8980

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

Feasible Region of Secure and Distributed Data
Storage in Adversarial Networks

Jian Ren™, Senior Member, IEEE, Jian Li*™, Tongtong Li*™, Senior Member, IEEE,

and Matt W. Mutka

Abstract—Large volumes of data are being generated daily
from IoT networks, healthcare, and many other applications,
which makes secure, reliable, and cost-effective data storage a
critical infrastructure of the computing system. Existing data
storage largely depends on centralized clouds, which is not only
costly but also vulnerable to single points of failure and other
types of security attacks. Moreover, cloud providers will have
full access to user data and revision history beyond user con-
trol. To provide data security, data encryption has to be used,
which requires extensive computing power and cumbersome key
management. Distributed storage system (DSS) is being widely
viewed as a natural solution to future online data storage due to
improved access time and lower storage cost. However, the exist-
ing DSS also has the limitations of low storage efficiency and weak
data security. In this article, we investigate multi-layer code-based
distributed data storage systems that can achieve inherit content
confidentiality and optimal storage efficiency. Our comprehensive
performance analysis shows that the optimal code can improve
the feasible region in reliable data storage by 50% under various
adversarial attack scenarios.

Index Terms—Adversarial networks, distributed data storage,
feasible storage region, optimal.

I. INTRODUCTION

N JUST a few years, the Internet of Things (IoT) has
Ievolved into almost every aspect of our daily life. As a
result, a gigantic amount of data is being generated every
day, which makes data storage a critical infrastructure of IoT
networks. The cloud storage market size was valued at $46.12
billion in 2019, and is projected to reach $222.25 billion by
2027, growing at a CAGR of 21.9% from 2020 to 2027 [1].
Currently, the majority of various data is stored in just a few
large central cloud data providers such as Amazon AWS [2].
These providers can get full access to user data and dictate the
pricing of their services. Users have to trust the central cloud
providers for their data availability and security. To limit the
cloud providers from accessing their data, data encryption is

Manuscript received May 31, 2021; revised September 11, 2021; accepted
October 2, 2021. Date of publication October 11, 2021; date of current
version May 23, 2022. This work was supported in part by the National
Science Foundation under Grant CCF-1919154 and Grant ECCS-1923409.
(Corresponding author: Jian Ren.)

Jian Ren, Tongtong Li, and Matt W. Mutka are with the Department
of Electrical and Computer Engineering, Michigan State University, East
Lansing, MI 48824 USA (e-mail: renjian@msu.edu; tongli@msu.edu;
mutka@msu.edu).

Jian Li is with the School of Electronic and Information
Engineering, Beijing Jiaotong University, Beijing 100044, China (e-mail:
lijian@bjtu.edu.cn).

Digital Object Identifier 10.1109/JI0T.2021.3119031

, Fellow, IEEE

the only feasible option, which is not only very costly but also
vulnerable to key loss.

To address these issues, distributed storage system (DSS),
such as IPFS/FileCoin [3], [4], has been introduced. As the
name suggests, distributed storage works by splitting the data
to be stored into multiple blocks and distributing the indi-
vidual blocks across a decentralized network of storage peer
nodes. To ensure data availability, the IPFS storage systems
generally stores multiple copies of each block, which makes
distributed storage much more reliable than the centralized
storage. FileCoin makes IPFS storage a service marketplace
by motivating anybody with available storage to join the peer-
to-peer (P2P) network and become a FileCoin storage provider,
which will make storage cheaper over time through bidding
between uploaders and hosts and marketplace incentivizing.
In blockchain [5] terms these peer nodes are the “miners”
of FileCoin. The importance of this architecture is that sig-
nificant storage space can be allocated without requiring any
additional hardware, which can greatly reduce the storage cost.
As a result, the DSS is much less expensive than the traditional
data center-based cloud storage solutions.

IPFS can be seen as a compelling foundation for blockchain
technologies. In IPFS, files are stored using a content-
addressable storage (CAS) system: each file/block can be
retrieved by a human-readable address created by the
Interplanetary name system (IPNS) based on what it is, rather
than where it is. CAS has three major advantages. First,
it can be used to circumvent address-based censorship. In
fact, IPFS has been used to create an uncensorable Turkish
version of Wikipedia [6] and also sidestep Spain’s legal
block by the Catalan government during the recent crisis in
Catalonia [7]. Second, the CAS system is much more reli-
able than the address-based data storage system. Currently,
information on the Internet is addressed by universal resource
locators (URLs), which could be the address that held the cor-
rect content at some time in the past. The addresses created this
way is very unreliable. As an example, a recent Harvard-led
study found that 50% of all hyperlinks cited in U.S. Supreme
Court opinions are no longer working [8]. Third, CAS can
make the Web not only safer against potential security attacks,
but also more robust to content availability.

Unfortunately, the DSS schemes adopted by IPFS/FileCoin
have some major limitations. First, the storage efficiency of
IPES is relatively low in that the exact copy of each block has
to be collected in order to fully recover the original file. To
ensure data availability, each block has to be stored multiple

2327-4662 © 2021 IEEE. Personal use is permitted, byt republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

REN et al.: FEASIBLE REGION OF SECURE AND DISTRIBUTED DATA STORAGE IN ADVERSARIAL NETWORKS

times. Second, IPFS splits large files into blocks through
file fragmentation. The individual blocks carry information
directly related to the original file. If not protected, the blocks
could leak significant information about the whole file.

To address the aforementioned issues of IPFS while also
maintaining the major advantages, we propose a new multi-
layer code-based distributed storage system. The major con-
tribution of this article can be summarized as follows.

1) We analyze the limitations of the existing DSS in storage
efficiency and security.

We introduce multi-layer code-based reliable data stor-
age schemes and compare our approach with the existing
DSS schemes in storage efficiency and security.

We also analyze the multi-layer code storage efficiency
under various security attack models. In particular, we
develope the secure and reliable storage region of the
multi-layer code.

The remainder of this article is organized as follows. In
Section II, various issues related to distributed data storage
are discussed. A comprehensive discussion of the multi-layer
code is presented in Section III. In Section IV, we present
the optimal storage scheme in adversarial networks. We pro-
vide simulation results in Section V and the conclusion in
Section VI

2)

3)

II. DISCUSSION OF DISTRIBUTED DATA STORAGE
A. Security Issues of Centralized Storage

Centralized cloud provides data storage as a service. Users
do not need to build a hardware infrastructure and invest a
formidable amount of money to store their data and ensure
data fault-tolerance or redundancy. However, building a suc-
cessful cloud data storage business requires a global network
of data-centers and robust user interfaces that satisfy many
user demands. As a result, only a few massive corporations
owning nearly all of the global cloud data storage market.

Since its inception cloud data storage has evolved to be
functional but leaves many security concerns and performance
issues unaddressed. First, centralized databases are highly
dependent on network connectivity and the Internet speed. For
data stored far away from the end-user, the database access
time can be very long especially when the Internet speed is
slow. In fact, the centralized databases could also become a
bottleneck as a result of high traffic. Second, users must rely
on these large corporations to ensure their data availability
and data security. However, due to economic reasons, stor-
age becomes a commodity or a utility for the data providers.
The service providers are incentivized to lock in their cus-
tomers and extract a premium. The nature of these issues could
potentially conflict with users’ security needs.

B. Limitations of IPFS

The decentralized storage for the IPFS system has major
security and efficiency issues. We use the following example
to illustrate the security limitation.

Example 1: To store a picture of a lotus flower in
IPFS. The file size is 1034141 bytes with hash value

POmaNMtwsCJIKVmUEe9eaSesKAKhigDzrHf3J4fbAE3VFsAh.

2

8981

(a) (b)

File storage in IPFS. (a) Original picture. (b) First segment of the

Fig. 1.
picture.

IPES splits the file into blocks through file fragmentation.
The default IPFS block size is 2!8 4 14 = 262158 bytes. In
this case, the hash values of the 4 blocks are:

QmYmpjVoCXD5hiVz8PTDXvngpBPNiiBQeDP3XfXhliri9b 262158
QmMZYgQBkct TKNRWQOUEzJ 7NxwJjoGvYim9Zj9D61jKrHgU 262158
QmXbTiNaNL5AtsG81RtBQgzUwWSGEX4TkuoWANnhyBLEDXYV 262158

QMQUErMLNnXvt7SUwXkgRzQun6PYJIGDGEiv2ag342L1Tdg 247723

These blocks are stored based on their unique fingerprints
and can be accessed through Web addresses (gateways) in the
following format:

https://ipfs.io/ipfs/<block_cryptographic_hash>

This design enables IPFS to remove duplication across the
network. For example, the first block would be stored and
accessible from the following link:

https://ipfs.io/ipfs/QmYmpjVoCXD5hiVz8PTDXvngpBPNiiBQeDP3XfXhliri9b

Fig. 1 shows the original lotus flower and the first segment
of the flower stored in IPFS. From this figure, we can see that
the first segment of the lotus flower clearly reveals a significant
amount of information about the original flower. This example
makes it clear that the current IPFS file storage system cannot
ensure content confidentiality.

In addition to security limitations, the data storage effi-
ciency of IPFS is also quite low. As described before, the
data blocks in IPFS are generated through file fragmentation-
based approaches. While the individual blocks are stored in a
decentralized way, it is fundamentally different from the gen-
eral DSS in that the blocks of DSS are generated through
algebraic encoding. For IPFS-based decentralized storage, to
recover the original file, at least one copy of each block must
be collected. To increase data availability, IPFS has to store
multiple copies of each block. While for encoding-based (n, k)
DSS, the file to be stored is first algebraically split into n
blocks so that the original file can be recovered from any
k < n blocks. However, the original file remains information-
theoretically secure for anyone who can access even up
to any k — 1 blocks and with unlimited computing power.
Therefore, no encryption or key management is required to
ensure data confidentiality of the file stored. To increase data
availability, we only need to increase the number of n, which
makes it much more efficient than the IPFS-based decentral-
ized data storage. Fig. 2 shows the dramatic data availability

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

8982

Storage Availability

10— 88— — HAaMsasassasasenses
~\. : :]
N : : —@—— DSS: rate=1/2 ||
N : - —®- — IPFS: rate=1/2 ||
A : —8— DSS: rate=1/4 ||
N\ : -~ -8--- IPFS: rate=1/4 |
-0 N o\ DSS: rate=1/6 |}
© 3\\ : — IPFS:rate=1/6 |
= . ‘ | |
= \
s oA ‘ : ‘
5 LN : :]
o DO RRTPPEIPE AN - SRR RRERPEIPIN OO
-~ \ : \ : :]
3 : N\ ‘]
[‘ : A\
° \ \
X \ : Y]
P R N s R
\ : :]
b \
N N
L& \
: \\ AN : |
40 60 80 100

% of nodes attacked

Fig. 2. Data availability comparison between DSS and IPFS.
differences for three different storage efficiencies of these two
approaches.

C. Error and Erasure Correcting Codes

For integers n, k, §, and a symbol set X, an (n, k, §)-code
over X is a subset C C X" of n-letter words over the alphabet
¥ with |C] = |Z|* and the property that any two strings in C
differ in at least § places. Given a code C, the largest é for
which C is an (n, k, §)-code is referred to as the Hamming
distance of the code C.

Reed-Solomon (RS) code is a class of maximum distance
separable (MDS) code with a set of parameters (1, k,§ = n—
k+ 1) that operates on a block of n data symbols over a finite-
field F, (i.e., ¥ =), where g is a prime number or power of
a prime number. It is formed by adding n—k check symbols to
k data symbols. An RS code can locate and correct up to and
including | (6§ —1)/2] erroneous symbols at unknown locations.
As an erasure code, it can correct twice as many erasures as
errors at locations that are known and any combination of
errors and erasures as long as the relation 21 4+ 5 < 6 — 1 is
satisfied, where ¢ is the number of errors and s is the number
of erasures in the block.

D. Distributed Storage System

In DSSs, the file to be stored is split into blocks and dis-
tributed across multiple network peer nodes. Unlike traditional
hardware-based data storage, DSS outsources the data storage
to a number of P2P storage servers that act as a single storage
unit while the data is distributed amid the specific number of
servers. DSS is being viewed as a more advanced form of the
concept of software-defined storage (SDS).

DSS allows storage to act as a software application that is
more like a database or even part of the operating system.
While greatly simplifying the information technology stack, it
also works with a single block centralized cloud storage data
center. DSS gives the freedom of scaling by adding more peer
nodes through economic incentives to promote the number of

participating peers, foster a distributed storage market, and 3

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

make storage more cost-efficient. Whenever more nodes are
added, the increment in the total components increases the
scalability, reliability, and speed of the entire DSS.

Moreover, compared to the cloud-based centralized storage
system, the DSS can achieve great security inherit from the
DSS design since the data being stored are decomposed into
blocks and then spread over many different peer nodes.

In DSS, data replication and erasure coding are two widely
employed data redundancy techniques. While replication has
the advantage of simplicity and low access overhead, it
imposes higher repair traffic and storage overheads. Moreover,
the data stored in this system is essentially similar to the
IPES system described in Section II-B. The data components
directly contain information of the original files. Therefore,
to conceal the contents of the files, data encryption has to
be applied to all the data components, which will impose not
only the computational cost but also the overhead for secure
key management. Conversely, to reduce storage overhead, era-
sure code avoids data replication. Even though it requires some
very limited computational costs due to coding/decoding oper-
ations, compared to the gain in data availability and inherit
data content security, it can be fully justified.

The best known DSS schemes are designed based on
the conventional (n,k) RS error-correction codes (such as
OceanStore [9] and Total Recall [10]). When a node fails,
a replacement node can be regenerated by connecting to any
k benign nodes, which will first recover the whole file, and
then regenerate the failure node. This approach is a waste of
bandwidth because the whole file has to be downloaded to
recover even a small fraction of it.

E. Regenerating Code-Based DSS

To improve bandwidth efficiency in repairing node failure,
Dimakis et al. [11] introduced the concept of {n, k, d, «, 8, B}
linear regenerating code over the finite field based on network
coding. A file of size B is stored in n storage nodes, each of
which stores o symbols. A data collector (DC) can reconstruct
the whole original file stored in the network by downloading
o symbols from each of k randomly selected storage nodes.
In the context of regenerating code, a replacement of a failed
node can be regenerated by downloading 8 < « symbols from
each of d > k randomly selected storage nodes. Therefore, the
total bandwidth required to regenerate a failed node is y = dg,
which could be far less than the whole file B.

For n storage peer nodes, the size of the file to be stored
in the distributed storage network is B (symbols). Based on
a cut-set bound on network-coding, the following theoretical
bound was derived in [11]:

k—1
B < minfa, (d — i)B}. (1)
i=0
In (1), there is a tradeoff between the choices of the parameters
o and B, which corresponds to the minimum storage regener-
ation (MSR), where the storage parameter « is minimized as
follows:

2

B Bd
(@msrs Ymsr) = ()

K kd—k+ 1)

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

REN et al.: FEASIBLE REGION OF SECURE AND DISTRIBUTED DATA STORAGE IN ADVERSARIAL NETWORKS

Storage per node

Bandwidth to repair one node

Fig. 3. Tradeoff between MSR and MBR.

and the minimum bandwidth regeneration (MBR), where the
regeneration bandwidth y is minimized as follows:

2Bd 2Bd
— —) ®
2kd — k* +k 2kd — k- + k

Fig. 3 shows a tradeoff between the MSR and MBR.

Existing DSS was largely constructed based on the MDS
code [11], such as RS code. The error correction and node
regenerating capability is limited to the theoretical error
correction bound of the MDS codes.

Compared to MDS code-based schemes, regenerating code
can reach the optimal theoretical tradeoff between the mini-
mum sforage regenerating and the minimum bandwidth regen-
erating. Moreover, in regenerating code, it is no longer needed
to decode the original file in order to regenerate a failed peer
node.

(Otmbrs Ymbr) = (

F. Adversarial Model

In P2P networks, it is possible that the storage nodes may
be attacked by adversarial security attacks. The affected nodes
may provide incorrect response to disrupt data reconstruction
and regenerating, or becomes totally unavailable.

We assume that the goals of the attackers are twofold:
1) disrupt as many distributed storage nodes as possible, and
2) manipulate the content of as many storage nodes as possible.
We will refer to these nodes as spurious nodes.

In this system, the defender and the attacker compete to
maximize their goals. We model the interaction between the
defender and the attacker as a security game. In this game, the
network manager—henceforth, the defender—determines the
overall tradeoff between the storage efficiency and the storage
robustness under malicious attacks.

We assume that the attacker has knowledge of the data allo-
cation scheme. It observes the randomized allocation with an
intention to disrupt or manipulate as many peer nodes as pos-
sible for any given budget to thwart data reconstruction and
availability. Based on this information, the defender first gener-

8983
Node; Node; Nodes e« ¢ ¢ Node,_; Node,
error Layer 1

erasure | error Layer 2

| |

v v .
erasure | erasure error b

i’ i’ i’ .
erasure | erasure erasure Layer m

Fig. 4. Multi-layer RS code design.

network using the regenerating code-based approach. It then
randomly allocates the n data components across the entire
P2P network so that the original B symbols can be recovered
when any k untackled components are collected. Meanwhile,
any spurious node can be repaired by collecting 8 symbols
from d storage nodes.

To optimize data storage reliability, the defender will try
to minimize the number of spurious nodes being attacked and
controlled by the attackers. At the same time, the defender can
adjust the design tradeoff parameters to ensure optimal data
storage reliability and storage efficiency. In other words, the
defender’s strategy is to maximize the number of intact nodes
to be at least d, where d is the node regenerating parameter.

III. MULTI-LAYER CODE DESIGN

In this section, we introduce our proposed multi-layer regen-
erating code for DSS and derive the optimal code construction.
Since MSR and MBR are similar in description, we will only
present the MSR code scenario.

A. Multi-Layer Codes and DSS

Multi-layer codes, or m-layer codes, split the data to be
stored into m layers and n blocks and then distribute the blocks
to ng < n different storage peer nodes, as shown in Fig. 4.
The m layers correspond to m RS codes. The code rate of the
m-layer code increases from layer 1 to layer m. On the other
hand, the error-correction capability decreases from layer 1
to layer m. Because of this structure, the error correction and
node repairing of the m-layer code will proceed from layer 1
and then move toward layer m, layer by layer. Since each node
stores data corresponds to all m layers, the nodes with errors
detected in one layer, all the subsequent insiders layers stored
in that node also become unreliable. Therefore, for the sake
of computational efficiency, they will be treated as erasures,
as illustrated in Fig. 4.

Let the parameter for the ith layer MSR code be viewed as
an (n—1,d;,n—d;) code, i = 1,2, ..., m, where each compo-
nent contains B8 symbols as described in the regenerating code

ates n data components from B symbols to be stored in the P2P 4 setting, and d; < dj, V1 < i < j < m. Then the first layer

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

8984

code can detect and repair #; failure nodes
n=lmn—-d—-0/2]=mn—-d —e—1)/2 “4)

where ¢ =0 if n —dy — 1 is even and &; = 1 otherwise.

By treating the symbols from the #; nodes where errors
have been found as erasures, then based on discussion in
Section II-C, the second layer code can detect and repair #»
failure nodes

n=|ln—d—-1-0)/21+n
=m—d—1—1H—e)/2+1
=QRQn—dr—e—-D+m—-di—e1—1)/4 (O5)

assuming that n —dp, — 1 > 1, where e =0ifn—dr — 1 —1;
is even and &, = 1 otherwise.

This process can be continued for 2 < i < m, by treating
the symbols from the #;_; nodes where errors have been found
in the layers 1,2, ..., (i — 1)th layer as erasures, the ith layer
code can detect and repair #; failure nodes

ti=ln—di—1—1_1)/2] + 1t
=n—di—1—ti1—¢&)/2+1t

i
= sz—l(n—dj—gj—l) /2! (6)
j=1
assuming that n—d;—1 > t;_1, where ¢, = 0if n—d; — 1 —1;_;
is even and &; = 1 otherwise.

B. Multi-Layer Code Construction

The multi-layer DSS was first explored from Hermitian
code [12]-[14]. A Hermitian curve H(g): y? +y = x4t is
defined over F ». There are ¢> points on this curve, denoted
as: Pij = (¢!, p@=D@tD+l 19 (i =0,1,...,4—1,j =
0,...,9—1), where ¢ is the primitive element over]qu with
¢~ '=0and 0; is the solution to y7 4y = 0.

Let G = {0H P00, ..., i) Pog-1), .-
O Pp_10)s--os P 4-}] = 0,...,¢ — 1,
be an RS-code, where f; is a polynomial satisfying

degfi < «(j) =max{r | tg+j(g—1) <m}+ 1.

According to [12], G; can be decomposed as a concatenation
of g RS-codes of length ¢>. That is

Hn=6G0®G1®---DGy1.

Alternatively, it can be viewed as a multiple layer RS code,
with code parameters

(qz—l,/c(i),qz—/c(i)>, i=0,1,....q—1. (7

For a Hermitian code %H,, over qu, a message
matrix Mdim(#,,)xA = [My,...,Ms] 1is encoded
columnwise. The codeword matrix is H,,(M) =
[(Hn (M), Hin(M3), ..., Hu(Ma)], where Him(M;) has
the following form (o € L(mQ)):

[Q(P(),o), R ,Q(P(),q_l), R Q(qu—l,o)v AU Q(qu_l’q_l)]T.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

Algorithm 1 H-MSR Encoding Algorithm [14]

1: Encode the data matrices S,7 defined above using
a Hermitian code H,, over GF(g*) with parameters
k() (O <j<g—1)andm(m=qg*—1).

2: Calculate the q3 x A codeword matrix Y = H,,(S) +
I'H, (T).

3: Divide Y into q2 submatrices Yy, - - -

,Yqz_l of the size
g x A. Store the submatrix in (up to) ¢° storage nodes.

For Hermitian code-based MSR (H-MSR) construction, let
o, ..., g1 be a strictly decreasing integer sequence satisfy-
ing0 <o; <k(i), 0<i<g—1,and A =lcm(ap, ..., a4-1).
Arrange B = A - Zq_l(ai + 1) symbols into two matrices S

and T as follows: =0
So To
s=| : [.r=] :
Sq-1 Ty
where S; = [Sg1 Su2 Saiajels Ti = [Tain
To2 - Topajals Seijp Taj(O<i<qg—1,1=<j<A/a)

are symmetric matrices of size o; X «;. Then by process-
ing the data symbols using Algorithm 1, we can achieve
the MSR point in the distributed storage [13], [14], where
' = diag(Ag, Ay, -- -, qu—l)’ and the ¢ diagonal elements
in A; are all identical to A; €]qu. Since H-MSR code can be
viewed as ¢ layers of RS codes with parameters

(q2—1,d,~,q2—d,~), i=0,1,....q—Laj<xd) (8

where d; = 2a;, @ < k (i), we can choose the sequence «; to be
strictly decreasing so that d; is also strictly decreasing. For the
g RS codes, the minimum distance of the (¢> — 1, dg—1, q* —
dy—1) code is the largest. It can correct up to 7, errors

=)

where |x]| is the floor function of x.

Next, the code (q2 —1,d,qp—d),l=qg—2,...,0 will
be decoded sequentially, which can correct at least 7; = 74—
errors when q2 —dop — 1 > 74_1. Therefore, the total number
of errors that the H-MSR can detect and repair is

TH-MSR = qTq—1 = CIL<€I2 —dg—1 — 1)/2J-

In comparison, for RS-MSR code with the same rate can
repair

q—1
wmsmsR=| |4 —g—) di|/2]| €))
1=0

Therefore

q(g—1)

_— >
4

Moreover, the proposed H-MSR code has complexity
O@m*/3) for node regenerating and reconstruction, which is

TH-MSR — TRS—MSR = 0.

5 lower than the RS-MSR complexity O(n?) in both scenarios.

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

REN et al.: FEASIBLE REGION OF SECURE AND DISTRIBUTED DATA STORAGE IN ADVERSARIAL NETWORKS

C. Optimal Regenerating Code

Motivated by the Hermitian code structure, a natural
research task is to find out how to select the layers that can
optimize the overall performance [15].

Similar to message encoding in Algorithm 1, to encode a file
with size B, we select d = 2« and divide the file into 6 blocks
of data with size E, where 0 = {B/Tﬂ. Then the 0 blocks of
data will be encoded into codeword matrices Fy, ..., Fg and
form the final n x af codeword matrix: C = [Fy,..., Fg].
Each row ¢; = [f1;,...,f5;], 1 < i < n, of the codeword
matrix C will be stored in storage node i, where f;; is the ith
row of F;, 1 <j<6.

The design of optimal multi-layer code is equivalent to max-
imizing the number of failure nodes that can be regenerated,
which is determined by #,,. The problem can be formulated as
the following optimization problem:

.. n—di—ti_
maximize: t,, where t; = | ——— | + ;|

2
i=2,...,mty=0 (10a)
constraints: :n:l di=d.
di1<d;, 2<i<m
n—di—t1—1>0,i=2,...,m
n+di —2diy1,>0, i=1,...,m—1. (10b)

This is a linear optimization. By introducing slack variables
g,i=1,2,...,m, we can easily find that the optimal regen-
erating code can be achieved when d; = round(d/m) = d as
shown in [15]. In this case, as shown in (6), the maximum
number of failure nodes that the m-layer optimal regenerating
code (O-MSR) can repair is at most

ty = <§: 2"*1(;1 —d—1- si))/z'"

i=1
1 m

- (1 —2%)(11—21— 1) —z—msz“ei.

i=1

(1)

By carefully selecting the d so that n —d — 1 is even, then
we have g = 0 for i = 1, ..., m, which can maximize the
error correction capability for the given storage efficiency. In
this case, from (11), we have

m

: T i—1 R B m

lim 1, = n};m(}()(;z (n d—e¢; 1))/2
i=

=n—d-—1. (12)
In this case, for the single layer RS code, we have

IRS-MSR = L(" —d- 1)/2J

= (n—EJ— 1)/2. (13)
In the worst case when ¢; =1 fori= 1, ..., m, we have
n . ~
Jim g, = lim_ <; 2 ln—d—g — 1))/2’”
=n—d-2.

8985

70

=N
<

—@— O-MSR Code
H-MSR Code
—@— RS-MSR Code

W
<

N
i

Node Regenerating Capability
3] w
(=} (=]

_
g

Fig. 5. Comparison of node regenerating capability of the m-layer code with
the H-MSR and RS-MSR codes with code rate = 3/4 and m = q.

In this case, for the single layer RS code, the number of nodes
that can be regenerated is

tas wsm = | (n—d—1)/2]
- (n —d- 2)/2.

Therefore, we have the following theorem.

Theorem 1: Let tg"_)MSR be the number of nodes that can
be regenerated by an m-layer optimal regenerating code and
frs_msR be the number of nodes that can be regenerated from
a single layer RS-MSR code with comparable parameters, then

5)

lim 13"\ 1sr = 2/RS—MSR- (16)

m—0oQ

Theorem 1 proves that the overhead required to correct ran-
dom node failure for the m-layer O-MSR code approaches
one half of the RS-MSR code under comparable security
parameters, which is the overhead required to correct erasures.

Fig. 5 compares the performance of our proposed multi-
layer codes O-MSR and H-MSR codes with the RS-MSR code
in which we select m = g since H-MSR is only defined for
this case.

IV. OPTIMAL STORAGE IN ADVERSARIAL NETWORKS

In P2P networks, all the peer nodes can be vulnerable to
security attacks. The data stored in these nodes may be either
partially or completely damaged and become malicious.

For DSS, all the nodes are symmetric and with equal impor-
tance in data reconstruction and node regenerating. When a
node is being attacked, the data stored in the node could be
maliciously manipulated, controlled, or even completely dam-
aged. These nodes will be referred to as spurious nodes and
being treated in the same way without making any distinction.

In practice, the probability for each node to be attacked may
vary. To simplify the analysis, we assume that the probability

(14) g for each peer node to be attacked is p. Then the total number of

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

8986

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

130 30 201
120 |
254 18
>
E’ 110 _é‘ £ 167
S Z 20 - O-MSR Code g
a a —@— RS-MSR Code g —@— O-MSR Code: code parameter 10
g 10 - O-MSR Code 5] £ 14
=} 1 : 2 —@— O-MSR Code: code parameter 20
‘s —@— RS-MSR Code 515 L5
5 901 = S 124
— o 2]
[} o °
s} S 104 9
S 04 =} S 1ol
z Z 2
1
70+ 57 8
& - & - - & '
60 T T T T T T 0 6% T
2 4 6 8 10 12 14 16 2 4 6 10 12 14 16 2 4 6 8 10 12 14 16
layers layers layers
(@ (b) (c)

Fig. 6. Comparison between the maximum number of malicious nodes that can be regenerated between O-MSR and RS-MSR with comparable parameters.
(a) n = 256, code rate = 1/2. (b) n = 30,d = 50, and 2 < m < 16. (¢) n = 256,d = 10 x m, and d = 20 x m.

spurious peer nodes is no more than SpuriousNode = [np],
where [x] denotes the ceiling of x. It is clear that there is a
tradeoff between the attack probability p and the storage effi-
ciency to ensure reliable data recovery. As p and the number
of SpuriousNode increase, we have to decrease the stor-
age efficiency in order to maintain the same data availability
and storage reliability. Alternatively, we can increase the total
number of storage nodes n. In other words, as the attacker
becomes more powerful and is capable of manipulating more
peer nodes, the data storage efficiency must be lowered down
to ensure data storage reliability and availability. On the other
hand, reliable data storage efficiency can be increased.

Unlike the scenarios described in the previous section, the
goal of DSS is twofold. First, determine the optimal, reli-
able, and efficient data storage schemes for any given attack
scenario. Second, design storage schemes that can achieve
the optimal theoretical storage performance, which may vary
dramatically in different networks. As a result, no single
storage scheme can be optimal for all attack models.

The design of optimal and reliable data storage includes
two major steps. First, evaluate the security game between
the defender and the attacker, the available resources, and
defending mechanisms. Ultimately, we hope to be able to
determine the total number of spurious nodes SpuriousNode.
Second, based on the aforementioned results, the defender
determines the optimal parameters that can optimize the reli-
able data storage efficiency while ensuring data availability for
the given attack scenario. In other words, our goal is to design
the m-layer code that can maximize) ;' d; = d under the
constraints #,, > the number of SpuriousNode, where

\‘n—dl—lJ
n=|——m——|
2

—d: —t_
li:\‘—n 12 llJ—i-ti—h i

The optimal storage under security attacks can be formu-
lated as

1,2,...

, M.

m
maximize: E) 1di=d'
1=

constraints: n—d; —t;_; >0
n—d;—ti—y
where t; = B — + ti—1

i=2,....,m, and tp =0

di<dt, 1<i<m-—1

n—di—tio1—1>0,i=2,...,m

tm > # of SpuriousNode. (17b)
It is an integer linear optimization with #j < 1, < --+ < 1.

Similar to (10), the optimal solution can be solved very
efficiently. Based on the attack possibilities, we can then deter-
mine the corresponding optimal reliable data storage efficiency
and the feasible data storage region for all attack probability p.

V. SIMULATION RESULTS

In this section, we conduct comprehensive simulations to
compare the storage capacity and feasible region between the
O-MSR code with the existing RS-MSR code in adversarial
networks.

In Fig. 6, we compare the maximum number of malicious
nodes that can be regenerated by the single layer RS-MSR
code and multi-layer O-MSR code with comparable param-
eters. In Fig. 6(a), we select n 256, code rate = 1/2 for
both RS-MSR and O-MSR with m varies from 2 to 16. In
Fig. 6(b), we compare the number of nodes that can be repaired
by m-layer O-MSR with n 30,d = 50 and single layer
(n, round(d/m)) RS MSR code for 2 < m < 16. In Fig. 6(c),
we compare the number of nodes that can be repaired by the
O-MSR code with different code rates.

In Fig. 7, we compare the data storage capacity with respect
to various adversarial attack probabilities for n from 0 to
262 144 symbols. For O-MSR, we select the number of layers
m = |/n]. It should be made clear that for any fixed code
length n, the performance for the O-MSR code increases with
m. Therefore, the gap between the m-layer O-MSR code and
the single layer RS-MSR code will further increase. This is
shown in Fig. 8(a).

In Fig. 8(a), we show that the reliable data storage capacity for

(17a) 7 various adversarial attack possibilities, where the total storage

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

REN et al.: FEASIBLE REGION OF SECURE AND DISTRIBUTED DATA STORAGE IN ADVERSARIAL NETWORKS

1250004 -+« -- - SRREREES Pl e A 1500004 -+ - - - :
: : : : : : 1500004
100000+ - -+ - - e Rk RS ‘
= : : : : : : o 100000 -+ SRR et flnns 2 :
S L OO SO SN ORI S ; : : ; : : :
E 750001 : : / : : @ / "2 1000001
= ; : : : ES f > ;
& i : : -MSR 2 : o«
o : : : : : : ° -
e R D O i I OISR *
: : : : : : 50000+ :
: : 50000
250004 - - - - - AT PR
; : © RS-MSR ;
[4 £ > = - 04 " ¢ N ; + B t f ¥ + +
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Length Length Length
(@ (b) (©
200000 - ---- -+ PP P SRR e 7 : ; 250000+ -+ e e A
: 2000007 - - -+ e s e R AL /] :
; ‘ ‘ ‘ : ; : : D00000 - -+ -+ i memee bt L]
Lo U ST A N 7] : : O-MSR
Ep T OISR/ A . . OMs | 3
» ; : : : : : 150000 - -+ - -+ e REPEPIEE o = ;
2 2 ; : : ‘ 8 150000 -~ =+ GSRRERLESELRREER I
£ : : : ‘ g : E ; :
21000004 -+ -+ - - e A AR A : : e z :
B : : : y S 100000 -+ -+ -+ e ST EREEEPEREEE M- : RS-MSR
= s +* : 7/ 'RS-MSR : 3£ 100000 -+ == ot s e
50000 : : ‘
: 50000+ : 50000 -~ -+ e ehe e
o e — e o e— - o — e s e o [A oo foee ey oo o P
0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000 0 50000 100000 150000 200000 250000
Length Length Length
(d) ® (®)

Fig. 7.

7000 -

6000

—— Enyor rate: 30%

5000-

K2 Error rate: 40%
[=} 4 : .

9 . - |

=l 4000:, ; ;

N . — Erfor rate: 50%
bS] g : : ! : g :

3t 3000 -f-f---- e £ SR R ¢ B0 REE 2 £ A

2000+

1000+ e R e

Fig. 8.

size is n = 8192 symbols, the number of layers increases from

1 to 64. Fig. 8(b) compares the feasible data storage region
for various attack probabilities between O-MSR and RS-MSR,

where the total number of symbols stored is 262 144.

Secure storage capacity comparison for m = |/n]. (a) p = 50%. (b) p = 40%. (c) p = 30%. (d) p = 20%. (e) p = 10%. (f) p = 0%.

8987

250000 -\
200000 TERIY IO .ohee e,
b=l
o
8 ¢
+ 150000 Foeeesena NG)
2 ; 5
2 i : .
E 0O-MSR\Code
»n . H
S 2
S 100000 | : DR ...
* :
50000 ERUSPURPRROOOE SUURPURTPUON: SRR
0 i : - ;
0 0.1 0.2 0.3 0.4 0.5 0.6

VI

% of nodes attacked

(b)

Storage capacity and feasible region comparison for m = |/n]. (a) For various m and p. (b) Feasible region comparison.

. CONCLUSION

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

We first present limitations of the existing storage system,
especially the decentralized storage system. We then ana-
8 lyze our proposed multi-layer code design and applications

8988

to distributed storage systems. We also derive the theoreti-
cal performance bound of the optimal multi-layer regenerating
code. Finally, we develop an optimal DSS in adversarial
attacks along with comprehensive simulation results.

REFERENCES

[1] Alied Market Research. (Apr. 2020). Cloud Storage Market Statistics:
2027. [Online]. Available: https://www.alliedmarketresearch.com/cloud-
storage-market

[2]1 Amazon Web Services (AWS)—Cloud Computing Services.

Available: https://aws.amazon.com

J. Benet. IPFS—Content Addressed, Versioned, P2P File System (Draft

3). Accessed: Jul. 24, 2014. [Online]. Available: https://github.com/ipfs/

ipfs/blob/master/papers/ipfs-cap2pfs/ipfs-p2p-file-system.pdf

Protocol Labs. (Aug. 14, 2017). Filecoin: A Decentralized Storage

Network. [Online]. Available: https:/filecoin.io/filecoin.pdf

[5] E. Zaghloul, T. Li, M. Mutka, and J. Ren, “Bitcoin and blockchain:
Security and privacy,” IEEE Internet Things J., vol. 7, no. 10,
pp. 10288-10313, Oct. 2020.

[6] Uncensorable Wikipedia on IPFS. Accessed: May 4, 2017. [Online].
Available: https://blog.ipfs.io/24-uncensorable-wikipedia/

[7] How the Catalan Government Uses IPFS to Sidestep Spain’s Legal

Block. Accessed: Sep. 29, 2017. [Online]. Available: https://news.

ycombinator.com/item?id=15367531

J. Zittrain, K. Albert, and L. Lessig, “Perma: Scoping and addressing the

problem of link and reference rot in legal citations,” Legal Inf. Manage.,

vol. 14, no. 2, pp. 88-99, 2014.

[9] S. Rhea et al., “Maintenance-free global data storage,” IEEE Internet

Comput., vol. 5, no. 5, pp. 40-49, Sep./Oct. 2001.

R. Bhagwan, K. Tati, Y.-C. Cheng, S. Savage, and G. M. Voelker, “Total

recall: System support for automated availability management,” in Proc.

Symp. Netw. Syst. Design Implement., 2004, pp. 337-350.

A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and

K. Ramchandran, “Network coding for distributed storage systems,”

IEEE Trans. Inf. Theory, vol. 56, pp. 45394551, Sep. 2010.

J. Ren, “On the structure of Hermitian codes and decoding for burst

errors,” IEEE Trans. Inf. Theory, vol. 50, no. 11, pp. 2850-2854,

Nov. 2004.

J. Li, T. Li, and J. Ren, “Beyond the MDS bound in distributed cloud

storage,” in Proc. IEEE INFOCOM, Apr./May 2014, pp. 307-315.

J. Li, T. Li, and J. Ren, “Beyond the MDS bound in distributed

cloud storage,” IEEE Trans. Inf. Theory, vol. 66, no. 7, pp. 3957-3975,

Jul. 2020.

J. Li, T. Li, and J. Ren, “Optimal construction of regenerating code

through rate-matching in hostile networks,” IEEE Trans. Inf. Theory,

vol. 63, no. 7, pp. 4414-4429, Jul. 2017.

[Online].

[3

[t}

[4

=

[8

[t

[10]

[11]

[12]

[13]

[14]

[15]

Jian Ren (Senior Member, IEEE) received the B.S.
and M.S. degrees in mathematics from Shaanxi
Normal University, Xi’an, China, in 1988 and 1991,
respectively, and the Ph.D. degree in EE from
Xidian University, Xi’an, in 1994.

He is a Professor with the Department of ECE,
Michigan State University, East Lansing, MI, USA.
His current research interests include cybersecurity,
cloud computing security, distributed data sharing
and storage, decentralized data management,
blockchain-based e-voting and Al security, and
Internet of Things.

Prof. Ren is a recipient of the U.S. National Science Foundation CAREER
Award in 2009. He served as the TPC Chair of IEEE ICNC’17, the
General Chair of ICNC’18, and the Executive Chair of ICNC’19 and
ICNC’20. He serves as an Associate Editor for IEEE TRANSACTIONS ON
MOBILE COMPUTING, IEEE INTERNET OF THINGS JOURNAL, and ACM
Transactions on Sensor Networks, and a Senior Associate Editor for IET
Communications.

IEEE INTERNET OF THINGS JOURNAL, VOL. 9, NO. 11, JUNE 1, 2022

Jian Li received the B.S. and M.S. degrees in elec-
trical engineering from Tsinghua University, Beijing,
China, in 2005 and 2008, respectively, and the Ph.D.
degree in electrical engineering from Michigan State
University, East Lansing, MI, USA, in 2015.

He is an Associate Professor with the School
of Electronic and Information Engineering, Beijing
Jiaotong University, Beijing. His current research
interests include network security, cloud storage,

T~ wireless sensor network in Internet of things,
privacy-preserving communications, and cognitive
networks.

Tongtong Li (Senior Member, IEEE) received the
Ph.D. degree in electrical engineering from Auburn
University, Auburn, AL, USA, in 2000.

From 2000 to 2002, she was with Bell
Laboratories, Denver, CO, USA, and had been work-
ing on the design and implementation of 3G and 4G
systems. Since 2002, she has been with Michigan
State University, East Lansing, MI, USA, where she
is currently a Professor. Her research interests fall
into the areas of wireless and wired communications,
wireless security, information theory, and statistical
signal processing, with applications in neuroscience.

Prof. Li is a recipient of a National Science Foundation CAREER Award
in 2008 for her research on efficient and reliable wireless communications.
She served as an Associate Editor for IEEE SIGNAL PROCESSING LETTERS
from 2007 to 2009 and IEEE TRANSACTIONS ON SIGNAL PROCESSING from
2012 to 2016, and an Editorial Board Member for EURASIP JOURNAL ON
WIRELESS COMMUNICATIONS AND NETWORKING from 2004 to 2011.

Matt W. Mutka (Fellow, IEEE) received the
B.S. degree in electrical engineering from the
University of Missouri—Rolla, Rolla, MO, USA, in
1979, the M.S. degree in electrical engineering from
Stanford University, Stanford, CA, USA, in 1980,
and the Ph.D. degree in computer sciences from
the University of Wisconsin—-Madison, Madison,
WI, USA, in 1988.
y He is a Professor with the faculty of the
f"; / Department of Computer Science and Engineering,
h Michigan State University (MSU), East Lansing, MI,
USA. He is currently serving as a Program Director with the National
Science Foundation, Alexandria, VI, USA, within the Division of Computer
and Networks Systems of the Directorate for Computer and Information
Science and Engineering. He has been a Visiting Scholar with the University
of Helsinki, Helsinki, Finland, and a member of Technical Staff with Bell
Laboratories, Denver, CO, USA. His current research interests include mobile
computing, sensor networking, and wireless networking.
Prof. Mutka was honored with the MSU Distinguished Faculty Award. He
served as the Chairperson of the MSU Department of Computer Science and
Engineering from 2007 to 2017.

Authorized licensed use limited to: Michigan State University. Downloaded on May 24,2022 at 23:59:31 UTC from IEEE Xplore. Restrictions apply.

