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ABSTRACT

Two-view knowledge graphs (KGs) jointly represent two compo-
nents: an ontology view for abstract and commonsense concepts,
and an instance view for specific entities that are instantiated from
ontological concepts. As such, these KGs contain heterogeneous
structures that are hierarchical, from the ontology-view, and cycli-
cal, from the instance-view. Despite these various structures in
KGs, most recent works on embedding KGs assume that the entire
KG belongs to only one of the two views but not both simultane-
ously. For works that seek to put both views of the KG together,
the instance and ontology views are assumed to belong to the
same geometric space, such as all nodes embedded in the same
Euclidean space or non-Euclidean product space, an assumption
no longer reasonable for two-view KGs where different portions
of the graph exhibit different structures. To address this issue, we
define and construct a dual-geometric space embedding model
(DGS) that models two-view KGs using a complex non-Euclidean
geometric space, by embedding different portions of the KG in
different geometric spaces. DGS utilizes the spherical space, hy-
perbolic space, and their intersecting space in a unified framework
for learning embeddings. Furthermore, for the spherical space, we
propose novel closed spherical space operators that directly operate
in the spherical space without the need for mapping to an approxi-
mate tangent space. Experiments on public datasets show that DGS
significantly outperforms previous state-of-the-art baseline models
on KG completion tasks, demonstrating its ability to better model
heterogeneous structures in KGs.
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1 INTRODUCTION

Knowledge graphs (KGs) are essential data structures that have been
shown to improve several semantic applications, including semantic
search [4], question answering [13], and recommender systems [26].
Two-view knowledge graphs [14] consist of both (1) an instance-
view component, containing entity-entity relations, and (2) an
ontology-view component, containing concept-concept and entity-
concept relations. In addition, there are nodes involved in both
entity-concept relations and entity-entity relations, which we refer
to as bridge nodes, e.g., nodes 5 and 6 in Figure 1(a). Bridge nodes
provide the connections to bridge both KG views. The instance-
view component contains data that form cyclical structures, such as
nodes 8-10 in Figure 1(a). The ontology-view component contains
data that form hierarchical structures. As such, the two-view KG
contains intrinsic heterogeneous structures.

A key challenge with KGs is that they are often highly incom-
plete, making KG completion an important area of investigation.
In recent years, several research works have focused on improving
knowledge graph embeddings (KGE) to address this task [6, 28]. The
idea behind embedding methods is to map entities and relations to
a latent low-dimensional vector space while preserving the seman-
tics and inherent structures in the KG. However, most embedding
methods, including graph neural network (GNN)-based [8, 9, 22]
and non-GNN-based methods [15, 25], are limited to operating on
KGs belonging to either the instance-view or the ontology-view
but not both. Specifically, they either model entities and relations in
the zero-curvature Euclidean space [23], omitting both cyclic and
hierarchical structures, or in the hyperbolic space [1, 30], omitting
cyclic structures and treating relations as hierarchical.

For works that seek to put both views of the KG together, the in-
stance and ontology views are assumed to belong to the same space,
an assumption no longer reasonable for two-view KGs. Specifically,
all KG relations are modeled using the Euclidean space [12], or are
all modeled using a product space, being the Riemannian product
manifold of the Euclidean, spherical and hyperbolic spaces [27].
However, our goal in modeling two-view KGs is to use a unified



KDD ’22, August 14-18, 2022, Washington, DC, USA

Eukaryote
is_a . is_a
- is_a
Fungus Animal
. is_a
is_a
is : .
—2 | Herbivore || Carnivore
Carbon
provide_energy’ Dioxide ; i
1s_a 1s_a

absorbed_by

— - is_:
emit
emit -
o —>{ Rabbit po Fox

Mammal

Roshni G. lyer et al.

Bridge Space
Spherical
Space

is_a Hyperbolic Space
- ~

\

1

provide_nutrients

(@)

Nodes

decomposed_by

/°>
/
10

(b)

- Bridge entities
- Non-bridge entities

Figure 1: Two-View KG visualization and embedding space. (a) Example two-view KG. (b) Corresponding DGS representation.

framework to embed hierarchical structures of the KG in the hyper-
bolic space, cyclic structures of the KG in the spherical space, and
nodes involved in both structures in a unified intersection space.

To address the above challenges, in this paper, we present the
Dual-Geometric Space embedding model (DGS) for two-view KGs.
To summarize, our work makes the following contributions:

e We formulate the problem of modeling a two-view KG in
complex non-Euclidean geometric space for KG completion.
To our knowledge, we are the first to model two-view KGs in
distinct non-Euclidean spaces using a unifying framework,
e.g., different views belong to different geometric spaces.

e We propose to model instance-view entities in the spher-
ical space for solely cyclical relations, and ontology-view
concepts in the hyperbolic space for solely hierarchical rela-
tions, and bridge entities involved in both cyclic/hierarchical
structures in a specially designed intersection bridge space.

o To the best of our knowledge we are also the first to design
closed spherical space operations, to directly operate in the
spherical space without mapping to an external approxima-
tion space, e.g., the tangent Euclidean space.

e We investigate seven variant and ablation models of DGS
and evaluate these models on two KG completion tasks. Ex-
tensive experiments demonstrate the effectiveness of DGS in
populating knowledge in two-view KGs. Further, our model
significantly outperforms its single non-Euclidean and Eu-
clidean geometric space counterparts including the product
space, and existing state-of-the-art graph neural network
(GNN) embedding methods.

2 PRELIMINARY AND RELATED WORK

Here, we formalize two-view KGs, which jointly model the entities
and concepts in the instance and ontology views, and discuss the
achievement of primary state-of-the-art models for two-view KGs.

2.1 Problem Formulation

A two-view KG, G, consists of nodes and edges, such that nodes
denote the set of entities E, or set of concepts, C. Edges denote rela-
tions where Ry are the set of entity-entity relations, Rp are the set
of concept-concept relations, and Ryp are the set of entity-concept
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relations. The two-view KG consists of an instance-view compo-
nent containing entities with relations of Ry, and an ontology-view
component containing concepts and bridge entities with relations
of Rp and Rjp. We denote a subset of entities in E to be bridge
entities, that communicate between both instance and ontology
views. These bridge entities associate with both Ry and Rjp re-
lations. Relations in Ry are entity-concept relations, which are
similar to concept-concept relations such as “is_a”. E and C as well
as Ry, Rp and Rjp are each disjoint sets. We denote e¢; € E to
be the i-th entity, h¢; to be entity i’s representation in the Carte-
sian coordinate system, and rj; € Ry to be the k-th relation in the
instance-view component. Without loss of generality (WLOG), we
also model the ontology-view component where ¢; € C is the i-th
concept, h; is concept i’s representation in the Cartesian coordi-
nate system, and rgy € Ry is the k-th relation in the ontology-view
component. Therefore, the instance-view can be considered as a
set of triples in the form (e;, rx,ej) € E X Ry X E, which may
be any real-world instance associations and are often cyclical in
structure. Likewise, the ontology-view can be represented by a
set of triples (cj, 7ok, cj) € C X Rg X C, which contain hierarchi-
cal associations such as is_a. Here we use Figure 1(a) to illustrate
the aforementioned problem formulation. For example, (Soil, com-
posed_of, Mineral) and (Fungus, is_a, Eukaryote) are instance-view
and ontology-view triples respectively. Further, nodes of Bacteria-
Soil-Mineral is an example of a cycle between non-bridge entities.
A bridge entity may be involved with two types of triples:
(ei, r1ok> ¢j) € EXRpoXC for (hierarchical) entity-concept relations
and (e;, ryk, ej) € EX Ry X E for (cyclical) entity-entity relations. For
example, Rabbit is a bridge entity in Figure 1(a). The triple (Rabbit,
emit, Carbon Dioxide) represents an entity-entity relation, and the
triple (Rabbit, is_a, Herbivore) represents an entity-concept relation.
The objective of our research is to learn KG embeddings of nodes
and relations in the KG, such that we seamlessly unify multiple
curvature geometric spaces to better capture the contextual in-
formation and heterogeneous structures in the KGs. We evaluate
the quality of the learned embeddings on the KG tasks of triple
completion and entity typing, described in Section 4.

2.2 Non-Euclidean Geometric Spaces

In this section, we describe the various properties of non-Euclidean
geometric spaces, which are curved spaces unlike the zero-curvature
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Euclidean space. The textbook [19] provides more details. Geomet-
ric spaces of Euclidean (Ed), spherical (8%), and hyperbolic (Hd)
spaces belong to Riemannian manifolds (M?), such that each point
a e M hasa corresponding tangent space, (T,M%)4, that approx-
imates M9 around a. Further, each Riemmanian manifold, Md, is
associated with a Riemanian metric dist that defines the geodesic
distance of two points on the manifold and the curvature K of
the space. In the spherical space, curvature Kg > 0, suitable for
capturing cyclical structures [29], while in the hyperbolic space, cur-
vature Ky < 0, suitable for capturing hierarchical structures [18].
Widely used models on the hyperbolic space include the Poincaré
ball model [7], the Lorentz [3] model, and the Klein model [3]. As
the these three models are both isometric and isomorphic to one
another, WLOG we utilize the Poincaré ball model in our work.

Non-Euclidean Space Optimization. DGS utilizes Riemann-
ian optimization for updating entity and relational embeddings
because Euclidean space optimization methods, such as SGD, pro-
vide the update direction of the Euclidean gradient to be in non-
curvature space. This does not align with parameters in our model
that must be updated in positive or negative curvature spaces. For
parameter learning, DGS uses RSGD [5], whose update function
is denoted below, where (TaMd)d denotes the tangent Euclidean
space of a € M, Vg € (TaMd)d denotes the Riemannian gra-
dient of loss function L(a), R4, denotes retraction onto M4, or
non-Euclidean space at a, and 1; denotes learning rate at time ¢:

at1 = Ra, (-1n:VrL(ay))

The retraction operator, R(-) involves mapping between spaces.
For non-Euclidean spaces, the retraction is generally performed
between the non-Euclidean space and approximate tangent Eu-
clidean space using logarithmic and exponential mapping functions
as follows, where log, (hfl_) is a logarithmic map at center 0 from
the hyperbolic space to Euclidean tangent space, and exp,, (hfi) is
an exponential map at center 0 from the Euclidean tangent space
to hyperbolic space of a.

logy(a) = tanh™" (i - [|all) 1)

illall
a

exp(a) = tanh(i - [|al|) @

i-|all

2.3 Two-View KG Models

In this section, we describe the models that are utilized for two-view
KGs, which consider the problem setting of modeling ontological
and instance views. To address the challenges of these models, we
propose DGS in Section 3.

JOIE. The JOIE [12] model is an embedding model that con-
siders the problem of two-view KGs. However, JOIE models all
triples in the same zero-curvature Euclidean space, omitting the
hierarchical and cyclical structures of the KG. Further, there is no
special consideration of representation for bridge nodes.

Models leveraging product of spaces. Models including
M2GNN [27] which extends [11] from social networks to the do-
main of KGs, [21], etc. help to address the limitation of JOIE by
utilizing the hyperbolic and spherical spaces for representing triples.
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However, they treat all triples in the KG to be in the same non-
Euclidean product space, formed by a Riemannian product of the
Euclidean, spherical, and hyperbolic spaces. Thus, the embedding
space of hierarchical triples is not distinguished from the embed-
ding space of cyclic triples, and further there is also no special
consideration of representation for bridge nodes.

3 DGS ARCHITECTURE

This section describes our proposed dual-geometric space embed-
ding model (DGS), which jointly embeds entities and concepts in
a knowledge graph. DGS embeds different link types of the two-
view KG in different non-Euclidean manifold spaces to capture
the inherent heterogeneous structures of the KG, as described be-
low. We also design general procedures, which are detailed in the
Supplements, for efficiently converting arbitrary d-dimensional
embeddings between the polar and Cartesian coordinate represen-
tations, which are utilized by sub-models in DGS. Source code is
available at https://github.com/roshnigiyer/dgs.

3.1 Modeling

The key questions in the modeling process are in how to: (1) design
or adopt an appropriate embedding space for nodes, (2) define the
representation of entity/concept and relation in that embedding
space, and (3) define the KG embedding model and loss function
of DGS. Our framework enables each of entities and concepts to
be influenced by bridge nodes, and simultaneously bridge nodes to
be informed by entities and concepts. In this way, DGS exhibits a
unified framework to jointly model two-views of KGs.

DGS models nodes in the instance view as points in a spherical
space §? with fixed norm space w°, and nodes in the ontology
view as points in a hyperbolic space HY with learnable norm space
WyH per concept. The bridge nodes lie in the intersection of the

two, which is a submanifold intersection space, called Bd, shown
as the dotted circle in Figure 1(b). B9 contains the same fixed norm
space as the spherical space w®. For modeling compatibility, we
set the degrees of freedom of Sd, Hd, and B tod — 1,d — 1, and
d — 2 respectively. B¢ has one degree of freedom less than H4
and S? because it is a submanifold intersection space of both the
spherical and hyperbolic spaces. The norm of B? is w® because
that is the intersection norm space of S? and HY. The concept-
specific norm spaces, W , are learnable in order for the hierarchy

in the KG to be learned llay the embedding. In practice, it can be
seen that hierarchical root concepts move towards the center of the
hyperbolic space e.g., towards norm 0, shown in Section 4.

Parameter optimization, detailed in Section 3.2, is performed
using RSGD, described in Section 2.2, on hinge loss functions which
utilize non-Euclidean space geodesic distances for the spherical
and hyperbolic spaces respectively. We construct the hinge loss
function such that positive triples are scored higher than negative
triples within positive margin hyperparameters.

3.1.1 Modeling Instance View KG in Spherical Space.

Representation of entities. We propose to embed the entities
from the instance-view on the surface of the spherical ball from the
spherical space, S, in order to better capture the cyclic structures
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present in this KG view. Entities are represented as points he,
that belong to the surface of the spherical ball in S¢ as shown in
Figure 1(b). Formally, $¢ = {h. € RY|||h3 || = wS}, w5 € [0,1),is
the d-dimensional w-norm ball, where ||-|| is the Euclidean norm.

For an entity h‘gi, we propose to model the relation applied to the
entity as a rotation operation, and therefore represent the relation
rir as a vector of angles Of,k € [o, 271)d_1. Below, we show our
proposed vector transformation procedure to model the relation
as rotation of the head entity, fiot : hﬁ;”e‘” = fmt(h‘gi, H;SHC), and
prove that the operation is closed in the spherical space. frot(+)
eliminates the need to project representations to the tangent Eu-
clidean space in order to perform standard transformations. To the
best of our knowledge, we are the first to propose a closed vector
transformation procedure that operates directly in the spherical
space.

Spherical Space Vector Transformation Procedure: fiot(-).
This section describes our proposed vector transformation proce-
dure, frot, for the spherical space, which directly performs opera-
tions using properties, such as positive curvature, in the spherical
space. This section also outlines the proof of the closedness property
of the transformation procedure. For computational efficiency, we
also extend the vector transformation procedure to the batch ver-
sion, the batch vector transformation procedure, which is detailed
in the Supplements. f;o takes as input an entity embedding and
relation operator, which it uses to transform the entity embedding:

hgznew :ﬁot(hgpas ):

Tk

(1) Given h‘Zl., 03

1k’
sentation 02, in polar coordinates, with rad denoting the

we convert h‘Zl_ to the corresponding repre-

radius which has the value w5. Refer to Section A.1 for de-
tails on the conversion procedure.

h;ji : [xfi,l’xfi,Z’ ""xf,-,d] — Oesi : [951_’1,931_’2, Gf,-,d—l]; rad = w°

®)

05t [0rits Ori2s oo Oy a1 1 7ad = w° (4)

(2) Denote z[I] to be the I-th entry of z and apply the transfor-
mation:

(605 +67 )11 = (05 [11+65 [I]) mod 2m;1 € [1,d — 1] (5)

02" = [(65  +07 ) mod 2r, ..,

(efi,d—l + gfjkad_l) mod 271;]; rad = WS (6)

(3) Convert from polar coordinates back to Cartesian coordi-
nates. Refer to Section A.2 for details on the conversion
procedure.

S,new _S,new

S,new S,new | S,new
Oei —>hei .[xei’1 Xy s ]

e d

™

Theorem. The vector transformation procedure, frot, is closed
in the spherical space.

Proor. The proofis outlined by examining all three steps for frot
from the transformation procedure, where h,, and 6, represent the
same point e; in the embedding space by the isomorphic Cartesian
and polar coordinate systems respectively.
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(1) The Cartesian coordinate representation is equivalent to the
polar coordinate representation of the point, e;, under MCP
model, detailed in the Supplements. Further, radius rad = ws
of the polar representation embeddings lies in the spherical
norm space w".
6 € [0,27); rad = w¥ defines polar representation embed-
dings in the spherical space, and
(05 +67 (1] = (65 [1]+63, [1]) mod 2 € [0, 27)V]; rad =
w. Thus, both angular and radial coordinates are preserved.
The polar coordinate representation is equivalent to the
Cartesian coordinate representation of the point, e;, under
MPC model, detailed in the Supplements.
[m]

Instance View Loss Function. The instance-view model uses

a hinge loss function that is maximized for all triples in the instance

space Ry, with positive triples denoted, pt; = (hgi, Gflk, hgj) with
corresponding score ¢§bs (pt;) and negative triples denoted, nt; =

(h‘g;, 0;9”(, hg;_) with corresponding score ¢35, (nty), and y&I > 0 is
a positive margin hyperparameter. Specifically, the instance loss
function measures the distance between the predicted tail entity

and the ground truth.

B35 (pty) = dists (frot (RS, 65,), k3, ) (8)
Goorr (nty) = dists (frot (S, 05,). k) )

R _ 1
inst — |

max (0, % + ¢35, (pt;) — done (nty))
(ptr€Ry) A(nti¢Ry)
(10)

We calculate spherical geodesic distance [17] between points x5
and y° on the manifold as follows:

Ryl

distg (xS, yS) = arccos((xS)TyS)

(11)

Ry includes links between all entities including both non-bridge
entities and bridge-entities. In this way, the representation of non-
bridge entities is influenced by the bridge entities.

3.1.2  Modeling Ontological View KG in Hyperbolic Space.

Representation of concepts. We propose to embed concepts
from the ontology-view on the Poincaré disk from the hyperbolic
space, HY, in order to better capture the hierarchical structures
present in this KG view. Concepts are represented as points, h,
that belong inside the Poincaré disk in H? as shown in Figure 1(b).
Formally, HY = {hf e R||nfl|| = wH}, wH € [0,1), is the d-
dimensional wg -norm ball, where ||| is the Euclidean norm. We
assume the center of the disk is aligned with the center of the
sphere, and for convenience set the last dimension d to 0.

For concepts in the hyperbolic space, HH, any hyperbolic space
model for KG can be applied in principle, which we denote as
follows with rpor € Rp to denote a relation between two concepts:

frGe(Pto) = fice (he, rokhe) (12)

We illustrate MURP [2] as an example scoring function, which
uses the hyperbolic geodesic distance and relies on Mébius addi-
tion to model the relation, where exp,(-) and log,(-) are defined
in Section 2.2, R € R%*? s a learnable diagonal relation matrix
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representing the stretch transformation by relation rpi € Rp with
representation hfgk, and scalar biases bg , bg of concepts ¢; and c;:
fre (pto) = fuure (M, rop, hﬁﬂ)

= fure (s, iy )

= —distg (expy (Rlog, (hg )hg oy hil

2 H H
r()k) + bC,‘ + ij

(13)

2y + 12+ (1 - [y
1+ 2,y ) + [l |32

H

(14)

Heopy

We calculate hyperbolic geodesic distance [18] between points
xM and y™ on the manifold as follows:

Il — 113
(1= l=H 15 (1 = lly™ %)
Ontological View Loss Function. The ontology-view model
uses a hinge loss function that is maximized for all links between

concepts in the ontology space and all links between bridge nodes
and concepts, i.e., Rp U Ry, with positive triples denoted, pty =

distH(xH, yH) = arccosh(1+ 2

) (15)

(hg, Orholk, hg )V (hg, hrioes hg ) with corresponding score gzﬁis (pto)
and negative triples denoted, nty = (hg , ng, hg )U(hg Jhrors hg

with corresponding score ¢l .. (ntg), and yRoVRI0 > 0 is a positive
margin hyperparameter:

¢H (pto) = fkc (pto) (16)
¢ . (nto) = ficr(ntp) (17)
ROURIO _ 1
onto - |RO URIO| max(O,

(pto €RoUR0) A(nto#RoUR; o)
yRoVRIo 4 oIl (ntg) — 5 (pto)) (18)

Ro URyp includes triples composed of concepts and bridge-entities.
In this way, the representation of concepts is influenced by the
bridge entities, which is described in Section 3.1.3.

3.1.3 Modeling the Intersection of the Two Spaces.

Representation of bridge entities. Bridge nodes are entity
nodes that bridge the communication between the instance-view
and ontology-view components. Bridge nodes are connected to
concepts in the graph, formed by link ontology h,,,, but may
also be connected to other entities, formed by link instance 6,,, .
As shown in Figure 1(a), nodes 5 and 6 are bridge nodes that are
involved in both cyclic and hierarchical structures through their
links to other entities as well as concepts. As such, we propose
to embed bridge entities in the intersection space of the Poincare
disk and surface of the spherical ball, in order to better capture
the heterogeneous KG structures that are associated with these
nodes. We refer to the intersection submanifold embedding space
as the bridge space, B4 , where the representation of these nodes are
informed by both S and H¥ and has one lower degree of freedom.
The bridge space can therefore be derived as a sphere in general.
Formally, B¢ = {h5 e RY||hE| = w5}, w® € [0,1), is the d-
dimensional w°-norm ball, where ||-|| is the Euclidean norm, and
the value of last dimension d = 0. Links associated with bridge

)

680

KDD ’22, August 14-18, 2022, Washington, DC, USA

nodes are 6, hr,, € [0, 27r)d_1, and operations on bridge nodes,
such as geodesic distance and loss functions, happen in either the
spherical space or hyperbolic space.

To ensure compatibility with the connected concept nodes, we
map the bridge entities, hg, to an embedding in the ontology space
through a non-linear transformation function, Ihr (hfi), where
AGG(+) denotes an averaging over all relations k in Ryo. Logarith-
mic and exponential mapping functions of log(-) and exp(-) are
described in Section 2.2.

9h,,p,, (HE) = AGG projg (tanh(Wh, _ouht epby, )] (19)

projg(z) = projg(z) (20)

M @y h = expy(Mlog, (k5 )) (21)

(1+2hE)TRE + IREIZ)RE + (1 - IRE15)AE

1+ 2(hE)ThE + IRE 13 1IRE 113

h o bl =

(22)
where both the weight matrix Wh’l()k and bias bh’lOk are specific
to each relation k in Rjo and reserved for the ontology hy,,, .

Bridge Node Loss Function. The bridge-node model uses a
hinge loss function as a combination of the entity’s ontology-
specific loss, ontoLosshrI r and instance-specific loss, instLosserIk ,

that is maximized for Ry U Rjp which contains all triples associ-
ated with the bridge nodes. Positive triples are denoted ptg; =

(hgi, Or s hgj) and ptgro = (hg,, hyons h?j), and negative triples
are denoted ntpy = (hf, 0y, hY) and ntp 10 = (e, hryop hE)
with loss function defined as follows:

ontoLoss hrron (ptp10- 0t 10)

= max (0, R0 + ¢H (ptg o) - ¢, (ntg10)) (23)

instLosserIk (ptg 1, ntg1)

= max(O, YRI + ¢gbs (ptB,I) - ¢csorr(ntB,I)) (24)

R;UR;o0 — 1 (
bridge RiUR
IR 10l (ptB1.pte 10 ERIURIO) A(ntp 1,0ty 10 ¢RrUR[0)

ontoLosshrIOk (ptp10,Ntp10) + instLosserIk (ptgr,ntpy)) (25)

The combination loss function above enables bridge nodes to learn
from both spaces of intersection of s¢ and HY.

3.2 Training

This section details the training framework of DGS, for represent-
ing two-view KGs, described in Section 3.1. We describe, for each
epoch, the training of each node in the two-view KG which includes
(1) the forward propagation step, (2) the loss function, and (3) the
backward propagation step to optimize parameters. Algorithm 1
provides a summary of the framework.
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Embedding Initialization. We randomly initialize all embed-
dings of e and r in polar coordinates: 6, € R4 — Unif ([0, 27))4!
and 0y, 6,,, € RY! — Unif ([0, 2))?"!, then convert entity em-
beddings to their corresponding Cartesian representation: he; =
MPC(8e,). Link h,,,, isarandomly sampled position on the Poincare
disk. Refer to Section A in Supplements for details about the con-
version procedure, describing both polar-Cartesian coordinate con-
version (MPC) and Cartesian-polar coordinate conversion (MCP).
For the instance-view model, we also choose a value for norm w°,
that is sampled from a uniform distribution: wS:wSefo,1) -
Unif ([0, 1)) for all entities, and for the ontology-view model, we

choose a value for norm w | assigned uniformly at random per

h 3
entity. We set the curvature values of the spherical and hyperbolic
spaces as Kg = 1and Ky = —1 respectively. We leave the non-trivial

problem of learning optimal curvatures as future work.

Training Procedure for Instance View KG. Parameter op-
timization is performed using Riemannian stochastic gradient de-
scent (RSGD) for the spherical space as follows for entity embed-
ding and relational embedding updates respectively. To ensure that
the updated entity embedding remains in the norm-w’ space, we
perform a rescaling operation, projg, to project out-of-boundary
embeddings back to the surface of the wS-ball.

) wS ﬁ if|z]| £ w°
projs(z) = z ) (26)
z otherwise

mS' VIR (RS )

r(hg t,LRI ) _ (1 €t inst N "€it )( 5 hs ) (27)
i, inst VL (h )” ezt €ir
” inst\ " €ir

. R

hii,t"’l - prOJS( — e (hgzt Lmlst)VLmst(hett)) (28)
S

grlk t+1 < TN r( Tkt 1nst)VL1nst(9V1k t) (29)

Training procedure for concepts. Parameter optimization
is performed using RSGD for the hyperbolic space as follows for
concept embedding and relational embedding updates respectively,
where the corresponding concept norm space, wg , is also learned
through RSGD by updating embeddings of hg . Diagonal relational
matrix R is also updated through RSGD, and we update scalar biases

bf 1 bg 141 through stochastic gradient descent.
H H 1|k c,,||2 29+ RoURo
hCz +1 hé‘zt — Nt T) VLon‘[o (hé‘;z) (30)
hH hH “ TOk> t”z ZV RoURj0 h.
oo hL (ot 2y R0 gt - an)
1—||R|I? RoUR
Riy1 — Ry — Ut(T)ZVLOI?tO O(Ry) (32)
RoUR
AR SR T A () (33)
H H RoUR
bc J+1 — bcj,t - UtVLor?to ]O( t) (34)

After the epoch’s update of concept embeddmgs, we once again
reset the value of the last dimension d to 0 to satisfy the original
framework constraint of the Poincaré disk. We also enforce that
the angular dimensions of relational embeddings are in [0, 27).
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Training Procedure for Bridge Nodes. Parameter optimiza-
tion is performed using RSGD for the bridge space as follows for
bridge entity embedding and relational embedding updates respec-
tively. Ontology optimization, ontoOpt(-), and instance optimiza-
tion, instOpt(-), are performed alternatively in batches for each
of the two embedding types according to the type of link that the
embedding is associated with, e.g., Ry or Rjp. This enables the
representation of bridge nodes to be informed by both ¢ and He.

IIZII

ontoOpt(z) =z — 1 ( ) VLErIiL;geIO (2) (35)
instOpi(z) = —n; - r(z Lﬁsﬁﬁe’%wﬁ:ﬁsﬁgo (2 6o
h?,-,t+l — projg (ontoOpt(hg,t)) [|projg (instOpt(hg’t)) (37)
hrlgk,t+1 — Ontoopt(hr,()k,t) (38)

Oy t+1 < instOpt(Or,,¢) (39)

After each epoch’s update of the instance optimization for hgi, the
value of the last dimension d is reset to 0 and rescaled with projg(z)
defined to be the same as projg(z) to ensure the intersection space
constraint of the bridge entity model. Angular dimensions are also
enforced to be in [0, 27).

Algorithm 1: Overall training procedure of DGS. “*” indi-

cates that the three steps can be performed in any order.

:set of entities e; set of relations r
instance-view entity to entity triples with links, 5

Input

"Ik
ontology-view concept to concept triples with links, 6, Ok
bridge entity to concept triples with links, ontology h,,,

bridge entity to entity triples with links, instance 6,

Output:Updated embeddings, Gr o EP? ngﬂ), ontology hr ;o p
and instance 6, p at final epoch EP
1 for epoch € (1, 2, ..., EP) do
2 Step 17:
3 Sample links from Gr]k
4 Perform spherical update of entities: Section 3.1.1
5 Step 2™:
6 Sample links from 0 ok
7 Perform hyperbolic update of concepts: Section 3.1.2
8 Step 3™:
9 Sample links from ontology h;,, and instance 6,
10 Alternatively perform spherical and hyperbolic updates of
bridge nodes: Section 3.1.3

11 end

12 return 65 o ontology h

P Orormps and instance 6, rp

TIOkEP’

4 EXPERIMENTS

In this section, we evaluate DGS on two KG tasks: the triple com-
pletion task on each of the instance and ontology views of the KG
and the entity typing task to test quality of the learned bridge space
in communicating between each view of the KG. We also provide a
case study on entity typing for different variants of DGS by em-
bedding on other combinations of geometric spaces. Further, we
provide a visualization of embeddings before and after the learning
process projected onto the 3-D geometric space of DGS.
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Table 1: Dataset statistics for entities E, concepts C and their relations.
E — E denotes entity-entity links, C — C denotes concept-concept links, and
E-C denotes entity-concept links.

Dataset Nodes Relations
#E #C | #E-E:R; #C-C:Rp  #E-C:Rjo
YAGO26K-906 26,078 906 390,738 8,962 9,962
DB111K-174 111,762 174 863,643 763 99,748

Table 2: Data splits for triple completion and entity typing. We provide
splits for all KG triples in Ry, Ro, Ryo for train(tr), validation(v), and test(ts).

YAGO26K-906

Task Tr(Rr/Ro/Rio)  V(Rr/Ro/Rio)  Ts(Ri/Ro/Rio)

Triple Completion | 332,128/7,618/8,691 19,536/448/485 39,074/896/1,019
Entity Typing 211,346/4,876/5,379  23,549/543/598  156,311/3,592/3,985

DB111K-174

Task Tr(Rr/Ro/Rio)  V(Rr/Ro/Rio)  Ts(Ri/Ro/Rio)

Triple Completion | 734,096/648/84,864  43,182/38/5,018  86,365/77/10,131
Entity Typing 466,538/462/53,863  51,828/46/5,985  345,504/337/39,900

4.1 Datasets

We utilize the datasets of YAGO26K-906 and DB111K-174 since
they have the two-view KG setting unlike other datasets for KG
embeddings that consider solely an instance-view [24] or ontology-
view [10]. YAGO26K-906 and DB111K-174 are prepared from [12],
which are extracted from YAGO [20] and DBpedia [16] respectively.
Refer to [12] for the detailed construction process. Table 1 pro-
vides dataset statistics and Table 2 provides data splits for both
datasets on both KG tasks. It can be observed that the instance-
view contains many more triples than the ontology-view and that
DB111K-174 contains a larger proportion of entity-concept triples
(10.35%) compared to YAGO26K-906 (2.43%).

4.2 Models

4.2.1 Baselines. We compare DGS to state-of-the-art neural net-
work embedding models, which include Euclidean, non-Euclidean,
and product space KGE models, as well as GNN-based models for
KG completion and entity typing.

e TrRANSE [6], one of the first KGE models, which simply
captures the relationship between entities as a translation.

e DistMuLT [28], a matrix factorization KGE model, modeling
the relationship between entities via multiplication.

e ComPLEX [25], a KGE model that extends DIsSTMULT into
the complex number field.

e RorartE [23], a recent KGE model, based on the rotation
assumption where a relation is a rotation from the subject
to the object in the complex vector space.

e JOIE [12] and M2GNN [27]: Refer to Section 2.3 where this
is discussed.

o HYPERKG [15], a KGE model extending translational KGE
methods to the Poincaré-ball model of hyperbolic geometry.

e HAKE [30], which extends RoTATE by having relations
combining modulus scaling with rotation.

o ConE [1], a KGE model embedding entities into hyperbolic
cones and relations as transformations between cones.

e ReErH/RoTH/ATTH [8], which are hyperbolic KGE models
that combine hyperbolic spaces using hyperbolic attention,
where REFH and RoTH are variants of ATTH using only
reflections and rotations respectively.

e HGCN [9], a hyperbolic GCN model utilizing Riemannian
geometry and the hyperboloid model.
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e HyYPERKA [22], which extends GCNs from the Euclidean
to hyperbolic space using the Poincaré ball model.

4.2.2 DGS Variants. We describe variant models of DGS below.

e DGS-RO-FC, which is DGS with the Riemannian operator
(RO) used for vector transformation instead of our proposed
closed spherical space vector transformation procedure in
Section 3.1.1, and with fixed center (FC) of spherical ball at
0, which is the same center as the Poincaré disk. For single
geometric spaces of S¢ and H? for non-bridge nodes and
concepts, the Riemannian operator is performed as a retrac-
tion operation to the tangent Euclidean spaces. However, we
extend the Riemannian operator when performing retraction
for the intersection ring of the bridge space, which is formed
by intersecting the spherical ball’s surface and Poincaré disk.
This is described in the Supplements.

e DGS-SO-FC, which is DGS with the proposed closed spher-
ical space operator (SO), and with FC of spherical ball at 0,
which is the same center as the Poincaré disk.

e DGS (ours), which is DGS with the proposed closed SO,
and with learnable center (LC) of spherical ball, which for
simplicity of constructing the intersection space for bridge
nodes, is set to the last dimension to only allow for vertical
shift. Note that we do not need to also make the center of
the Poincaré disk learnable as this shift is already introduced
with making one of the centers learnable. For learning the
spherical center, w, in the model, we follow the same training
procedure for Section 3.2 but for the non-bridge entities and
bridge entities, we perform the operations by temporarily
shifting to the center 0 (e.g., —w shift), then shift back to the
new center w (e.g., +w shift) after the updates are performed.

4.2.3 DGS Ablation Models. We study different ablations models
of DGS, which are formed by utilizing different combinations of
manifold spaces for each type of link of DGS (R;/Rp) in the two-
view KG including the spherical space, s, hyperbolic space using
the Poincaré model, ]H[d, or Euclidean space, E¥. These include: DGS
(84/s%), MGS (H?/HY), DGS (B /H?), and DGS (S%/E%). Since
Rjo is always at the intersection of the two spaces Ry and Rp, we
do not need to specify the geometric space separately.

4.3 Evaluation

In this section, we detail our evaluation on the tasks of KG triple
completion and entity typing. The goal of triple completion is to
construct the missing relation facts in a KG structure. Specifically,
we test constructing a missing target node, from each of the ontol-
ogy or instance views: or queries (e;, rg, ?e;j) and (cj, 1y, ?Cj), such
that each model evaluated is trained on the entire two-view KG.
The goal of entity typing is to predict the concepts that correspond
to the entities, or queries (e;, 7, ?c;).

Using plausibility scores to rank each test candidate set, for each
task, we report results for the evaluation metrics of mean reciprocal
rank (MRR) and Hits@, e.g., Hits@1, Hits@3, Hits@10. Table 2
reports our data splits for each task. For triple completion, this is
chosen to be embedding distance of the source node to the missing
target node modeled under the relation, and for entity typing, this
is chosen to be the embedding distance from the entity’s representa-
tion in the concept space to the concept. [12] provides more details



KDD ’22, August 14-18, 2022, Washington, DC, USA

Roshni G. lyer et al.

Table 3: Results of KG triple completion. M denotes the d-dimensional manifold space, Ry are entity links, R are concept links. For each group of models,

the best results are bold-faced. The overall best results on each dataset are underscored.

Datasets YAGO26K-906 DB111K-174

Type M Graphs Rr KG Completion Ro KG Completion Rr KG Completion Ro KG Completion
Metrics MRR H@1 H@10 | MRR H@! H@10 || MRR H@1 H@10 | MRR H@! H@10
E4 TraANSE 0.187 13.73 35.05 0.189 14.72 24.36 0.318 22.70 48.12 0.539 47.90 61.84
E4 DistMuLT 0.288 24.06 31.24 0.156 14.32 16.54 0.280 27.24 29.70 0.501 45.52 64.73
non-GNN based c4 CompPLEX 0.291 24.85 37.28 0.180 14.83 22.97 0.321 27.39 46.63 0.549 47.80 62.23
KGE models c4 RotaTE 0.302 25.31 42.17 0.228 16.35 27.28 0.356 29.31 54.60 0.557 49.16 68.19
E4 JOIE 0.316 24.62 51.85 0.289 18.66 39.13 0.479 35.21 72.38 0.602 52.48 79.71
H4 HypPERKG 0.215 18.35 36.02 0.174 14.50 23.26 0.302 23.31 46.72 0.542 47.59 62.11
o HAKE 0.293 23.04 40.19 0.301 19.27 41.09 0.391 31.10 60.46 0.638 55.69 81.07
o ConNE 0.299 23.56 41.23 0.313 20.05 41.80 0.422 33.69 68.12 0.639 55.89 81.45
HY ReFH 0.282 23.19 40.52 0.298 19.70 41.26 0.407 30.06 66.93 0.622 55.35 81.09
o RoTH 0.295 23.50 41.03 0.308 19.97 41.78 0.418 30.18 67.05 0.639 55.82 81.44
GNN-based models | H ArTH 0.298 23.43 41.20 0.310 19.99 41.53 0.419 30.10 66.58 0.629 55.37 81.39
HY HGCN 0.307 23.04 40.25 0.302 19.38 40.49 0.396 31.54 61.78 0.638 55.81 81.60
B4 HyrPErRKA 0.320 26.71 52.09 0.305 18.83 40.28 0.486 35.79 72.33 0.613 53.36 80.59
P M2GNN 0.347 29.63 54.28 0.341 23.70 42.19 0.506 36.52 73.11 0.644 56.82 83.01
= DGS (Sd/Sd) 0.338 27.15 53.20 0.318 20.36 41.02 0.491 34.58 71.40 0.606 53.29 80.17
Ablation variants: = DGS (Hd /Hd) 0.314 25.11 52.02 0.358 24.61 43.28 0.502 35.79 73.61 0.663 57.59 84.16
DGS (R;/Ro) - | DGS (E4/HY) | 0327 2532 5289 | 0343 2395  41.62 0.498 3511 7237 | 0.640 56.17  82.68
= DGS (Sd/Ed) 0.322 24.91 52.36 0.297 19.43 40.61 0.484 33.29 73.54 0.619 53.72 80.51
= DGS-RO-FC 0.352 29.79 55.21 0.364 25.04 43.27 0.518 37.65 73.97 0.681 59.23 84.16
DGS variants = DGS-SO-FC 0.364  30.15 55.93 0.369 25.81 44.18 0.536 38.29 74.28 0.687 59.26 84.82
- | DGS(ours) | 0366 30.15 56.06 | 0.372 2588 4438 || 0.536 3831 7485 | 0.690 59.88 84.82

on the evaluation procedure. For evaluation consistency, for both
tasks, model training hyperparameters are chosen for dimensional-
ity d € {50, 100, 200, 300} for all triples, learning rate € {5e-4, le-3,
le-2, le-1} and margins y € {0.5, 1}. Further, different batch sizes
and epochs are used according to the type and size of the graphs.

KG Triple Completion Results. Results are reported in Table 3.
DGS outperforms all of the baseline models on both datasets. DGS
achieves an average performance gain over all baselines by 32.36%
on MRR, 27.59% on Hit@1, and 29.17% on Hit@10 for the instance-
view completion across both YAGO26K-906 and DB111K-174. DGS
achieves an average performance gain over all baselines by 23.43%
on MRR, 28.41% on Hit@1, and 18.11% on Hit@10 for the ontology-
view completion across both YAGO26K-906 and DB111K-174.

It can be observed that in both the instance and ontology views
on both datasets, the hyperbolic-based KGE models outperform
their Euclidean and complex space counterparts. Further, hyperbolic
KGE models perform better on ontology view than instance view
likely due to there being prevalence of hierarchy in the ontology. It is
also seen that using multiple geometric spaces is more effective than
using a single geometric space. For GNN-based models, M2GNN,
which uses a product space, P4 combining Euclidean, spherical, and
hyperbolic spaces, outperforms the models using only one of the
spaces. Compared to M2GNN, the most competitive baseline model
in most cases, DGS shows significant improvement of 3.25% on
MRR, 5.15% on Hit@1, and 2.73% on Hit@10 on average for both
YAGO26K-906 and DB111K-174. This is likely because hierarchy in
the KG is better modeled through the hyperbolic space than with
influence from the spherical or Euclidean space, and cyclic links
are better modeled through the space than with influence from the
hyperbolic or Euclidean space. For bridge entities involved in both
hierarchical and cyclic links, we see it is beneficial to model them
in an intersection space to better model both of these properties.

Entity Typing Results. Results are reported in Table 4. Con-
sistent with the KG completion results, it can be seen that DGS
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Table 4: Results of entity typing. For each group of models, the best results
are bold-faced. The overall best results on each dataset are underscored.

Datasets YAGO26K-906 DB111K-174
Metrics MRR Acc. Hit@3 | MRR Acc. Hit@3
TransE | 0.144 732 3526 | 0503 4367 60.78
DistMuLT | 0.411 36.07 5532 | 0551 49.83 68.01
CompLEX | 0519 43.08 59.28 | 0.583 55.07 70.17
RoratE | 0.673 5824 7395 |0.721 6148 7567
JOIE 0.899 8572 96.02 | 0.859 7558 96.02
HyPERKG | 0.627 5539 65.64 | 0.736 61.20 74.29
HAKE 0905 87.42 9637 | 0.866 76.04 96.22
ConE 0.912 87.51 96.39 |0.869 76.85 96.38
REFH 0907 8749 9637 | 0.867 76.26 96.31
RotH 0.909 87.49 9639 | 0.868 76.55 96.36
ArtH 0910 8750 96.38 | 0.868 76.50 96.33
HGCN 0905 87.44 9637 | 0.867 7611 96.27
HyperKA | 0918 87.76 9645 | 0.871 76.65 96.50
M2GNN | 0.922 88.16 97.01 |0.880 77.58 96.94
DGS (S?/S7) [ 0.919 87.94 96.81 | 0.875 77.03 96.78
DGS (H?/H?) | 0.924 88.12 97.01 | 0.887 77.53 96.95
DGS (E4/H?) | 0.922 88.07 96.91 |0.883 77.37 96.58
DGS (S?/E9) | 0917 87.68 96.41 | 0.866 7633 96.48
DGS-RO-FC | 0.930 8847 9732 | 0.891 77.81 97.04
DGS-SO-FC | 0.938 89.02 98.11 |0.895 77.92 97.40
DGS (ours) |0.939 89.07 98.18 |0.895 77.94 97.47

variants outperform the baseline models on both datasets for en-
tity typing. DGS achieves an average performance gain over all
baselines of 24.49% on MRR, 26.39% on Acc, and 18.78% on Hit@3
for YAGO26K-906. DGS achieves an average performance gain
over all baselines of 14.86% on MRR, 13.74% on Acc, and 12.15% on
Hit@3 for DB111K-174. Compared to the most competitive GNN-
based model, M2GNN, DGS has nearly a 2% gain in MRR for each
YAGO26K-906 and DB111K-174.

Ablation Studies. Tables 3 and 4 report our results for ablation
studies in models belonging to the category Ablation variants. It can
be seen that using the spherical space for Ry links learns a better
representation than its hyperbolic or Euclidean space counterparts.
This indicates the prevalence of cyclic relations between entities.
Utilizing the hyperbolic space for Rp and Rjo links learns a better
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representation than its spherical or Euclidean space counterparts.
This indicates the prevalence of hierarchical relations between con-
cepts and entities-concepts. Interestingly, a fully hyperbolic-space
model in general achieves better performance than its fully spheri-
cal counterpart, indicating that YAGO26K-906 and DB111K-174 may
contain relatively more hierarchical links than cyclic links. Further,
learning a better representation in one view benefits the other view
more if there are more Ry bridge links. For example, since DB111K-
174 contains significantly more Ryo links than YAGO26K-906 shown
in Table 1, it can be seen that DGS (H4/H?/H%) has better per-
formance against baselines on the instance view of DB111K-174
compared to the instance view of YAGO26K-906.

Visualizations. We project the learned embeddings into 3-D
space, and plot seven nodes with their relations in Figure 2. Con-
cepts that are higher in the ontological hierarchy such as animal
and person are closer to the origin compared to lower-level concepts
such as leader, and entities tend to be farther away from the origin.

YAGO26K-906

person, is_a, animal)

(
(leader, is_a, person)
(

philosopher, is_a, person)

(Paul Feyerabend, is_a,
philosopher)

(Paul Feyerabend, at_location,
Austria)

(Archduke Franz Karl, at_location,
Austria)

(Archduke Franz Karl, is_a, leader)

Figure 2: Example of embeddings learned by DGS. Solid lines
connect entities and concepts as in the original dataset. Dashed
lines connect every node to the origin to indicate closeness to origin.

5 CONCLUSIONS

We are among the first to explore utilization of different embedding
spaces for different views of a knowledge graph. Entities in instance
view often have cyclical connections and are hereby modeled via
spherical embeddings; whereas concepts and bridge entities in on-
tology view tend to form a hierarchy and are hereby modeled in
hyperbolic space. We propose the notion of bridge space to seam-
lessly model intersection of the two spaces in which bridge entities
reside. In addition, we propose a set of closed spherical space opera-
tions to eliminate the need of projecting embeddings to the tangent
Euclidean space. The resulting model, DGS, is a unified framework
that significantly outperforms all baselines, showing the effective-
ness of capturing different structures in the knowledge graph using
embedding spaces of different curvatures and properties.

Future directions include supporting geometric spaces of learn-
able curvature (to better capture the knowledge graph structure)
and allowing a learnable offset between the origins of the two geo-
metric spaces (to better accommodate uneven entity distribution
and/or unbalanced ontology structures) We also aim to extend our
dual-space model to a multi-space geometric embedding model.
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A GENERAL POLAR-CARTESIAN
CONVERSION FRAMEWORK

In this section, we detail our designed general procedures for effi-
ciently converting arbitrary d-dimensional embeddings between
the polar and Cartesian coordinate representations, which are uti-
lized by sub-models in DGS. These procedures include: (1) the
Cartesian to polar coordinate transformation (MCP) and (2) the
polar to Cartesian coordinate transformation (MPC).

2 2 3 -
Xz1F X+ X0 =W

rad =w

h, = [xz,l; Xz,2, xz,3]"
0, = [91,1; 92,2];

Figure 3: Illustration of a vector z in the spherical space on a 3-
dimensional surface. Angular dimensions of z are 81, which is the
distance from the x1-axis to z projected onto the x1-x2 plane, and
02,2, which is the distance from the x3-axis to z projected onto the
X2-x3 plane.

A.1 MCP Transformation Procedure.

Using Figure 3, we derive transformations for the 3-dimensional
spherical surface, and extend this to a d-dimensional spherical
surface as follows:

x
tan(6z,1) = il; rad = w
x

z,2
Xz,3
cot(0z2) = ;rad =w
2
xz,l + xz,2
Xz,4
cot(0z3) = srad =w
2 2 2
xz,l + xz,2 + xz,3
Xz,d
cot(f,4-1) = = srad = w
’ 2 2 2
\/xz)1 XLyt XD
=

—1,%z2
0,1 = tan L) rad = w
Xz,1
1 Xz,i+1

i .2
D=1 Xy

0, = cot™ ,i€e[2,d-1];rad =w
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A.2 MPC Transformation Procedure.

Using Figure 3, we derive transformations for the d-dimensional
spherical surface, as follows with:

Xz1 = cos(0z1);rad = w

d-1
xogei = ([ sin(z0)) - sin(0;4-5-1); rad = w
i=d-i
Xzd = cos(0, 4_1);rad = w

Theorem. The MCP procedure and MPC procedure are closed
in the spherical space.

Proor. The above equations for the MCP and MPC procedures
directly use properties of trigonometry for right triangles for each
embedding dimension 0;, i € [1,d — 1], ensuring that the transfor-
mation is closed. O

B BATCH VECTOR TRANSFORMATION
PROCEDURE

We illustrate the batch version of the rotation operation presented in
Section 3.1.1. Consider for entity e;, there are K relations connected
to e;. Instead of applying frot to each one of the K relations, we can
perform the following to compute the result efficiently:

S S S . S S
6, (961_’1 + 9”’1) +et (Qei,d + Grl)d)
frot| 3, = : mod2r
S S S S S
(8 (Hei’l + GVK’I) +oet (Qe,—,d + HrK’d)

frot(h3,, 67)

frot (B2, 65)

Theorem. The batch vector transformation procedure is closed.

Proor. Each relation has fiot(-) applied to the entity, and frot(-)
has been shown to be closed because every dimension of the trans-
formed head is within the angular constraints e.g., by mod2s, and
norm space constraints because frot(+) preserves the norm space of
the spherical space. O

C RIEMANNIAN RETRACTION OPERATION
FOR THE BRIDGE SPACE OF DGS

Figure 4 describes the Riemannian retraction operation R for the
bridge space to the tangent Euclidean space. The bridge space is
formed by intersecting the surface of the spherical ball with the
Poincaré disk in the hyperbolic space. As shown in the figure, we
separately map the Poincaré disk and the spherical ball to different
tangent Euclidean spaces, and enable for joint communication be-
tween the two spaces to represent the bridge entities. On the left,
we perform isomorphic mapping from the Poincaré disk, HY, to
the hyperboloid model, B! a5in [9] using:

2X1, .0y 2%g, 1+ ||X||§

(40)
1—|Ix|l3

Rﬂd_)BdH (XI, veoy Xd) =
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Hyperboloid

model (3D)
@ -G £,
o 7 daeh = O
Ya ‘\ Poincare N .
E disk (2D) Spherical ball
b/ surface (2D) Qj

a Yap

Uq
@1 Euclidean

R™ R"™

Euclidean

VBa space 2

Figure 4: Riemannian retraction operation for the bridge space of DGS

R gty (X1, o Xgy1) = 1, . Xg) (41) transformation between the two Euclidean spaces through trans-
X+ + 1 formation mappings y,g and yg, such that
, then using logarithmic mapping map to the tangent Euclidean 4
space 1. On the right, we use logarithmic mapping to map the Yap =VYp°Va (42)

spherical ball to the tangent Euclidean space. Then we allow for Yo = Ya © ylgl (43)
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