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Abstract: 

The development of next-generation batteries with high areal and volumetric energy density 

requires the use of high active material mass loading electrodes. This typically reduces the power 

density, but the push for rapid charging has propelled innovation in microstructure design for 

improved transport and electrochemical conversion efficiency. This requires accurate effective 

electrode property estimation, such as tortuosity, electronic conductivity, and interfacial area. 

Obtaining this information solely from experiments and 3D mesoscale simulations is time-

consuming while empirical relations are limited to simplified microstructure geometry. In this 

work, we propose an alternate route for rapid characterization of electrode microstructural 

effective properties using machine learning (ML). Using the Li-ion battery graphite anode 

electrode as an exemplar system, we generate a comprehensive dataset of ~17000 electrode 

microstructures. These consist of various shapes, sizes, orientations, and chemical compositions, 

and characterize their effective properties using 3D mesoscale simulations. A low dimensional 

representation of each microstructure is achieved by calculating a set of comprehensive physical 

descriptors and eliminating redundant features. The mesoscale ML analytics based on porous 

electrode microstructural characteristics achieves prediction accuracy of more than 90% for 

effective property estimation.  
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Introduction:  

Li-ion batteries (LIBs) have advanced from powering mobile electronics to revolutionizing 

ground transportation, and are now considered for electric urban air mobility1–4. LIBs are highly 

efficient energy storage systems used in conjunction with renewable energy generators, 

contributing to a greener future. The interest in battery material research and the advancement in 

characterization techniques has led to an exponential amount of data available for finding optimal 

battery candidates. The use of data-driven methods such as machine learning (ML) can enable the 

screening through a large material, composition, and microstructural space, enabling rapid 

innovation5–12. 

Developing a structure-property relationship is critical because it can guide the 

improvement of electrochemical performance through the composition, and morphological control 

of the mesostructure. The state-of-the-art LIB electrode consists of active material (AM), and 

conductive additive binder domain (CBD) assembled into a composite porous mesostructure. The 

AM exhibits a larger characteristic length scale compared to the CBD and together they form a 

solid structural matrix with multi-length scale features13–16. For proper functioning of an electrode, 

it requires these multiple components including AM and CBD, because an electrode performs a 

complex range of processes while the battery operates. The role of AM particles is to store the 

chemical energy in form of Li and to provide a high reaction surface area for electrochemical redox 

reactions during the battery operation. The electrochemical reaction generates Li+ ions and 

electrons, the solvated ions shuttle through the tortuous pores of the electrode towards the opposite 

electrode where it reduces and intercalates into it. The CBD phase aids in improving the 

mechanical connection and electronic percolation pathways through the electrode for their travel 

towards the current collector17–19. The electrode mesostructure enabling these three critical physical 
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processes can have a varying chemical composition (AM, CBD porosity), active material particles 

with different shapes, sizes, orientation, and CBD morphology20–23. Ongoing research effort aims 

to improve electrochemical performance at these hierarchies of length scales24–27 and mesostructure 

tuning has been used such as for ion transport improvement by forming aligned pores in the 

electrode28–31, bi-tortuous electrode structures32,33, and CBD morphology tuning13.  

To comprehend the reaction and transport dynamics, the electrode is characterized using 

effective microstructural property based on effective medium approximations34. It provides a 

convenient macroscale description of the microscale physical processes within an electrode. The 

conventional approach to this problem of determining effective electrode properties is to perform 

experiments measuring the effective properties using experimental techniques, including 

electrochemical impedance spectroscopy, galvanostatic intermittent titration, and Brunauer–

Emmett–Teller (BET) methods for interfacial area35–41. The issue with experimental 

characterization is the significant cost, time, and effort. Repeating this for a very large number of 

constructions of electrode structure with varying microstructure topology is also a challenge. This 

can be overcome by the usage of physics-derived models which replicate the electrode’s physical 

mechanisms. The characterization of electrodes using direct numerical simulation on X-ray 

tomography images and focused ion beam/scanning electron microscopy (FIB-SEM) images is 

another approach42–45. The limited availability of tomography imaging data can be overcome by 

the use of stochastically generated electrode mesostructures. This can be generated methodically 

by specifying the composition (volume fraction of active material, carbon-binder phases), particle 

size distribution, and orientation of particles. Consideration of each parameter grows the design 

space exponentially leading to a comprehensive dataset with ~17000 mesostructures along with 

freedom for generating unique microstructures currently beyond the reach of common electrode 
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fabrication methods. The stochastic algorithm for generation involves filling a domain with a 

specified particle geometry and alignment till it reaches the target volume fraction. Once a 

backbone electrode structure with the active material particle is generated, the carbon-binder phase 

is added to the structure13,43,46. This is a highly scalable method for generating specified composite 

electrode structures, which can be characterized for kinetic and transport effective properties.  

Developing a structure-property relationship is a perfectly suited problem to take advantage 

of machine learning (ML) methods and applications. ML methods are a class of algorithms that 

self-learn the complex relations in high-dimensional datasets. Supervised ML methods, trained 

over comprehensive known datasets, can learn the dependence of input conditions over the output 

values and provide physical insights into high dimensional data without the need for prespecified 

physical governing laws47,48. These methods can also reveal physically fundamental relations and 

make quantitative and qualitative predictions for unknown scenarios. For the electrode effective 

properties, this can be used towards its advantage to study the intricate relationship between 

electrode structure and properties. ML methods are used in battery research to understand issues 

such as degradation and safety. They were used to predict the state of charge and state of health of 

a battery using electro-impedance spectroscopy49,50, internal short circuit detection49, optimal 

safety under abuse testing51,52, capacity fade, and remaining useful life predictions53–57 and effective 

porous media properties58–61.  

Problem Description: 

In this work, we develop a mesostructure–effective property framework for a graphite-based 

electrode as an exemplar system. As a first step, we stochastically generate comprehensive 

electrode structures ranging in density and with various binder topologies. By using pore-scale 



6 
 

simulations we characterize the electronic conductivity, tortuosity in three directions, and various 

interfacial areas. The electrode structure is quantitatively described by characteristics such as the 

composition, particle shape, and pore size which serve as inputs with effective properties as the 

outputs of the dataset. The physical descriptors are selected to diversify the patterns in the input 

datasets, and data cleaning methods are used to remove redundant features and outliers within the 

data. We trained and tested various supervised machine learning-based regression models and 

compared their accuracy in predicting effective properties.  

Methodology: 

The basic goal is to represent the effective property of the electrode structure as a function 

of the electrode’s physical descriptor using ML as a tool. On one hand, the effective properties 

such as tortuosity, electronic conductivity, and specific surface area are a representation of the 

electrode’s macroscale reactive-transport behavior. To capture the structural differences between 

electrode microstructure, it is also represented by the physical descriptors in a low dimensional 

space. These physical descriptors quantitatively represent electrode structure’s morphology and 

for comprehensive characterization of the microstructure we propose four classes of the physical 

descriptor to quantify, including composition, active material shape, orientation, and pore phase. 

Electrode structure generation 

We used stochastic electrode generation in GeoDICT62 to generate a realistic mesostructure 

consisting of an active material particle-based backbone. The 3-dimensionally generated active 

material skeleton has a cubical domain, with a volume of 200×200×200 μm3 as shown in Fig. 1(a). 

The Representative Volume Element (RVE) analysis was performed to ensure that the domain was 

representative of the electrode volume (refer to Supporting Information). Fig. 1(a) outlines the 
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steps for the generation of realistic electrode mesostructures, and the range of compositions, 

particle sizes, and orientations used in this study. Since imaging experiments show that graphite 

active material particles form microscale ellipsoidal structures63, the active material particle shape 

was set as an ellipsoid. In some cases the graphite particle shape can deviate due to irregular, flaky, 

or fibrous particle geometry, and the particle size might also follow a distribution but it is not 

considered here. The ratio of the length of the ellipsoid’s major to minor axes varied between 0.5 

to 5, with ratio 1 being a special case for spherical particles. The AM volume fraction varied from 

40 to 80 %, ranging from a sparsely to densely packed electrode structure. The particle orientation 

was varied using anisotropy parameter values between 0.1 to 100. Finally, 5 to 10 vol.% of binder 

was added to the generated active material backbone using an interfacial energy-based stochastic 

deposition. The morphology factor ( ) is a measure of cohesive to adhesive tendencies of binder 

over AM13 which varied between 0.1 to 0.9. Smaller   gives rise to a film-like deposit while 

higher   gives rise to a finger-like deposit, generating various binder topologies with differing 

electron and ion transport pathways. Overall a comprehensive set of ~17000 unique realistic 

composite electrode structures was generated.  

Outputs - Effective properties characterization: 

To characterize the efficacy of the electrode architecture, we determine their effective 

properties by utilizing 3D-physics-based pore-scale simulations performed on the generated 

electrode structures (as shown in Fig. 1(b)): (1) e − the effective electronic conductivity in three 

directions (which determines electron percolation), (2)  − tortuosity of pore network in three 

directions (Li+ transport in the pore network). The calculation of the effective conductivity and 

tortuosity is based upon assigning suitable diffusivity (or conductivity) values to the pores and 

solid phases and performing a concentration (or charge) balance. Concentration (or electric 
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potential) Dirichlet boundary conditions are applied at the two opposite faces and the effective 

properties are calculated in the three orthogonal directions (X, Y, and Z) as shown in Fig. 1(b). 

The last effective property under consideration is (3) 
sa − volume-specific surface area (interfacial 

area available for the electrochemical reaction). In a composite electrode, there are three two-phase 

interfaces: the pore-active material interface (a01), the pore-binder interface (a02), and the active 

material-binder interface (a12). The electrochemical redox reaction occurs over the pore-active 

material interface a01, while the other two interfaces a12, and a02 are electrochemically inactive13.  

Inputs - Electrode Physical Descriptor Characterization:  

 Composition: It is the lowest order representation of electrode microstructure information 

similar to a zero-order moment, quantifying the volume and weight fraction of the chemical 

constituents present in the composite electrode matrix. For a model intercalating electrode, like 

graphite consisting of three distinct phases: active material, binder, and pore phase, the unique 

composition of the electrode is determined from the volume fraction of active material (vAM), the 

volume fraction of the secondary phase (vS), and secondary phase morphology parameter (ω); Fig. 

1(c)). Since pores, active material, and secondary phases add up to 100 vol.%, the porosity is 

uniquely determined by the other composition.  

Another unique parameter we proposed as part of this composition description is the 

overlap factor ( ) which quantifies the overlap between the intersecting particles. It is quantified 

as the fraction of overlapping volume to the actual volume occupied by the active material particles 

as shown in Fig. 1(c) and quantified in Eq. (1). From the schematic in Fig. 1(c), we define V1, V3 

refers to non-intersecting volume while V2 is the shared volume. From a low energy density 

electrode structure to a high energy density electrode the overlap of AM particles is expected to 



9 
 

increase and so is the overlap factor. It can be readily observed from Fig. 2(a) that the overlap-

factor increases when the radius of the active material particle increases and porosity decreases. 

The highest overlap factor of ~0.79 is seen when large particles are packed in a low porosity 

configuration, while it takes the lowest value of 0.2 when smaller particles are packed in a high 

porosity configuration.  

 2

1 2 3

( )
V

Overlap factor
V V V

− =
+ +

  (1) 

Active material shape: It is the deeper level information of about the particle structure and it 

determines the morphology of the electrode structure and pore space. In this work, we have 

considered a variety of particle geometries of the AM particles which deviate significantly from a 

well-rounded spherical shape. So to generalize we redefined the active material particle geometry 

into well-known shape descriptors:  

Equivalent radius: The equivalent radius for an AM particle is the radius of a sphere enclosing an 

equal amount of volume as the particle. The formula for it is described in Eq. (2), where V refers 

to the single-particle volume. Fig. 1(c) schematically describes the equivalent radius concept for 

an ellipsoid particle. A regular ellipsoid’s shape can be modified by varying the ratio of its axes' 

length. Increasing any single-axis length will lead to angular and pointed particles while increasing 

the two-axis length will create an oblate-shaped particle. Fig. 2(b) shows that as the particles 

become more angular/oblate their equivalent radius increases proportionately, ranging between 2 

to 7 µm.   
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Eccentricity: It measures the elongation of the particle, defined as the ratio of the longest chord of 

the particle to the shortest chord (Eq. (3)). The schematic in Fig. 1(c) shows that for an ellipsoid 

particle, this translates to the ratio of the major axis to minor axis length. Eccentricity (e) measures 

the elongation of the particle along a particular direction (Eq. (3)), with ‘a’ being the longest axis 

and ‘c’ being the shortest axis length. When only the largest (‘a’) axis length is increased in an 

ellipsoid particle, it leads to the formation of angular particles (Fig. 2(c)) as seen with the increase 

in eccentricity.  

 
longest axis

( )
shortest axis

a
Eccentricity e

c
= =   (3) 

Rectangularity: Rectangularity is defined as the ratio of the surface area of a particle to the surface 

area of the minimum bounding rectangle surrounding it in 3D (a cuboid; Eq. (4)), and 

schematically described in Fig. 1(c). In Eq.(4), SAM  refers to the area of active material particle 

and Scuboid  refers to the area of the cuboid surrounding it in 3-dimensions. When the aspect ratio 

of the active material is changed, its rectangularity varies from 0.53 to 0.61 as shown in Fig. 2(d). 

It shows that spherical particles have the smallest rectangularity while more oblate or angular 

particles have higher rectangularity.  

 
cuboid

S
Rectangularity ( ) = 

S

AM   (4) 

Sphericity: The sphericity ( ) of an ellipsoid particle is used to quantify the closeness of a particle 

in resembling a sphere. In Eq. (5), ‘V’ refers to the volume of active material and S refers to its 

surface area. It is known that a sphere has a minimal surface area for enclosing a given volume, 

hence sphericity is always less than or equal to one; a smaller value denotes divergence from 

spherical characteristics (Fig. 1(c)). Fig. 2(e) denotes the sphericity of the particle under 



11 
 

consideration, it is maximum with the value of 1.0 when they are perfectly spherical on the other 

hand the oblate ellipsoid particles are the least spherical with a sphericity of 0.65.  
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Pore phase: Quantification of the pore phase is critical since it controls the transport dynamics of 

Li+ ions within the electrode. Since porosity is a low-level representation of the porous 

microstructure, here we resort to pore size to quantify the efficacy of porous percolation pathways. 

We have used the 3D-continuous pore size distribution (c-PSD) definition by Munch and Holzer64 

using the open-source implementation in Fiji65. In this method we calculated the closest distance 

of the active material interface from each pore voxel, resulting in a distance map function. From 

this function, the volume fraction of the pore phase which can contain a sphere with a certain radius 

is calculated. Fig. 1(c) schematically describes the pore size distribution for a sample electrode 

microstructure where differently sized pores are fitted within the pore space of the microstructure. 

This results in a pore size distribution (PSD) with the radius of the pore phase plotted against the 

volume fraction of the pore phase covered (refer to supporting information for details). Fig. 2(f) 

shows the mean pore size (φ) of the microstructure with the radius of AM particle and its porosity. 

The highest mean pore size of about 7µm is seen when large particles are packed in a high porosity 

configuration meanwhile when smaller particles are packed with low porosity configurations, they 

have the smallest pore sizes.  

Orientation: The electrode microstructure needs to be quantified for its anisotropic characteristics 

and quantify the degree of alignment of active material particles. Since we know the physical 

effective properties (e.g. conductivity and tortuosity) of the electrode are a strong function of the 
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particle network because these particles form the basis for the electron percolation pathways, and 

subsequently, also determine the complementary pore network. When stochastically generating 

the electrode microstructure, a random direction is computed (x, y, z),  then the particle alignment 

is determined using anisotropy parameters 1 and 2 (a1, a2) which denote the strength of orientation 

of active material particles. The direction of each AM particle is set based on direction vector (
ad

) which is a function of the Anisotropy parameter as shown in Eq. (6).  
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Thus, for different generated electrode mesostructures, we have varied the alignment by changing 

the values of anisotropy parameters (a1, a2) between 0.1 to 100, generating structures with 

anisotropic orientation in different directions as well as some with isotropic characteristics as 

schematically shown in Fig. 1(c).  

Results and Discussion: 

Correlation of effective properties with descriptors: 

We investigate the correlation of each effective property (tortuosity, electronic conductivity, and 

interfacial area) with the electrode’s physical descriptors i.e. Composition, Active material shape, 

Pore phase, and Orientation. To analyze the trends within the comprehensive dataset of electrode 

microstructure under consideration, we segregate them into two categories to study the impact of 

the orientation of the particle and the morphology of the particle.  

The direction of arrangement of these particles becomes critical when particles are not symmetric 

i.e., for non-spherical morphologies. The arrangement in a particular direction for these 



13 
 

asymmetric particle morphologies gives rise to an anisotropic electrode microstructure with 

direction-dependent properties. The figures Fig. 3, Fig. 5, and Fig. 7 are for a fixed ellipsoid 

morphology of the particles, which can be aligned in the transport direction (Z-direction), 

randomly aligned, or aligned perpendicular to the transport direction respectively.  

The second set of figures is based on a shape classification scheme established by the Zingg 

diagram66, where ellipsoid particles are segregated into various regimes based on the relative axes 

lengths of the ellipsoid as shown in Fig. 4(a). To have a comprehensive dataset of AM particle 

shape i.e. to consider all types of shape (ellipsoidal) effect, during the electrode structure 

generation particle axis lengths have been carefully chosen to include all classes. This leads to 

having various geometrical shapes representative of all the different classes of ellipsoids and leads 

to generalizable ML models not limited to a particular particle geometry. All the particle shapes 

within the current dataset have been marked with colored dots, and are mapped onto the 

classification scheme in Fig. 4(a). We see that the triaxial ellipsoid particle shapes can take the 

form of bladed, prolate, oblate, and spherical shapes. While the spherical shape is obvious, the 

bladed particles have all three different axis lengths, oblate particles are shaped like flattened 

spheroids like M&M while prolate particles are elongated spheroids like a rugby ball63 (For details 

refer to Supporting Information). The shape effects have been studied in Fig. 4, Fig. 6, and Fig. 8. 

Tortuosity: 

Traditionally in the modeling of LIB, the porous electrode microstructure is assumed to be 

consisting of non-overlapping spherical active material particles with two phases including AM 

and pores. Based upon this idealistic representation the empirical Bruggeman's law predicts the 

tortuosity of an electrode’s pore space as a function of only the porosity of structure as shown in 

Eq. (7), and shows the scaling as the inverse of the square root of porosity. Various extensions of 
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Bruggeman's law have been made to express tortuosity as different power from the porosity of 

structure. As such, there is no generalized analytical relation for predicting tortuosity as a function 

of the microstructural parameters, except in specialized cases such as simple isotropic and non-

overlapping highly porous structures without the presence of additional phases67–69.  

 0.5  −=   (7) 

Fig. 3 investigates the pore space tortuosity of the electrode microstructure with the varying 

alignment of ellipsoidal particles. Fig. 3(a)-(c) are for a fixed ellipsoid morphology of the particles, 

which can be aligned in the transport direction (Z-direction), randomly aligned, or aligned 

perpendicular to the transport direction respectively. Across all these scenarios we observe that the 

tortuosity increases as the porosity of the structure decrease due to the pore size constriction at 

higher packing. The different colors represent the range of tortuosity values at a given porosity 

since factors such as particle size and binder-phase morphology also play a role. We observe that 

the band of tortuosity values exhibited at a given porosity increases as the porosity decreases, this 

is because the sensitivity to the microstructural parameters increases at higher packing. Fig. 3(a) 

shows that the tortuosity of the structure in the Z-direction is smaller compared with that across X, 

and Y directions, due to the preferential alignment of particles in that direction. While Fig. 3(b) 

shows that, although these particles are spherically asymmetric when they are aligned randomly, 

they behave as isotropic structures with equal tortuosity in all directions. Finally from Fig. 3(c), 

we can compare across the X, Y, and Z-direction, we observe that there is a preferential direction 

of alignment of the particles perpendicular to the Z-direction, hence the Z-direction tortuosity is 

highest.  

We plot Bruggeman's law for the three different exponents values: 0.5, 1, and 1.5, and observe the 

divergence from the power-law at high energy density and low-porosity electrode configurations 
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because it does not consider the particle size, orientation. In Fig. 3(a) even for the high porosity 

configurations, we observe that the Bruggeman's coefficient is distinct in the three directions, with 

the X, and Y directions having a higher exponent than Z-direction due to the alignment in Z-

direction. Bruggeman’s coefficient in Z-direction is about ~0.9 which is similar to the one found 

by other researchers21 due to similarity in ellipsoidal shape characteristics and alignment in the 

transport direction. Fig. 3(b) shows that Bruggeman’s coefficient is identical in all three directions 

due to the isotropic nature of the structure, with a coefficient value of ~1.2, which is higher than 

for the aligned structure in Fig. 3(a). For Fig. 3(c) where the alignment is perpendicular to Z-

direction, the coefficient in Z-direction is higher compared to the other two directions, with a value 

of ~1.25 while for Y-direction ~0.9.  

Fig. 4 investigates the impact of active material particle shape over the effective electrode 

properties with the random alignment of particles. All the particle shapes within the current dataset 

have been marked with colored dots, and are mapped onto the classification scheme in Fig. 4(a), 

and discussed above. Fig. 4(b) shows that across the various shape characteristics, if the randomly 

aligned particle is the choice, the minimum tortuosity is exhibited by the microstructure consisting 

of spherical particles for higher porosities (ε ≥ 0.3). While the next best choice is to consider the 

prolate particles, followed by bladed and oblate particles. A potential reason for this ordering is 

that since these are randomly oriented particles when encountering the spherical particle, they 

provide an idealized smallest smooth pathway from one point on the surface to the other 

diametrically opposite end irrespective of the orientation. On other hand compare with the oblate 

particles, which are an idealized version of platelet morphology found in the graphite63, the shortest 

path connecting the two faces of the ellipsoid requires traversing along the longest major axis as 

shown in Fig. 4(b). Within Fig. 4(b) we also observe that Bruggeman's law which is limited to 
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higher porosities, Bruggeman's coefficients are different across various shapes, with oblate 

particles having the highest coefficient followed by the bladed, prolate, and spherical particles. 

This coefficients order is in good agreement with the existing literature and verifies the validity of 

the simulations and structures21. At lower porosities (ε ≤ 0.3), generalizing the order of tortuosity 

values for different particle shapes becomes more difficult as can be seen in Fig. 4(b) except that 

spherical particle still provides the lowest tortuosity. At these lower porosity, the range of 

tortuosity values spanned by each particle shape is quite high. This is discussed earlier and follows 

from the fact that tortuosity becomes more sensitive to particle arrangement and characteristics at 

lower porosities and even the slightest of changes to particle arrangement can cut off the 

percolation pathway resulting in highly tortuous structures. We can also justify this based on Fig. 

4(c), which shows that the tortuosity is a function of the mean pore size of the microstructure. For 

the larger pore sizes (≥ 4.5µm), oblate particles offer the highest tortuosity compared to all, 

implying that they distort the pore space significantly more compared to the other particle shapes. 

As the mean pore size becomes smaller (≤ 4.5µm) or equivalently lower porosity structures the 

tortuosity order becomes more complicated with all the particle morphologies having similar 

tortuosity values.  

Electronic Conductivity: 

The electronic conductivity of a microstructure measures its efficacy at transporting 

electrons with minimal losses, within these structures only active material particles participate 

while binder (polyvinylidene fluoride) and pores have no contribution because of very low intrinsic 

electronic conductivity. Here the electronic conductivity is normalized by the intrinsic electronic 

conductivity of the AM particle to limit the variation between 0 to 1. Fig. 5(a)-(c) investigates 

electronic conductivity for a fixed ellipsoid morphology of the particles, which can be aligned in 
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the transport direction (Z-direction), randomly aligned, or aligned perpendicular to the transport 

direction respectively. Across all these scenarios we observe that the electronic conductivity 

increases as the porosity of the structure decrease due to the increasing overlap and creation of 

numerous wide electronic pathways across the structure as seen in Fig. 6(a). The different colors 

represent the range of electronic conductivity values at a given porosity since factors such as 

particle size and binder-phase morphology also play a role. From Fig. 5(a) we observe that the 

electronic conductivity in Z-direction is about ~20-30% higher compared to the X and Y direction, 

due to the alignment of the particles parallel to the transport direction, resulting in higher 

overlap/electronic pathways. Fig. 5(b) on other hand shows the electronic conductivity for the 

same type of ellipsoidal particle except with random alignment. Here the electronic conductivity 

shows equal values in all directions due to the isotropic behavior of randomly oriented particles. 

Fig. 5(c) represents the scenario with particle alignment perpendicular to the transport direction, 

due to which Z-direction conductivity is quite smaller compared to the X, Y direction electronic 

conductivity. Across all cases from Fig. 5(a)-(c) we also observe that the anisotropicity of 

electronic conductivity decreases for lower active material v.f. (vAM <0.5), probably because of 

insignificant overlap of the particles, hindering any directional preference.  

 Fig. 6 investigates the impact of active material particle shape over the effective electrode 

properties with the random alignment of particles. From Fig. 6(a) we observe the increase in the 

overlap of electrode AM particles which in turn increases electronic conductivity from ~0.1 to 

~0.6 for the various shapes of the ellipsoids. Fig. 6(b) shows that at a higher volume fraction (vAM 

≥0.6), the electronic conductivity of particles with different shapes follows the order of sphere < 

prolate < bladed < oblate. Among these, spherical particles show minimal electronic conductivity, 

because the sphere has the minimum surface area for packing a given amount of active material 
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volume. So, it is highly efficient at packing and minimizes contact with the other spherical particles 

causing fewer electronic conduction pathways. On the other hand, oblate particles due to their 

disk-like and angular characteristic provide shorter conduction pathways through their thickness 

as well as have significant overlap because of the high aspect ratio, improving electronic pathways. 

At a low volume fraction (vAM < 0.6) there is no order in electronic conductivity, because of 

insufficient contacts and overlap, thus the slightest change can increase/decrease electronic 

conductivity increasing uncertainty. For all the differently shaped particles, increasing electronic 

conductivity tradeoffs with the increasing tortuosity of the structure as evident from Fig. 6(c). 

Although this tradeoff doesn’t follow the linear trend, implying for a specific gain in electronic 

conductivity the corresponding tortuosity increases exponentially. The porous pathways are 

complementary to the particle network and thus more overlap of particles implies a more tortuous 

pathway for ion flow.  

Interfacial Area: 

One of the key critical properties of the electrode is the interfacial sites available at the 

active material interface for electrochemical reactions. The presence of three phases i.e. binder, 

active material, and pores lead to the formation of three interfaces pore-AM, pore-binder, and AM-

binder, of which pore-AM is the electrochemically active interface13. Conventional modeling of 

LIB assumed the electrode microstructure to consist of perfectly spherical particles with no 

overlap, and with the presence of only two phases within the microstructure implying complete 

surface area is electrochemically active and available19. Based on this idealistic representation 

Bruggeman's empirical law predicts the specific surface area i.e. area per unit volume solely as a 

function of volume fraction and particle radius of AM as shown in Eq. (8). As such, there is no 
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generalized analytical relation for predicting interfacial area except in the specialized case 

discussed above. 

 

2

01 3

34

4

3

AM

AM

vR
a

R R

v




= =   (8) 

Here we study the impact of various microstructural parameters including particle 

alignment (cf. Fig. 7) and shape (cf. Fig. 8), along with the comparison with the empirical law. 

Fig. 7(a) shows three different electrodes with identical characteristics including particle shape, 

morphology, and the v.f. of AM and binder phase. The distinguishing factor is the presence of 

particle alignment, leading to three cases either with Z-direction orientation, isotropic (random 

orientation), and oriented perpendicular to Z. There is minimal impact of particle alignment on the 

availability of surface area at the electrodes. This is because SSA is a scalar quantity, and the 

particle alignment does not change the particle overlap characteristics unlike the tortuosity and 

electronic conductivity values. Fig. 7(a) shows that empirical law is also applied to these 

microstructures for calculating the ideal SSA, but since the particles are not spherical, we use the 

equivalent radius of the ellipsoid particles as calculated using Eq. (2). We observe that for smaller 

AM volume fractions the actual specific surface area coincides with the empirical relation because 

the overlap of the particle is not significant. At higher A.M. volume fractions the actual specific 

surface area is less than the empirical predictions due to the overlapping of particles and binder 

phase covering interfaces as found in other work13. Fig. 7(b) shows the SSA as a function of 

normalized tortuosity for the three different particle alignments. The normalization is performed 

for the tortuosity of microstructure with randomly aligned particles. We observe that when 

particles are aligned in the transport direction, we can decrease the tortuosity by ~20%, with no 
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trade-off to SSA, implying transport improvement in pores does not come at cost of sacrificing 

interfacial area. Fig. 7(c) shows the interfacial area as a function of normalized electronic 

conductivity (w.r.t. randomly oriented particles). We observe that the aligned particles not only 

improve the percolation pathways but also the electronic conduction pathways. The improvement 

in electronic conductivity is always higher than ~15% compared to the isotropic microstructures. 

For higher SSA the electronic conductivity improvements are even higher ~30%.  

Fig. 8(a) represents SSA for various particle shapes as a function of their size/volume. The 

approximate SSA offered by the particles is ~106 m2/m3, showing that it increases exponentially 

as the volume of particles decreases. These values have been calculated for a single particle, to 

isolate the particle shape/size effect on microstructural characteristics. Among all shapes, for an 

identical volume, bladed particles offer the highest surface area, which is almost double that of a 

spherical particle which offers the least area. SSA does not follow a shape classification scheme, 

i.e. the oblate and prolate particles are quite dissimilar in their shape characteristics and even then 

they offer a similar specific surface area (cf. Fig. 8(a)). That is why no clear regime is established 

for the microstructure SSA based purely on particle shape itself in Fig. 8(b). Instead, we can see 

that microstructural characteristics such as AM volume fraction and the average dimension of the 

particle have a much more prominent impact and result in a non-monotonic trend. It is because at 

first, the pore-AM surface area increases when packing a higher AM fraction but beyond a certain 

v.f. it also causes more overlap of AM particles causing the surface area to reduce. This is also the 

reason we see the deviation of SSA from idealized values as shown by empirical relation. Fig. 8(c) 

shows the cumulative SSA of the pore-binder interface and it shows a similar non-monotonic trend 

due to increasing particle overlap.  
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In conclusion, the understanding of the microstructural complexations and their impact on the 

effective properties of the electrode can be utilized to improve the electrode design and 

electrochemical performance. Comparing the shape characteristics we observe that if the randomly 

aligned particle is the choice, the minimum tortuosity is exhibited by the microstructure consisting 

of spherical followed by the prolate, bladed, and oblate particles (ε ≥ 0.3), while the electronic 

conductivity follows the opposite trend. The tradeoff between the electronic conductivity and 

tortuosity exists where AM packing linearly increases electronic conductivity while it leads to an 

exponential increase in tortuosity because the porous pathways are complementary to the 

electronic percolation pathways. The directional arrangement of particles is critical esp. for non-

spherical morphology and gives rise to anisotropic electrode microstructure with direction-

dependent properties including electronic conductivity and tortuosity. The alignment of particles 

can be used to minimize the tradeoff between tortuosity and electronic conductivity i.e. they can 

improve the porous percolation as well as electronic conduction pathways in the transport 

direction. Along with it the specific surface area i.e. electrochemically active area is not 

significantly affected by such particle alignment, although it is strongly affected by particle size 

and binder morphology.  

Machine Learning-based workflow – Physical Descriptor-based Characterization:  

Due to such a large number of microstructural descriptors and range of effective properties 

we need to determine a small yet representative descriptor set to predict these effective properties. 

Whereas the predictions based on the empirical laws such as Bruggeman's relation and specific 

surface area are valid only for high porosity and a limited range of electrode microstructure 

morphology.  
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The current machine learning workflow enables the solution to the key research question, 

i.e. describing the microstructural effective properties of the electrode in terms of its relevant 

physical descriptors. In principle, we achieve this through supervised machine learning methods 

applied to the microstructural dataset, with the effective property as output and physical descriptor 

as an input. We developed a 6-step strategy (c.f. Fig. 9): 

Step 1: Generation of stochastic electrode microstructure with varying active material and 

secondary phase composition, the morphology of secondary phase, particle size, ellipsoid aspect 

ratio, and orientation of the particles. Characterizing these structures for effective properties 

including tortuosity, electronic conductivity, and interfacial area. (c.f. Fig. 1(b)).  

Step 2: To accurately estimate the effective properties of the electrode microstructure, we have 

utilized a comprehensive dataset of physical descriptors capable of holistically characterizing a 

porous microstructure70. The rationale behind considering a variety of descriptors is that each of 

them quantifies the different aspects of the microstructure and collectively these descriptors 

exhaustively characterize the microstructure. These descriptors are defined such that it helps in 

reducing the biases introduced by only including handpicked descriptors specific to a 

microstructure type and instead it generalizes the machine learning procedure to be extensible to 

other porous microstructure systems. Here we have demonstrated this procedure for graphite as an 

exemplar system but it can easily be extended to other porous microstructure systems as well such 

as the nano-composites, solid-state cathode, thermal composites, etc. To describe the effective 

properties we have included a comprehensive electrode microstructure descriptor dataset including 

its: Chemical composition, Shape of active material, Pore phase constrictions, and Orientation of 

particles as shown in Fig. 9(a). The first category of the composition includes the volume fraction 

of various components including the active material phase (vAM), conductive-binder phase (vS), 
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conductive-binder phase morphology, and overlap factor. These along with the overlap factor (γ) 

form the composition descriptors from D1 to D4 in Fig. 9(a). Since here we have considered various 

AM particle geometry, to generalize the model towards different shapes, we have comprehended 

them using equivalent radius (Req), Eccentricity (e), Rectangularity (ρ), and Sphericity (ψ). These 

descriptors fall into the category of active material shape descriptors set D5 to D8 as shown in Fig. 

9(a). The third set of descriptors statistically quantifies the ease of porous ion percolation 

pathways, for which we resort to particle size distribution. From this distribution, we determine 

and use the mean pore size of microstructure, because it provides much more context to the 

machine learning model compared to porosity, it is denoted by the descriptor D9
 in Fig. 9(a) and 

falls into the pore phase. Finally, the fourth descriptor set quantifies the orientation of active 

material particles and their degree of alignment in a particular direction. From the results above 

we have seen that orientation plays a major role in shaping the ion percolation and electron 

conduction pathways. Here we have considered two anisotropy parameters a1 and a2, which form 

the descriptors D10 and D11 as shown in Fig. 9(a). The details of each descriptor calculation are 

discussed in the Methodology section above. 

Step 3:  

For each given electrode structure, its physical descriptors from D1 to D11 (as shown in Fig. 9(a)), 

i.e. each descriptor is transformed into a diverse set of features. This descriptor featurization is 

done by transforming each of them into multiple features by applying the prototypical function. 

The functions referred to as F1 to F9 are X, 1/X, X0.5, X-0.5, X2, 1/X2, X3, 1/X3, and ln (X) 

respectively as shown in Fig. 9(a), where descriptor (D) value replaces X in each function. The 

resulting feature vector has a dimension of 11 × 9. The final feature vector is generated by cross 
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multiplying the above feature vector with itself. This multiplication generates linear and non-linear 

combinations of two descriptors as shown in Fig. 9(a), with a dimension of 11 × 9 × 50.  

Step 4: Since the input features (or simply features) can be correlated to each other resulting in 

redundancy and multicollinearity, so we perform Descriptor-Descriptor correlation analysis (c.f. 

Fig. 9(b)). The removal of redundant features from the data is important since it provides the ML 

algorithm with physically meaningful variation in the input-output set. This eliminates the noise 

in data and creates a computationally light regression model for effective properties prediction. 

We perform correlation analysis on the input set, involving the calculation of pair-wise feature-

feature linear correlation coefficient heat map. When the feature has a high degree of correlation 

they have a high Pearson's correlation. In general, a balance of several features needs to be 

established, otherwise, it leads to issues of either overfitting or underfitting. So, in this work we 

used a threshold correlation coefficient of 0.9, implying features correlated beyond 0.9 are 

considered to be 1, while correlation below 0.9 is changed to 0, binarizing the correlation map. 

Furthermore, the highly correlated features are then eliminated, resulting in key features with 

unique information about the microstructure (refer to Supporting Information for further details). 

In step 4 we also trim down our dataset by removing outliers within the output dataset which 

contains extreme values of effective properties (c.f. Fig. 9(b)). This is done to avoid training the 

model on extremely unlikely values of the output and preventing skewing and convergence issues. 

The outlier removal criteria are set to remove the top and bottom 1 percentile of the output values 

(refer to Supporting Information for more details).  

Step 5: Fig. 9(b) shows step 5, where the generated finalized dataset is then randomized and split 

into testing and training datasets in a ratio of 80:20 respectively. The current machine learning 
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workflow is aimed towards developing a regression model based on the supervised machine 

learning methods for predicting effective properties.  

Step 6: It involves the training, testing, and comparing the various supervised learning-based 

regression models including Linear regression, Lasso regression, ElasticNet, Ridge regression, 

Decision Tree, Adaboost, and Gradient Boost71  (c.f. Fig. 9(b)). These supervised learning models 

fall into three categories: Linear (Linear, Lasso, Ridge, ElasticNet), Decision tree, and Ensemble 

(Adaboost, Gradient Boost) based models. Linear models are the simplest model where the target 

output is the linear combination of the input features. The benefit of such a model is the low 

computational cost for training, testing, and deployment along with the physically interpretable 

results. Each linear model considered here also has its distinct advantages as discussed later. The 

decision tree models are a non-parametric method, which learns decision making from the training 

data features and grows trees with branching decision nodes. The model uses several subfunctions 

applied to the subdomain of the data. Decision trees are interpretable and have low computational 

costs but can easily overfit data. Finally, the ensemble methods (AdaBoost, Gradient Boost) are 

powerful because they combine the base estimations from several methods increasing the overall 

robustness and accuracy of predictions. The mathematical details of these methods have been 

added to the Supporting Information. The ML models are tested using three metrics for accuracy 

evaluation including mean absolute error (MAE) (c.f. Eq. (9)), coefficient of determination (R2) 

(c.f. Eq. (10)) and relative error prediction (c.f. Eq. (11)).  
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Tortuosity: 

Fig. 10(a) shows the coefficient of determination (R2, also referred to as accuracy) of tortuosity 

prediction for various supervised learning models. All the linear models perform quite similarly to 

each other with linear regression having slightly higher accuracy compared to the ridge, lasso, and 

elastic net which have equal accuracy. The decision tree model is slightly better than the linear 

models, while the best performing model is gradient boost. Table 1 shows that the gradient boost 

model’s testing accuracy is greater than 0.91 at predicting tortuosity in any of three directions 

while the training accuracy is greater than 0.95. Fig. 10(b) shows the predicted tortuosity vs true 

tortuosity values for the testing of the best-performing gradient boost model while Fig. 10(c) shows 

the relative error in predictions. The mean absolute error in predicting tortuosity is about ~0.24 for 

both training and testing scenarios from Table 1. The gradient boost model performs better because 

it is based on the generation of an ensemble of trees where it keeps adding trees to improve the 

accuracy of the model and reduce bias. This makes it more resilient to outliers and random artifacts 

in data. Since it is known that tortuosity has outliers i.e., reaches extremely high values at low 

porosities as seen in Fig. 3(b). In comparison to gradient boost, a single decision tree has a higher 

error, because it is more prone to overfitting data i.e. small artifacts within an overly complex tree 

network can lead to completely different predictions. Fig. 10(b) also shows that tortuosity in the 

X, Y, and Z directions have a similar span of values because of the randomized dataset for testing 
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with the inclusion of all kinds of electrode structures, though most of the values are between 1-

100. From the predicted and true values, we can infer the relative error using Eq. (11), with it being 

high for the lower tortuosity values due to division as shown in Fig. 10(c). Also, since here we 

minimize the absolute error during the model training relative error is higher, instead, we can 

choose relative error to be minimized. Overall we demonstrate the best model capable of predicting 

a wide range of tortuosity values, with the 5-95 percentile range of the tortuosity values lying 

between -40 to 50% error band, which is reasonably accurate considering our comprehensive 

dataset consists of various shapes, AM volume fraction, binder volume fraction, size and 

orientation of particles.  

 

Electronic Conductivity: 

Fig. 11(a) shows the coefficient of determination of electronic conductivity predictions 

comparing the various supervised learning models. All the supervised learning models perform 

similarly to each other with all of them having an accuracy above 0.95 and are indistinguishable 

from each other. This is because electronic conductivity is theoretically bounded to lie between 

zero and the material’s intrinsic electronic conductivity unlike tortuosity likewise the normalized 

electronic conductivity values span a theoretical range of 0-1, with fewer outliers encountered. 

Here we find that the gradient boost model performs best with an accuracy of 0.99 in all three 

directions as observed in Table 2. It also has a mean absolute error in predicting electronic 

conductivity of less than ~0.03 in training and testing. Fig. 11(b) shows that normalized electronic 

conductivity lies between ~0.05 to ~0.7, with the predicted values matching the true values for 

virtually all the electrode structure ranges. Overall we demonstrate a best-supervised learning 

model capable of predicting a wide range of electronic conductivity values, from Fig. 11(c) with 
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the 5-95 percentile range of the electronic conductivity values lying between the  6% error band, 

which is reasonably accurate considering our comprehensive dataset consists of various AM 

volume fraction, binder volume fraction, AM particle size and orientation.  

Interfacial area: 

Fig. 12(a) shows the coefficient of determination of various supervised learning models for 

predicting specific surface area (a01, a12, a02). All the models are highly accurate with an accuracy 

of more than 0.95, out of which the gradient boost model performs consistently quite well here 

along with other effective properties. Table 3 shows that it has an accuracy of 0.99 for all the three 

specific surface area predictions, along with the mean absolute error of less than 0.121 across 

training and testing. Fig. 12(b) shows the plot for the true vs predicted value for testing the best-

performing gradient boost model, with virtually all points lying on the y=x line. Fig. 12(c) shows 

the relative error in predictions for the same, with the 5-95 percentile range corresponding to a 

7% error band. Fig. 12(c) also shows that the three interfacial area values span a different range of 

values, with a01(pore-AM) showing the largest range from almost zero to ~400k, a02(pore-binder) 

exhibiting an intermediate range from ~40k to ~200k, and a12(AM-binder) having the smallest 

range from ~80k to ~200k. We observe that the pore-binder and AM-binder interfacial area have 

a minimum value because all the electrode structures contain an additional binder phase with a 

volume fraction between 5-10%, implying the binder will cover a certain portion of AM particles 

and form an interface with pore space. AM-pore interface, which is an electrochemically active 

interface, can have a very low value resulting from the coverage due to the binder phase, coupled 

with a larger particle of AM causing further reduction in area, on other hand, it also takes the 

highest value for smaller electrode particles with minimal binder coating.   
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Although we have achieved more than 90% accuracy across various properties, the 

performance of the machine learning model can be further increased via multiple paths, by 

increasing the training sample set i.e having a more extensive set of microstructure datasets 

through the incorporation of experimental and computational datasets. Secondly increasing the 

input features i.e. through exhaustive microstructural characterization and using feature selection 

to add meaningful features which explain the model and use the effective property as a selection 

criterion. We can also improve the robustness of the model by the randomized splitting of training 

via k-fold cross validation and ML model hyperparameter tuning to find an optimal model. 

Feature Ranking: 

We have based our ML model for effective property prediction on the use of a high 

dimensional feature vector as an input, which contains the physical characteristic information of 

the microstructure and thus creates a highly accurate model with an accuracy of more than 90%. 

This high-dimensional feature vector is created by feature generation and self cross-multiplication 

of features generating complex features with a linear and non-linear combination from the 

microstructural descriptors (c.f. Fig. 9(a)). This in turn has higher predictive power than simple 

physical descriptors and helps in developing an accurate ML model. The detailed investigation of 

physical descriptors has been performed in Figure 2, but it is practically impossible and irrelevant 

to investigate each feature of the high dimensional feature vector (4950 features), instead, we rely 

on the supervised learning model. When the supervised machine learning model is finished 

training, it assigns relative importance to each feature in predicting the output, which determines 

the feature ranking.  

Here we have presented the feature ranking with the top 3 most important features 

contributing to tortuosity, conductivity, and interfacial area models. Fig. 13(a) shows that within 
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the tortuosity model the contribution from the top 3 features is highly unequal, with the first feature 

contributing ~80%. The first feature is γ3/φ3
 (i.e. overlap/mean pore size), which implies that with 

an increase in overlap or decrease of pore size the tortuosity will increase. This can be explained, 

by the fact that when we pack more active material, it leads to higher overlap and smaller pore size 

which in turn leads to constricted ionic percolation pathways, increasing tortuosity. The second 

and third features contribute about ~3-4%, and both of them show inverse proportionality to φ (i.e. 

mean pore size), which follows the reasoning mentioned above. Fig. 13(b) shows that in the 

electronic conductivity model the contribution from the top 3 features is even more 

disproportionate, with the first feature contributing ~90%. This feature is based on the vAM
2
 γ0.5

 

(i.e. vol. fraction of active material and overlap), which implies that when packing density is 

increased (increasing vAM), it inturn increases overlap of particle creating extensive electron 

conduction pathways, resulting in increased electronic conductivity. The second and third features 

contribute to ~2-3%, which are dependent on the eccentricity of the particle, where an increase in 

eccentricity increases the connection between particles increasing the electronic conductivity. On 

another hand, the third feature has an inverse proportion to eccentricity, because it might have a 

negative weight associated with it. Fig. 13(c) shows the top feature for each interfacial area model 

(a01, a02, a12), with a more equitable distribution of importance across features. The most critical 

feature for predicting a01 is 1/ψReq (i.e. sphericity and equivalent radius), of this equivalent radius, 

is inversely proportional because specific surface area increases as the active material particle size 

decrease. We also know that a sphere is an object which minimizes surface area for the most 

volume and its sphericity is maximum with the value of one, while all other shapes have sphericity 

less than one. This implies further an active material shape deviates from spherical geometry, it 

will have smaller sphericity and correspondingly higher interfacial area proving the inverse 
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proportion to sphericity. The a02 surface area quantifies the interfacial area between the secondary 

phase and pore phase with the most important feature being vS/Req
0.5 (c.f. Fig. 13(c)), so as the 

secondary phase content increases (vS) or the size of particle decreases, it effectively increases the 

interface between the secondary phase and pores. Finally, a12 is the interface between AM particle 

and secondary phase and as a result is highly correlated to vAM
3vS

3, an increase in either active 

material content (vAM) or secondary phase content (vS) will increase the interface between the AM-

secondary phase.  

Conclusions: 

In this study, we have developed a machine learning (ML) based predictive tool to estimate 

the effective properties of the electrode structure based on its physical descriptors. Building a 

comprehensive dataset of ~17000 stochastically generated porous electrode microstructure with 

the varied composition of active material (AM) and binder phase, ellipsoidal particle shapes, sizes, 

and orientation. The structure is characterized for its effective properties including tortuosity, 

electronic conductivity, and interfacial area with variability rooted in the microstructural features. 

We have demonstrated this for graphite as an exemplar system with descriptors quantifying the 

structural aspects, so the method is extensible to other porous systems with similar morphological 

characteristics. 

The comprehensive ellipsoidal shapes have different morphologies including prolate, 

oblate, bladed, and spherical. Among the various particle shapes, the random alignment of 

spherical particles minimizes the tortuosity followed by prolate, bladed, and oblate particles (ε ≥ 

0.3), whereas electronic conductivity follows the opposite trend. There is a tradeoff between the 

electronic conductivity and tortuosity with AM packing, with a linear increase in electronic 

conductivity exponentially increasing tortuosity. This apparent tradeoff can be minimized by the 
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alignment of non-spherical particle morphologies to improve the transport direction properties and 

maintain the specific surface area.  

From the comprehensive effective property dataset, we determine that the empirical 

relations such as Bruggeman's law and for the specific surface area are valid for high porosity and 

limited morphology due to not considering the presence of multiphase, anisotropy, and 

overlapping of particles. The current machine learning workflow enables the solution to this key 

research question, i.e. describing the microstructural effective properties of the electrode in terms 

of its relevant physical descriptors of it. We recognize the strong dependence of effective property 

on the electrode microstructure morphology and propose physically meaningful descriptors to 

quantify composition, active material shape, orientation, and pore-phase. These physical 

descriptors are featurized and transformed through the application of various operator functions 

and cross multiplied with each other. A reduced descriptor dimension space is identified through 

minimizing descriptor-descriptor correlation. These featurized physical descriptors serve as the 

input to the supervised machine learning model with effective properties as the output. An accurate 

supervised machine learning model is built with accuracy greater than 90% across all the effective 

properties based on the gradient boost model. The physical descriptors improve the prediction 

accuracy of effective properties as compared to the empirical relations.  

We also performed the feature ranking through the trained supervised machine learning 

model, which improves the explainability and understanding of the underlying relationship 

between the physical descriptors and the output of the model. The ranking analysis can also help 

in developing a simple yet accurate reduced dimensional representation of the output. Ultimately 

this analysis also paves the way to automate the process of empirical relation development truly 

from observations (i.e. data samples) through a trained supervised machine learning model. 
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Supporting Information 

The mathematical details of the machine learning model and the microstructural characterization 

for effective property and physical descriptors are presented in the supporting information. 
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List of Figures 

 

Figure. 1.  Three-dimensional stochastic electrode structure generation (input) and effective 

properties (output): (a) The generated electrode microstructure’s range of composition, ellipsoidal 

particle sizes, and orientation along with interfacial energy-based deposition of binder domain13  

(b) Characterization of these electrode microstructures for the effective properties i.e. tortuosity, 

electronic conductivity in the three directions and calculation of specific surface area for the three 

interfaces consisting of active material (AM) – secondary phase (binder), AM–pore and pore-

secondary phase interface. (c) Characterizing electrodes via physical descriptors which have been 

categorized into four broad categories including Composition, Active material shape, Orientation, 

and Pore phase; Composition of electrode microstructure consists of active material volume 

fraction (vAM), secondary phase volume fraction (vS), secondary phase morphology (ω) and 

overlap factor; Active material shape features include quantification of shape factors such as 

equivalent radius, eccentricity, rectangularity, and sphericity for quantifying the active material 
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particle geometry; Pore phase quantification includes the mean pore size of the microstructure; 

Orientation of microstructure is quantified by using anisotropy parameters (a1, a2) 
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Figure 2. Electrode’s physical descriptor (a) Varying overlap of ellipsoidal particles with different 

radius and packing fraction of active material (b) equivalent radius of the ellipsoidal particle with 

varying axis lengths (c) Eccentricity of ellipsoidal with varying axis lengths (d) Rectangularity of 

ellipsoidal particles with varying axis lengths (e) Sphericity of ellipsoidal particle with varying 

axis lengths (f) Mean pore size of microstructures with the differing radius of particles and packing 

fraction of active material  
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Figure 3. Effect of active material alignment on tortuosity: (a) Z-direction alignment causes 

tortuosity to be smaller in the Z direction which is apparent at higher porosities (b) random 

alignment leads to similar tortuosity in all directions, and (c) alignment perpendicular to Z-

direction causes higher tortuosity in that direction which is apparent at higher porosities 
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Figure 4. Effect of active material shape on tortuosity: (a) shape classification for ellipsoids based 
on the Zingg66 diagram, (b) tortuosity with different active material ellipsoidal shapes, and (c) 

tortuosity vs. mean pore size for different active material ellipsoidal shapes. 
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Figure 5. Effect of active material alignment on electronic conductivity: (a) Z-direction alignment 

causes the electronic conductivity to be higher in that direction at high volume fractions, (b) 

random alignment leads to similar electronic conductivity in all directions, and (c) alignment 

perpendicular to Z-direction causes smaller electronic conductivity in that direction. 
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Figure 6. Effect of active material shape on electronic conductivity: (a) electronic conductivity 

variation with the overlap of particles, (b) electronic conductivity vs. active material volume 

fraction, and (c) electronic conductivity vs. tortuosity.  

 

 

 

 

 

 

 

 

 

Figure 7. Effect of particle alignment on the specific surface area for different electrode 

microstructures (a) specific surface area comparison for microstructures with particles oriented 

along Z-direction, randomly oriented, and oriented perpendicular to Z-direction (b) Impact of 

particle alignment direction on the normalized tortuosity, normalized w.r.t. tortuosity of 

microstructure with randomly aligned particles (c) Impact of particle alignment direction on the 

normalized electronic conductivity, normalized w.r.t. conductivity of microstructure with 

randomly aligned particles 
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Figure 8. Microstructure consisting of differently shaped ellipsoid particles (a) specific surface 

area with a varying volume of the particle with different shapes (b) specific surface area of AM-

pore interface comparison with idealized area based on the spherical non-overlapping electrode 

(c) specific surface area of (AM+binder)-pore interface 
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Figure 9. Machine Learning Framework (a) Creating electrode feature vector from a physical 

descriptor of microstructure through feature generation and cross-multiplication (b) Flowchart for 

machine learning algorithm for developing electrode microstructure – property relations 
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Figure 10. (a) Comparison of various supervised machine learning models for tortuosity (b) 

machine learning predicted results on the test set for comparison between true tortuosity value and 

predicted value (c) relative prediction error compared to true tortuosity 
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Figure 11. (a) Comparison of various supervised machine learning models for electronic 

conductivity (b) machine learning predicted results on the test set for comparison between true 

electronic conductivity and predicted value (c) relative prediction error compared to true electronic 

conductivity  
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Figure 12. (a) Comparison of various supervised machine learning models for specific surface area 

(b) machine learning predicted results on the test set for comparison between true specific surface 

area and predicted value (c) relative prediction error compared to the true specific surface area  
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Figure 13. Feature ranking analysis showing the three most important features contributing to the 

ML model (a) Important features in the Tortuosity model (b) Important features in Electronic 

Conductivity model (c) Important features in the Interfacial area model 
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Train 0.97 0.97 0.96  0.203 0.202 0.216 

Test 0.94 0.91 0.94  0.219 0.233 0.221 

 

Table 1. The coefficient of determination (R2) mean absolute error (MAE) for the 

tortuosity in three directions using the gradient boost model.  
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Train 0.99 0.99 0.99 

 

0.023 0.027 0.023 

Test 0.99 0.99 0.99 

 

0.027 0.030 0.025 

 

Table 2. The coefficient of determination (R2) mean absolute error (MAE) for the 

electronic conductivity in three directions using the gradient boost model.  
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R
2
 

   MAE  

 a
01

 a
02

 a
12

  a
01

 a
02

 a
12

 

Train 0.99 0.99 0.99  0.093 0.012 0.007 

Test 0.99 0.99 0.99  0.106 0.014 0.008 

 

Table 3. The coefficient of determination (R2) mean absolute error (MAE) for the 

specific surface area using the gradient boost model.  
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