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Abstract. This paper considers the basic problem of scheduling jobs
online with preemption to maximize the number of jobs completed by
their deadline on m identical machines. The main result is an O(1) com-
petitive deterministic algorithm for any number of machines m > 1.
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1 Introduction

We consider the basic problem of preemptively scheduling jobs that arrive online
with sizes and deadlines on m identical machines so as to maximize the number
of jobs that complete by their deadline.

Definition 1 (Throughput Maximization). Let J be a collection of jobs
such that each j ∈ J has a release time rj, a processing time (or size) xj, and a
deadline dj. The jobs arrive online at their release times, at which the scheduler
becomes aware of job j and its xj and dj.

At each moment of time, the scheduler can specify up to m released jobs to
run, and the remaining processing time of the jobs that are run is decreased
at a unit rate (so we assume that the online scheduler is allowed to produce a
migratory schedule.) A job is completed if its remaining processing time drops
to zero by the deadline of that job. The objective is to maximize the number of
completed jobs.
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K. Aardal and L. Sanitá (Eds.): IPCO 2022, LNCS 13265, pp. 402–414, 2022.
https://doi.org/10.1007/978-3-031-06901-7_30



Throughput Maximization on Identical Machines 403

A key concept is the laxity of a job j, which is �j = (dj − rj) − xj , that is,
the maximum amount of time we can not run job j and still possibly complete
it.

We measure the performance of our algorithm by the competitive ratio, which
is the maximum over all instances of the ratio of the objective value of our
algorithm to the objective value of the optimal offline schedule (Opt) that is
aware of all jobs in advance.

This problem is well understood for the m = 1 machine case. No O(1)-
competitive deterministic algorithm is possible [2], but there is a randomized
algorithm that is O(1)-competitive against an oblivious adversary [9], and there
is a scalable (O(1 + ε)-speed O(1/ε)-competitive) deterministic algorithm [7].
The scalability result in [7] was extended to the case of m > 1 machines in [11].

Whether an O(1)-competitive algorithm exists for m > 1 machines has been
open for twenty years. Previous results for the multiple machines setting require
resource augmentation or assume that all jobs have high laxity [5,11].

The main issue issue in removing these assumptions is determining which
machine to assign a job to. If an online algorithm could determine which machine
each job was assigned to in Opt, we could obtain an O(1)-competitive algorithm
for m > 1 machines by a relatively straight-forward adaptation of the results
from [9]. However, if the online algorithm ends up assigning some jobs to different
machines than Opt, then comparing the number of completed jobs is challenging.
Further, if jobs have small laxity, then the algorithm can be severely penalized
for small mistakes in this assignment. One way to view the speed augmentation
(or high laxity assumption) analyses in [5,11] is that the speed augmentation
assumption allows one to avoid having to address this issue in the analyses.

1.1 Our Results

Our main result is an O(1)-competitive deterministic algorithm for Throughput
Maximization on m > 1 machines.

Theorem 1. For all m > 1, there exists a deterministic O(1)-competitive algo-
rithm for Throughput Maximization on m machines.

We summarize our results and prior work in Table 1. Interestingly, on a single
machine there is no constant competitive deterministic algorithm, yet a random-
ized algorithm exists with constant competitive ratio. Our work shows that once
more than one machine is considered, then determinism is sufficient to get a
O(1)-competitive online algorithm.

1.2 Scheduling Policies

We give some basic definitions and notations about scheduling policies.
A job j is feasible at time t (with respect to some schedule) if it can still be

feasibly completed, so xj(t) > 0 and t+xj(t) ≤ dj , where xj(t) is the remaining
processing time of job j at time t (with respect to the same schedule.)
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Table 1. Competitiveness results

Deterministic Randomized Speed Augmentation

m = 1 [2] ω(1) [9] O(1) O(1 + ε)-speed O(1/ε)-competitive [7]

m > 1 O(1) [This paper] O(1) [This paper] O(1 + ε)-speed O(1/ε)-competitive [11]

A schedule S of jobs J is defined by a map from time/machine pairs (t, i) to
a feasible job j that is run on machine i at time t, with the constraint that no
job can be run one two different machines at the same time. We conflate S with
the scheduling policy as well as the set of jobs completed by the schedule. Thus,
the objective value achieved by this schedule is |S|.

A schedule is non-migratory if for every job j there exists a machine i such
that if j is run at time t then j is run on machine i. Otherwise the schedule is
migratory.

If S is a scheduling algorithm, then S(J,m) denotes the schedule that results
from running S on instance J on m machines. Similarly, Opt(J,m) denotes
the optimal schedule on instance J on m machines. We will sometimes omit
the J and/or the m if they are clear from context. Sometimes we will abuse
notation and let Opt denote a nearly-optimal schedule that additionally has
some desirable structural property.

1.3 Algorithms and Technical Overview

A simple consequence of the results in [8] and [9] is an O(1)-competitive ran-
domized algorithm in the case that m = O(1). Thus we concentrate on the case
that m is large. We also observe that since there is an O(1)-approximate non-
migratory schedule [8], changing the number of machines by an O(1) factor does
not change the optimal objective value by more than an O(1) factor. This is
because we can always take an optimal non-migratory schedule on m machines
and create a new schedule on m/c machines whose objective value decreases by
at most a factor of c, by keeping the m/c machines that complete the most jobs.

These observations about the structure of near-optimal schedules allow us
to design a O(1)-competitive algorithm that is a combination of various deter-
ministic algorithms. In particular, on an instance J , our algorithm, FinalAlg,
will run a deterministic algorithm, LMNY, on m/3 machines on the subinstance
Jhi = {j ∈ J | �j > xj} of high laxity jobs, a deterministic algorithm SRPT
on m/3 machines on the subinstance Jlo = {j ∈ J | �j ≤ xj} of low laxity jobs,
and a deterministic algorithm MLax on m/3 machines on the subinstance Jlo

of low laxity jobs. Note that we run SRPT and MLax on the same jobs. To
achieve this, if both algorithms decide to run the same job j, then the algorithm
in which j has shorter remaining processing time actually runs job j, and the
other simulates running j.

We will eventually show that for all instances, at least one of these three
algorithms is O(1)-competitive, from which our main result will follow. Roughly,
each of the three algorithms is responsible for a different part of Opt.
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Our main theorem about FinalAlg is the following:

Theorem 2. For any m ≥ 48, FinalAlg is a O(1)-competitive deterministic
algorithm for Throughput Maximization on m machines.

We now discuss these three component algorithms of FinalAlg.

LMNY. The algorithm LMNY is the algorithm from [11] with the following
guarantee.

Lemma 3. [11] For any number of machines m, and any job instance J ,
LMNY is an O(1)-competitive deterministic algorithm on the instance Jhi.

SRPT. The algorithm SRPT is the standard shortest remaining processing
time algorithm, modified to only run jobs that are feasible.

Definition 2 (SRPT). At each time, run the m feasible jobs with shortest
remaining processing time. If there are less than m feasible jobs, then all feasible
jobs are run.

We will show that SRPT is competitive with the low laxity jobs completed
in Opt that are not preempted in Opt.

MLax. The final, most challenging, component algorithm of FinalAlg is
MLax, which intuitively we want to be competitive on low-laxity jobs in Opt
that are preempted.

To better understand the challenge of achieving this goal, consider m = 1
and an instance of disagreeable jobs. A set of jobs is disagreeable if, for any two
jobs j and k, if j has an earlier release date than k, it also has a later deadline
than k. Further, suppose all but one job in Opt is preempted and completed at
a later time.

To be competitive, MLax must preempt almost all the jobs that it completes,
but cannot afford to abandon too many jobs that it preempts. Because the jobs
have low laxity, this can be challenging as it can only preempt each job for a
small amount of time, and its hard to know which of the many options is the
“right” job to preempt for. This issue was resolved in [9] for the case of m = 1
machine, but the issue gets more challenging when m > 1, because we also have
to choose the “right” machine for each job.

We now describe the algorithm MLax. Let α be a sufficiently large constant
(chosen later.) MLax maintains m stacks (last-in-first-out data structures) of
jobs (one per machine), H1, . . . , Hm. The stacks are initially empty. At all times,
MLax runs the top job of stack Hi on machine i. We define the frontier F to
be the set consisting of the top job of each stack (i.e. all currently running jobs.)
It remains to describe how the Hi’s are updated.

There are two types of events that cause MLax to update the Hi’s: reaching
a job’s pseudo-release time (defined below) or completing a job.
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Definition 3 (Viable Jobs and Pseudo-Release Time). The pseudo-
release time (if it exists) r̃j of job j is the earliest time in [rj , rj + �j

2 ] such
that there are at least 7

8m jobs j′ on the frontier satisfying αxj′ ≥ �j.
We say a job j is viable if r̃j exists and non-viable otherwise.

At job j’s pseudo-release time (note r̃j can be determined online by MLax),
MLax does the following:

a) If there exists a stack whose top job j′ satisfies αxj ≤ �j′ , then push j onto
any such stack.

b) Else if there exist at least 3
4m stacks whose second-top job j′′ satisfies αxj ≤

�j′′ and further some such stack has top job j′ satisfying �j > �j′ , then on
such a stack with minimum �j′ , replace its top job j′ by j.

While the replacement operation in step b can be implemented as a pop and
then push, we view it as a separate operation for analysis purposes. To handle
corner cases in these descriptions, one can assume that there is a job with infinite
size/laxity on the bottom of each Hi.

When MLax completes a job j that was on stack Hi, MLax does the fol-
lowing:

c) Pop j off of stack Hi.
d) Keep popping Hi until the top job of Hi is feasible.

Analysis Sketch. There are three main steps in proving Theorem 2 to show
FinalAlg is O(1)-competitive:

– In Sect. 2, we show how to modify the optimal schedule to obtain certain
structural properties that facilitate the comparison with SRPT and MLax.

– In Sect. 3, we show that SRPT is competitive with the low-laxity, non-viable
jobs. Intuitively, the jobs that MLax is running that prevent a job j from
becoming viable are so much smaller than job j, and they provide a witness
that SRPT must also be working on jobs much smaller than j.

– In Sect. 4, we show that SRPT and MLax together are competitive with the
low-laxity, viable jobs. First, we show that SRPT is competitive with the
number of non-preempted jobs in Opt. We then essentially show that MLax
is competitive with the number of preempted jobs in Opt. The key component
in the design of MLax is the condition that a job j won’t replace a job on
the frontier unless at there are at least 3

4m stacks whose second-top job j′′

satisfies αxj ≤ �j′′ . This condition most differentiates MLax from m copies
of the Lax algorithm in [9]. This condition also allows us to surmount the
issue of potentially assigning a job to a “wrong” processor, as jobs that satisfy
this condition are highly flexible about where they can go on the frontier.

We combine these results in Sect. 5 to complete the analysis of FinalAlg.
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1.4 Related Work

There is a line of papers that consider a dual version of the problem, where
there is a constraint that all jobs must be completed by their deadline, and the
objective is to minimize the number of machines used [1,4,6,12]. The current best
known bound on the competitive ratio for this version is O(log log m) from [6].

The speed augmentation results in [7,11] for throughput can be generalized
to weighted throughput, where there a profit for each job, and the objective
is to maximize the aggregate profit of jobs completed by their deadline. But
without speed augmentation, O(1)-approximation is not possible for weighted
throughput for any m, even allowing randomization [10].

There is also a line of papers that consider variations on online throughput
scheduling in which the online scheduler has to commit to completing jobs at
some point in time, with there being different variations of when commitment
is required [3,5,11]. For example, [5] showed that there is a scalable algorithm
for online throughput maximization that commits to finishing every job that it
begins executing.

2 Structure of Optimal Schedule

The goal of this section is to introduce the key properties of (near-)optimal
scheduling policies that we will use in our analysis.

By losing a constant factor in the competitive ratio, we can use a constant
factor fewer machines than Opt, which justifies FinalAlg running each of three
algorithms on m

3 machines. The proof, which is an extension of results in [8], is
omitted in this extended abstract.

Lemma 4. For any collection of jobs J , number of machines m, and c > 1, we
have |Opt(J, m

c )| = Ω(1c |Opt(J,m)|).
A non-migratory schedule on m machines can be expressed as m schedules,

each on a single machine and on a separate set of jobs. To characterize these
single machine schedules, we introduce the concept of forest schedules. Let S be
any schedule. For any job j, we let fj(S) and cj(S) denote the first and last times
that S runs the job j, respectively. Note that S does not necessarily complete j
at time cj(S).

Definition 4 (Forest Schedule). We say a single-machine schedule S is a
forest schedule if for all jobs j, j′ such that fj(S) < fj′(S), S does not run j
during the time interval (fj′(S), cj′(S)) (so the (fj(S), cj(S))-intervals form a
laminar family.) Then S naturally defines a forest (in the graph-theoretic sense),
where the nodes are jobs run by S and the descendants of a job j are the the jobs
that are first run in the time interval (fj(S), cj(S)).

A non-migratory m-machine schedule is a forest schedule if all of its single-
machine schedules are forest schedules.
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With these definitions, we are ready to construct the near-optimal policies
to which we will compare SRPT and MLax. We omit the proof, which follows
from results in [9], in this extended abstract.

Lemma 5. Let J be a set of jobs satisfying �j ≤ xj for all j ∈ J . Then for
any times r̂j ∈ [rj , rj + �j

2 ] and constant α ≥ 1, there exist non-migratory forest
schedules S and S ′ on the jobs J such that:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = r̂j.
4. If job j′ is a descendant of job j in S, then αxj′ ≤ �j

5. |{leaves of S ′}| + |S| = Ω(|Opt(J)|).
Intuitively, the schedule S captures the jobs in Opt that are preempted and

S ′ captures the jobs in Opt that are not preempted (i.e. the leaves in the forest
schedule.)

3 SRPT is Competitive with Non-viable Jobs

The main result of this section is that SRPT is competitive with the number of
non-viable, low-laxity jobs of the optimal schedule (Theorem 6). We recall that
a job j is non-viable if for every time in [rj , rj + �j

2 ], there are at least 1
8m jobs

j′ on the frontier of MLax satisfying αxj′ < �j .

Theorem 6. Let J be a set of jobs satisfying �j ≤ xj for all j ∈ J . Then for α =
O(1) sufficiently large and number of machines m ≥ 16, we have |SRPT(J)| =
Ω(|Opt(Jnv)|), where Jnv is the set of non-viable jobs with respect to MLax(J).

We omit the proof of Theorem 6 in this extended abstract. The main idea
of the proof is that for any non-viable job j, MLax is running many jobs that
are much smaller than j (by at least an α-factor.) These jobs give a witness
that SRPT must be working on these jobs or even smaller ones. The following
technical lemma is needed in the proof as well as in Sect. 4.

Lemma 7. Let J be any set of jobs and S be any forest schedule on m machines
and jobs J ′ ⊂ J that only runs feasible jobs. Let L be the set of leaves of S. Then
|SRPT(J)| ≥ 1

2 |L|.

4 SRPT and MLax Are Competitive with Viable Jobs

We have shown that SRPT is competitive with the non-viable, low-laxity jobs.
Thus, it remains to account for the viable, low-laxity jobs. We recall that a job j
is viable if there exists a time in [rj , rj + �j

2 ] such that there are at least 7
8m jobs

j′ on the frontier satisfying αxj′ ≥ �j . The first such time is the pseudo-release
time, r̃j of job j. For these jobs, we show that SRPT and MLax together are
competitive with the viable, low-laxity jobs of the optimal schedule.
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Theorem 8. Let J be a set of jobs satisfying �j ≤ xj for all j ∈ J . Then for α =
O(1) sufficiently large and number of machines m ≥ 8, we have |SRPT(J)| +
|MLax(J)| = Ω(|Opt(Jv)|), where Jv is the set of viable jobs with respect to
MLax(J).

Proof of Theorem 8. Let S,S ′ be the schedules guaranteed by Lemma 5 on the
set of jobs Jv with r̂j = r̃j for all j ∈ Jv. We re-state the properties of these
schedules for convenience:

1. Both S and S ′ complete every job they run.
2. Let Ji be the set of jobs that S runs on machine i. For every machine i and

time, if there exists a feasible job in Ji, then S runs such a job.
3. For all jobs j ∈ S, we have fj(S) = r̃j .
4. If job j′ is a descendant of job j in S, then αxj′ ≤ �j

5. |{leaves of S ′}| + |S| = Ω(|Opt(Jv)|).
By Lemma 7, we have |SRPT(J)| = Ω(|{leaves of S ′}|). Thus, it suffices to show
that |SRPT(J)| + |MLax(J)| = Ω(|S|). We do this with two lemmas, whose
proofs we defer until later. First, we show that MLax pushes (not necessarily
completes) many jobs. In particular, we show:

Lemma 9. |SRPT(J)| + #(pushes of MLax(J)) = Ω(|S|)
The main idea to prove Lemma 9 is to consider sequences of preemptions in

Opt. In particular, suppose Opt preempts job a for b and then b for c. Roughly,
we use viability to show that the only way MLax doesn’t push any of these jobs
is if in between their pseudo-release times, MLax pushes Ω(m) jobs.

Second, we show that the pushes of MLax give a witness that SRPT and
MLax together actually complete many jobs.

Lemma 10. |SRPT(J)| + |MLax(J)| = Ω(#(pushes of MLax(J))).

The main idea to prove Lemma 10 is to upper-bound the number of jobs
that MLax pops because they are infeasible (all other pushes lead to completed
jobs.) The reason MLax pops a job j for being infeasible is because while j was
on a stack, MLax spent at least �j

2 units of time running jobs higher than j on
j’s stack. Either those jobs are completed by MLax, or MLax must have have
done many pushes or replacements instead. We show that the replacements give
a witness that SRPT must complete many jobs.

Combining these two lemmas completes the proof of Theorem 8. ��
Now we go back and prove Lemma 9 and Lemma 10.

4.1 Proof of Lemma 9

Recall that S is a forest schedule. We say the first child of a job j is the child
j′ of j with the earliest starting time fj′(S). In other words, if j is not a leaf,
then its first child is the first job that pre-empts j. We first focus on a sequence
of first children in S.
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Lemma 11. Let a, b, c ∈ S be jobs such that b is the first child of a and c is
the first child of b. Then MLax(J) does at least one of the following during the
time interval [r̃a, r̃c]:

– Push at least m
8 jobs,

– Push job b,
– Push a job on top of b when b is on the frontier,
– Push c.

Proof. Because S is a forest schedule, we have r̃a < r̃b < r̃c. It suffices to show
that if during [r̃a, r̃c], MLax(J) pushes strictly fewer than m

8 jobs, MLax(J)
does not push b, and if MLax(J) does not push any job on top of b when b is
on the frontier, then MLax(J) pushes c.

First, because MLax(J) pushes strictly fewer than m
8 jobs during [r̃a, r̃c],

there exists at least 7
8m stacks that receive no push during this interval. We

call such stacks stable. The key property of stable stacks is that the laxities of
their top- and second-top jobs never decrease during this interval, because these
stacks are only changed by replacements and pops.

Now consider time r̃a. By definition of pseudo-release time, at this time, there
exist at least 7

8m stacks whose top job j′ satisfies αxj′ ≥ �j . Further, for any
such stack, let j′′ be its second-top job. Then because b is a descendant of a in
S, we have:

αxb ≤ �a ≤ αxj′ ≤ �j′′ .

It follows that there exist at least 3
4m stable stacks whose second-top job j′′

satisfies αxb ≤ �j′′ for the entirety of [r̃a, r̃c]. We say such stacks are b-stable.
Now consider time r̃b. We may assume b is not pushed at this time. However,

there exist at least 3
4m that are b-stable. Thus, if we do not replace the top of

some stack with b, it must be the case that the top job j′ of every b-stable stack
satisfies �′

j ≥ �b. Because these stacks are stable, their laxities only increase by
time r̃c, so MLax(J) will push c on some stack at that time.

Otherwise, suppose we replace the top job of some stack with b. Then b is
on the frontier at r̃b. We may assume that no job is pushed directly on top of
b. If b remains on the frontier by time r̃c, then MLax(J) will push c, because
αxc ≤ �b. The remaining case is if b leaves the frontier in some time in [r̃b, r̃c].
We claim that it cannot be the case that b is popped, because by (2), S could
not complete b by time r̃c, so MLax(J) cannot as well. Thus, it must be the
case that b is replaced by some job, say d at time r̃d. At this time, there exist
at least 3

4m stacks whose second-top job j′′ satisfies αxd ≤ �j′′ . It follows, there
exist at least m

2 b-stable stacks whose second-top job j′′ satisfies αxd ≤ �j′′ at
time r̃d. Note that because m ≥ 8, there exists at least one such stack, say i,
that is not b’s stack. In particular, because b’s stack has minimum laxity, it must
be the case that the top job j′ of stack i satisfies �j′ ≥ �b. Finally, because stack
i is stable, at time r̃c we will push c. ��

Now using the above lemma, we give a charging scheme to prove Lemma 9.
First note that by Lemma 7, we have |SRPT(J)| = Ω(#(leaves of S)). Thus, it
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suffices to give a charging scheme such that each job a ∈ S begins with 1 credit,
and charges it to leaves of S and completions of MLax(J) so that each job is
charged O(1) credits. Each job a ∈ S distributes its 1 credit as follows:

– (Leaf Transfer) If a is a leaf or parent of a leaf of S, say �, then a charges �
for 1 credit.

Else let b be the first child of a and c the first child of b in S
– (Push Transfer) If MLax(J) pushes b or c, then a charges 1 unit to b or c,

respectively.
– (Interior Transfer) Else if job b is on the frontier, but another job, say d, is

pushed on top of b, then a charges 1 unit to d.
– (m-Push Transfer) Otherwise, by Lemma 11, MLax(J) must push at least

m
8 jobs during [r̃a, r̃c]. In this case, a charges 8

m units to each of these m
8 such

jobs.

This completes the description of the charging scheme. It remains to show that
each job is charged O(1) credits. Each job receives at most 2 credits due to Leaf
Transfers and at most 2 credits due to Push Transfers and Interior Transfers. As
each job is in at most 3m intervals of the form [r̃a, r̃c], each job is charged O(1)
from m-Push Transfers.

4.2 Proof of Lemma 10

Recall in MLax, there are two types of pops: a job is popped if it is com-
pleted, and then we continue popping until the top job of that stack is fea-
sible. We call the former completion pops and the later infeasible pops. Note
that it suffices to prove the next lemma, which bounds the infeasible pops.
This is because #(pushes of MLax(J)) = #(completions pops of MLax(J)) +
#(infeasible pops of MLax(J)). To see this, note that every stack is empty at
the beginning and end of the algorithm, and the stack size only changes due to
pushes and pops.

Lemma 12. For α = O(1) sufficiently large, we have:

|SRPT(J)|+|MLax(J)|+#(pushes of MLax(J)) ≥ 2·#(infeasible pops of MLax(J)).

Proof. We define a charging scheme such that the completions of SRPT(J) and
MLax(J) and the pushes executed by MLax(J) pay for the infeasible pops.
Each completion of SRPT(J) is given 2 credits, each completion of MLax(J) is
given 1 credit, and each job that MLax(J) pushes is given 1 credit. Thus each
job begins with at most 4 credits. For any z ≥ 0, we say job j′ is z-below j (at
time t) if j′ and j are on the same stack in MLax(J) and j′ is z positions below
j on that stack at time t. We define z-above analogously. A job j distributes
these initial credits as follows:
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– (SRPT-transfer) If SRPT(J) completes job j and MLax also ran j at
some point, then j gives 1

2z+1 credits to the job that is z-below j at time
fj(MLax(J)) for all z ≥ 0.

– (m-SRPT-transfer) If SRPT(J) completes job j at time t, then j gives 1
2z+1

1
m

credits to the job that is z-below the top of each stack in MLax(J) at time
t for all z ≥ 0.

– (MLax-transfer) If MLax(J) completes a job j, then j gives 1
2z+1 credits to

the job that is z-below j at the time j is completed for all z ≥ 0.
– (Push-transfer) If MLax(J) pushes a job j, then j gives 1

2z+1 credits to the
job that is z-below j at the time j is pushed for all z ≥ 0.

It remains to show that for α = O(1) sufficiently large, every infeasible
pop gets at least 4 credits. We consider any job j that is an infeasible pop of
MLax(J). At time r̃j when j joins some stack in MLax(J), say H, j’s remaining
laxity was at least �j

2 . However, as j later became an infeasible pop, it must be
the case that while j was on stack H, MLax(J) was running jobs that are higher
than j on stack H for at least �j

2 units of time.
Let I be the union of intervals of times that MLax(J) runs a job higher than

j on stack H (so j is on the stack for the entirety of I.) Then we have |I| ≥ �j
2 .

Further, we partition I based on the height of the job on H that MLax(J) is
currently running. In particular, we partition I =

⋃
z≥1 Iz, where Iz is the union

of intervals of times that MLax(J) runs a job on H that is exactly z-above j.
By averaging, there exists a z ≥ 1 such that |Iz| ≥ �j

2z+1 . Fix such a z. We
can write Iz as the union of disjoint intervals, say Iz =

⋃s
u=1[au, bu]. Because

during each sub-interval, MLax(J) is running jobs on H that are much smaller
than j itself, these jobs give a witness that SRPT(J) completes many jobs as
long as these sub-intervals are long enough. We formalize this in the following
proposition, whose proof is omitted in this extended abstract.

Proposition 13. In each sub-interval [au, bu] of length at least 4 �j
αz , job j earns

at least 1
2z+3

bu−au

�j/αz credits from SRPT-transfers and m-SRPT-transfers.

On the other hand, even if the sub-intervals are too short, the job j still gets
credits from MLax-transfers and Push-transfers when the height of the stack
changes. We formalize this statement in the following proposition, whose proof
is omitted in this extended abstract.

Proposition 14. For every sub-interval [au, bu], job j earns at least 1
2z+2 credits

from MLax-transfers and Push-transfers at time bu.

Now we combine the above two propositions to complete the proof of Lemma
12. We say a sub-interval [au, bu] is long if it has length at least 4 �j

αz (i.e. we can
apply Proposition 13 to it) and short otherwise. First, suppose the aggregate
length of all long intervals it at least 4 · 2z+3 �j

αz . Then by Proposition 13, job j
gets at least 4 credits from the long intervals. Otherwise, the aggregate length
of all long intervals is less than 4 · 2z+3 �j

αz . In this case, recall that the long
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and short intervals partition Iz, which has length at least �j
2z+1 . It follows, the

aggregate length of the short intervals is at least �j
2z+1 −4 ·2z+3 �j

αz . For α = O(1)
large enough, we may assume the aggregate length of the short intervals is at
least 4 · 2z+2 4�j

αz . Because each short interval has length at most 4 �j
αz , there are

at least 4 · 2z+2 short intervals. We conclude, by Proposition 14, job j gets at
least 4 credits from the short intervals. We conclude, in either case job j gets at
least 4 credits. ��

5 Putting it all Together

In this section, we prove our main result, Theorem 1, which follows from the
next meta-theorem:

Theorem 15. Let J be any set of jobs. Then for number of machines m ≥
16, we have |LMNY(Jhi)| + |SRPT(Jlo)| + |MLax(Jlo)| = Ω(|Opt(J)|), where
Jhi = {j ∈ J | �j > xj} and Jlo = {j ∈ J | �j ≤ xj} partition J into high- and
low-laxity jobs.

Proof. We have |LMNY(Jhi)| = Ω(|Opt(Jhi)| by Lemma 3. Also, we further
partition Jlo = Jv ∪ Jnv into the viable and non-viable jobs with respect to
MLax(Jlo). Then Theorem 6 and Theorem 8 together give |SRPT(Jlo)| +
|MLax(Jlo)| = Ω(|Opt(Jv)| + |Opt(Jnv)|). To complete the proof, we observe
that J = Jhi ∪ Jv ∪ Jnv partitions J , so |Opt(Jhi)| + |Opt(Jv)| + |Opt(Jnv)| =
Ω(|Opt(J)|). ��

The proof of Theorem 2, which gives our performance guarantee for
FinalAlg is immediate:

Proof of Theorem 2. By combining Theorem 15 and Lemma 4, the objective
value achieved by FinalAlg is:

Ω(|LMNY(Jhi,
m

3
)| + |SRPT(Jlo,

m

3
)| + |MLax(Jlo,

m

3
)|) = Ω(|Opt(J,

m

3
)|)

= Ω(|Opt(J,m)|).

��
Finally, we obtain our O(1)-competitive deterministic algorithm for all m >

1 (recall FinalAlg is O(1)-competitive only when m ≥ 48) by using a two-
machine algorithm when m is too small:

Proof of Theorem 1. Our algorithm is the following: If 1 < m < 48, then we
run the deterministic two-machine algorithm from [9] which is O(1)-competitive
with the optimal single-machine schedule. Thus by Lemma 4, this algorithm is
also O(m) = O(1)-competitive for all m < 48. Otherwise, m ≥ 48, so we run
FinalAlg. ��
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