the GAN framework to generate excellent land-use configuration
solutions of an unplanned area according to the representation of
the context environments.

Figure 7 represents the structure of our automated land-use
configuration planner. In common, the real land-use configuration
includes two categories: excellent and terrible. The purpose of the
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Figure 7: Automatic land-use configuration planner

automated planner is to generate the excellent land-use configu-
ration plan based on the context embedding. Formally, we input
the context embedding into the generator to generate the land-use
configuration solution. In order to improve the generative ability,
the discriminator classify the excellent plans as positive and the
terrible plans as negative. Algorithm 1 shows the detail information
about the training phase.

Algorithm 1: Minibatch adaptive moment estimation train-
ing of automatic land-use configuration model. We adjust
one hyperparameter f to change the update frequencies of
the weight of the discriminator.

1 // start training.
2 for number of training iterations do

3 // update discriminator firstly.
4 for n steps do
5 Sample minibatch of m excellent land-use
configuration samples {El, E2, .., Em}.
6 Sample minibatch of m context information
embedding samples {zl, 72, .., zm}.
7 Generate land-use configuration samples by
generator, {Fl,Fz, F’"}. Here, F! = G(2%).
8 Sample minibatch of m terrible land-use
configuration samples {Tl, T2 .., Tm}.
9 Update the discriminator by ascending its gradient:
10
1 Vo, o XM [log(D(EY) + log(D(1 - FY))
12 | +log(D(1-T"))].
13 // update generator secondly.
14 Sample minibatch of m context information embedding

samples {Zl, 72, .., Zm}.
15 Update the generator by descending its gradient:

16

v | Vo, 2k log(1-D(G(2))).

In algorithm 1, we first update the parameters of the discrimi-
nator module and fix the parameters of the generator module. We

then feed the excellent, terrible, and generated land-use configura-
tion samples into the discriminator module. Next, the discriminator
outputs the classification result that is activated by the sigmoid
function. It gives higher classification scores for excellent samples
than terrible and generated samples. Next, we fix the discriminator
module and update the parameter of the generator module. The
contexts embedding vectors are feed into the generator, and output
generated land-use configuration solutions. Afterward, the gener-
ated solutions are feed into the discriminator to justify the quality
of them. We update the parameter of the generator module to im-
prove the generated ability of itself. The update gradient comes
from the justification result of the discriminator module. Finally,
We obtain one automatic land-use configuration planner when the
GAN model converges. If we obtain the context embedding, the
discriminator can generate one excellent land-use configuration for
the unplanned area.

4 EXPERIMENT RESULTS

In this section, we conduct extensive experiments and case studies
to answer the following questions:

(1) Does our proposed automatic planner (LUCGAN) outper-
form the baseline methods?

(2) What is the difference between the context of excellent land-
use configuration plans and terrible plans?

(3) How does generated land-use configuration plans look like?

(4) How many proportions of each POI category occupies in
generated plans?

(5) What is the generated situations of different categories in
the generated plan?

4.1 Data Description

We use the following datasets for our study:

(1) Residential Community: The residential community dataset
contains 2990 residential communities in Beijing, where each
residential community is associated with the information of
its latitude and longitude.

(2) POI: The Beijing POI dataset includes 328668 POI records
from 2011, where each POI item includes its latitude, lon-
gitude and the category. The POI information is shown in
Table 1.
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(3) TaxiTrajectories: The taxi trajectories dataset are collected
from a Beijing taxi company, where each record contains trip
ID, distance(m), travel time(s), average speed(km/h), pick-up
and drop off time, pick-up and drop-off point.

(4) Public Transportation: This dataset logs the transactions
of buses in Beijing between 2012 and 2013. After analyzing
the dataset, it contains 1734247 bus trips, 718 bus lines. We
use this dataset to obtain the public transportation situation.

(5) House Price: The house price dataset includes continuous
five months house price data of each residential community
in Beijing between 2011 and 2012, which is collected from
Soufang website.

(6) Check-In: This dataset is the weibo check-in records in
Beijing between 2011 and 2013, where each check-in item
has its longitude, latitude, check-in time and check-in place.
We utilize this dataset to analyze the vibrancy of one area.

Table 1: POI category list

road furniture
specific address
public service

recreation service 17
medical service 18
lodging 19

code  POIcategory code  POI category
0 road 10  tourist attraction
1 car service 11 real estate
2 car repair 12 government place
3 motorbike service 13 education
4 food service 14 transportation
5 shopping 15 finance
6 daily life service 16 company
7
8
9

4.2 Evaluation Metrics

Because evaluating the quality of the urban land-use configuration
is an open question, there is no standard measurement. In this
paper, we evaluate the quality of generated planning solution from
multiple aspects to express the effectiveness of our framework:
(1)Scoring Model. We build a random forest model based on the
excellent and terrible land-use configuration plans. The model is
capable of giving higher scores for excellent land-use configuration
plans and provide lower scores for terrible plans. When we get
the generate land-use configuration solutions, the scoring model
can be utilized to quantify the quality of the generated solutions.
(2) Visualization. In order to explore the generated solutions, we
select one representative sample to visualize from multiple aspects.
We can observe the solutions directly in this way. It is helpful to
learn the difference between our planner and other baselines .

4.3 Baseline Methods

We compare the performances of our framework(LUCGAN) against
the following three baseline methods:

(1) VAE: is an encoder-decoder paradigm algorithm. The en-
coder encodes image data into latent embedding; the decoder
decodes the embedding into the original data. In this experi-
ment, we input excellent land-use configuration into VAE
to learn the distribution of excellent solutions by minimiz-
ing the reconstruction loss. Then, we utilize the decoder
to generate the solution based on the context environment
embedding when VAE converges.
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(2) AVG: generates the land-use configuration by calculating
the mean value of all excellent land-use plans, which reflects
the average level of all excellent samples. But this method
can not provide a customized solution based on different
context environments.

m AVG O MAX
100 | m vAE O LUCGAN
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g 60
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Figure 8: The quality score for different generated methods.
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Figure 9: Visualization f:)r different contexts.

(3) MAX: generates the land-use configuration solutions by ap-
plying max operation on all excellent land-use plans. The
result of this method reflects the most dominated POI cate-
gories in each geographical block. The same to AVG, MAX
also can not generate a customized solution based on differ-
ent context environments.

We conduct all experiments on a x64 machine with Intel i9-9920X
3.50GHz CPU, 128GB RAM and Ubuntu 18.04.

4.4 Overall Performance

Figure 8 shows the quality score produced by the scoring model for
different generated methods. An interesting phenomenon is that
the MAX method ranks the 1st compared with other methods. A
possible explanation is the scoring model only captures the distri-
bution of original excellent plans. The MAX method incorporates
all excellent plans by max operation, so the generated solution
reflects the dominated POI categories of each geographical block,
which is also inherent in the original data distribution. Therefore,
the scoring model gives the highest score for the MAX method.
Although the MAX method ranks the 1st, it does not indicate the
MAX method is better than LUCGAN. This is because the MAX
method only produces one kind of planning solution no matter
what the context environment is. But the LUCGAN can customize
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Figure 10: Comparison of different generated land-use configuration solutions by different generated methods.

(a) LUCGAN
Figure 11: Comparison of the proportion of each POI category in different generated solutions.

the solutions based on different context environment embedding.
In addition, the score of LUCGAN is also high, which indicates the
LUCGAN capture the intrinsic rule of excellent plan distribution.
So the LUCGAN is an effective and flexible generated method for
generating land-use configuration.

4.5 Study of the Context Environment

Intuitively, the context environment is vital for generating the land-
use configuration. Different context environments produce different
kinds of land-use configuration solutions. In order to explore the
difference between the context environments of excellent plans
and bad plans, we utilize T-SNE algorithm on the context environ-
ment embedding. We randomly choose 500 good and bad context
embedding respectively to visualize.

Figure 9 is the visualization result of different kinds of context
environments. We find that the pattern of good contexts and the
pattern of bad contexts are discriminative, which proves that it is
reasonable to exploit the context environment for generating the
land-use configuration solutions.

4.6 Study of the Geographical Distribution
Generated by Different Approaches

In order to observe the generated land-use configuration solution
clearly, we pick up a representative solution to visualize. Owing
to the generated solution has multiple channels and each chan-
nel owns lots of blocks, we merge these channels of the solution
into one by we setting the dominated POI category as the final

(b) VAE

() MAX

result for each geographical block. The merged solution reflects
POI distribution in geographical spatial space.

Figure 10 shows the visualization result Different color blocks
represent different POI categories. The generated solution by LUC-
GAN is regular and organized, different POI categories intersect
with each other. But the distribution of generated solutions by VAE
and MAX are so chaotic that there no clear promising patterns. This
experiment indicates the better effectiveness of LUCGAN compared
against other baseline methods.

4.7 Study of The POI Proportion Generated by
Different Approaches

In this experiment, our purpose is to generate a vibrant residential
community that owns diverse POI categories and lots of economic
activities. After obtaining the generated solutions from different
generated methods, we count the number of each POI category of
different solutions respectively. Then we visualize the proportion
of each POI category of the solutions.

Figure 11 shows the comparison of different generated methods.
In Figure 11(a) , we observe that the LUCGAN generated result
owns all POI categories, and 4 (food service), 5 (shopping), 6 (daily
life service) and 7 (recreation service) occupy a big proportion in all
POI categories. In addition, These four POI types are all related to
the economic activities closely. Therefore, the LUCGAN generated
solutions satisfy our design scheme. Figure 11(b) shows the POI
proportion relation in VAE generated result. We find that 1 (car
service) and 17 (road furniture) are missing, so the POI diversity
of VAE is not complete. Figure 11(c) is the POI proportion relation
in MAX generated result. Each POI category occupies balanced
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Figure 12: Visualization for different POI categories of one generated solution.
proportion, which indicates the MAX method is stubborn. The data in latent space. In general, there are three types of repre-
flexibility of MAX is poorer than VAE and LUCGAN. sentation learning models: (1) probabilistic graphical models; (2)
manifold learning models; (3) auto-encoder models. The probabilis-
4.8 Study of The Generation for Each POI tic graphical models build a complex Bayesian network system to
Category learn the representation of uncertain knowledge buried in origi-

nal data [14]. The manifold learning models infer low-dimensional
manifold of original data based on neighborhood information by
non-parametric approaches [24]. The auto-encoder models learn
the latent representation by minimizing the reconstruction loss
between original and reconstructed data [13]. In this paper, we
utilize the auto-encoder paradigm to learn the representation of
the spatial context environment. There are many successful spatial
representation applications with the development of deep repre-
sentation learning techniques [7, 8, 18, 21]. For instance, Wang et
al. capture the feature of GPS trajectory data by utilizing spatio-
temporal embedding learning skills, then the embedding is used
to analyze driving behavior [19]. Du et al. propose a new spatial
representation learning framework that captures the static and dy-
namic characteristics among the spatial entities. And they utilize
the learned spatial representation to improve the performance of
real estate price prediction. [6].

5 RELATED WORK Generative Adversarial Networks. Generative Adversarial
Networks is a hot research field in recent years [22, 23]. The GAN
algorithms can be classified into three categories from task-driven

We aim to examine the justifiability of the generated configuration
for each POI category To that end, we visualize the POI distribution
for each POI category. Due to the page limitation, we randomly
select 12 POIs of a generated solution for visualization In Figure 12,
the darker color block represents the larger POI number in the block.
An interesting observation is that the POI distribution of different
categories show their unique patterns. For example, transportation
pots are more concentrated, while food service related POIs are
more dispersed across the area; the distribution of car service spots
is very similar to the recreation service, the possible reason is
that recreation service spots may occupy many parking lots which
potentially attract car services.

To sum up, through the above experiments, LUCGAN is capable
to generate the land-use configuration solution based on the context
environment embedding effectively and flexibly.

Representation Learning. The objective of representation learn-
ing is to obtain the low-dimensional representation of original
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view . (1). semi-supervised learning GANs. Usually, a complete la-
beled data set is difficult to obtain, the semi-supervised learning
GANs can utilize unlabeled data or partially labeled data to train
an excellent classifier [5, 11]. For instance, Akcay et al. design a
semi-supervised GAN anomaly detection framework that only uses
normal data during the training phase [2]. (2). transfer learning
GANSs. Many researchers utilize the transfer learning GANSs to trans-
fer knowledge among different domains [10, 17]. For instance, Choi
et al. build an unified generative adversarial networks to translate
the images in different domains [4]. (3). reinforcement learning
GANSs. Generative models are incorporated with reinforcement
learning (RL) to improve the model generative performance [16].
For instance, Ganin et al. combine reinforce learning and GAN to
synthesize high-quality images [9].

Urban Planning. Urban planning is a complex research field
[1]. The specialists need to consider lots of factors such as govern-
ment policy, environmental protection to design suitable land-use
configuration plan [12]. For example, partial researchers focus on
constructing an urban planning solution for human health and
well-being [3]. Simultaneously, many researchers form a land-use
configuration solution based on the development of real estate [15].
Therefore, it is difficult to generate a suitable and excellent urban
planning solution objectively. To the best of our knowledge, we
first propose an automatic land-use configuration planner to solve
this problem.

6 CONCLUSION REMARKS

In order to generate a suitable and excellent land-use configuration
solution objectively and reduce the heavy burden of urban planning
specialists, we proposed an automatic land-use configuration plan-
ner framework. This framework generates the land-use solution
based on the context embedding of a virgin area. Specifically, we
obtained the residential community and its context based on the
latitude and longitude of residential areas firstly. we then extracted
the explicit features of the context from three aspects: (1) value-
added space; (2) poi distribution; (3) traffic condition. Afterward,
we mapped the explicit feature vectors to the geographical spatial
graph as the attributes of the corresponding node. Next, we uti-
lized the graph embedding technique to fuse all explicit features
and spatial relations in the context together to obtain the context
embedding. Then we distinguished the excellent and terrible land-
use configuration plans based on expert knowledge. Finally, the
context embedding, excellent and terrible plans were input into
our LUCGAN to learn the distribution of excellent plans. The LUC-
GAN can generate a suitable and excellent land-use configuration
solution based on the context embedding when the model con-
verges. Ultimately, we conduct extensive experiments to exhibit the
effectiveness of our automatic planner.
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