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RealPRNet: A Real-Time Phoneme-Recognized
Network for “Believable” Speech Animation
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Abstract—With the technology development, more and more
Internet of Things (IoT) devices with displays are making
“face-to-face” interaction through visualization a reality. To pro-
tect the privacy of users, communications can be represented
through avatars and use audio-driven real-time speech anima-
tion. However, if audio is the only available input, the quality
of the outcome relies heavily on real-time phoneme recogni-
tion, such as recognition accuracy and latency. This article
introduces a novel deep-learning-based real-time phoneme recog-
nition network (RealPRNet) scheme to leverage spatial and
temporal patterns in the input audio data. With featured long
short-term memory stack block and long short-term features,
RealPRNet can achieve super performance in phoneme recogni-
tion. Our comprehensive empirical results show that compared
to the state-of-the-art algorithms, RealPRNet can achieve 20%
phoneme error rate (PER) improvement and 4% block error
distance (BDE) improvement in the best case.

Index Terms—Deep-learning, Internet of Things (IoT),
phoneme recognition, real-time speech animation.

I. INTRODUCTION

THE RAPIDLY developing Internet of Things (IoT) tech-
nology is transforming our daily lifestyle. We are also

relying more and more on visual interactions and communi-
cations since images can convey more complex and diverse
information than text and voice. In application scenarios such
as unmanned supermarkets, customer service can provide
appropriate services to guests from thousands of kilometers
away through interaction devices. When the users need help,
even though automated question and answer bots already exist
that can handle most of the questions, the “face-to-face” com-
munications may provide a far better experience [1], [2] for
the customer than the audio-only customer service. While pro-
viding face-to-face communications experience, virtual avatar
technology also preserves the privacy and the participant par-
ties. In this kind of virtual conversation, the mouth movement
of the virtual avatar is an essential module. Human beings
are very sensitive to any facial artifacts, uncoordinated or
unsynchronized performance of virtual characters, which make
facial animation, particularly speech animation production,
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very challenging since animation involves simultaneous audio
recognition and mouth movement animation.

Realistic speech animation [3], [4] has been always
very compelling since it can provide the most immersive
experiences with high-fidelity human-like virtual characters.
However, the high cost involved in the production process and
the substantial data requirements, including audio and video,
are likely to create privacy issues.

For applications that accept lower realism effects but require
good privacy preservation, such as avatar-based online con-
ferences, anonymous alerts, and customer service, audio data
could become the only media available during the process.
In such scenarios, the virtual characters are required to mimic
mouth movement matching the voice input seamlessly, and this
is what is called believable speech animation. The “believ-
able” speech animation requires that the algorithm works,
under practical resource constraints, for all possible virtual
faces with various 3-D models and produces the synthesized
video with sufficient realism for users on the remote end to
feel comfortable.

The widespread use of NLP technologies, such as speech
recognition [5], [6] and speaker identification [7], demon-
strates that such a “believable” speech animation is achievable
by using only audio input [8]–[10]. In general, the audio input
is fragmented into small pieces called frames from where
features are extracted. Phoneme, which is the distinct unit
of sound, is predicted by using the extracted features and
then mapped into the corresponding static mouth shape, called
viseme (its counterpart in the visual domain [11]). In such
an audio-driven speech animation framework, the accuracy of
the phoneme recognition can directly affect the quality of the
speech animation.

With the latest advances in deep learning, the phoneme
recognition topic has been revisited using completely new
methodologies [12]. The advances in phoneme recognition
accuracy can lead to better speech animation. Compared to
the traditional models, such as the hidden Markov mod-
els (HMMs), deep-learning neural network (DNN)-based
approaches generally decrease the phoneme recognition error
rate by 10%.

For real-time applications, finding the balance between
latency and accuracy is critical, as indicated in the design phi-
losophy of RNN and LSTM. The temporal correlation between
neighbor audio frames can play a very significant role in
a recognition accuracy improvement. However, the phoneme
recognition accuracy improvement achieved by adding more
neighbor frames in the sliding window is at the cost of latency.
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Therefore, a crucial problem that needs to be addressed in
order to improve the real-time speech animation quality is
to find a phoneme recognition solution that can achieve the
best accuracy with reasonably low latency for real-time ani-
mation. In this article, we propose a novel deep neural network
scheme, called the real-time phoneme recognition network
(RealPRNet). With a carefully designed network architec-
ture that considers both temporal and spatial correlations,
RealPRNet predicts phoneme stream for a sliding window of
audio frames input. A novel concept, called the LSTM stack
block (LSB), is introduced to maximize the learning efficiency
of the temporal–spatial patterns (more details are covered in
the network design section).

To build an end-to-end audio-driven real-time believable
speech animation system, the RealPRNet is inserted into the
typical speech animation process that converts the audio input
into a recognized phoneme sequence and drives a facial anima-
tion module. Inspired by the JALI model [10] and properties
of the blend shape facial model, the animation is achieved by
mapping the recognized phoneme label to a set of parameters
to control four basic blend shapes that have hidden physical
correlation.

The major contributions of this article can be summarized
as follows.

1) We propose a novel neural network-based real-time
phoneme recognition scheme (RealPRNet).

2) We develop a real-time audio-driven 3-D speech anima-
tion production system.

3) We conduct a comprehensive evaluation to show that
the proposed RealPRNet scheme can achieve great
improvement over the state-of-the-art algorithms.

The remainder of this article is organized as follows: in
Section II, we describe the details of our animation produc-
tion system components and introduce the deep-learning-based
RealPRNet with our insight in Section III. We present an eval-
uation and experimental results in Section IV. In Section V, we
conclude our work and discuss possible directions for future
works.

II. RELATED WORK

A typical audio-driven speech animation uses viseme as an
intermediary. It can be seen as a combination of phoneme
recognition and phoneme-driven speech animation.

A. Phoneme Recognition

Phoneme recognition using audio’s fundamental
frequency [8] and HMM [13]–[17] has been an active
research topic for decades. However, the accuracy of these
traditional schemes is not sufficient for speech recognition and
speech animation production. The advances in deep learning
and neural networks have greatly enhanced the accuracy of
phoneme recognition [12], [18]–[20]. In [18], a feedforward
deep neural network model was proposed and achieved an
error rate of 23.71%. In [12], it was reported that a feedfor-
ward deep neural network architecture lowered the error rate
to 16.49%. In [20], a network architecture called CLDNN
that combines the convolutional neural network (CNN)

LSTM and fully connected DNN was proposed. It can
further improve the performance for 4%–6% compared to the
LSTM. In particular, around 39 different phonemes can be
recognized compared to the fundamental schemes [8], which
can recognize less than ten different phonemes. However,
these methods are all designed for offline situations without
latency constraints, which enable any features extraction
schemes to be used. In this article, we develop the RealPRNet
to achieve accurate real-time phoneme recognition.

B. Speech Animation

In [8], the audio input is fragmented into small pieces, called
frames, where fundamental frequency features are extracted
from. Phonemes are predicted by recognizing the vowels and
the basic fricative consonants from the features and then mapped
into the corresponding static animation, called viseme (its coun-
terpart in the visual domain [11]). In this frame-based processing
mechanism, the latency is negligible as it almost equals the
processing time of a single frame. However, a lack of consider-
ation on neighborhood context information during the process
may significantly limit the recognition accuracy and quality of
the generated animation as the system can only recognize basic
phonemes. In [9] and [10], a word-based processing mecha-
nism is adopted to achieve much higher animation quality. By
utilizing force alignment [21], phoneme transcription can be
extracted from an audio chunk that contains multiple words with
reasonably high accuracy. In [22], the neighboring phoneme
pronunciation transition, named co-articulation, was consid-
ered. However, the latency of the word-level duration becomes
unacceptable for real-time applications. In this article, we use
a slide window of frames to obtain the corresponding phoneme
at each timestamp. Our designed facial model addresses the
co-articulation problem by considering the duration of the cur-
rent phoneme’s articulation and the corresponding associated
phonemes before and after it.

III. SYSTEM COMPONENTS DESIGN

In a typical real-time audio-driven speech animation system,
the phoneme stream first is recognized from the audio input
and then map to the corresponding parameter stream to derive
the 3-D facial models.

Viseme is the visual mouth shape representation that has
been widely used in speech recognition and animation, as
it can be mapped directly from the phoneme. However, vice
versa is not true since multiple phonemes may be mapped to
the same viseme if they have similar mouth shapes during the
pronunciation, such as /b/ and /p/). It is important to realize
that so far, there is no common standard to regulate the viseme
classes [23], for example, [24] used 20 different visemes, [25]
used 26 different visemes, and [26] used 16 visemes, etc.

Fig. 1 gives a system overview of the proposed real-
time audio speech animation systems that correspond to the
phoneme stream {S, OW, LY} of vocabulary /slowly/. When
the system receives an audio signal, it is transformed into
the corresponding MFCCs features, which is the input of
the RealPRNet. The RealPRNet predicts the phoneme stream
and then maps it into the corresponding points (or blocks)
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Fig. 1. System overview of the proposed real-time audio only speech animation system corresponds to the phoneme stream {S, OW, IY} of vocabulary
/slowly/.

Fig. 2. Phoneme recognition system with buffers.

in the 2-D viseme field. The animation curve is shown in
Fig. 1 connects the points on the 2-D viseme field and gen-
erates a parameter stream that can drive the 3-D facial model
smoothly and seamlessly. To support real-time interactivities,
the latency between receiving audio input and outputting ani-
mation is required to be controlled below certain thresholds
(e.g., 200 ms [27], [28]) to ensure a believable and audi-
ence comfortable result. A buffer mechanism is adopted in
the system to dynamically determine the size of the sliding
window and ensure that the latency is within the required
threshold. The four buffers are input feature buffer B1, HMM
tied-state output buffer B2, output phoneme buffer B3, and
phoneme-selected buffer B4.

A. Input Features Extraction Component

We employ the general audio process pipeline to extract the
input audio features. When the raw audio signals are received
in the system, they are transformed into frequency-domain
signals, called MFCC, which is a data format that has been
widely applied in automatic speech recognition (ASR). It is
observed that the human voice is a combination of sound waves
at different frequencies. The MFCCs can balance the variation
of the sound change at different frequency levels. Generally,
there are 100 frames/s in audio, and each audio frame is 25 ms
with 15-ms overlap. For each audio frame, the first and the
second derivative components of the MFCCs are aggregated
to a vector that represents the single audio frame f . The input
feature xt at time t is transformed to the network feature ft at time
t surrounded by its forward and backward contextual vectors,
denoted as [ft−n, . . . , ft, . . . , ft+m]. The value of n represents
the number of audio frames before time t, and the value of m
represents the number of future audio frames. The integrated xt

is used to predict the phoneme label at time t. Thus, the value
selection of m directly impacts the latency, which is 10m ms. The
larger the value of m, the better potential recognition accuracy

but longer latency. When m = 0, no future frames are buffered to
introduce additional latency. However, the potential advantages
of context information have been taken into consideration to
improve the phoneme recognition performance.

B. Real-Time Phoneme Recognition Component Design

Real-time application systems need to be able to extract
the audio features with high accuracy and low latency. Our
proposed phoneme recognition scheme RealPRNet (described
in Section III) can ensure a high-accuracy real-time recog-
nition. The output of the RealPRNet is used as input to the
HMM tied-state decoder H to calculate the output phoneme P.
For the system to produce a smooth animation, the phoneme
recognition system needs to be able to output the predicted
phoneme with every A ms. Thus, a buffer mechanism is intro-
duced in the system. An overview of the phoneme recognition
system with buffers is shown in Fig. 2. All buffers in the figure
are fixed size first-in–first-out (FIFO) buffers.

In the first step, the input raw audio signal is transformed
into the network input feature ft every A ms time interval
(equal to the sampling interval), and ft is stored in the input
feature buffer B1. The transformation of the raw audio signal
to audio features causes the first delay d1 + e1, where d1
is the median calculation time and e1 is the corresponding
fluctuation time. In our experiment, time consumption by this
process is very stable and 100% less than A ms (10 ms in our
experiment) as shown in Fig. 3 (blue).

All the audio frame features in B1 are then used to construct
xt. The size of B1 depends on two things: 1) the selected values
m and n and 2) the RealPRNet time consumption d2 + e2 for
each prediction. To guarantee a smooth output, the following
inequality needs to be satisfied:

d2 + e2 ≤ br · A, br = 1, 2, 3, . . . (1)
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Fig. 3. Audio feature transformation time consumption distribution (blue),
network prediction time consumption distribution (orange).

br is the batch size used in the prediction progress. The neural
network can parallelly predict br outputs in one run with a
minimal increase in the computational overhead if br is a
small value (i.e., br = 10). This is because when br is small,
the input features’ data size is relatively small compared to
the RealPRNet’s parameters. There is no sensible difference to
today’s computational power (e.g., in our experiment, one RTX
2080 Ti graphics card has been used) when processes single or
br input features. The major time consumption is in data parsing
and transmission. The RealPRNet takes the input features from
B1 every br ·A ms and predicts br outputs [ht, ht−1, . . . ]. These
predicted outputs are stored in HMM tied-state buffer B2. There
are br sub-buffers in B1 with size m + n + 1 each and contents
ft−n−i, . . . , ft−i, . . . , ft+m−i. Because m forward audio frames
are used to construct x, the system latency is increased to
m ·A+br ·A ms. In our experiment, the value of br is 4, which
can ensure that (1) is satisfied in 99% of the cases. The network
time consumption distribution is shown in Fig. 3 (orange).

The neural network in our phoneme recognition system does
not directly predict phoneme labels but predicts HMM tied
states instead which is because the combination of the neural
network and HMM decoder can further improve the system
performance. Such a kind of recognition system structure can
be found in many related works [29], [30]. The predicted
HMM tied states in B2 are used as the input of the HMM tri-
phone decoder. For each time interval br ·A, the decoder takes
all the values in B2, calculates the corresponding phonemes
[Pt, . . . , Pt−br+1], and stores it in B3. The calculation time is
d3 + e3 and the size of B3 depends on the number of previous
states used to calculate [Pt, . . . , Pt−br+1]. The HMM decoder
improves the results by using the previously predicted tied
state together with ht to calculate the corresponding phoneme
Pt. However, the decoder should only use the tied state as a
reference rather than relying on it as in the speech recogni-
tion system because the phoneme-to-phoneme does not have a
strong inner logic relation as word-to-word. Thus, the decoder
is constructed with a bigram phoneme model, which focuses
on the acoustic part (signal-to-phoneme) of the system rather
than the language part (phoneme-to-phoneme) [12]. In our
experiment, the calculation time consumed in decoding is sta-
ble and 100% less than br·A. Thus, the overall latency from the
raw input audio signal to the corresponding output phoneme

Fig. 4. Phoneme selection for 2-D viseme field animation curve generation.

is (m + br) · A + D + et, where D = d1 + d2 + d3 and
et = e1 + e2 + e3.

B3 is the buffer that is used to control the final output of P
of the phoneme recognition system. This output phoneme with
a timestamp is stored into B3. The system continuously takes
the first phoneme from B3 and uses it as the input to the anima-
tion system every A ms time interval. If a predicted phoneme
with a timestamp has negative et, the system waits for A ms
before the de-queued output from B3. If a predicted phoneme
Pet with a timestamp has positive et and the buffer contains
no more phoneme, the system outputs the last phoneme and
stores Pet as the last phoneme in the buffer. Pet can be used
as an output if the next predicted phoneme also has a posi-
tive et. If not, the system drops Pet and then outputs the next
predicted phoneme after a time interval of A ms. With this
mechanism, the phoneme recognition system can have a stable
output stream with a time interval A ms, and the overall latency
from the raw input audio signal to the corresponding output
phoneme stream is (m + br)·A + D, where D = d1 + d2 + d3.
This stable output phoneme stream is stored in B4. The fol-
lowing pseudocode represents this process. The buffer is
B3, and output d_P is the output phoneme, which is going to
be stored in B4.

The animation subsystem takes data in B4 and uses it to
produce the corresponding speech animation.

For the final speech animation generation, the output
phoneme sequence of each time interval A ms from the
previous component needs to be further processed. B4 is used
to select the appropriate next phoneme frame for the anima-
tion curve generation. As shown in Fig. 4, the same phoneme
can occur in different frames. The size of B4 is the average
single phoneme pronunciation time in the audio frame. The
output phoneme of the recognition system is stored in this
buffer first. The phoneme pronunciation is dynamic progress,
which means that the viseme phoneme at the beginning of the
pronunciation is not the same as the corresponding phoneme
viseme as shown in Fig. 5. Thus, an appropriate phoneme
frame (for example, the phoneme frame can represent the
rightmost one in Fig. 5 in a sequence of phoneme /o/ frames)
should be selected from certain phoneme pronunciation frames
to calculate the complete viseme’s transformation time using
the animation curve generation. If the minimum recognizable
phoneme pronunciation time in the data set is prmin audio
frames and the length of the continuously predicted phoneme
in the buff is less than prmin, then the corresponding phoneme
will be replaced by the previous phoneme. The upcoming
phoneme section rules can be described as follows.

1) The same phonemes are continuously appended to the
buffer for at least prmin units.
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Fig. 5. Phoneme corresponding viseme at different frames during the pronunciation of phoneme /o/.

2) If the number of continuous phonemes is more than
prmin units and less than the size of B4, the appropriate
frame that represents the phoneme will be selected from
that part of the buffer.

3) If the number of the continuous phonemes is more than
the size of B4, all phonemes in the buffer will be used
to select the appropriate frame and no new frame will
be selected until the next different phoneme is appended
to the buffer.

C. Speech Animation Component Design

The speech animation component has been designed follow-
ing the JALI viseme field and the state-of-the-art procedural
lip-synchronization system [10]. The implementation in our
system is slightly different from the original JALI viseme field.
Most of the procedural systems, such as [10], [31], and [32],
which use the keyframe viseme to produce the final animation
have a similar problem, that is, the phoneme is mapped to one
fixed static viseme without any variation. Through our obser-
vation of human speech behaviors, visemes corresponding to a
phoneme may be slightly different in different situations. This
is true even when the current phoneme has a sufficiently long
pronunciation time to erase the co-articulation of the sound
caused by the previous phoneme pronunciation. For example,
the visemes that represent the phoneme /s/ pronounce differ-
ently in the things and false under the same speaking style.
Thus, the 2-D viseme field has been divided into different
blocks (20 blocks in our implementation), as shown in Fig. 6.
Each phoneme corresponds to a block region rather than a
static point in the 2-D field.

IV. NEURAL NETWORK DESIGN FOR REAL-TIME

PHONEME RECOGNITION

In recent years, neural network methods [33], [34] have
dominated the phoneme recognition field and have dra-
matically improved recognition performance. We design a
novel neural network architecture for our proposed real-time
phoneme recognition task. The overall network architecture
is shown in Fig. 7. The CNN layer takes xt as the input
and applies frequency modeling on the input features. The
n-dimensional vector output of CNN is passed into an n-
layer stack of LSTMs for parallel processing and temporal
modeling. The output is combined with ft to form an input to
additional LSTM layers for temporal modeling and then goes
through a fully connected layer. In the end, the HMM triphone
decoder is adopted to predict the phoneme label.

Fig. 6. 2-D viseme field with block index (left). The combination of the
jaw and lip parameters in the extreme (A, B, C, D) and regular cases (R)
visualized by the 3-D model viseme (right).

A. CNN Layer

CNN has demonstrated outstanding performance in audio-
related fields [34], [35]. The CNN layer is mainly used as a
frequency modeling layer. An important contribution of the
CNN layers is to reduce frequency variation. Based on the
observation that voice of different people contains different
ranges of frequencies even when they are speaking the same
utterance, the traditional GMM/HMM-based speech recogni-
tion systems use techniques to reduce the frequency variation
in the input feature, such as vocal tract length normalization
(VTLN) [36] and feature space maximum-likelihood linear
regression (fMLLR) [37]. It is reported recently [20] that CNN
can provide the same feature improvement to the audio feature.

CNN layers also play an important role in the temporal–
spatial domain [20]; here, spatial refers to frequency-domain
audio feature pattern detection and learning. The input feature
contains frequency information since each coefficient in Mel-
frequency cepstral is generated by passing through different
frequency filter banks. Each CNN filter can learn the different
frequency patterns from the input features during the training.
Our network architecture emphasizes these frequency patterns
in the input features by separately connecting the CNN output
features (CNNfout) of different CNN filters to different LSTM
in the LSB module. We use a 9 × 9 frequency (spatial)-
temporal filter in the first CNN and a 3×3 filter in the second
layer. The first layer has 256 output channels and the second
layer has 16 output channels. We set no pooling in both CNN
layers after observing that neither max nor average pooling
helps to improve the result.
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Fig. 7. Network architecture overview.

B. LSTM Stack Block

After frequency modeling is applied to CNN layers and the
CNN filters have learned the acoustic features from the input
feature, each CNN output channel produces the intermediate
features as shown in Fig. 7. These features are applied to a
parallel process of temporal modeling in LSB.

The CNNfout’s from different CNN channels pass (2) to dif-
ferent LSTM modules, called the LSTM tube (LT), which is
inside the LSB as shown in Fig. 7. The number of LTs inside
the LSB depends on the number of the last CNN layer output
channel, one LT for each CNN output channel. An LT is a
relatively small and independent LSTM network. The LSTM
has been proved to be advantageous on temporal modeling
because it has memory cells to remember the information on
previous features [19], [38]. Each output from different CNN
channels can be viewed as a derivative feature of the origi-
nal audio feature with the context within a sliding window.
Thus, separate temporal modeling is applied to each different
CNNfout. The CNNfout is passed to LT0, where “0” represents
the CNN filter with index 0, inside the LSB for independent
temporal modeling (3) and the output feature is Lt0. These
separate output features are aggregated together as the input
feature for the next LSTM layer (4)

CNNoutputs = {
Cfout,1, Cfout,2, . . . , Cfout,n

}
(2)

Ltn = FCL
(
LSTM

(
CNNfout,n

))
(3)

LSB
(
CNNoutputs

) = {Lt1, Lt2, . . . , Ltn}. (4)

In our network architecture, the LSB contains 16 LTs inside
and each LT includes two LSTM layers and one fully connected
layer. Each LSTM layer has 512 hidden units and a 0.3 dropout
rate, and each fully connected layer has 128 output units.

C. LSTM Layer

In [12], it is demonstrated that the LSTM layer has its
advantage in extracting temporal patterns in input feature space
as we mentioned in the LSB. The gate units in LSTM are
used to control the information flows inside the LSTM. The
input gate decides what information can be added to the cell
state. The forget gate decides what information needs to be
removed from the cell state, and the output gate decides what

information can be used in the output. Thus, the LSTM can
selectively “remember” the temporal features. After the LSB
performs the separate temporal modeling, we pass its output
to the LSTM layers for the unified temporal modeling with the
same logic. There are four LSTM layers, and each has 1024
hidden units, 512 output units, and a 0.2 dropout rate.

D. Fully Connected Layer

Following the state-of-the-art design of a typical deep learn-
ing network, we use the fully connected layer with softmax
activation as the last layer so that a fully connected layer can
provide the model with the ability to mix output signals from
all neurons in the previous layer and the softmax can shape
the output probabilities of each class so that the target class
has a higher probability. The fully connected layer has 1024
hidden units. The output is an 1896-dimension vector, which
represents the possibility of 1896 HMM-GMM tied states. The
HMM triphone decoder takes this as an input to predict the
final phoneme label.

E. Multiscale Features Addition

The idea of the multiscale feature addition was originally
explored in computer vision and also used in ASR-related
problems [35]. In a neural network, each layer focuses on
different input features, varies from general to specific con-
cepts. In ASR tasks, the lower layers (e.g., CNN layers in
RealPRNet) focus more on speaker adaptation, and higher
layers (e.g., LSTM layers in RealPRNet) focus more on dis-
crimination [39]. Thus, the input features of different layers
are complementarity, and the network’s performance improve-
ment has been observed by using these techniques [20]. In our
implementation, we have explored two feature addition strate-
gies, which are illustrated in Fig. 7 through line (1) and line
(2), where the line (1) represents the original frame feature ft
in xt combines with the LSB output and line (2) represents
the LSB output combines with the LSTM output.

The first feature addition explores the complementary
information in short-term feature ft and long-term feature
output feature from LSB (high-order representation of xt). xt is
aggregated by using ft and it’s context features [ft−n, . . . , ft−1]
and [ft+1, . . . , fm]. However, the original LSTM does not
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TABLE I
NETWORK PARAMETERS

consider their different values in prediction but takes all f ’s in
xt as consecutive features [40] and equally considers all the
f ’s in xt. This features addition emphasizes the importance of
ft in xt when predicts pt.

The second feature addition checks the LSB and the LSTM
outputs, the separated and unified complementary temporal
feature information. These features are the high-order feature
representations of xt with different pattern complementarity
since network layers focus on different information in xt with
these patterns.

In the evaluation part, the performance improvement by
multiscale feature addition has been explored, and the results
show a positive effect on the network performance.

V. EXPERIMENTAL RESULTS

In this section, we evaluate the performance of the system
and show that our proposed system can generate competitive
speech animation results in real-time using only audio input,
compared to a speech animation system using multimedia
(video and audio) or offline method. The performance of
the proposed system is evaluated in three areas: 1) the
RealPRNet phoneme recognition accuracy; 2) the buffer occu-
pancy dynamics to enable the real-time application; and 3) the
subjective and objective speech animation quality.

A. Experiment Setup

Our experimental results are conducted using the TIMIT
data set, which is widely used for phoneme recognition eval-
uation. It contains 6300 sentences, consisting of ten sentences
spoken by 630 speakers each from eight major dialect regions
of the United States. By following the standard TIMIT setup,
we use the standard TIMIT training set, 3696 utterances from
462 speakers, to train our network and evaluate it on the
TIMIT core test set, which consists of 192 utterances.

We use the TIMIT s5 recipe in Kaldi [41] to calculate
phoneme duration in each utterance through force alignment
technique and generate an HMM tied-state triphone model,
the corresponding 1896 tied states and their properties (i.e.,
state probability, transfer probability, corresponding phoneme,
etc.) We then use a triphone decoder with a bigram phone
model in our system at the end of the neural network archi-
tecture, which takes the tied-states stream as input and outputs
the predicted phoneme stream. The output ground truth y for
the corresponding input feature x in the training data set is
the index of the HMM tied states. Kaldi enabled audio to
HMM tied-states force alignment. For the network training,
ten epochs have been set as the minimum training epoch and

to enable early stop (if the validate loss change in epochs is
less than 0.001) during the training. The Adam optimizer was
used in the first epoch and the momentum stochastic gradient
descent (MSGD) optimizer for the rest epochs. The batch size
is 256 for the first epoch and 128 for the rest. The learning
rates are 0.01, 0.001, 0.0005, and 0.0001 for the first four
epochs, and 0.0001 for the rest of them. The weight initializa-
tion has been used for the CNN layer’s parameters, and the
0.3 dropout rate has been used for all the LSTM layers used
(detail in Table I). The ReLU activation was applied to most
of the layers except the final fully connected layer, which used
softmax.

The performance of the network with a different m in the
input feature was evaluated in this section. In our experiment,
value n in xt has been set to m + 1.

B. Error Metrics

1) Phoneme Error Rate: We first evaluate our proposed
RealPRNet with a standard metric. During the evalua-
tion, we first map the 60 phonemes to 39 and then cal-
culate the “Levenshtein distance” between the recognized
phoneme sequence and the ground-truth phoneme sequence.
The Levenshtein distance is a method to measure the differ-
ence between the two sequences. It calculates the minimum
number of single-character edits (including insertions, dele-
tions, and substitutions) required to change one sequence into
another. The number of edits required to change the recognized
phoneme sequence into the ground-truth phoneme sequence is
first calculated as the ratio between this minimum number of
edits and the whole phoneme sequence length. This ratio is
also known as the phoneme error ratio (PER). Under the real-
time situation, the phoneme is predicted for each audio frame.
Thus, the PER is calculated based on the audio frame-level
phoneme sequence in our evaluation.

2) Block Distance Error: The block distance error (BDE)
measures the average distance between the trajectory curve
in the viseme field produced by the recognized phoneme
sequence and the curve produced by the ground-truth phoneme
sequence. The basic unit used here is the short edge of the 2-D
viseme field block. For each audio frame, the corresponding
points on the two curves and the absolute distance between
these two points are calculated, also known as the Euclidean
distance. Then, the average distance between these two curves
at each time t was calculated

BDE = 1

T

T∑

0

Ppredict − Pgroundtruth (5)

where Ppredict is the predict phoneme position and Pgroundtruth
is the ground-truth position in the viseme filed. T is the total
number of time intervals.

C. Phoneme Recognition Performance

In the experiment, RealPRNet was compared to two other
phoneme recognition systems: 1) the 4-layer LSTM architec-
ture presented in [12] and 2) the CLDNN [20].

Since most of the existing related work uses offline recogni-
tion schemes, we first evaluate the offline phoneme recognition
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Fig. 8. PER per frames.

Fig. 9. Varies networks performance in PER.

capability of the baseline models. The best performance of the
offline phoneme recognition of the above models in the evalu-
ation using the TIMIT data set are 4-layer LSTM 18.63%,
CLDNN 18.30%, and RealPRNet 17.20%. The RealPRNet
outperformed other methods by 7.7% PER in the best case.

In Fig. 8, the real-time performance of these networks
was compared. The x-axis in the figure represents the num-
ber of frames used in a single xt, and the y-axis represents
the phoneme error rate (PER). It is interesting to observe
that LSTM has low performance when the temporal context
information is insufficient (i.e., when xt is aggregated by using
less than 10 f s), but its performance improvement continu-
ously with the increasing of the xt value until a sweat spot
(20 audio frame features in xt) is achieved. In the figure,
RealPRNet outperformed LSTM and for a minimum of 20%
and 10%, respectively. The combination of frequency and tem-
poral modeling enabled the RealPRNet a smooth performance
across various selections of the number of frames for xt.

To understand the advantage of RealPRNet further, we con-
sidered two additional variations: 1) RealPRNet without the
LSTM layer and 2) CLDNN and RealPRNet without long
short-term feature addition.

The RealPRNet applies two different types of temporal
modeling to xt, the separate temporal modeling performed
by LSB and unified temporal modeling performed by LSTM.
First, we explore the difference between these two tempo-
ral modelings that may affect the performance of the neural
networks. The LSTM has been removed from the RealPRNet,

Fig. 10. Output phoneme buffer (B3) occupancy.

Fig. 11. BDE comparison.

and the new network is named “RealPRNet-separate.” By
comparing RealPRNet-separately and CLDNN, the result in
Fig. 9 shows that the separate temporal modeling alone can-
not outperform the unified temporal modeling. Thus, the
performance of RealPRNet is benefited from when the two
temporal modelings are used together. The PER of RealPRNet
under different latency scenarios (different values m and n),
shown in Fig. 9, illustrates that it outperforms both temporal
modeling network architectures when used individually.

As illustrated in the previous section, the performance of the
network can be further improved by multiscale feature addition
techniques. We explore this technique with our RealPRNet and
compare its performance with the strongest baseline CLDNN
model with feature addition structure and also the previous
networks without feature addition. As shown in Fig. 9, the
performance of both RealPRNet and CLDNN with multiscale
feature addition has been improved. The additional short-term
feature gave complementary information to the intermediate
input features, which forced the networks to focus on the cur-
rent frame ft. Thus, RealPRNet outperforms other networks in
most of the latency scenarios. In particular, it can achieve an
additional 4% relative improvement in the worst scenario in
real-time PER evaluation.

D. Buffer Occupancy in Real-Time Application

The buffer mechanism is used to stabilize system output
and ensure that the delay of the output is within the tolerance
range. The occupancy status of B3 of our experiment in run-
time is shown in Fig. 10. In the ideal case, [Pt, . . . , Pt−br+1]
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Fig. 12. Speech animation visual comparison with human performance and current state-of-the-art.

is queued to B3 for every br × A ms, B3 dequeues the first
values for every A ms.

In our experiment, B3 occupancy status is recorded after
every dequeue, and the value of br is 4 in our experiment.
Thus, B3 occupancy sizes should be evenly distributed in
[0, 1, 2, 3]. 90% of our test cases are in this range, which
shows that our system can work in real-time situations. Most
of the errors in B3 occur in 0 and 4 (the number of occupied
units) because the computer program is unable to use the exact
A in each step during the runtime (e.g., the A fluctuated in a
range from 10.3 to 11 ms). Other cases are caused by compu-
tational fluctuations of other parts of the phoneme recognition
subsystems. This buffering mechanism ensures our proposed
scheme is much more efficient to the extent that it can be
implemented in real-time.

E. Animation Quality Assessment

In this section, we evaluate the quality of the output speech
animation of our system.

First, we compare the trajectory curve in the viseme field
produced by the recognized phoneme streams predicted by
various reference networks and RealPRNet with the trajec-
tory curve produced by the ground-truth model. The block
short edge length is used as a distance unit to calculate the
BDE between the recognized phoneme produced curve and the
ground-truth curve at each time instance. The result is shown
in Fig. 11, where the x-axis in the figure represents the number
of frames used in input features and the y-axis represents the
BDE in the basic unit. The RealPRNet also achieves the min-
imum error under different latency scenarios, which is 27%
or less than other networks. In addition to the numerical eval-
uation, we also organized a group consists of 30 participants
in total to watch our system-produced speech animation and
ask them whether they feel the animation is believable or not

(is the audio able to be synchronized with the 3-D model lip
movement animation)? 29 out of 30 participants believe the
audio has synchronized with the lip movement.

We also compare our result facial model’s viseme with the
current state-of-the-art’s and real human performance. We take
the viseme’s screenshots at the peak of each phoneme pronun-
ciation in an utterance to compare the results visually. As we
can see in Fig. 12, all results are comparable.

VI. CONCLUSION AND FURTHER DISCUSSION

In this article, we proposed an audio-driven believable
speech animation production system with a new phoneme
recognition neural network, called RealPRNet. The system can
produce a competitive real-time speech animation with only
raw audio input.

The RealPRNet has performed better than the strong base-
line model in phoneme recognition, and the speech animation
system is easy to be implemented in most of the existing vir-
tual avatars. The real-human-like speech animation needs a
lot of effort on the pretrain model with both video and audio
data, even post edit from the artist. Our framework focuses on
producing believable real-time speech animation with simple
implementation, which also gives the user high freedom for
online post effect editing.

For future work, we will consider the following issues:
first, emotions may cause different mouth shape representa-
tions and mouth movements even with the same utterance.
Knowledge of mouth movements under different emotions
makes a more believable speech animation. Second, a believ-
able speech animation involves the entire face movement,
which can also be impacted through emotion. Third, the 2-D
viseme field only contains two parameters to control jaw and
lip movement. For high-quality speech animation of movies or
AAA games, parameters (used to control the detailed mouth
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shapes) should be discussed in more detail for each phoneme.
Finally, we believe the tongue movement and visible parts of
teeth are also very important in speech animation. With a sim-
ilar mouth contour, different tongue and teeth statuses can also
be produced.

REFERENCES

[1] K. Williams, R. Herman, and D. Bontempo, “Comparing audio and video
data for rating communication,” Western J. Nurs. Res., vol. 35, no. 8,
pp. 1060–1073, 2013.

[2] N. Sulaiman, A. M. Muhammad, N. N. D. F. Ganapathy, Z. Khairuddin,
and S. Othman, “A comparison of students’ performances using audio
only and video media methods,” English Lang. Teach., vol. 10, no. 7,
pp. 210–215, 2017.

[3] F. Tao and C. Busso, “End-to-end audiovisual speech recognition system
with multitask learning,” IEEE Trans. Multimedia, vol. 23, pp. 1–11,
Feb. 2020.

[4] S. Taylor et al., “A deep learning approach for generalized speech
animation,” ACM Trans. Graph., vol. 36, no. 4, p. 93, 2017.

[5] M. Mehrabani, S. Bangalore, and B. Stern, “Personalized speech recog-
nition for Internet of Things,” in Proc. IEEE 2nd World Forum Internet
Things (WF-IoT), 2015, pp. 369–374.

[6] M. Dawodi, J. A. Baktash, T. Wada, N. Alam, and M. Z. Joya, “Dari
speech classification using deep convolutional neural network,” in Proc.
IEEE Int. IOT Electron. Mechatronics Conf. (IEMTRONICS), 2020,
pp. 1–4.

[7] M. La Mura and P. Lamberti, “Human-machine interaction personal-
ization: A review on gender and emotion recognition through speech
analysis,” in Proc. IEEE Int. Workshop Metrol. Ind. 4.0 IoT , 2020,
pp. 319–323.

[8] G. Llorach, A. Evans, J. Blat, G. Grimm, and V. Hohmann, “Web-
based live speech-driven lip-sync,” in Proc. 8th Int. Conf. Games Virtual
Worlds Serious Appl. (VS-GAMES), 2016, pp. 1–4.

[9] Y. Xu, A. W. Feng, S. Marsella, and A. Shapiro, “A practical and con-
figurable lip sync method for games,” in Proc. Motion Games, 2013,
pp. 131–140.

[10] P. Edwards, C. Landreth, E. Fiume, and K. Singh, “JALI: An animator-
centric viseme model for expressive lip synchronization,” ACM Trans.
Graph., vol. 35, no. 4, p. 127, 2016.

[11] C. G. Fisher, “Confusions among visually perceived consonants,”
J. Speech Hearing Res., vol. 11, no. 4, pp. 796–804, 1968.
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