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Abstract

The spiking activity of mitral cells (MC) in the olfactory bulb is a key attribute in olfac-
tory sensory information processing to downstream cortical areas. A more detailed
understanding of the modulation of MC spike statistics could shed light on mech-
anistic studies of olfactory bulb circuits and olfactory coding. We study the spike
response of a recently developed single-compartment biophysical MC model con-
taining seven known ionic currents and calcium dynamics subject to constant current
input with background white noise. We observe rich spiking dynamics even with con-
stant current input, including multimodal peaks in the interspike interval distribution
(ISI). Although weak-to-moderate background noise for a fixed current input does not
change the firing rate much, the spike dynamics can change dramatically, exhibiting
non-monotonic spike variability not commonly observed in standard neuron models.
We explain these dynamics with a phenomenological model of the ISI probability den-
sity function. Our study clarifies some of the complexities of MC spiking dynamics.

Keywords Olfactory bulb - Mitral cell - Interspike interval - White noise -
Fokker-Planck

1 Introduction

The spiking statistics and dynamics of neural models are crucial in theoretical inves-
tigations for how animals accurately and efficiently code sensory signals. This fact
has sparked numerous theoretical tools to quantify spiking behavior (Ermentrout and
Terman 2010; Gerstner and Kistler 2002). These mathematical tools have led to great
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advances in our understanding of sensory neural networks, but often require mak-
ing simplifying assumptions (e.g., low-dimensional state variables, stable periodic
dynamics, very weak or very strong noise). These limiting assumptions are easily vio-
lated when models incorporate biological realism, in which case, non-conventional or
systems specific approaches must be used to better understand model behavior.

Mitral cells (MC) are excitatory cells in the olfactory bulb that are responsible for
relaying odor information to downstream cortical regions. One of the most realistic
biophysical olfactory bulb MC models was developed by the Cleland lab (Li and Cle-
land 2013, 2017). Their high-dimensional multi-compartment model captured known
physiology of mammalian MC cells reported in experiments by several labs (Chen and
Shepherd 1997; Desmaisons et al. 1999; Balu et al. 2004). The Cleland model is ideal
for simulating MC behavior for a single instance of odor stimuli and accounts for dif-
ferent compartments (i.e., soma, spine, dendrite). Indeed, the olfactory bulb circuit has
fast dendrodendritic synaptic coupling (Rall et al. 1966) that a simple model cannot
fully capture. However, large-dimensional spatial models are less ideal for noise-
driven systems when averaging over realizations is necessary to assess spike statistics.
To this end, we have recently developed a modification of this model, removing spatial
aspects and collapsing the model to a single compartment (Craft et al. 2021). Like the
Cleland models, our model contains seven ionic currents (sodium, potassium, L-type
calcium, delayed rectifier, etc., see Methods) and 13 total state variables.

In this paper we study the spike statistics of our single-compartment MC model
(based on Li and Cleland (2013, 2017)) with background fluctuations. Our model
enables efficient yet biophysically complex simulations with which to analyze MC
spiking dynamics. Our prior use of this model in Craft et al. (2021) centered around
addressing how different modes of olfaction (inhale or ‘orthonasal’ versus exhale or
‘retronasal’) could manifest different operating regimes of the olfactory bulb network;
we applied the model to a specific experimental data set. The general behavior of
this MC model has not been investigated in detail. A natural first step is to consider
the behavior of our MC model subject to background fluctuations (i.e., white noise)
that is often used to mimic network and other random effects. We observe complex
spiking even with constant current input, including modulation of multimodal peaks
in the interspike interval distribution (ISI). With modest changes to input fluctuations
(noise), the spiking variability can change dramatically even though the firing rates do
not change much, exhibiting non-monotonic spike variability not commonly observed
in simple spiking neuron models. We explain these dynamics with a phenomenological
model of the ISI probability density function. This paper provides insights to some of
the complexities of MC spiking dynamics.

2 Results
2.1 Non-Standard Spiking Dynamics
The MC model we developed captures some real biological features exhibited in

experiments. To mimic slice experiment recordings of MC, we start by analyzing the
voltage traces of the MC model in response to step current injection (Fig. 1). For

@ Springer



The Effects of Background Noise on a Biophysical... Page3of20 107

a b
Zoomed-In
40. =130 uAlcm? 40
o 0
-40- -40
-80 i 2 3 4 5 8037 38 39 4
E 40 =125 puAlcm? E 40
PO o 0
Q a0 D -0
-~ =
S -80 i P 3 4 5 2 80—37 38 39 4
0. =122 uAlcm? 20
-40 -40
s s
-80 1 2 3 4 5 80—37 3.8 3.9 4
Time (s) Time (s)
1) "
0

Fig. 1 Single compartment MC model derived from a multi-compartment model captures known phys-
iology. The transient voltage dynamics from a rest state induced by a step increase of current injection
to /. a The voltage traces show a time delay to spiking that increases as the current injection value /
decreases, consistent with Chen and Shepherd (1997); Desmaisons et al. (1999); Balu et al. (2004) and
multi-compartment model by Li and Cleland (2013). b Zoomed-in view of the voltage trajectories shows
the number of spikes increases and tends to cluster with current injection value, consistent with experiments
reported in Balu et al. (2004) and multi-compartment model by Li and Cleland (2013). Shaded rectangle
highlights the approximate burst size. Sub-threshold oscillations are apparent (also see Fig. 2a)

3 different levels of current injection (I = 122, 125, 130 uA/cmz), Fig. la clearly
shows that the time to sustained spiking decreases as the current value is increased,
consistent with slice experiments in Balu et al. (2004). Zoomed-in plots of the voltages
(Fig. 1b) show clusters of spikes, with the number of spikes increasing with current
injection value, again consistent with experiments (Balu et al. 2004). Also the time
between clusters of spikes decreases with increasing current (Desmaisons et al. 1999).
Our model also has subthreshold voltage values that increases with current injection
value (not shown), which was reported in real MCs (Desmaisons et al. 1999). Note
that our model only qualitatively captures the physiology; the described effects are
more pronounced in Chen and Shepherd (1997); Desmaisons et al. (1999); Balu et al.
(2004).

Another hallmark of MC voltage dynamics is sub-threshold oscillations (Chen and
Shepherd 1997; Desmaisons et al. 1999), which were not as apparent in Fig. 1 because
of horizontal axis scale, but evident in Fig. 2a. Figure 2a shows ongoing voltage
traces (long after the transient dynamics) with fixed current injection values. Notice
that the temporal dynamics are complicated, with extended periods of quiescence
(no spiking), rapid spiking, as well as intermittent irregular spiking (all without any
background noise o = 0). The multiple timescales are certainly evident, making
standard mathematical analysis of the model difficult. These complex dynamics are
perhaps not surprising given that the MC model has 13 state variables.
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Fig. 2 Complex spiking behavior is not well-captured by (time-averaged) firing rate. a Ongoing voltage
traces (not transient, cf. Fig. 1) with various current values / and o = 0. The spiking behavior has multiple
timescales with periods of quiescence, rapid and intermittent spiking. b The Fl-curve (firing rate as a
function of input current) does not change much with these noise values. ¢ Same as b) but zoomed-in to
show the slight increase in firing rate with noise (Color figure online)

We next consider the ‘FI-curve’ (or transfer function) of the MC model, one of the
most common entities to characterize spiking behavior. This is the output firing rate
(total number of spikes divided by time) as a function of input current /. We consider
both the baseline case without noise (Fig. 2b,c in black) and with relatively small
noise (brown, red). Noise tends to increase the firing rates except when firing rates
are very large (Lindner et al. 2003). We observe the largest changes in firing rates
with increased noise where MC fires very little, consistent with many neuron models
(Lindner et al. 2003). The curves in Fig. 2b,c demonstrate that noise affects firing
rate in a relatively simple manner, like what is observed in simpler low-dimensional
spiking models, but firing rate (an average first- order statistic) does not account for
the aforementioned temporal dynamics in Fig. 2a.

A natural entity to characterize spike statistics is the distribution of time between
consecutive spikes, i.e., the ISI. The IST has been used in many contexts (Ostojic 2011),
including classifying firing patterns from experimental data (Sacerdote et al. 2006).
Multiple peaks are signatures of multiple timescales of spiking dynamics. Figure 3
shows simulations of the ISI densities for 3 fixed current values. As noise increases,
it is expected for the ISI densities to shift left as well as widen (Ostojic 2011) which
is seen for I € {120, 140} in Fig. 3a & c. However, with I = 130 uA/cm?, the ISI
has two prominent peaks that evolve into only one peak as noise increases (Fig. 3b).
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It should be noted that the ISI for I = 120 uA/cm? when o = 0 also appears to
have two peaks, however, these are not as well-separated as the two peaks seen for
I = 130 uA/cm? when o € {0, 0.5}. In these plots, simulating 500,000 spikes is
computationally feasible because of our single-compartment model development.

A central focus of this paper is that the firing variability as measured by o;sy
(standard deviation of IST) and the Coefficient of Variation (CV := oyg;/1u1s1) are
non-monotonic functions of input noise o for realistic odor-induced firing rates (Fig.
3e,f). For intermediate current values, (I € {128, 129, 130, 131} y,A/cmz), the firing
rates are in the range of what is reported in mammals’ MC in OB in vivo (Cury and
Uchida 2010; Barreiro et al. 2017; Shmuel et al. 2019; Ly et al. 2021). We observe
as input noise increases, the firing variability initially increases, reaches a maximum,
then slowly decreases for these intermediate current values. For I = 120 MA/cmz, the
standard deviation of the ISI o;g; is also non-monotonic with respect to input noise
o. However, when it is normalized by the mean via the CV, we see that it (I = 120)
is simply a monotonically increasing function. Notice that the change in oy g7 is large,
over an order of magnitude with the input noise values we used. Lastly for very high
firing rates (I = 140 uA/cm?), the dynamics are straight forward; uni-modal ISI with
monotonically increasing spike variability with input noise.

Even with weak to modest background noise values, the multimodal peaks in ISI
density can disappear (e.g., with I = 130 A/cm? in Fig. 3b). It is thus notable that
MC bursting activity with multiple timescales (as reported in slice recordings Balu
etal. (2004)) may not be operable in a network when background noise fluctuations are
prominent. We do not explore the theoretical shapes of the ISIs, which may certainly
have more or less modes than what is shown in Fig. 3a,b,c, (a bin size was set; other
bin-sizes will naturally give different shapes).

Standard neural spiking models like the leaky integrate-and-fire model do not
exhibit non-monotonic spiking behavior as a function of (uncorrelated) input noise
(Gerstner and Kistler 2002). Even when the synaptic input events have temporal corre-
lation and the spiking variability can go down with increasing input noise (see Fig. SA
of Ly and Tranchina (2009)), the relationship is often monotonic — a notable exception
is when there are a range of timescales (Nesse et al. 2008).

2.2 Capturing Results With a Phenomenological Model

In this section we will describe the prior observations with a simple phenomenological
that will enable us to dissect how the structure of the noise and intrinsic timescales
(i.e., multimodal ISI density) contribute to non-monotonic spiking variability.

In Appendix A, we highlight possible avenues for analysis and argue that a more
formal mathematical approach to describe the observations in the previous section
is likely infeasible, at least in our opinion. Although we have not discounted every
possible approach to analyze our MC model, describing these results likely requires a
phenomenological approach, especially considering there are 13 state variables with
a range of timescales.
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Fig.3 Simulation results show complex spike dynamics for physiological firing rates. a—c¢ The ISI density
for fixed input current and different values of input noise: ¢ = 0, 0.5, 1, 1.5 using histogram bin widths
of 0.01, 0.001, and 0.001 s, respectively. a (I = 120 ,bLA/CIIlz) and ¢ (I = 140 pcA/cmz) show expected
changes with noise: the distribution shifts to the left and widens, respectively, as o (Ostojic 2011). b
However, with I = 130 A/cm?, the ISI has 2 prominent peaks that eventually merges to 1 peak as noise
increases. The ISTin a) for o = 0 has peaks, but they are not as well-separated. d—f Summary ISI statistics
for more o values. d The firing rate (inverse of mean ISI) unsurprisingly increases with noise for all 7
(although modest for I = 140). e Std. dev. of ISI is a non-monotonic function of input noise o except for
large current: / = 140. f The CV of ISI (std. dev. over mean) is a non-monotonic function of input noise o
for intermediate current values (/ € {128, 129, 130, 131}), coinciding with physiological firing rates (Color

figure online)

We approximate the ISI with the random variable S, governed by the equations:

ds
I —fa/B(S) + G (8E®) (D
fa(S) = (S —s1)(S —52)(S —5y), withO0 < s1 < s, < 52 2)
or fp(S) = (§ —s%), with0 < s*. 3)

With weak noise, f4 results in a multimodal ISI with 2 peaks (Fig. 3b), fp is uni-modal
(Fig. 3c). The advantage here is that the PDF of §

Pr(S(t) € (s,s +ds)) := p(s,t)ds

can be analytically solved for, in the steady state:

TR
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The solution is (Risken 1989; Gardiner 1985):

N
p(s) = =

526) )

exp{_z fA/B(S) }

0 G2
1 _ oo exp{=2fg fasp(s)/5%(s") ds'}

where N™ 0 370)

& is constant, the density is simply:

s —s%\2 6
PB(s) = fexp ( z ) (6)

F
PAGs) = Nexp{— g(;)}

ds is the constant to normalize p. When

(N

where Fa(s) = st— —(s1 + 52 +su)s +2(s152 + 5154 +szsu)s —4(s1525,)s has local
mins at s1, 52 (global min is (are) the point(s) furthest from s,) and a local max at s,
by construction, and N~! = fooo exp (—FA (s)/&z) ds is the constant to normalize p.
This formulation will thus allow us to assess how the number of peaks and the structure
of the effective noise alters og and og /s — these are, respectively, the representations
of o757 and CV from the biophysical MC model.

For exposition purposes, we set the fixed points to be s1 = 4,50 = 8,5, = 6
for fa, and s* = 6 for fp. First consider the case of simple additive noise where &
does not depend on S. In the uni-modal case (), it is not surprising that the spiking
variability (o757, C'V) monotonically increase with & (Fig. 4c,d) because the PDF (Eq
(6)) is simply a Gaussian distribution with g = 6/ V2 (Fig. 4b). For the multimodal
case (f4), we find that for a large range of &, the spiking variability monotonically
decreases with noise o (Fig. 4c,d).

To capture the main results in Fig. 3, the results in the prior paragraph suggest
that the noise ¢ has to be multiplicative (i.e., depend on §) in this specific model.
Since increasing input noise generally results in a gradual diminishing of multimodal
peaks to uni-modal, we set ¢ (s) in Eq (5) to be an inverted triangle with minimum at
s = 3, and model increase in noise by an additive shift (see Fig. 5a). These choices are
arbitrary, but they nonetheless capture the changes in the ISI distribution (Fig. 5c,d)
observed in the biophysical model (Fig. 3e,f; the right peak broadens and flattens while
left peak’s height decreases as input noise increases).

Importantly, the uni-modal case ( fp) generally results in increases in spiking vari-
ability with noise, while the multimodal case ( f4) exhibits an increase followed by a
decrease in spiking variability as noise increase.

Taken together, we conclude that both the multimodal peaks in the ISI and the
(effective) multiplicative input noise (or ISI dependent) noise are crucial for the results
we observe in this specific model. However, it is important to note that this observation
is not a general fact, i.e., not all models with uni-modal ISI densities behave the same
way as this scalar phenomenological model with input noise. Specifically, Nesse et al.
(2008) used a simple Fitzhugh—Nagumo model with adaptation endowed with a large
range of timescales and found non-monotonic CV of spiking as input noise (and
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Fig. 4 Phenomenological model of ISI (Eqs (1)—(3)) with additive noise. a PDF of S with multiple stable
fixed points (multimodal), Eq (7). b PDF of S with one stable fixed point, Eq (6). ¢ Resulting std. dev. of ISI
(modeled with og) and CV d (modeled with o5/t g). The multimodal case (blackish) with f4 shows that
variability generally decreases while the uni-modal case (blueish) with fp always increases with increasing
input noise (Colour figure online)

applied current) increased, with uni-modal IST densities. Their work identifies the
range of timescales as a key signature in non-monotonic spiking CV, because when
their adaptation variable has only one timescale, the applied current (and perhaps
input noise) is monotonically related to CV. See Discussion below and Appendix A
for further context.

We close with remarks about the biophysical connection and the generality of the
phenomenological model results. In our specific model, the multiplicative noise & (s)
does not have a direct connection to the biophysical MC model. But note that it is very
common to have multiplicative noise in a reduced/transformed model from a larger
biophysical model that originally has additive noise in the voltage. For example, see
equation for phase-reduced model (Eq (A1)). We decided to use a state-dependent
o (s) for simplicity that did not require wholesale changes to the model above (Eq
(1)=(3)). In our simple model (Eq (1)—(3)) the effect of & (s) is to broaden and flatten
the right peak while lowering the height of the left peak while fixing the rest of the
parameters. However, note that other scalar models with additive noise can capture
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Fig. 5 Phenomenological model of ISI (Eqgs (1)—(3)) with multiplicative noise. a Simple structure of
multiplicative noise we chose (arbitrarily). b Resulting PDFs (Eq (5)). ¢ The std. dev. and CV. d The
non-monotonic spiking variability is apparent with both f4 (multimodal) and multiplicative noise, while
with fp (uni-modal) the resulting variability only increases (Color figure online)

the non-monotonic Std. Dev. and CV (increase followed by a decrease). For example,
consider a mixture of two Gaussian with five parameters:

N2
ps(s) = cfi(s) + (1= ) fo(s): fi(s) 1= a—j\l/ﬁexp - <S _sj>

After extensive numerical investigations, we found the simplest way to capture non-
monotonic Std. Dev. and CV (increase followed by a decrease) is via: with the same

sj, let 61 = o2 be the same additive input noise as in Fig. 4a,b, and let ¢ decrease:
c=0.65,0.3.

3 Discussion

This paper provides insights to MC spiking variability modulation that relies first on a
single-compartment reduction to pragmatically simulate large numbers of spikes and
then on a phenomenological framework to assess how input noise alters the output spike
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interval distribution. We find that the temporal dynamics of spiking can significantly
change with input noise and that the spiking variability (measured by ISI) does not
monotonically increase with biophysically realistic input noise level. These dynamics
may impact odor processing as MCs are an important type of relay cells in the olfactory
bulb that propagate odor information to downstream cortical brain regions. We remark
that tufted cells, which we did not explicitly consider here, are also known to have a
similar function. There is a recently developed tufted cell model (Viertel and Borisyuk
2019) that may be simple enough to analyze in the same vein as here, and might be
considered in future research.

Although we do not consider a comparison of an odor processing task between: 1)
MC model with a monotonically increasing relationship between spike variability and
input noise, and ii) MC model with a non-monotonic relationship, we highlight possible
implications of our results on OB odor processing. The input noise to MC comes from
numerous sources, including olfactory receptor neurons (ORNS) from upstream, and
within OB there are granule, periglomerular cells, and excitatory interneurons that
are presynaptic to MC. So how the input noise precisely varies for a specific odor
task is difficult to determine, but it is plausible that the input noise increases with
odor compared to spontaneous activity via ORN inputs (Friedrich and Laurent 2004)
— input noise could also change when there are multiple similar odors compared to
a single odor (Rospars et al. 2008), and in a multitude of ways. The MC spiking
variability across trials is important for olfactory processing — awake behaving rats
show reliable MC spiking for a given odor (Cury and Uchida 2010) with relatively
small trial variability (see Fig. 1D, 2A, 2C in Cury and Uchida (2010)). In zebrafish,
Friedrich and Laurent (2004) showed that MC spike variability (across trials) increased
after odor presentation followed by dramatic decreases, which coincided with better
odor identification as time proceeded from odor presentation. We did not consider
populations of MC, but Friedrich and Laurent (2004) found that decorrelation across
populations of MCs played a large role in odor identification, consistent with Wanner
and Friedrich (2020). Therefore, how MC spike variability modulates as input noise
increases, particularly when a decrease in MC spiking variability is possible with
increased input noise for physiologically relevant firing rates, could be important for
odor processing.

3.1 Analyzing Simulation Results

There is often a trade-off between mathematical analysis and biological realism in
model analysis, our results here focus on a realistic MC model. Some modelers have
used simple MC models ((Zhou et al. 2013; Marella and Ermentrout 2008, 2010)
and even very recently: (Barreiro et al. 2017; Pyzza et al. 2021; Patel and Rangan
2021)) that, despite the virtue of these works, could result in overlooking important
MC spiking behavior when the spike variability is crucial.

Describing the complexities of the ISI density in our single-cell MC model with a
quantitatively accurate reduction method is elusive, at least to the best of our knowl-
edge. With constant current input, phase reductions methods are commonly used to
analytically capture spiking dynamics when the time between spikes are relatively
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regular (which does not hold in the models here). Using such approaches to approx-
imate the dynamics with a single scalar variable would yield approximations where
the spiking variability monotonically increases with input noise (Ly and Ermentrout
2011) (see Appendix A), in contrast to our results. There have recently been a plethora
of advances in phase reduction theory using more than one state variable (i.e., ampli-
tude variables, not just phase) that can sometimes be viable for analysis (Wilson and
Ermentrout 2019; Ashwin et al. 2016; Wedgwood et al. 2013). For example, the stan-
dard assumptions of weak coupling (Wilson and Ermentrout 2019) and noise (Thomas
and Lindner 2014; Schwabedal and Pikovsky 2013) can be relaxed in some of these
formulations. However, the assumption of (nearly) periodic dynamics must still hold
in all of the methods mentioned. These contemporary phase reduction methods gen-
erally require two or more state variables which often rely on numerical simulations
anyway — we are unaware of any phase reduction theory where the approximate ISI
density is readily available.

Another common analytic approach to understanding the effects of weak noise on
(output) spiking in excitable systems is using the Arrhenius escape rate, i.e., potential
well models that have been successfully applied to many systems (Nesse et al. 2008;
Ly and Doiron 2017; Plesser and Gerstner 2000; DeVille et al. 2006; Lundstrom
et al. 2009; Kramers 1940). Many of the derived formulas for the ISI distribution (see
Appendix A for more details) in these prior works are too simplistic for our MC model.
However, using a separation of timescales, Nesse et al. (2008) were able to analytically
describe, with an Arrhenius-escape framework, the spiking dynamics of an excitable
Fitzhugh—Nagumo model with multiple timescales in the adaptation variable. Indeed,
Nesse et al. (2008) found a non-monotonic relationship of the CV with input noise
(in Fig. 2, see cross section with a fixed 7). Their approach applied to our MC model
would require identifying all of the effective timescales in our 13 variable model and
having a significant separation of timescales, then the slower variables are assumed
to be fixed (then slowly varying) and the faster variables are included in the potential
dynamics (see Ly and Doiron (2017) too, also see Appendix A for more details).
The viability and the accuracy of this approach for capturing our results is an open
question but beyond the scope of this current study. Our description of this particular
non-monotonic relationship of escape rate (or spiking) variability with input noise
in a large- dimensional model compliments the results of Nesse et al. (2008) as an
understudied phenomena not observed in standard/simple spiking models.

The result that the spiking variability is non-monotonic and maximal at an inter-
mediate input noise value (for physiological firing rates) might seem related to the
stochastic resonance phenomena that has been observed and analyzed in many areas
of science (Gammaitoni et al. 1998). Stochastic resonance refers to an optimal (max-
imum) response (i.e., firing or signal to noise) at an intermediate noise level (Lindner
2002); or the related coherence resonance where there is an optimal frequency of
sinusoidal input to illicit maximum responses (Reinker et al. 2003, 2006; Lindner
2002). Firing rate response is different than spiking variability as measured by o5y
and CV. Although note that Lindner (2002) showed an optimal level of input noise
could minimize CV in a Fitzhugh—Nagumo model, which is the opposite of what we
observe here (also see Appendix A).
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Table 1 Description of model parameters and values. Each of these values is the same as defined by Li and
Cleland (2013, 2017); see Craft et al. (2021) for the same reduction. One minor difference with Craft et al.
(2021)isthat gpg = 15 mS/cm? here, but was set to gpr =75 mS/cm? in Craft et al. (2021)

Resistance and capacitance

Description
Membrane resistance
Membrane capacitance
lonic currents
Description
Fast, Spike-generating sodium current
Persistent sodium Current
Potassium delayed rectifier
Fast-Activating Transient Potassium Current
Slow-Inactivating Transient Potassium Current
L-type Calcium Current
Ca2+—Dependent Potassium Current
Reversal Potentials
Description
Leak Current Reversal Potential
Sodium Reversal Potential

Potassium Reversal Potential
Calcium Reversal Potential

Calcium Dynamics
Description

Perimembrane Thickness

Boltzmann Constant * Temperature / Faraday Constant

Ca?* Removal Rate
Intracellular Ca2+ Concentration

Ca?t Resting Concentration

Variable
Rm
Cm

Variable
INa
INap
Ipr

Iz

Iks
IcaL
IxCa

Variable
EL

ENa

Ex

Ecq

Variable
w
RT

F
TCa
[Ca®*]
[C32+ Jrest

Value
30kS2/cm?
1.2 uFlem?

Max Conduct. Value (mS/cmz)

8Na = 120
gNap = 0.42
gpR =15
ga =10
gKs = 84
gcaL = 0.85
8KCa =5
Value (mV)
-60

45

-80

RT 10

§F 108 (i)

Value

1 micron
26.55mV
10ms
Dynamic
0.05 pemol/1

Although we have observed a non-monotonic relationship between simple uncor-
related white noise input and output spiking variability (i.e., CV), note that there
are other studies that have described dependence of CV on more complicated input
types (e.g., with temporal correlation or adaptation and other features (Schwalger and
Schimansky-Geier 2008; Schwabedal and Pikovsky 2013)). We have considered a spe-
cific biological model for an important olfactory bulb cell, in contrast to these other
papers that have analyzed general spiking models with some attributes — whether they
are directly related to this paper is unlikely in our opinion, but could be explored in
future research. Beyond the ISI, there are other statistical measures of a spike train,
such as the autocorrelation and power spectrum that could be unrelated to the ISI

histogram (see Appendix B).
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3.2 Limitations

There are several limitations of the work here. First, in the actual neural network,
MCs are known to be coupled to other specific cells in the bulb (e.g., granule and
periglomerular cells and other excitatory interneurons) and receive feedback input
from piriform cortex. Related to this point, stochastic inputs can at times have more
complex structure than white noise, even when considering an average over many
cells. The synaptic coupling in the olfactory bulb is distinct from other neural net-
works, mediated by dendrodendritic interactions that results in faster coupling than
the standard axon-to-dendrite coupling. These and other physiological details could
change our results, at least quantitatively. Considering such extensions is an interesting
avenue for future work.

4 Material and Methods

See GitHub page https://github.com/michellecraft64/MCuncoup for freely available
code simulating the models in this paper.

Our MC model is based on a multi-compartment model developed by the Cleland
Lab Li and Cleland (2013, 2017), where all compartments (soma, dendrite, axons,
spin) are combined into a single compartment, as in Craft et al. (2021). All parameters
and function for intrinsic ionic currents and their gating variables are the same as in
Li and Cleland (2013, 2017) except the maximal conductance, which is set to be the
sum of all maximal conductance values from all compartments. Excluding the many
auxiliary functions, there are a total of 13 state variables (ODEs).

dv 1
Cn— =1 = 2= (V= EL) = ) hon,j + 0&(0), ®)
m B
J
Lion,j = gim"h§(V — Ej), ©)
dX;
—F=ax (1= X)) = Bx; X (10)
d[Ca** 0.05 — [Ca’t
T rewseury + SR (11)

The variable X (Eq (11)) generically represents 11 different gating variables for the
seven different ionic currents (see Table 1), and the transition rates «, 8 can depend
onV, [Ca2+], etc. (see Table 2 for gating variable equations). Note, Inap current is not
represented by Eq (11) since itis defined by m = ms. (V). The noise level is measured
by o > 0, and £(¢) is white noise with (§(¢)) = 0 and (§()&(t)) = 8(t —t').
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Appendix A Viability of Alternative Approaches

A common approach to reduce the number of state variables in describing (regular)
spiking is to apply a phase reduction, which seems appealing because the results hold
for relatively weak noise forcing where firing rates do not vary much. This motivated
us to analyze the bifurcation between quiescence and spiking (using XPP-AUTO
(Ermentrout 2002; Doedel 1981)), in the noiseless case (Fig. 6a). We see that the
stable rest state loses stability via a saddle-node on invariant circle (SNIC) bifurcation
as the applied current increases. However, we do not find actual periodic solutions
for relevant firing rates with which to calculate commonly used entities for analysis
like the phase-resetting curve (PRC). Curiously, the bifurcation diagram shows stable
period solutions (green dots) that are interlaced with unstable periodic solutions. Figure
6b shows that even with I,p, = 144 wA/ecm? where the diagram (Fig. 6a) suggests
there is a well-behaved periodic solution, the voltage (and other variables) are not
strictly periodic. Note that with / = 144, the firing rates are large (91.13 Hz) and not
physiologically relevant. Also, for I = 144 although the PRC is numerically calculable
(Fig. 6¢), the rather large negative region does not resemble canonical PRCs associated
with a SNIC (Rinzel and Ermentrout 1989; Ermentrout 1996).
Note that in a standard phase-reduced scalar model (Ermentrout and Terman 2010):

do o’
2 =9 + 7A (®)A(O®) + 0 A(B)E(2) (A1)

the ISI density can be approximated (assuming weak noise) via (Ly and Ermentrout
2011):

1 2020\ 2
1 (r- 1 +259)

exp | — . (A2)
0./27 fot AZ(s)ds

Jist0= 202 [ A2(s) dx
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Fig.6 Dynamics of noiseless MC model: phase reduction assumptions violated. a Bifurcation diagram of
voltage varying I shows SNIC at onset of spiking. b The voltage traces in Fig.2a are not strictly periodic,
even for an ideal well-behaved / value. For unrealistically high firing rates (/ = 144 wA/em?, firing
rate: 91.13Hz), we see the system is not periodic despite the bifurcation diagram suggesting it should be.
The infinitesimal phase-resetting curve can be numerically calculated with XPP (Ermentrout 2002); notice
that the negative region is rather large, not resembling canonical PRCs synonymous with a SNIC (Rinzel
and Ermentrout 1989; Ermentrout 1996). This all suggests phase reduction descriptions would likely be
inadequate to capture the observed phenomena in the regimes we are interested in (i.e., smaller / with
physiological firing rates) (Color figure online)

Since the formula closely resembles a normal distribution, the o7 g7 generally increases
as o /. Even though there is multiplicative noise: o A(®), these models would not
help describe observations in Fig. 3.

Another common approach to model analysis with weak noise is use a potential
well: ”fi—‘t/ = —U'(V) 4+ 0&(t), where U is the potential function, either principally
derived from the system (simple) or ad hoc (high-dimensional). For example, for the
leaky-integrate-and-fire model, U (V) « %(V — V)2 and V has a stable fixed point
at the global minimum V = V. This approach was pioneered in physics by Kramers
(1940) and has been applied to several neural models where ‘exiting” from the potential
well from crossing a threshold is spiking. The rate of spiking is often e’U/"z, which
is not directly related to spiking variability. The signal-to-noise ratio (SNR) in these
systems, and in other applications of stochastic resonance, often have a maximal
SNR value for an intermediate level of noise (Gammaitoni et al. 1998). However, this
dynamic is associated with a minimum variability value in the denominator (ignoring
the dynamics of the signal in the numerator) of SNR, rather than a maximal spiking
variability for intermediate input noise level, as we have observed in the MC model.

Whether the potential well or ‘Arrhenius escape’ approach by Nesse et al. (2008)
for a low-dimensional Fitzhugh—-Nagumo model (with 1 activity variable x and a set
of identical adaptation variables H endowed with multiple timescales that depend
on x) could be successfully applied to our MC model is an open question. Nesse
et al. (2008) exploited a separation of timescales, the slow variable was fixed and the
mean first passage time (or escape) T could be calculated (in the fast variable) and
set to the inverse of the mean firing rate: A(H(¢)) = 1/T (H(t)). The ISI density is
approximated with:

p(t) = A(H (1))e™ Jo HHE A
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we see how the slow variation in H affects p (¢). This framework successfully described
the non-monotonic spiking dynamics (in the CV at least) in their model. As previously
mentioned in the Discussion, an analogous approach would require identifying all of
the effective timescales in our 13 variable model and having a significant separation
of timescales when the neuron is excitable. Even if the slow variables are frozen,
one would still have to calculate the mean first passage time with the remaining fast
variables, which is generally not feasible unless the resulting dimension is small.
Solving for the mean first passage time requires solving an ODE system derived from
the backward Fokker—Planck equation, a PDE with the number of dimensions equal
to the number of state variables (Gardiner 1985; Risken 1989). The viability and the
accuracy of this approach for capturing our results is an open question but beyond the
scope of this current study.

Appendix B Other Spike Statistics

We have focused on the ISI distribution, but there are other commonly used entities
to characterize neural spike trains. For instance, the autocorrelation function (AC F)
and power spectrum (P), defined below, are commonly used and can be unrelated to
the IST, in particular, when the system does not reset after a spike. Letting R(¢) denote
the spike train consisting of 0’s and 1’s, the (normalized) autocorrelation function is:

ACF(@) = (B [R( + DR@)] ~ E[ROI) /ACF©) (B3)

and the power spectrum:

Pw) = <‘/ACF(t)e_i2”“” dt‘z)/P(O) (B4)

Figure 7 shows these entities for the biophysical MC model with various applied
current and input noise values.

With I = 120 uA/cm?, ACF(1) is relatively flat for these input noise values,
while P(w) changes from having peaks at regularly spaced intervals with no noise
(black) to being relatively flat with & > 0. With I = 130 uA/cm?, AC F(t) has local
maxima at irregularly spaced t with no noise (black) that flatten out as input noise
increases; the P (w) is similar to / = 120, A /cm? but the curves have smaller values
compared to / = 120. With I = 140 uA/cm?, AC F(t) indicates relatively regular
spiking, although increased input noise shifts and broadens the peaks (same for P (w)).
The flatter ACF with I = 120 compared to larger / indicates that the spiking has
less temporal regularity, which is not surprising. For a given value of I (i.e., a row in
Fig. 7), increasing input noise flattens the AC F'(t) and shifts and/or diminishes peaks
(local max), and for P(w) input noise can broaden/shift/diminish peaks. Overall, the
effects of input noise are nonlinear and highly dependent on /.

The ACF and P were plotted using built-in functions in MATLAB, and there
appears to be slight numerical round-off errors in the ACF, e.g., between the peaks
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Fig.7 The autocorrelation function (Eq (B3)) and power spectrum (Eq (B4)) of the MC model. Three values
of input current: I = 120 uA/cm? in a—¢, I = 130 uA/em? in d—f, I = 140 nA/cm? in g—i, with each
panel showing the effects of increasing input noise . The effects of input noise are nonlinear and highly
dependent on / (Color figure online)

in Fig. 7g, ACF = 0, and likely in the P. Nevertheless, these plots given insight to
some dynamics of various spike trains.
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