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Abstract:

The development of next-generation batteries with high areal and volumetric energy density
requires the use of high active material mass loading electrodes. This typically reduces the power
density, but the push for rapid charging has propelled innovation in microstructure design for
improved transport and electrochemical conversion efficiency. This requires accurate effective
electrode property estimation, such as tortuosity, electronic conductivity, and interfacial area.
Obtaining this information solely from experiments and 3D mesoscale simulations is time-
consuming while empirical relations are limited to simplified microstructure geometry. In this
work, we propose an alternate route for rapid characterization of electrode microstructural
effective properties using machine learning (ML). Using the Li-ion battery graphite anode
electrode as an exemplar system, we generate a comprehensive dataset of ~17000 electrode
microstructures. These consist of various shapes, sizes, orientations, and chemical compositions,
and characterize their effective properties using 3D mesoscale simulations. A low dimensional
representation of each microstructure is achieved by calculating a set of comprehensive physical
descriptors and eliminating redundant features. The mesoscale ML analytics based on porous
electrode microstructural characteristics achieves prediction accuracy of more than 90% for

effective property estimation.
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Introduction:

Li-ion batteries (LIBs) have advanced from powering mobile electronics to revolutionizing
ground transportation, and are now considered for electric urban air mobility?. LIBs are highly
efficient energy storage systems used in conjunction with renewable energy generators,
contributing to a greener future. The interest in battery material research and the advancement in
characterization techniques has led to an exponential amount of data available for finding optimal
battery candidates. The use of data-driven methods such as machine learning (ML) can enable the
screening through a large material, composition, and microstructural space, enabling rapid

innovation®12,

Developing a structure-property relationship is critical because it can guide the
improvement of electrochemical performance through the composition, and morphological control
of the mesostructure. The state-of-the-art LIB electrode consists of active material (AM), and
conductive additive binder domain (CBD) assembled into a composite porous mesostructure. The
AM exhibits a larger characteristic length scale compared to the CBD and together they form a
solid structural matrix with multi-length scale features3-. For proper functioning of an electrode,
it requires these multiple components including AM and CBD, because an electrode performs a
complex range of processes while the battery operates. The role of AM particles is to store the
chemical energy in form of Li and to provide a high reaction surface area for electrochemical redox
reactions during the battery operation. The electrochemical reaction generates Li" ions and
electrons, the solvated ions shuttle through the tortuous pores of the electrode towards the opposite
electrode where it reduces and intercalates into it. The CBD phase aids in improving the
mechanical connection and electronic percolation pathways through the electrode for their travel
towards the current collector’*°. The electrode mesostructure enabling these three critical physical
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processes can have a varying chemical composition (AM, CBD porosity), active material particles
with different shapes, sizes, orientation, and CBD morphology?°23. Ongoing research effort aims
to improve electrochemical performance at these hierarchies of length scales?*?” and mesostructure
tuning has been used such as for ion transport improvement by forming aligned pores in the

electrode?-31, bi-tortuous electrode structures3?33, and CBD morphology tuning?*3.

To comprehend the reaction and transport dynamics, the electrode is characterized using
effective microstructural property based on effective medium approximations3. It provides a
convenient macroscale description of the microscale physical processes within an electrode. The
conventional approach to this problem of determining effective electrode properties is to perform
experiments measuring the effective properties using experimental techniques, including
electrochemical impedance spectroscopy, galvanostatic intermittent titration, and Brunauer—
Emmett-Teller (BET) methods for interfacial area®*. The issue with experimental
characterization is the significant cost, time, and effort. Repeating this for a very large number of
constructions of electrode structure with varying microstructure topology is also a challenge. This
can be overcome by the usage of physics-derived models which replicate the electrode’s physical
mechanisms. The characterization of electrodes using direct numerical simulation on X-ray
tomography images and focused ion beam/scanning electron microscopy (FIB-SEM) images is
another approach**°, The limited availability of tomography imaging data can be overcome by
the use of stochastically generated electrode mesostructures. This can be generated methodically
by specifying the composition (volume fraction of active material, carbon-binder phases), particle
size distribution, and orientation of particles. Consideration of each parameter grows the design
space exponentially leading to a comprehensive dataset with ~17000 mesostructures along with

freedom for generating unique microstructures currently beyond the reach of common electrode



fabrication methods. The stochastic algorithm for generation involves filling a domain with a
specified particle geometry and alignment till it reaches the target volume fraction. Once a
backbone electrode structure with the active material particle is generated, the carbon-binder phase
is added to the structure®>#34¢. This is a highly scalable method for generating specified composite

electrode structures, which can be characterized for kinetic and transport effective properties.

Developing a structure-property relationship is a perfectly suited problem to take advantage
of machine learning (ML) methods and applications. ML methods are a class of algorithms that
self-learn the complex relations in high-dimensional datasets. Supervised ML methods, trained
over comprehensive known datasets, can learn the dependence of input conditions over the output
values and provide physical insights into high dimensional data without the need for prespecified
physical governing laws*4¢. These methods can also reveal physically fundamental relations and
make quantitative and qualitative predictions for unknown scenarios. For the electrode effective
properties, this can be used towards its advantage to study the intricate relationship between
electrode structure and properties. ML methods are used in battery research to understand issues
such as degradation and safety. They were used to predict the state of charge and state of health of
a battery using electro-impedance spectroscopy*>*°, internal short circuit detection*®, optimal
safety under abuse testing>>>2, capacity fade, and remaining useful life predictions**->” and effective

porous media properties>®°?,

Problem Description:

In this work, we develop a mesostructure—effective property framework for a graphite-based
electrode as an exemplar system. As a first step, we stochastically generate comprehensive

electrode structures ranging in density and with various binder topologies. By using pore-scale



simulations we characterize the electronic conductivity, tortuosity in three directions, and various
interfacial areas. The electrode structure is quantitatively described by characteristics such as the
composition, particle shape, and pore size which serve as inputs with effective properties as the
outputs of the dataset. The physical descriptors are selected to diversify the patterns in the input
datasets, and data cleaning methods are used to remove redundant features and outliers within the
data. We trained and tested various supervised machine learning-based regression models and

compared their accuracy in predicting effective properties.

Methodology:

The basic goal is to represent the effective property of the electrode structure as a function
of the electrode’s physical descriptor using ML as a tool. On one hand, the effective properties
such as tortuosity, electronic conductivity, and specific surface area are a representation of the
electrode’s macroscale reactive-transport behavior. To capture the structural differences between
electrode microstructure, it is also represented by the physical descriptors in a low dimensional
space. These physical descriptors quantitatively represent electrode structure’s morphology and
for comprehensive characterization of the microstructure we propose four classes of the physical

descriptor to quantify, including composition, active material shape, orientation, and pore phase.
Electrode structure generation

We used stochastic electrode generation in GeoDICT®? to generate a realistic mesostructure
consisting of an active material particle-based backbone. The 3-dimensionally generated active
material skeleton has a cubical domain, with a volume of 200x200x200 um?® as shown in Fig. 1(a).
The Representative Volume Element (RVE) analysis was performed to ensure that the domain was

representative of the electrode volume (refer to Supporting Information). Fig. 1(a) outlines the



steps for the generation of realistic electrode mesostructures, and the range of compositions,
particle sizes, and orientations used in this study. Since imaging experiments show that graphite
active material particles form microscale ellipsoidal structures®?, the active material particle shape
was set as an ellipsoid. In some cases the graphite particle shape can deviate due to irregular, flaky,
or fibrous particle geometry, and the particle size might also follow a distribution but it is not
considered here. The ratio of the length of the ellipsoid’s major to minor axes varied between 0.5
to 5, with ratio 1 being a special case for spherical particles. The AM volume fraction varied from
40 to 80 %, ranging from a sparsely to densely packed electrode structure. The particle orientation
was varied using anisotropy parameter values between 0.1 to 100. Finally, 5 to 10 vol.% of binder
was added to the generated active material backbone using an interfacial energy-based stochastic
deposition. The morphology factor (@) is a measure of cohesive to adhesive tendencies of binder
over AM*® which varied between 0.1 to 0.9. Smaller @ gives rise to a film-like deposit while
higher @ gives rise to a finger-like deposit, generating various binder topologies with differing
electron and ion transport pathways. Overall a comprehensive set of ~17000 unique realistic

composite electrode structures was generated.

Outputs - Effective properties characterization:

To characterize the efficacy of the electrode architecture, we determine their effective
properties by utilizing 3D-physics-based pore-scale simulations performed on the generated

electrode structures (as shown in Fig. 1(b)): (1) o, —the effective electronic conductivity in three

directions (which determines electron percolation), (2) 7 —tortuosity of pore network in three
directions (Li* transport in the pore network). The calculation of the effective conductivity and
tortuosity is based upon assigning suitable diffusivity (or conductivity) values to the pores and
solid phases and performing a concentration (or charge) balance. Concentration (or electric
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potential) Dirichlet boundary conditions are applied at the two opposite faces and the effective
properties are calculated in the three orthogonal directions (X, Y, and Z) as shown in Fig. 1(b).

The last effective property under consideration is (3) a, — volume-specific surface area (interfacial

area available for the electrochemical reaction). In a composite electrode, there are three two-phase
interfaces: the pore-active material interface (ao1), the pore-binder interface (ao2), and the active
material-binder interface (ai2). The electrochemical redox reaction occurs over the pore-active

material interface ao1, while the other two interfaces ai2, and ao2 are electrochemically inactive®.

Inputs - Electrode Physical Descriptor Characterization:

Composition: It is the lowest order representation of electrode microstructure information
similar to a zero-order moment, quantifying the volume and weight fraction of the chemical
constituents present in the composite electrode matrix. For a model intercalating electrode, like
graphite consisting of three distinct phases: active material, binder, and pore phase, the unique
composition of the electrode is determined from the volume fraction of active material (vam), the
volume fraction of the secondary phase (vs), and secondary phase morphology parameter (»); Fig.
1(c)). Since pores, active material, and secondary phases add up to 100 vol.%, the porosity is

uniquely determined by the other composition.

Another unique parameter we proposed as part of this composition description is the
overlap factor () which quantifies the overlap between the intersecting particles. It is quantified
as the fraction of overlapping volume to the actual volume occupied by the active material particles
as shown in Fig. 1(c) and quantified in Eq. (1). From the schematic in Fig. 1(c), we define V1, V3
refers to non-intersecting volume while V2 is the shared volume. From a low energy density

electrode structure to a high energy density electrode the overlap of AM particles is expected to



increase and so is the overlap factor. It can be readily observed from Fig. 2(a) that the overlap-
factor increases when the radius of the active material particle increases and porosity decreases.
The highest overlap factor of ~0.79 is seen when large particles are packed in a low porosity
configuration, while it takes the lowest value of 0.2 when smaller particles are packed in a high

porosity configuration.

v
Overlap — factor (y) =——— 1
p — factor (y) Vil e (1)

Active material shape: 1t is the deeper level information of about the particle structure and it
determines the morphology of the electrode structure and pore space. In this work, we have
considered a variety of particle geometries of the AM particles which deviate significantly from a
well-rounded spherical shape. So to generalize we redefined the active material particle geometry

into well-known shape descriptors:

Equivalent radius: The equivalent radius for an AM particle is the radius of a sphere enclosing an
equal amount of volume as the particle. The formula for it is described in Eq. (2), where V refers
to the single-particle volume. Fig. 1(c) schematically describes the equivalent radius concept for
an ellipsoid particle. A regular ellipsoid’s shape can be modified by varying the ratio of its axes'
length. Increasing any single-axis length will lead to angular and pointed particles while increasing
the two-axis length will create an oblate-shaped particle. Fig. 2(b) shows that as the particles
become more angular/oblate their equivalent radius increases proportionately, ranging between 2
to 7 pm.

V)3
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Eccentricity: It measures the elongation of the particle, defined as the ratio of the longest chord of
the particle to the shortest chord (Eq. (3)). The schematic in Fig. 1(c) shows that for an ellipsoid
particle, this translates to the ratio of the major axis to minor axis length. Eccentricity (e) measures
the elongation of the particle along a particular direction (Eq. (3)), with ‘a’ being the longest axis
and ‘c’ being the shortest axis length. When only the largest (‘a’) axis length is increased in an
ellipsoid particle, it leads to the formation of angular particles (Fig. 2(c)) as seen with the increase

in eccentricity.

longest axis a
Eccentricity(e) = g— =— (3)
shortest axis ¢

Rectangularity: Rectangularity is defined as the ratio of the surface area of a particle to the surface
area of the minimum bounding rectangle surrounding it in 3D (a cuboid; Eq. (4)), and
schematically described in Fig. 1(c). In Eq.(4), Sam refers to the area of active material particle
and Scuboid refers to the area of the cuboid surrounding it in 3-dimensions. When the aspect ratio
of the active material is changed, its rectangularity varies from 0.53 to 0.61 as shown in Fig. 2(d).
It shows that spherical particles have the smallest rectangularity while more oblate or angular
particles have higher rectangularity.

Rectangularity (p) = Sau 4)

cuboid

Sphericity: The sphericity (y ) of an ellipsoid particle is used to quantify the closeness of a particle
in resembling a sphere. In Eq. (5), ‘V’ refers to the volume of active material and S refers to its
surface area. It is known that a sphere has a minimal surface area for enclosing a given volume,
hence sphericity is always less than or equal to one; a smaller value denotes divergence from

spherical characteristics (Fig. 1(c)). Fig. 2(e) denotes the sphericity of the particle under
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consideration, it is maximum with the value of 1.0 when they are perfectly spherical on the other

hand the oblate ellipsoid particles are the least spherical with a sphericity of 0.65.

2
73 (6V)3

S (5

Sphericity (v) =
Pore phase: Quantification of the pore phase is critical since it controls the transport dynamics of
Li* ions within the electrode. Since porosity is a low-level representation of the porous
microstructure, here we resort to pore size to quantify the efficacy of porous percolation pathways.
We have used the 3D-continuous pore size distribution (c-PSD) definition by Munch and Holzer®
using the open-source implementation in Fiji®. In this method we calculated the closest distance
of the active material interface from each pore voxel, resulting in a distance map function. From
this function, the volume fraction of the pore phase which can contain a sphere with a certain radius
is calculated. Fig. 1(c) schematically describes the pore size distribution for a sample electrode
microstructure where differently sized pores are fitted within the pore space of the microstructure.
This results in a pore size distribution (PSD) with the radius of the pore phase plotted against the
volume fraction of the pore phase covered (refer to supporting information for details). Fig. 2(f)
shows the mean pore size (¢) of the microstructure with the radius of AM particle and its porosity.
The highest mean pore size of about 7um is seen when large particles are packed in a high porosity
configuration meanwhile when smaller particles are packed with low porosity configurations, they

have the smallest pore sizes.

Orientation: The electrode microstructure needs to be quantified for its anisotropic characteristics
and quantify the degree of alignment of active material particles. Since we know the physical

effective properties (e.g. conductivity and tortuosity) of the electrode are a strong function of the
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particle network because these particles form the basis for the electron percolation pathways, and
subsequently, also determine the complementary pore network. When stochastically generating
the electrode microstructure, a random direction is computed (x, y, z), then the particle alignment
is determined using anisotropy parameters 1 and 2 (a1, a2) which denote the strength of orientation

of active material particles. The direction of each AM particle is set based on direction vector ( d,

) which is a function of the Anisotropy parameter as shown in Eq. (6).

x a,x

¢ 1
. | = > > > aa,y (6)
J@x) +(@a,y) +2

d,=

z

a

Thus, for different generated electrode mesostructures, we have varied the alignment by changing
the values of anisotropy parameters (a1, a2) between 0.1 to 100, generating structures with
anisotropic orientation in different directions as well as some with isotropic characteristics as

schematically shown in Fig. 1(c).

Results and Discussion:

Correlation of effective properties with descriptors:

We investigate the correlation of each effective property (tortuosity, electronic conductivity, and
interfacial area) with the electrode’s physical descriptors i.e. Composition, Active material shape,
Pore phase, and Orientation. To analyze the trends within the comprehensive dataset of electrode
microstructure under consideration, we segregate them into two categories to study the impact of

the orientation of the particle and the morphology of the particle.

The direction of arrangement of these particles becomes critical when particles are not symmetric

i.e., for non-spherical morphologies. The arrangement in a particular direction for these
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asymmetric particle morphologies gives rise to an anisotropic electrode microstructure with
direction-dependent properties. The figures Fig. 3, Fig. 5, and Fig. 7 are for a fixed ellipsoid
morphology of the particles, which can be aligned in the transport direction (Z-direction),

randomly aligned, or aligned perpendicular to the transport direction respectively.

The second set of figures is based on a shape classification scheme established by the Zingg
diagram®®, where ellipsoid particles are segregated into various regimes based on the relative axes
lengths of the ellipsoid as shown in Fig. 4(a). To have a comprehensive dataset of AM particle
shape i.e. to consider all types of shape (ellipsoidal) effect, during the electrode structure
generation particle axis lengths have been carefully chosen to include all classes. This leads to
having various geometrical shapes representative of all the different classes of ellipsoids and leads
to generalizable ML models not limited to a particular particle geometry. All the particle shapes
within the current dataset have been marked with colored dots, and are mapped onto the
classification scheme in Fig. 4(a). We see that the triaxial ellipsoid particle shapes can take the
form of bladed, prolate, oblate, and spherical shapes. While the spherical shape is obvious, the
bladed particles have all three different axis lengths, oblate particles are shaped like flattened
spheroids like M&M while prolate particles are elongated spheroids like a rugby ball®® (For details

refer to Supporting Information). The shape effects have been studied in Fig. 4, Fig. 6, and Fig. 8.

Tortuosity:

Traditionally in the modeling of LIB, the porous electrode microstructure is assumed to be
consisting of non-overlapping spherical active material particles with two phases including AM
and pores. Based upon this idealistic representation the empirical Bruggeman's law predicts the
tortuosity of an electrode’s pore space as a function of only the porosity of structure as shown in

Eq. (7), and shows the scaling as the inverse of the square root of porosity. Various extensions of
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Bruggeman's law have been made to express tortuosity as different power from the porosity of
structure. As such, there is no generalized analytical relation for predicting tortuosity as a function
of the microstructural parameters, except in specialized cases such as simple isotropic and non-

overlapping highly porous structures without the presence of additional phases®’-°.

=" (7)

Fig. 3 investigates the pore space tortuosity of the electrode microstructure with the varying
alignment of ellipsoidal particles. Fig. 3(a)-(c) are for a fixed ellipsoid morphology of the particles,
which can be aligned in the transport direction (Z-direction), randomly aligned, or aligned
perpendicular to the transport direction respectively. Across all these scenarios we observe that the
tortuosity increases as the porosity of the structure decrease due to the pore size constriction at
higher packing. The different colors represent the range of tortuosity values at a given porosity
since factors such as particle size and binder-phase morphology also play a role. We observe that
the band of tortuosity values exhibited at a given porosity increases as the porosity decreases, this
is because the sensitivity to the microstructural parameters increases at higher packing. Fig. 3(a)
shows that the tortuosity of the structure in the Z-direction is smaller compared with that across X,
and Y directions, due to the preferential alignment of particles in that direction. While Fig. 3(b)
shows that, although these particles are spherically asymmetric when they are aligned randomly,
they behave as isotropic structures with equal tortuosity in all directions. Finally from Fig. 3(c),
we can compare across the X, Y, and Z-direction, we observe that there is a preferential direction
of alignment of the particles perpendicular to the Z-direction, hence the Z-direction tortuosity is

highest.

We plot Bruggeman's law for the three different exponents values: 0.5, 1, and 1.5, and observe the

divergence from the power-law at high energy density and low-porosity electrode configurations
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because it does not consider the particle size, orientation. In Fig. 3(a) even for the high porosity
configurations, we observe that the Bruggeman's coefficient is distinct in the three directions, with
the X, and Y directions having a higher exponent than Z-direction due to the alignment in Z-
direction. Bruggeman’s coefficient in Z-direction is about ~0.9 which is similar to the one found
by other researchers?! due to similarity in ellipsoidal shape characteristics and alignment in the
transport direction. Fig. 3(b) shows that Bruggeman’s coefficient is identical in all three directions
due to the isotropic nature of the structure, with a coefficient value of ~1.2, which is higher than
for the aligned structure in Fig. 3(a). For Fig. 3(c) where the alignment is perpendicular to Z-
direction, the coefficient in Z-direction is higher compared to the other two directions, with a value

of ~1.25 while for Y-direction ~0.9.

Fig. 4 investigates the impact of active material particle shape over the effective electrode
properties with the random alignment of particles. All the particle shapes within the current dataset
have been marked with colored dots, and are mapped onto the classification scheme in Fig. 4(a),
and discussed above. Fig. 4(b) shows that across the various shape characteristics, if the randomly
aligned particle is the choice, the minimum tortuosity is exhibited by the microstructure consisting
of spherical particles for higher porosities (¢ > 0.3). While the next best choice is to consider the
prolate particles, followed by bladed and oblate particles. A potential reason for this ordering is
that since these are randomly oriented particles when encountering the spherical particle, they
provide an idealized smallest smooth pathway from one point on the surface to the other
diametrically opposite end irrespective of the orientation. On other hand compare with the oblate
particles, which are an idealized version of platelet morphology found in the graphite®, the shortest
path connecting the two faces of the ellipsoid requires traversing along the longest major axis as

shown in Fig. 4(b). Within Fig. 4(b) we also observe that Bruggeman's law which is limited to
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higher porosities, Bruggeman's coefficients are different across various shapes, with oblate
particles having the highest coefficient followed by the bladed, prolate, and spherical particles.
This coefficients order is in good agreement with the existing literature and verifies the validity of
the simulations and structures?!. At lower porosities (¢ < 0.3), generalizing the order of tortuosity
values for different particle shapes becomes more difficult as can be seen in Fig. 4(b) except that
spherical particle still provides the lowest tortuosity. At these lower porosity, the range of
tortuosity values spanned by each particle shape is quite high. This is discussed earlier and follows
from the fact that tortuosity becomes more sensitive to particle arrangement and characteristics at
lower porosities and even the slightest of changes to particle arrangement can cut off the
percolation pathway resulting in highly tortuous structures. We can also justify this based on Fig.
4(c), which shows that the tortuosity is a function of the mean pore size of the microstructure. For
the larger pore sizes (> 4.5um), oblate particles offer the highest tortuosity compared to all,
implying that they distort the pore space significantly more compared to the other particle shapes.
As the mean pore size becomes smaller (< 4.5um) or equivalently lower porosity structures the
tortuosity order becomes more complicated with all the particle morphologies having similar

tortuosity values.

Electronic Conductivity:

The electronic conductivity of a microstructure measures its efficacy at transporting
electrons with minimal losses, within these structures only active material particles participate
while binder (polyvinylidene fluoride) and pores have no contribution because of very low intrinsic
electronic conductivity. Here the electronic conductivity is normalized by the intrinsic electronic
conductivity of the AM particle to limit the variation between 0 to 1. Fig. 5(a)-(c) investigates

electronic conductivity for a fixed ellipsoid morphology of the particles, which can be aligned in
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the transport direction (Z-direction), randomly aligned, or aligned perpendicular to the transport
direction respectively. Across all these scenarios we observe that the electronic conductivity
increases as the porosity of the structure decrease due to the increasing overlap and creation of
numerous wide electronic pathways across the structure as seen in Fig. 6(a). The different colors
represent the range of electronic conductivity values at a given porosity since factors such as
particle size and binder-phase morphology also play a role. From Fig. 5(a) we observe that the
electronic conductivity in Z-direction is about ~20-30% higher compared to the X and Y direction,
due to the alignment of the particles parallel to the transport direction, resulting in higher
overlap/electronic pathways. Fig. 5(b) on other hand shows the electronic conductivity for the
same type of ellipsoidal particle except with random alignment. Here the electronic conductivity
shows equal values in all directions due to the isotropic behavior of randomly oriented particles.
Fig. 5(c) represents the scenario with particle alignment perpendicular to the transport direction,
due to which Z-direction conductivity is quite smaller compared to the X, Y direction electronic
conductivity. Across all cases from Fig. 5(a)-(c) we also observe that the anisotropicity of
electronic conductivity decreases for lower active material v.f. (vam <0.5), probably because of

insignificant overlap of the particles, hindering any directional preference.

Fig. 6 investigates the impact of active material particle shape over the effective electrode
properties with the random alignment of particles. From Fig. 6(a) we observe the increase in the
overlap of electrode AM particles which in turn increases electronic conductivity from ~0.1 to
~0.6 for the various shapes of the ellipsoids. Fig. 6(b) shows that at a higher volume fraction (vam
>0.6), the electronic conductivity of particles with different shapes follows the order of sphere <
prolate < bladed < oblate. Among these, spherical particles show minimal electronic conductivity,

because the sphere has the minimum surface area for packing a given amount of active material
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volume. So, it is highly efficient at packing and minimizes contact with the other spherical particles
causing fewer electronic conduction pathways. On the other hand, oblate particles due to their
disk-like and angular characteristic provide shorter conduction pathways through their thickness
as well as have significant overlap because of the high aspect ratio, improving electronic pathways.
At a low volume fraction (vam < 0.6) there is no order in electronic conductivity, because of
insufficient contacts and overlap, thus the slightest change can increase/decrease electronic
conductivity increasing uncertainty. For all the differently shaped particles, increasing electronic
conductivity tradeoffs with the increasing tortuosity of the structure as evident from Fig. 6(c).
Although this tradeoff doesn’t follow the linear trend, implying for a specific gain in electronic
conductivity the corresponding tortuosity increases exponentially. The porous pathways are
complementary to the particle network and thus more overlap of particles implies a more tortuous

pathway for ion flow.

Interfacial Area:

One of the key critical properties of the electrode is the interfacial sites available at the
active material interface for electrochemical reactions. The presence of three phases i.e. binder,
active material, and pores lead to the formation of three interfaces pore-AM, pore-binder, and AM-
binder, of which pore-AM is the electrochemically active interface!®. Conventional modeling of
LIB assumed the electrode microstructure to consist of perfectly spherical particles with no
overlap, and with the presence of only two phases within the microstructure implying complete
surface area is electrochemically active and available®. Based on this idealistic representation
Bruggeman's empirical law predicts the specific surface area i.e. area per unit volume solely as a

function of volume fraction and particle radius of AM as shown in Eq. (8). As such, there is no
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generalized analytical relation for predicting interfacial area except in the specialized case

discussed above.

47R* 3v,,
a., = = — 8
3V,

Here we study the impact of various microstructural parameters including particle
alignment (cf. Fig. 7) and shape (cf. Fig. 8), along with the comparison with the empirical law.
Fig. 7(a) shows three different electrodes with identical characteristics including particle shape,
morphology, and the v.f. of AM and binder phase. The distinguishing factor is the presence of
particle alignment, leading to three cases either with Z-direction orientation, isotropic (random
orientation), and oriented perpendicular to Z. There is minimal impact of particle alignment on the
availability of surface area at the electrodes. This is because SSA is a scalar quantity, and the
particle alignment does not change the particle overlap characteristics unlike the tortuosity and
electronic conductivity values. Fig. 7(a) shows that empirical law is also applied to these
microstructures for calculating the ideal SSA, but since the particles are not spherical, we use the
equivalent radius of the ellipsoid particles as calculated using Eq. (2). We observe that for smaller
AM volume fractions the actual specific surface area coincides with the empirical relation because
the overlap of the particle is not significant. At higher A.M. volume fractions the actual specific
surface area is less than the empirical predictions due to the overlapping of particles and binder
phase covering interfaces as found in other work®. Fig. 7(b) shows the SSA as a function of
normalized tortuosity for the three different particle alignments. The normalization is performed
for the tortuosity of microstructure with randomly aligned particles. We observe that when

particles are aligned in the transport direction, we can decrease the tortuosity by ~20%, with no
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trade-off to SSA, implying transport improvement in pores does not come at cost of sacrificing
interfacial area. Fig. 7(c) shows the interfacial area as a function of normalized electronic
conductivity (w.r.t. randomly oriented particles). We observe that the aligned particles not only
improve the percolation pathways but also the electronic conduction pathways. The improvement
in electronic conductivity is always higher than ~15% compared to the isotropic microstructures.

For higher SSA the electronic conductivity improvements are even higher ~30%.

Fig. 8(a) represents SSA for various particle shapes as a function of their size/volume. The
approximate SSA offered by the particles is ~10% m?/m?3, showing that it increases exponentially
as the volume of particles decreases. These values have been calculated for a single particle, to
isolate the particle shape/size effect on microstructural characteristics. Among all shapes, for an
identical volume, bladed particles offer the highest surface area, which is almost double that of a
spherical particle which offers the least area. SSA does not follow a shape classification scheme,
i.e. the oblate and prolate particles are quite dissimilar in their shape characteristics and even then
they offer a similar specific surface area (cf. Fig. 8(a)). That is why no clear regime is established
for the microstructure SSA based purely on particle shape itself in Fig. 8(b). Instead, we can see
that microstructural characteristics such as AM volume fraction and the average dimension of the
particle have a much more prominent impact and result in a non-monotonic trend. It is because at
first, the pore-AM surface area increases when packing a higher AM fraction but beyond a certain
v.f. it also causes more overlap of AM particles causing the surface area to reduce. This is also the
reason we see the deviation of SSA from idealized values as shown by empirical relation. Fig. 8(c)
shows the cumulative SSA of the pore-binder interface and it shows a similar non-monotonic trend

due to increasing particle overlap.
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In conclusion, the understanding of the microstructural complexations and their impact on the
effective properties of the electrode can be utilized to improve the electrode design and
electrochemical performance. Comparing the shape characteristics we observe that if the randomly
aligned particle is the choice, the minimum tortuosity is exhibited by the microstructure consisting
of spherical followed by the prolate, bladed, and oblate particles (¢ > 0.3), while the electronic
conductivity follows the opposite trend. The tradeoff between the electronic conductivity and
tortuosity exists where AM packing linearly increases electronic conductivity while it leads to an
exponential increase in tortuosity because the porous pathways are complementary to the
electronic percolation pathways. The directional arrangement of particles is critical esp. for non-
spherical morphology and gives rise to anisotropic electrode microstructure with direction-
dependent properties including electronic conductivity and tortuosity. The alignment of particles
can be used to minimize the tradeoff between tortuosity and electronic conductivity i.e. they can
improve the porous percolation as well as electronic conduction pathways in the transport
direction. Along with it the specific surface area i.e. electrochemically active area is not
significantly affected by such particle alignment, although it is strongly affected by particle size

and binder morphology.

Machine Learning-based workflow — Physical Descriptor-based Characterization:

Due to such a large number of microstructural descriptors and range of effective properties
we need to determine a small yet representative descriptor set to predict these effective properties.
Whereas the predictions based on the empirical laws such as Bruggeman's relation and specific
surface area are valid only for high porosity and a limited range of electrode microstructure

morphology.
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The current machine learning workflow enables the solution to the key research question,
i.e. describing the microstructural effective properties of the electrode in terms of its relevant
physical descriptors. In principle, we achieve this through supervised machine learning methods
applied to the microstructural dataset, with the effective property as output and physical descriptor

as an input. We developed a 6-step strategy (c.f. Fig. 9):

Step 1: Generation of stochastic electrode microstructure with varying active material and
secondary phase composition, the morphology of secondary phase, particle size, ellipsoid aspect
ratio, and orientation of the particles. Characterizing these structures for effective properties

including tortuosity, electronic conductivity, and interfacial area. (c.f. Fig. 1(b)).

Step 2: To accurately estimate the effective properties of the electrode microstructure, we have
utilized a comprehensive dataset of physical descriptors capable of holistically characterizing a
porous microstructure’’. The rationale behind considering a variety of descriptors is that each of
them quantifies the different aspects of the microstructure and collectively these descriptors
exhaustively characterize the microstructure. These descriptors are defined such that it helps in
reducing the biases introduced by only including handpicked descriptors specific to a
microstructure type and instead it generalizes the machine learning procedure to be extensible to
other porous microstructure systems. Here we have demonstrated this procedure for graphite as an
exemplar system but it can easily be extended to other porous microstructure systems as well such
as the nano-composites, solid-state cathode, thermal composites, etc. To describe the effective
properties we have included a comprehensive electrode microstructure descriptor dataset including
its: Chemical composition, Shape of active material, Pore phase constrictions, and Orientation of
particles as shown in Fig. 9(a). The first category of the composition includes the volume fraction

of various components including the active material phase (vam), conductive-binder phase (vs),
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conductive-binder phase morphology, and overlap factor. These along with the overlap factor ()
form the composition descriptors from D! to D*in Fig. 9(a). Since here we have considered various
AM particle geometry, to generalize the model towards different shapes, we have comprehended
them using equivalent radius (Req), Eccentricity (e), Rectangularity (p), and Sphericity (v). These
descriptors fall into the category of active material shape descriptors set D’ to D® as shown in Fig.
9(a). The third set of descriptors statistically quantifies the ease of porous ion percolation
pathways, for which we resort to particle size distribution. From this distribution, we determine
and use the mean pore size of microstructure, because it provides much more context to the
machine learning model compared to porosity, it is denoted by the descriptor D? in Fig. 9(a) and
falls into the pore phase. Finally, the fourth descriptor set quantifies the orientation of active
material particles and their degree of alignment in a particular direction. From the results above
we have seen that orientation plays a major role in shaping the ion percolation and electron
conduction pathways. Here we have considered two anisotropy parameters a1 and a2, which form
the descriptors D!? and D! as shown in Fig. 9(a). The details of each descriptor calculation are

discussed in the Methodology section above.
Step 3:

For each given electrode structure, its physical descriptors from D! to D!! (as shown in Fig. 9(a)),
1.e. each descriptor is transformed into a diverse set of features. This descriptor featurization is
done by transforming each of them into multiple features by applying the prototypical function.
The functions referred to as F! to F? are X, 1/X, X%, X5 X2, 1/X?, X3, 1/X3, and In (X)
respectively as shown in Fig. 9(a), where descriptor (D) value replaces X in each function. The

resulting feature vector has a dimension of 11 % 9. The final feature vector is generated by cross
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multiplying the above feature vector with itself. This multiplication generates linear and non-linear

combinations of two descriptors as shown in Fig. 9(a), with a dimension of 11 x 9 x 50.

Step 4: Since the input features (or simply features) can be correlated to each other resulting in
redundancy and multicollinearity, so we perform Descriptor-Descriptor correlation analysis (c.f.
Fig. 9(b)). The removal of redundant features from the data is important since it provides the ML
algorithm with physically meaningful variation in the input-output set. This eliminates the noise
in data and creates a computationally light regression model for effective properties prediction.
We perform correlation analysis on the input set, involving the calculation of pair-wise feature-
feature linear correlation coefficient heat map. When the feature has a high degree of correlation
they have a high Pearson's correlation. In general, a balance of several features needs to be
established, otherwise, it leads to issues of either overfitting or underfitting. So, in this work we
used a threshold correlation coefficient of 0.9, implying features correlated beyond 0.9 are
considered to be 1, while correlation below 0.9 is changed to 0, binarizing the correlation map.
Furthermore, the highly correlated features are then eliminated, resulting in key features with
unique information about the microstructure (refer to Supporting Information for further details).
In step 4 we also trim down our dataset by removing outliers within the output dataset which
contains extreme values of effective properties (c.f. Fig. 9(b)). This is done to avoid training the
model on extremely unlikely values of the output and preventing skewing and convergence issues.
The outlier removal criteria are set to remove the top and bottom 1 percentile of the output values

(refer to Supporting Information for more details).

Step 5: Fig. 9(b) shows step 5, where the generated finalized dataset is then randomized and split

into testing and training datasets in a ratio of 80:20 respectively. The current machine learning
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workflow is aimed towards developing a regression model based on the supervised machine

learning methods for predicting effective properties.

Step 6: It involves the training, testing, and comparing the various supervised learning-based
regression models including Linear regression, Lasso regression, ElasticNet, Ridge regression,
Decision Tree, Adaboost, and Gradient Boost™ (c.f. Fig. 9(b)). These supervised learning models
fall into three categories: Linear (Linear, Lasso, Ridge, ElasticNet), Decision tree, and Ensemble
(Adaboost, Gradient Boost) based models. Linear models are the simplest model where the target
output is the linear combination of the input features. The benefit of such a model is the low
computational cost for training, testing, and deployment along with the physically interpretable
results. Each linear model considered here also has its distinct advantages as discussed later. The
decision tree models are a non-parametric method, which learns decision making from the training
data features and grows trees with branching decision nodes. The model uses several subfunctions
applied to the subdomain of the data. Decision trees are interpretable and have low computational
costs but can easily overfit data. Finally, the ensemble methods (AdaBoost, Gradient Boost) are
powerful because they combine the base estimations from several methods increasing the overall
robustness and accuracy of predictions. The mathematical details of these methods have been
added to the Supporting Information. The ML models are tested using three metrics for accuracy
evaluation including mean absolute error (MAE) (c.f. Eq. (9)), coefficient of determination (R?)

(c.f. Eq. (10)) and relative error prediction (c.f. Eq. (11)).

true pred
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Tortuosity:

Fig. 10(a) shows the coefficient of determination (R?, also referred to as accuracy) of tortuosity
prediction for various supervised learning models. All the linear models perform quite similarly to
each other with linear regression having slightly higher accuracy compared to the ridge, lasso, and
elastic net which have equal accuracy. The decision tree model is slightly better than the linear
models, while the best performing model is gradient boost. Table 1 shows that the gradient boost
model’s testing accuracy is greater than 0.91 at predicting tortuosity in any of three directions
while the training accuracy is greater than 0.95. Fig. 10(b) shows the predicted tortuosity vs true
tortuosity values for the testing of the best-performing gradient boost model while Fig. 10(c) shows
the relative error in predictions. The mean absolute error in predicting tortuosity is about ~0.24 for
both training and testing scenarios from Table 1. The gradient boost model performs better because
it is based on the generation of an ensemble of trees where it keeps adding trees to improve the
accuracy of the model and reduce bias. This makes it more resilient to outliers and random artifacts
in data. Since it is known that tortuosity has outliers i.e., reaches extremely high values at low
porosities as seen in Fig. 3(b). In comparison to gradient boost, a single decision tree has a higher
error, because it is more prone to overfitting data i.e. small artifacts within an overly complex tree
network can lead to completely different predictions. Fig. 10(b) also shows that tortuosity in the

X, Y, and Z directions have a similar span of values because of the randomized dataset for testing
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with the inclusion of all kinds of electrode structures, though most of the values are between 1-
100. From the predicted and true values, we can infer the relative error using Eq. (11), with it being
high for the lower tortuosity values due to division as shown in Fig. 10(c). Also, since here we
minimize the absolute error during the model training relative error is higher, instead, we can
choose relative error to be minimized. Overall we demonstrate the best model capable of predicting
a wide range of tortuosity values, with the 5-95 percentile range of the tortuosity values lying
between -40 to 50% error band, which is reasonably accurate considering our comprehensive
dataset consists of various shapes, AM volume fraction, binder volume fraction, size and

orientation of particles.

Electronic Conductivity:

Fig. 11(a) shows the coefficient of determination of electronic conductivity predictions
comparing the various supervised learning models. All the supervised learning models perform
similarly to each other with all of them having an accuracy above 0.95 and are indistinguishable
from each other. This is because electronic conductivity is theoretically bounded to lie between
zero and the material’s intrinsic electronic conductivity unlike tortuosity likewise the normalized
electronic conductivity values span a theoretical range of 0-1, with fewer outliers encountered.
Here we find that the gradient boost model performs best with an accuracy of 0.99 in all three
directions as observed in Table 2. It also has a mean absolute error in predicting electronic
conductivity of less than ~0.03 in training and testing. Fig. 11(b) shows that normalized electronic
conductivity lies between ~0.05 to ~0.7, with the predicted values matching the true values for
virtually all the electrode structure ranges. Overall we demonstrate a best-supervised learning

model capable of predicting a wide range of electronic conductivity values, from Fig. 11(c) with
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the 5-95 percentile range of the electronic conductivity values lying between the + 6% error band,
which is reasonably accurate considering our comprehensive dataset consists of various AM

volume fraction, binder volume fraction, AM particle size and orientation.

Interfacial area:

Fig. 12(a) shows the coefficient of determination of various supervised learning models for
predicting specific surface area (ao1, a2, ao2). All the models are highly accurate with an accuracy
of more than 0.95, out of which the gradient boost model performs consistently quite well here
along with other effective properties. Table 3 shows that it has an accuracy of 0.99 for all the three
specific surface area predictions, along with the mean absolute error of less than 0.121 across
training and testing. Fig. 12(b) shows the plot for the true vs predicted value for testing the best-
performing gradient boost model, with virtually all points lying on the y=x line. Fig. 12(c) shows
the relative error in predictions for the same, with the 5-95 percentile range corresponding to a *
7% error band. Fig. 12(c) also shows that the three interfacial area values span a different range of
values, with ao1(pore-AM) showing the largest range from almost zero to ~400k, ao2(pore-binder)
exhibiting an intermediate range from ~40k to ~200k, and ai2(AM-binder) having the smallest
range from ~80k to ~200k. We observe that the pore-binder and AM-binder interfacial area have
a minimum value because all the electrode structures contain an additional binder phase with a
volume fraction between 5-10%, implying the binder will cover a certain portion of AM particles
and form an interface with pore space. AM-pore interface, which is an electrochemically active
interface, can have a very low value resulting from the coverage due to the binder phase, coupled
with a larger particle of AM causing further reduction in area, on other hand, it also takes the

highest value for smaller electrode particles with minimal binder coating.
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Although we have achieved more than 90% accuracy across various properties, the
performance of the machine learning model can be further increased via multiple paths, by
increasing the training sample set i.e having a more extensive set of microstructure datasets
through the incorporation of experimental and computational datasets. Secondly increasing the
input features i.e. through exhaustive microstructural characterization and using feature selection
to add meaningful features which explain the model and use the effective property as a selection
criterion. We can also improve the robustness of the model by the randomized splitting of training

via k-fold cross validation and ML model hyperparameter tuning to find an optimal model.

Feature Ranking:

We have based our ML model for effective property prediction on the use of a high
dimensional feature vector as an input, which contains the physical characteristic information of
the microstructure and thus creates a highly accurate model with an accuracy of more than 90%.
This high-dimensional feature vector is created by feature generation and self cross-multiplication
of features generating complex features with a linear and non-linear combination from the
microstructural descriptors (c.f. Fig. 9(a)). This in turn has higher predictive power than simple
physical descriptors and helps in developing an accurate ML model. The detailed investigation of
physical descriptors has been performed in Figure 2, but it is practically impossible and irrelevant
to investigate each feature of the high dimensional feature vector (4950 features), instead, we rely
on the supervised learning model. When the supervised machine learning model is finished
training, it assigns relative importance to each feature in predicting the output, which determines

the feature ranking.

Here we have presented the feature ranking with the top 3 most important features

contributing to tortuosity, conductivity, and interfacial area models. Fig. 13(a) shows that within
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the tortuosity model the contribution from the top 3 features is highly unequal, with the first feature
contributing ~80%. The first feature is y>/¢> (i.e. overlap/mean pore size), which implies that with
an increase in overlap or decrease of pore size the tortuosity will increase. This can be explained,
by the fact that when we pack more active material, it leads to higher overlap and smaller pore size
which in turn leads to constricted ionic percolation pathways, increasing tortuosity. The second
and third features contribute about ~3-4%, and both of them show inverse proportionality to ¢ (i.e.
mean pore size), which follows the reasoning mentioned above. Fig. 13(b) shows that in the
electronic conductivity model the contribution from the top 3 features is even more
disproportionate, with the first feature contributing ~90%. This feature is based on the vam? y%°
(i.e. vol. fraction of active material and overlap), which implies that when packing density is
increased (increasing vam), it inturn increases overlap of particle creating extensive electron
conduction pathways, resulting in increased electronic conductivity. The second and third features
contribute to ~2-3%, which are dependent on the eccentricity of the particle, where an increase in
eccentricity increases the connection between particles increasing the electronic conductivity. On
another hand, the third feature has an inverse proportion to eccentricity, because it might have a
negative weight associated with it. Fig. 13(c) shows the top feature for each interfacial area model
(ao1, @02, a12), with a more equitable distribution of importance across features. The most critical
feature for predicting ao1 is 1/yReq (i.€. sphericity and equivalent radius), of this equivalent radius,
is inversely proportional because specific surface area increases as the active material particle size
decrease. We also know that a sphere is an object which minimizes surface area for the most
volume and its sphericity is maximum with the value of one, while all other shapes have sphericity
less than one. This implies further an active material shape deviates from spherical geometry, it

will have smaller sphericity and correspondingly higher interfacial area proving the inverse
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proportion to sphericity. The ao2 surface area quantifies the interfacial area between the secondary
phase and pore phase with the most important feature being vs/Req”> (c.f. Fig. 13(c)), so as the
secondary phase content increases (vs) or the size of particle decreases, it effectively increases the
interface between the secondary phase and pores. Finally, a2 is the interface between AM particle

3vs3, an increase in either active

and secondary phase and as a result is highly correlated to vam
material content (vam) or secondary phase content (vs) will increase the interface between the AM-

secondary phase.

Conclusions:

In this study, we have developed a machine learning (ML) based predictive tool to estimate
the effective properties of the electrode structure based on its physical descriptors. Building a
comprehensive dataset of ~17000 stochastically generated porous electrode microstructure with
the varied composition of active material (AM) and binder phase, ellipsoidal particle shapes, sizes,
and orientation. The structure is characterized for its effective properties including tortuosity,
electronic conductivity, and interfacial area with variability rooted in the microstructural features.
We have demonstrated this for graphite as an exemplar system with descriptors quantifying the
structural aspects, so the method is extensible to other porous systems with similar morphological
characteristics.

The comprehensive ellipsoidal shapes have different morphologies including prolate,
oblate, bladed, and spherical. Among the various particle shapes, the random alignment of
spherical particles minimizes the tortuosity followed by prolate, bladed, and oblate particles (g >
0.3), whereas electronic conductivity follows the opposite trend. There is a tradeoff between the
electronic conductivity and tortuosity with AM packing, with a linear increase in electronic

conductivity exponentially increasing tortuosity. This apparent tradeoff can be minimized by the
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alignment of non-spherical particle morphologies to improve the transport direction properties and
maintain the specific surface area.

From the comprehensive effective property dataset, we determine that the empirical
relations such as Bruggeman's law and for the specific surface area are valid for high porosity and
limited morphology due to not considering the presence of multiphase, anisotropy, and
overlapping of particles. The current machine learning workflow enables the solution to this key
research question, i.e. describing the microstructural effective properties of the electrode in terms
of its relevant physical descriptors of it. We recognize the strong dependence of effective property
on the electrode microstructure morphology and propose physically meaningful descriptors to
quantify composition, active material shape, orientation, and pore-phase. These physical
descriptors are featurized and transformed through the application of various operator functions
and cross multiplied with each other. A reduced descriptor dimension space is identified through
minimizing descriptor-descriptor correlation. These featurized physical descriptors serve as the
input to the supervised machine learning model with effective properties as the output. An accurate
supervised machine learning model is built with accuracy greater than 90% across all the effective
properties based on the gradient boost model. The physical descriptors improve the prediction
accuracy of effective properties as compared to the empirical relations.

We also performed the feature ranking through the trained supervised machine learning
model, which improves the explainability and understanding of the underlying relationship
between the physical descriptors and the output of the model. The ranking analysis can also help
in developing a simple yet accurate reduced dimensional representation of the output. Ultimately
this analysis also paves the way to automate the process of empirical relation development truly

from observations (i.e. data samples) through a trained supervised machine learning model.

32



Supporting Information

The mathematical details of the machine learning model and the microstructural characterization

for effective property and physical descriptors are presented in the supporting information.
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Figure. 1. Three-dimensional stochastic electrode structure generation (input) and effective
properties (output): (a) The generated electrode microstructure’s range of composition, ellipsoidal
particle sizes, and orientation along with interfacial energy-based deposition of binder domain?3
(b) Characterization of these electrode microstructures for the effective properties i.e. tortuosity,
electronic conductivity in the three directions and calculation of specific surface area for the three
interfaces consisting of active material (AM) — secondary phase (binder), AM—pore and pore-
secondary phase interface. (c) Characterizing electrodes via physical descriptors which have been
categorized into four broad categories including Composition, Active material shape, Orientation,
and Pore phase; Composition of electrode microstructure consists of active material volume
fraction (vam), secondary phase volume fraction (vs), secondary phase morphology (®) and
overlap factor; Active material shape features include quantification of shape factors such as
equivalent radius, eccentricity, rectangularity, and sphericity for quantifying the active material
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particle geometry; Pore phase quantification includes the mean pore size of the microstructure;
Orientation of microstructure is quantified by using anisotropy parameters (a1, az)
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Figure 2. Electrode’s physical descriptor (a) Varying overlap of ellipsoidal particles with different
radius and packing fraction of active material (b) equivalent radius of the ellipsoidal particle with
varying axis lengths (c) Eccentricity of ellipsoidal with varying axis lengths (d) Rectangularity of
ellipsoidal particles with varying axis lengths (e) Sphericity of ellipsoidal particle with varying
axis lengths (f) Mean pore size of microstructures with the differing radius of particles and packing
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Figure 3. Effect of active material alignment on tortuosity: (a) Z-direction alignment causes
tortuosity to be smaller in the Z direction which is apparent at higher porosities (b) random
alignment leads to similar tortuosity in all directions, and (c) alignment perpendicular to Z-
direction causes higher tortuosity in that direction which is apparent at higher porosities
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Figure 4. Effect of active material shape on tortuosity: (a) shape classification for ellipsoids based
on the Zingg® diagram, (b) tortuosity with different active material ellipsoidal shapes, and (c)

tortuosity vs. mean pore size for different active material ellipsoidal shapes.
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Figure 6. Effect of active material shape on electronic conductivity: (a) electronic conductivity
variation with the overlap of particles, (b) electronic conductivity vs. active material volume
fraction, and (c) electronic conductivity vs. tortuosity.
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Figure 7. Effect of particle alignment on the specific surface area for different electrode
microstructures (a) specific surface area comparison for microstructures with particles oriented
along Z-direction, randomly oriented, and oriented perpendicular to Z-direction (b) Impact of
particle alignment direction on the normalized tortuosity, normalized w.r.t. tortuosity of
microstructure with randomly aligned particles (¢) Impact of particle alignment direction on the
normalized electronic conductivity, normalized w.r.t. conductivity of microstructure with
randomly aligned particles
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Figure 8. Microstructure consisting of differently shaped ellipsoid particles (a) specific surface
area with a varying volume of the particle with different shapes (b) specific surface area of AM-
pore interface comparison with idealized area based on the spherical non-overlapping electrode
(c) specific surface area of (AM+binder)-pore interface
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Figure 9. Machine Learning Framework (a) Creating electrode feature vector from a physical
descriptor of microstructure through feature generation and cross-multiplication (b) Flowchart for
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Figure 10. (a) Comparison of various supervised machine learning models for tortuosity (b)
machine learning predicted results on the test set for comparison between true tortuosity value and
predicted value (c) relative prediction error compared to true tortuosity
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Figure 11. (a) Comparison of various supervised machine learning models for electronic
conductivity (b) machine learning predicted results on the test set for comparison between true
electronic conductivity and predicted value (¢) relative prediction error compared to true electronic
conductivity
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Figure 13. Feature ranking analysis showing the three most important features contributing to the

ML model (a) Important features in the Tortuosity model (b) Important features in Electronic
Conductivity model (c) Important features in the Interfacial area model
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List of Tables:

R? MAE

Train | 0.97 0.97 0.96 0.203 0.202 0.216

Test |1 0.94 0.91 0.94 0.219 0.233 0.221

Table 1. The coefficient of determination (R?) mean absolute error (MAE) for the
tortuosity in three directions using the gradient boost model.

R? MAE
OX Oy Oz OX Oy Oz
Train | 0.99 0.99 0.99 0.023 0.027 0.023
Test [ 0.99 0.99 0.99 0.027 0.030 0.025

Table 2. The coefficient of determination (R?) mean absolute error (MAE) for the
electronic conductivity in three directions using the gradient boost model.
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01 02 12 01 02 12
Train | 0.99 0.99 0.99 0.093 0.012 0.007
Test | 0.99 0.99 0.99 0.106 0.014 0.008

Table 3. The coefficient of determination (R?) mean absolute error (MAE) for the
specific surface area using the gradient boost model.
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