

Dual-Geometric Space Embedding Model for Two-View Knowledge Graphs KDD ’22, August 14ś18, 2022, Washington, DC, USA

Euclidean space. The textbook [19] provides more details. Geomet-

ric spaces of Euclidean (E𝑑), spherical (S𝑑), and hyperbolic (H𝑑)

spaces belong to Riemannian manifolds (𝑴𝑑), such that each point

𝒂 ∈ 𝑴𝑑 has a corresponding tangent space, (𝑇𝒂𝑴
𝑑)𝑑 , that approx-

imates 𝑴𝑑 around 𝒂. Further, each Riemmanian manifold, 𝑴𝑑 , is

associated with a Riemanian metric 𝑑𝑖𝑠𝑡 that defines the geodesic

distance of two points on the manifold and the curvature 𝐾 of

the space. In the spherical space, curvature 𝐾𝑆 > 0, suitable for

capturing cyclical structures [29], while in the hyperbolic space, cur-

vature 𝐾𝐻 < 0, suitable for capturing hierarchical structures [18].

Widely used models on the hyperbolic space include the Poincaré

ball model [7], the Lorentz [3] model, and the Klein model [3]. As

the these three models are both isometric and isomorphic to one

another, WLOG we utilize the Poincaré ball model in our work.

Non-Euclidean Space Optimization. DGS utilizes Riemann-

ian optimization for updating entity and relational embeddings

because Euclidean space optimization methods, such as SGD, pro-

vide the update direction of the Euclidean gradient to be in non-

curvature space. This does not align with parameters in our model

that must be updated in positive or negative curvature spaces. For

parameter learning, DGS uses RSGD [5], whose update function

is denoted below, where (𝑇𝒂𝑀
𝑑)𝑑 denotes the tangent Euclidean

space of 𝒂 ∈ 𝑀𝑑 , ∇𝑅 ∈ (𝑇𝒂𝑀
𝑑)𝑑 denotes the Riemannian gra-

dient of loss function 𝐿(𝒂), R𝒂𝑡 denotes retraction onto 𝑀𝑑 , or

non-Euclidean space at 𝒂, and 𝜂𝑡 denotes learning rate at time 𝑡 :

𝒂𝒕+1 = R𝒂𝑡 (−𝜂𝑡∇𝑅𝐿(𝒂𝑡))

The retraction operator, R(·) involves mapping between spaces.

For non-Euclidean spaces, the retraction is generally performed

between the non-Euclidean space and approximate tangent Eu-

clidean space using logarithmic and exponential mapping functions

as follows, where log0 (𝒉
𝐵
𝑒𝑖
) is a logarithmic map at center 0 from

the hyperbolic space to Euclidean tangent space, and exp0 (𝒉
𝐵
𝑒𝑖
) is

an exponential map at center 0 from the Euclidean tangent space

to hyperbolic space of 𝒂.

log0 (𝒂) = tanh−1 (𝑖 · ∥𝒂∥)
𝒂

𝑖 · ∥𝒂∥
(1)

exp0 (𝒂) = tanh(𝑖 · ∥𝒂∥)
𝒂

𝑖 · ∥𝒂∥
(2)

2.3 Two-View KG Models

In this section, we describe the models that are utilized for two-view

KGs, which consider the problem setting of modeling ontological

and instance views. To address the challenges of these models, we

propose DGS in Section 3.

JOIE. The JOIE [12] model is an embedding model that con-

siders the problem of two-view KGs. However, JOIE models all

triples in the same zero-curvature Euclidean space, omitting the

hierarchical and cyclical structures of the KG. Further, there is no

special consideration of representation for bridge nodes.

Models leveraging product of spaces. Models including

M2GNN [27] which extends [11] from social networks to the do-

main of KGs, [21], etc. help to address the limitation of JOIE by

utilizing the hyperbolic and spherical spaces for representing triples.

However, they treat all triples in the KG to be in the same non-

Euclidean product space, formed by a Riemannian product of the

Euclidean, spherical, and hyperbolic spaces. Thus, the embedding

space of hierarchical triples is not distinguished from the embed-

ding space of cyclic triples, and further there is also no special

consideration of representation for bridge nodes.

3 DGS ARCHITECTURE

This section describes our proposed dual-geometric space embed-

ding model (DGS), which jointly embeds entities and concepts in

a knowledge graph. DGS embeds different link types of the two-

view KG in different non-Euclidean manifold spaces to capture

the inherent heterogeneous structures of the KG, as described be-

low. We also design general procedures, which are detailed in the

Supplements, for efficiently converting arbitrary 𝑑-dimensional

embeddings between the polar and Cartesian coordinate represen-

tations, which are utilized by sub-models in DGS. Source code is

available at https://github.com/roshnigiyer/dgs.

3.1 Modeling

The key questions in the modeling process are in how to: (1) design

or adopt an appropriate embedding space for nodes, (2) define the

representation of entity/concept and relation in that embedding

space, and (3) define the KG embedding model and loss function

of DGS. Our framework enables each of entities and concepts to

be influenced by bridge nodes, and simultaneously bridge nodes to

be informed by entities and concepts. In this way, DGS exhibits a

unified framework to jointly model two-views of KGs.

DGS models nodes in the instance view as points in a spherical

space S𝑑 with fixed norm space 𝑤𝑆 , and nodes in the ontology

view as points in a hyperbolic space H𝑑 with learnable norm space

𝑤
𝒉𝐻𝑐𝑖

per concept. The bridge nodes lie in the intersection of the

two, which is a submanifold intersection space, called B𝑑 , shown

as the dotted circle in Figure 1(b). B𝑑 contains the same fixed norm

space as the spherical space 𝑤𝑆 . For modeling compatibility, we

set the degrees of freedom of S𝑑 , H𝑑 , and B𝑑 to 𝑑 − 1, 𝑑 − 1, and

𝑑 − 2 respectively. B𝑑 has one degree of freedom less than H𝑑

and S𝑑 because it is a submanifold intersection space of both the

spherical and hyperbolic spaces. The norm of B𝑑 is 𝑤𝑆 because

that is the intersection norm space of S𝑑 and H𝑑 . The concept-

specific norm spaces,𝑤
𝒉𝐻𝑐𝑖

, are learnable in order for the hierarchy

in the KG to be learned by the embedding. In practice, it can be

seen that hierarchical root concepts move towards the center of the

hyperbolic space e.g., towards norm 0, shown in Section 4.

Parameter optimization, detailed in Section 3.2, is performed

using RSGD, described in Section 2.2, on hinge loss functions which

utilize non-Euclidean space geodesic distances for the spherical

and hyperbolic spaces respectively. We construct the hinge loss

function such that positive triples are scored higher than negative

triples within positive margin hyperparameters.

3.1.1 Modeling Instance View KG in Spherical Space.

Representation of entities. We propose to embed the entities

from the instance-view on the surface of the spherical ball from the

spherical space, S𝑑 , in order to better capture the cyclic structures

678

KDD ’22, August 14ś18, 2022, Washington, DC, USA Roshni G. Iyer et al.

present in this KG view. Entities are represented as points 𝒉𝑒𝑖
that belong to the surface of the spherical ball in S𝑑 as shown in

Figure 1(b). Formally, S𝑑 = {𝒉𝑆𝑒𝑖 ∈ R
𝑑
�

�∥𝒉𝑆𝑒𝑖 ∥ = 𝑤
𝑆 },𝑤𝑆 ∈ [0, 1), is

the 𝑑-dimensional𝑤𝑆 -norm ball, where ∥·∥ is the Euclidean norm.

For an entity 𝒉𝑆𝑒𝑖 , we propose to model the relation applied to the

entity as a rotation operation, and therefore represent the relation

𝑟𝐼𝑘 as a vector of angles 𝜽𝑆𝑟𝐼𝑘 ∈ [0, 2𝜋)
𝑑−1. Below, we show our

proposed vector transformation procedure to model the relation

as rotation of the head entity, 𝑓rot : 𝒉
𝑆,𝑛𝑒𝑤
𝑒𝑖 = 𝑓rot (𝒉

𝑆
𝑒𝑖
, 𝜽𝑆𝑟𝐼𝑘), and

prove that the operation is closed in the spherical space. 𝑓rot (·)

eliminates the need to project representations to the tangent Eu-

clidean space in order to perform standard transformations. To the

best of our knowledge, we are the first to propose a closed vector

transformation procedure that operates directly in the spherical

space.

Spherical Space Vector Transformation Procedure: 𝑓rot (·).

This section describes our proposed vector transformation proce-

dure, 𝑓rot, for the spherical space, which directly performs opera-

tions using properties, such as positive curvature, in the spherical

space. This section also outlines the proof of the closedness property

of the transformation procedure. For computational efficiency, we

also extend the vector transformation procedure to the batch ver-

sion, the batch vector transformation procedure, which is detailed

in the Supplements. 𝑓rot takes as input an entity embedding and

relation operator, which it uses to transform the entity embedding:

𝒉𝑆,𝑛𝑒𝑤𝑒𝑖 = 𝑓rot (𝒉
𝑆
𝑒𝑖
, 𝜽𝑆𝑟𝐼𝑘):

(1) Given 𝒉𝑆𝑒𝑖 , 𝜽
𝑆
𝑟𝐼𝑘

, we convert 𝒉𝑆𝑒𝑖 to the corresponding repre-

sentation 𝜽𝑆𝑒𝑖 in polar coordinates, with rad denoting the

radius which has the value𝑤𝑆 . Refer to Section A.1 for de-

tails on the conversion procedure.

𝒉𝑆𝑒𝑖 : [𝑥
𝑆
𝑒𝑖 ,1
, 𝑥𝑆𝑒𝑖 ,2, ..., 𝑥

𝑆
𝑒𝑖 ,𝑑
] → 𝜽𝑆𝑒𝑖 : [𝜃

𝑆
𝑒𝑖 ,1
, 𝜃𝑆𝑒𝑖 ,2, ..., 𝜃

𝑆
𝑒𝑖 ,𝑑−1

]; rad = 𝑤𝑆

(3)

𝜽𝑆𝑟𝐼𝑘 : [𝜃𝑟𝐼𝑘 ,1, 𝜃𝑟𝐼𝑘 ,2, ..., 𝜃𝑟𝐼𝑘 ,𝑑−1]; rad = 𝑤𝑆 (4)

(2) Denote 𝒛 [𝑙] to be the 𝑙-th entry of 𝒛 and apply the transfor-

mation:

(𝜽𝑆𝑒𝑖 + 𝜽
𝑆
𝑟𝐼𝑘
) [𝑙] = (𝜽𝑆𝑒𝑖 [𝑙] + 𝜽

𝑆
𝑟𝐼𝑘
[𝑙]) mod 2𝜋 ; 𝑙 ∈ [1, 𝑑 − 1] (5)

𝜽𝑆,𝑛𝑒𝑤𝑒𝑖 = [(𝜃𝑆𝑒𝑖 ,1 + 𝜃
𝑆
𝑟𝐼𝑘 ,1
) mod 2𝜋, ...,

(𝜃𝑆
𝑒𝑖 ,𝑑−1

+ 𝜃𝑆
𝑟𝐼𝑘 ,𝑑−1

) mod 2𝜋]; rad = 𝑤𝑆 (6)

(3) Convert from polar coordinates back to Cartesian coordi-

nates. Refer to Section A.2 for details on the conversion

procedure.

𝜽𝑆,𝑛𝑒𝑤𝑒𝑖 → 𝒉𝑆,𝑛𝑒𝑤𝑒𝑖 : [𝑥𝑆,𝑛𝑒𝑤
𝑒𝑖 ,1

, 𝑥𝑆,𝑛𝑒𝑤
𝑒𝑖 ,2

, ..., 𝑥𝑆,𝑛𝑒𝑤
𝑒𝑖 ,𝑑

] (7)

Theorem. The vector transformation procedure, 𝑓rot, is closed

in the spherical space.

Proof. The proof is outlined by examining all three steps for 𝑓rot
from the transformation procedure, where 𝒉𝑒𝑖 and 𝜽𝑒𝑖 represent the

same point 𝑒𝑖 in the embedding space by the isomorphic Cartesian

and polar coordinate systems respectively.

(1) The Cartesian coordinate representation is equivalent to the

polar coordinate representation of the point, 𝑒𝑖 , under MCP

model, detailed in the Supplements. Further, radius rad = 𝑤𝑆

of the polar representation embeddings lies in the spherical

norm space𝑤𝑆 .

(2) 𝜃 ∈ [0, 2𝜋); rad = 𝑤𝑆 defines polar representation embed-

dings in the spherical space, and

(𝜽𝑆𝑒𝑖 +𝜽
𝑆
𝑟𝐼𝑘
) [𝑙] = (𝜽𝑆𝑒𝑖 [𝑙] +𝜽

𝑆
𝑟𝐼𝑘
[𝑙]) mod 2𝜋 ∈ [0, 2𝜋)∀𝑙 ; rad =

𝑤𝑆 . Thus, both angular and radial coordinates are preserved.

(3) The polar coordinate representation is equivalent to the

Cartesian coordinate representation of the point, 𝑒𝑖 , under

MPC model, detailed in the Supplements.
□

Instance View Loss Function. The instance-view model uses

a hinge loss function that is maximized for all triples in the instance

space 𝑅𝐼 , with positive triples denoted, pt𝐼 = (𝒉
𝑆
𝑒𝑖
, 𝜽𝑆𝑟𝐼𝑘 ,𝒉

𝑆
𝑒 𝑗
) with

corresponding score 𝜙𝑆
obs
(pt𝐼) and negative triples denoted, nt𝐼 =

(𝒉𝑆
′

𝑒𝑖
, 𝜽𝑆𝑟𝐼𝑘 ,𝒉

𝑆′
𝑒 𝑗
) with corresponding score 𝜙𝑆corr (nt𝐼), and 𝛾

𝑅𝐼 > 0 is

a positive margin hyperparameter. Specifically, the instance loss

function measures the distance between the predicted tail entity

and the ground truth.

𝜙𝑆
obs
(pt𝐼) = dist𝑆

(

𝑓rot (𝒉
𝑆
𝑒𝑖
, 𝜽𝑆𝑟𝐼𝑘),𝒉

𝑆
𝑒 𝑗

)

(8)

𝜙𝑆corr (nt𝐼) = dist𝑆
(

𝑓rot (𝒉
𝑆′

𝑒𝑖
, 𝜽𝑆𝑟𝐼𝑘),𝒉

𝑆′

𝑒 𝑗

)

(9)

𝐿
𝑅𝐼

inst
=

1

|𝑅𝐼 |

∑︁

(ptI∈𝑅𝐼)∧(ntI∉𝑅𝐼)

max
(

0, 𝛾𝑅𝐼 + 𝜙𝑆
obs
(pt𝐼) − 𝜙

𝑆
corr (nt𝐼)

)

(10)

We calculate spherical geodesic distance [17] between points 𝒙𝑆

and 𝒚𝑆 on the manifold as follows:

dist𝑆 (𝒙
𝑆 ,𝒚𝑆) = arccos((𝒙𝑆)

𝑇

𝒚𝑆) (11)

𝑅𝐼 includes links between all entities including both non-bridge

entities and bridge-entities. In this way, the representation of non-

bridge entities is influenced by the bridge entities.

3.1.2 Modeling Ontological View KG in Hyperbolic Space.

Representation of concepts. We propose to embed concepts

from the ontology-view on the Poincaré disk from the hyperbolic

space, H𝑑 , in order to better capture the hierarchical structures

present in this KG view. Concepts are represented as points, 𝒉𝑐𝑖
that belong inside the Poincaré disk in H𝑑 as shown in Figure 1(b).

Formally, H𝑑 = {𝒉𝐻𝑐𝑖 ∈ R
𝑑
�

�∥𝒉𝐻𝑐𝑖 ∥ = 𝑤𝐻
𝑐𝑖
},𝑤𝐻

𝑐𝑖
∈ [0, 1), is the 𝑑-

dimensional𝑤𝐻
𝑐𝑖
-norm ball, where ∥·∥ is the Euclidean norm. We

assume the center of the disk is aligned with the center of the

sphere, and for convenience set the last dimension 𝑑 to 0.

For concepts in the hyperbolic space, H𝑑 , any hyperbolic space

model for KG can be applied in principle, which we denote as

follows with 𝑟O𝑘 ∈ 𝑅O to denote a relation between two concepts:

𝑓KGE (pt𝑂) = 𝑓KGE (𝒉
𝐻
𝑐𝑖
, 𝑟O𝑘 ,𝒉

𝐻
𝑐 𝑗
) (12)

We illustrate MuRP [2] as an example scoring function, which

uses the hyperbolic geodesic distance and relies on Möbius addi-

tion to model the relation, where exp0 (·) and log0 (·) are defined

in Section 2.2, 𝑹 ∈ R𝑑×𝑑 is a learnable diagonal relation matrix

679

Dual-Geometric Space Embedding Model for Two-View Knowledge Graphs KDD ’22, August 14ś18, 2022, Washington, DC, USA

representing the stretch transformation by relation 𝑟O𝑘 ∈ 𝑅O with

representation 𝒉𝐻𝑟O𝑘 , and scalar biases 𝑏𝐻𝑐𝑖 , 𝑏
𝐻
𝑐 𝑗

of concepts 𝑐𝑖 and 𝑐 𝑗 :

𝑓MuRP (pt𝑂) = 𝑓MuRP (𝒉
𝐻
𝑐𝑖
, 𝑟O𝑘 ,𝒉

𝐻
𝑐 𝑗
)

= 𝑓MuRP (𝒉
𝐻
𝑐𝑖
,𝒉𝐻𝑟O𝑘 ,𝒉

𝐻
𝑐 𝑗
)

= −dist𝐻
(

exp0 (𝑹log0 (𝒉
𝐻
𝑐𝑖
)
)

,𝒉𝐻𝑐 𝑗 ⊕𝐻 𝒉𝐻𝑟O𝑘)
2 + 𝑏𝐻𝑐𝑖 + 𝑏

𝐻
𝑐 𝑗

(13)

𝒙𝐻 ⊕𝐻𝒚
𝐻

=
(1 + 2⟨𝒙𝐻 ,𝒚𝐻 ⟩ + ∥𝒚𝐻 ∥22)𝒙

𝐻 + (1 − ∥𝒙𝐻 ∥22)𝒚
𝐻

1 + 2⟨𝒙𝐻 ,𝒚𝐻 ⟩ + ∥𝒙𝐻 ∥22∥𝒚
𝐻 ∥22

(14)

We calculate hyperbolic geodesic distance [18] between points

𝒙𝐻 and 𝒚𝐻 on the manifold as follows:

dist𝐻 (𝒙
𝐻 ,𝒚𝐻) = arccosh(1 + 2

∥𝒙𝐻 −𝒚𝐻 ∥22

(1 − ∥𝒙𝐻 ∥2) (1 − ∥𝒚𝐻 ∥2)
) (15)

Ontological View Loss Function. The ontology-view model

uses a hinge loss function that is maximized for all links between

concepts in the ontology space and all links between bridge nodes

and concepts, i.e., 𝑅O ∪ 𝑅𝐼O , with positive triples denoted, ptO =

(𝒉𝐻𝑐𝑖 , 𝜽
𝐻
𝑟O𝑘

,𝒉𝐻𝑐 𝑗)∪(𝒉
𝐻
𝑒𝑖
,𝒉𝑟𝐼O𝑘 ,𝒉

𝐻
𝑐 𝑗
)with corresponding score𝜙𝐻

𝑜𝑏𝑠
(ptO)

and negative triples denoted, ntO = (𝒉𝐻
′

𝑐𝑖
, 𝜽𝐻𝑟O𝑘 ,𝒉

𝐻 ′
𝑐 𝑗
)∪(𝒉𝐻

′

𝑒𝑖
,𝒉𝑟𝐼O𝑘 ,𝒉

𝐻 ′
𝑐 𝑗
)

with corresponding score𝜙𝐻𝑐𝑜𝑟𝑟 (ntO), and𝛾
𝑅O∪𝑅𝐼O > 0 is a positive

margin hyperparameter:

𝜙𝐻
𝑜𝑏𝑠
(ptO) = 𝑓KGE (ptO) (16)

𝜙𝐻𝑐𝑜𝑟𝑟 (ntO) = 𝑓KGE (ntO) (17)

𝐿
𝑅O∪𝑅𝐼O

onto =
1

|𝑅O ∪ 𝑅𝐼O |

∑︁

(ptO ∈𝑅O∪𝑅𝐼O)∧(ntO∉𝑅O∪𝑅𝐼O)

max
(

0,

𝛾𝑅O∪𝑅𝐼O + 𝜙𝐻𝑐𝑜𝑟𝑟 (ntO) − 𝜙
𝐻
𝑜𝑏𝑠
(ptO)

)

(18)

𝑅𝑂 ∪𝑅𝐼O includes triples composed of concepts and bridge-entities.

In this way, the representation of concepts is influenced by the

bridge entities, which is described in Section 3.1.3.

3.1.3 Modeling the Intersection of the Two Spaces.

Representation of bridge entities. Bridge nodes are entity

nodes that bridge the communication between the instance-view

and ontology-view components. Bridge nodes are connected to

concepts in the graph, formed by link ontology 𝒉𝑟𝐼O𝑘 but may

also be connected to other entities, formed by link instance 𝜽𝑟I𝑘 .

As shown in Figure 1(a), nodes 5 and 6 are bridge nodes that are

involved in both cyclic and hierarchical structures through their

links to other entities as well as concepts. As such, we propose

to embed bridge entities in the intersection space of the Poincare

disk and surface of the spherical ball, in order to better capture

the heterogeneous KG structures that are associated with these

nodes. We refer to the intersection submanifold embedding space

as the bridge space, B𝑑 , where the representation of these nodes are

informed by both S𝑑 and H𝑑 and has one lower degree of freedom.

The bridge space can therefore be derived as a sphere in general.

Formally, B𝑑 = {𝒉𝐵𝑒𝑖 ∈ R
𝑑
�

�∥𝒉𝐵𝑒𝑖 ∥ = 𝑤𝑆 },𝑤𝑆 ∈ [0, 1), is the 𝑑-

dimensional𝑤𝑆 -norm ball, where ∥·∥ is the Euclidean norm, and

the value of last dimension 𝑑 = 0. Links associated with bridge

nodes are 𝜽𝑟𝐼𝑘 ,𝒉𝑟𝐼O𝑘 ∈ [0, 2𝜋)
𝑑−1, and operations on bridge nodes,

such as geodesic distance and loss functions, happen in either the

spherical space or hyperbolic space.

To ensure compatibility with the connected concept nodes, we

map the bridge entities, 𝒉𝐵𝑒𝑖 , to an embedding in the ontology space

through a non-linear transformation function, 𝑔𝒉𝑟𝐼O𝑘
(𝒉𝐵𝑒𝑖), where

AGG(·) denotes an averaging over all relations 𝑘 in 𝑅𝐼𝑂 . Logarith-

mic and exponential mapping functions of log0 (·) and exp0 (·) are

described in Section 2.2.

𝑔𝒉𝑟𝐼O𝑘
(𝒉𝐵𝑒𝑖) = AGG

(

proj𝐵
(

tanh(𝑾𝒉𝑟𝐼𝑂𝑘
⊗𝐻 𝒉𝐵𝑒𝑖 ⊕𝐻 𝒃𝒉𝑟𝐼𝑂𝑘

)
)

)

(19)

proj𝐵 (𝒛) = proj𝑆 (𝒛) (20)

𝑴 ⊗𝐻 𝒉𝐵𝑒𝑖 = exp0
(

𝑴 log0 (𝒉
𝐵
𝑒𝑖
)
)

(21)

𝒉𝐻𝑐𝑖 ⊕𝐻 𝒉𝐻𝑐 𝑗 =

(

1 + 2(𝒉𝐻𝑐𝑖)
𝑇𝒉𝐻𝑐 𝑗 + ∥𝒉

𝐻
𝑐 𝑗
∥22
)

𝒉𝐻𝑐𝑖 + (1 − ∥𝒉
𝐻
𝑐𝑖
∥22)𝒉

𝐻
𝑐 𝑗

1 + 2(𝒉𝐻𝑐𝑖)
𝑇𝒉𝐻𝑐 𝑗 + ∥𝒉

𝐻
𝑐𝑖 ∥

2
2∥𝒉

𝐻
𝑐 𝑗 ∥

2
2

(22)

where both the weight matrix𝑾ℎ𝑟𝐼O𝑘
and bias 𝒃ℎ𝑟𝐼O𝑘

are specific

to each relation 𝑘 in 𝑅𝐼𝑂 and reserved for the ontology 𝒉𝑟𝐼O𝑘 .

Bridge Node Loss Function. The bridge-node model uses a

hinge loss function as a combination of the entity’s ontology-

specific loss, ontoLoss𝒉𝑟𝐼O𝑘
, and instance-specific loss, instLoss𝜽𝑟𝐼𝑘

,

that is maximized for 𝑅𝐼 ∪ 𝑅𝐼𝑂 which contains all triples associ-

ated with the bridge nodes. Positive triples are denoted pt𝐵,𝐼 =

(𝒉𝐵𝑒𝑖 , 𝜽𝑟𝐼𝑘 ,𝒉
𝐵
𝑒 𝑗
) and pt𝐵,𝐼𝑂 = (𝒉𝐵𝑒𝑖 ,𝒉𝑟𝐼𝑂𝑘

,𝒉𝐵𝑐 𝑗), and negative triples

are denoted nt𝐵,𝐼 = (𝒉𝐵
′

𝑒𝑖
, 𝜽𝑟𝐼𝑘 ,𝒉

𝐵′
𝑒 𝑗
) and nt𝐵,𝐼𝑂 = (𝒉𝐵

′

𝑒𝑖
,𝒉𝑟𝐼𝑂𝑘

,𝒉𝐵
′

𝑐 𝑗
)

with loss function defined as follows:

ontoLoss𝒉𝑟𝐼O𝑘
(ptB,IO , ntB,IO)

= max
(

0, 𝛾𝑅𝐼O + 𝜙𝐻
𝑜𝑏𝑠
(pt𝐵,𝐼O) − 𝜙

𝐻
𝑐𝑜𝑟𝑟 (nt𝐵,𝐼O)

)

(23)

instLoss𝜽𝑟𝐼𝑘
(ptB,I, ntB,I)

= max
(

0, 𝛾𝑅𝐼 + 𝜙𝑆
obs
(pt𝐵,𝐼) − 𝜙

𝑆
corr (nt𝐵,𝐼)

)

(24)

𝐿
𝑅𝐼∪𝑅𝐼𝑂

bridge
=

1

|𝑅𝐼 ∪ 𝑅𝐼𝑂 |

∑︁

(ptB,I,ptB,IO ∈𝑅𝐼∪𝑅𝐼𝑂)∧(ntB,I,ntB,IO∉𝑅𝐼∪𝑅𝐼𝑂)

(

ontoLoss𝒉𝑟𝐼O𝑘
(ptB,IO , ntB,IO) + instLoss𝜽𝑟𝐼𝑘

(ptB,I, ntB,I)
)

(25)

The combination loss function above enables bridge nodes to learn

from both spaces of intersection of S𝑑 and H𝑑 .

3.2 Training

This section details the training framework of DGS, for represent-

ing two-view KGs, described in Section 3.1. We describe, for each

epoch, the training of each node in the two-view KGwhich includes

(1) the forward propagation step, (2) the loss function, and (3) the

backward propagation step to optimize parameters. Algorithm 1

provides a summary of the framework.

680

KDD ’22, August 14ś18, 2022, Washington, DC, USA Roshni G. Iyer et al.

Embedding Initialization. We randomly initialize all embed-

dings of 𝑒 and 𝑟 in polar coordinates:𝜽𝑒𝑖 ∈ R
𝑑−1 ← Unif ([0, 2𝜋))𝑑−1

and 𝜽𝑟𝐼𝑘 , 𝜽𝑟O𝑘 ∈ R
𝑑−1 ← Unif ([0, 2𝜋))𝑑−1, then convert entity em-

beddings to their corresponding Cartesian representation: 𝒉𝑒𝑖 =

MPC(𝜽𝑒𝑖). Link𝒉𝑟𝐼O𝑘 is a randomly sampled position on the Poincare

disk. Refer to Section A in Supplements for details about the con-

version procedure, describing both polar-Cartesian coordinate con-

version (MPC) and Cartesian-polar coordinate conversion (MCP).

For the instance-view model, we also choose a value for norm𝑤𝑆 ,

that is sampled from a uniform distribution: 𝑤𝑆 : 𝑤𝑆 ∈ [0, 1) →

Unif ([0, 1)) for all entities, and for the ontology-view model, we

choose a value for norm𝑤𝐻
𝒉𝑐𝑖

, assigned uniformly at random per

entity. We set the curvature values of the spherical and hyperbolic

spaces as𝐾𝑆 = 1 and𝐾𝐻 = −1 respectively. We leave the non-trivial

problem of learning optimal curvatures as future work.

Training Procedure for Instance View KG. Parameter op-

timization is performed using Riemannian stochastic gradient de-

scent (RSGD) for the spherical space as follows for entity embed-

ding and relational embedding updates respectively. To ensure that

the updated entity embedding remains in the norm-𝑤𝑆 space, we

perform a rescaling operation, proj𝑆 , to project out-of-boundary

embeddings back to the surface of the𝑤𝑆 -ball.

proj𝑆 (𝒛) =

{

𝑤𝑆 · 𝒛

∥𝒛 ∥
if ∥𝒛∥ ≠ 𝑤𝑆

𝒛 otherwise
(26)

𝑟 (𝒉𝑆𝑒𝑖,𝑡 , 𝐿
𝑅𝐼

inst
) =

(

1 +
𝒉𝑆

𝑇

𝑒𝑖,𝑡
∇𝐿

𝑅𝐼

inst
(𝒉𝑆𝑒𝑖,𝑡)

∥∇𝐿
𝑅𝐼

inst
(𝒉𝑆𝑒𝑖,𝑡)∥

)

(𝐼 − 𝒉𝑆𝑒𝑖,𝑡𝒉
𝑆𝑇

𝑒𝑖,𝑡
) (27)

𝒉𝑆𝑒𝑖 ,𝑡+1 ← proj𝑆
(

− 𝜂𝑡 · 𝑟 (𝒉
𝑆
𝑒𝑖,𝑡
, 𝐿

𝑅𝐼

inst
)∇𝐿

𝑅𝐼

inst
(𝒉𝑆𝑒𝑖,𝑡)

)

(28)

𝜽𝑆𝑟𝐼𝑘 ,𝑡+1 ← −𝜂𝑡 · 𝑟 (𝜽
𝑆
𝑟𝐼𝑘 ,𝑡

, 𝐿
𝑅𝐼

inst
)∇𝐿

𝑅𝐼

inst
(𝜽𝑆𝑟𝐼𝑘 ,𝑡) (29)

Training procedure for concepts. Parameter optimization

is performed using RSGD for the hyperbolic space as follows for

concept embedding and relational embedding updates respectively,

where the corresponding concept norm space,𝑤𝐻
𝑐𝑖
, is also learned

through RSGD by updating embeddings of 𝒉𝐻𝑐𝑖 . Diagonal relational

matrix 𝑹 is also updated through RSGD, and we update scalar biases

𝑏𝐻
𝑐𝑖 ,𝑡+1

, 𝑏𝐻
𝑐 𝑗 ,𝑡+1

through stochastic gradient descent.

𝒉𝐻𝑐𝑖,𝑡+1 ← 𝒉𝐻𝑐𝑖,𝑡 − 𝜂𝑡 (
1 − ∥𝒉𝐻𝑐𝑖,𝑡 ∥

2

2
)2∇𝐿

𝑅O∪𝑅𝐼O

onto (𝒉𝐻𝑐𝑖,𝑡) (30)

𝒉𝐻𝑟O𝑘 ,𝑡+1 ← 𝒉𝐻𝑟O𝑘 ,𝑡 − 𝜂𝑡 (
1 − ∥𝒉𝐻𝑟O𝑘 ,𝑡 ∥

2

2
)2∇𝐿

𝑅O∪𝑅𝐼O

onto (𝒉𝐻𝑟O𝑘 ,𝑡) (31)

𝑹𝑡+1 ← 𝑹𝑡 − 𝜂𝑡 (
1 − ∥𝑹𝑡 ∥

2

2
)2∇𝐿

𝑅O∪𝑅𝐼O

onto (𝑹𝑡) (32)

𝑏𝐻𝑐𝑖 ,𝑡+1 ← 𝑏𝐻𝑐𝑖 ,𝑡 − 𝜂𝑡∇𝐿
𝑅O∪𝑅𝐼O

onto (𝑏𝐻𝑐𝑖 ,𝑡) (33)

𝑏𝐻𝑐 𝑗 ,𝑡+1 ← 𝑏𝐻𝑐 𝑗 ,𝑡 − 𝜂𝑡∇𝐿
𝑅O∪𝑅𝐼O

onto (𝑏𝐻𝑐 𝑗 ,𝑡) (34)

After the epoch’s update of concept embeddings, we once again

reset the value of the last dimension 𝑑 to 0 to satisfy the original

framework constraint of the Poincaré disk. We also enforce that

the angular dimensions of relational embeddings are in [0, 2𝜋).

Training Procedure for Bridge Nodes. Parameter optimiza-

tion is performed using RSGD for the bridge space as follows for

bridge entity embedding and relational embedding updates respec-

tively. Ontology optimization, ontoOpt(·), and instance optimiza-

tion, instOpt(·), are performed alternatively in batches for each

of the two embedding types according to the type of link that the

embedding is associated with, e.g., 𝑅𝐼 or 𝑅𝐼𝑂 . This enables the

representation of bridge nodes to be informed by both S𝑑 and H𝑑 .

ontoOpt(𝒛) = 𝒛 − 𝜂𝑡 (
1 − ∥𝒛∥2

2
)2∇𝐿

𝑅𝐼∪𝑅𝐼𝑂

bridge
(𝒛) (35)

instOpt(𝒛) = −𝜂𝑡 · 𝑟 (𝒛, 𝐿
𝑅𝐼∪𝑅𝐼𝑂

bridge
)∇𝐿

𝑅𝐼∪𝑅𝐼𝑂

bridge
(𝒛) (36)

𝒉𝐵𝑒𝑖 ,𝑡+1 ← proj𝐵
(

ontoOpt(𝒉𝐵𝑒𝑖 ,𝑡)
)

| |proj𝐵
(

instOpt(𝒉𝐵𝑒𝑖 ,𝑡)
)

(37)

𝒉𝑟𝐼O𝑘 ,𝑡+1 ← ontoOpt(𝒉𝑟𝐼O𝑘 ,𝑡) (38)

𝜽𝑟𝐼𝑘 ,𝑡+1 ← instOpt(𝜽𝑟𝐼𝑘 ,𝑡) (39)

After each epoch’s update of the instance optimization for 𝒉𝐵𝑒𝑖 , the

value of the last dimension 𝑑 is reset to 0 and rescaled with proj𝐵 (𝒛)

defined to be the same as proj𝑆 (𝒛) to ensure the intersection space

constraint of the bridge entity model. Angular dimensions are also

enforced to be in [0, 2𝜋).

Algorithm 1: Overall training procedure of DGS. ł*” indi-

cates that the three steps can be performed in any order.

Input : set of entities 𝑒 ; set of relations 𝑟

instance-view entity to entity triples with links, 𝜽𝑆
𝑟𝐼𝑘

ontology-view concept to concept triples with links, 𝜽𝐻
𝑟O𝑘

bridge entity to concept triples with links, ontology 𝒉𝑟𝐼O𝑘
bridge entity to entity triples with links, instance 𝜽𝑟𝐼𝑘

Output :Updated embeddings, 𝜽𝑆
𝑟𝐼𝑘 ,EP

, 𝜽𝐻
𝑟O𝑘,EP

, ontology 𝒉𝑟𝐼O𝑘,EP
,

and instance 𝜽𝑟𝐼𝑘 ,EP at final epoch EP

1 for epoch ∈ (1, 2, ..., EP) do

2 Step 1*:

3 Sample links from 𝜽
𝑆
𝑟𝐼𝑘

4 Perform spherical update of entities: Section 3.1.1

5 Step 2*:

6 Sample links from 𝜽
𝐻
𝑟O𝑘

7 Perform hyperbolic update of concepts: Section 3.1.2

8 Step 3*:

9 Sample links from ontology 𝒉𝑟𝐼O𝑘
and instance 𝜽𝑟𝐼𝑘

10 Alternatively perform spherical and hyperbolic updates of

bridge nodes: Section 3.1.3

11 end

12 return 𝜽
𝑆
𝑟𝐼𝑘 ,EP

, 𝜽𝐻
𝑟O𝑘,EP

, ontology 𝒉𝑟𝐼O𝑘,EP
, and instance 𝜽𝑟𝐼𝑘 ,EP

4 EXPERIMENTS

In this section, we evaluate DGS on two KG tasks: the triple com-

pletion task on each of the instance and ontology views of the KG

and the entity typing task to test quality of the learned bridge space

in communicating between each view of the KG. We also provide a

case study on entity typing for different variants of DGS by em-

bedding on other combinations of geometric spaces. Further, we

provide a visualization of embeddings before and after the learning

process projected onto the 3-D geometric space of DGS.

681

Dual-Geometric Space Embedding Model for Two-View Knowledge Graphs KDD ’22, August 14ś18, 2022, Washington, DC, USA

Table 1: Dataset statistics for entities 𝐸, concepts𝐶 and their relations.

𝐸 − 𝐸 denotes entity-entity links,𝐶 −𝐶 denotes concept-concept links, and

𝐸-𝐶 denotes entity-concept links.

Dataset Nodes Relations
#𝐸 #𝐶 #𝐸-𝐸: 𝑅𝐼 #𝐶-𝐶 : 𝑅𝑂 #𝐸-𝐶 : 𝑅𝐼𝑂

YAGO26K-906 26,078 906 390,738 8,962 9,962
DB111K-174 111,762 174 863,643 763 99,748

Table 2: Data splits for triple completion and entity typing. We provide

splits for all KG triples in 𝑅𝐼 , 𝑅𝑂 , 𝑅𝐼𝑂 for train(tr), validation(v), and test(ts).

YAGO26K-906
Task Tr(𝑅𝐼 /𝑅𝑂/𝑅𝐼𝑂) V(𝑅𝐼 /𝑅𝑂/𝑅𝐼𝑂) Ts(𝑅𝐼 /𝑅𝑂/𝑅𝐼𝑂)

Triple Completion 332,128/7,618/8,691 19,536/448/485 39,074/896/1,019
Entity Typing 211,346/4,876/5,379 23,549/543/598 156,311/3,592/3,985

DB111K-174
Task Tr(𝑅𝐼 /𝑅𝑂/𝑅𝐼𝑂) V(𝑅𝐼 /𝑅𝑂/𝑅𝐼𝑂) Ts(𝑅𝐼 /𝑅𝑂/𝑅𝐼𝑂)

Triple Completion 734,096/648/84,864 43,182/38/5,018 86,365/77/10,131
Entity Typing 466,538/462/53,863 51,828/46/5,985 345,504/337/39,900

4.1 Datasets

We utilize the datasets of YAGO26K-906 and DB111K-174 since

they have the two-view KG setting unlike other datasets for KG

embeddings that consider solely an instance-view [24] or ontology-

view [10]. YAGO26K-906 and DB111K-174 are prepared from [12],

which are extracted from YAGO [20] and DBpedia [16] respectively.

Refer to [12] for the detailed construction process. Table 1 pro-

vides dataset statistics and Table 2 provides data splits for both

datasets on both KG tasks. It can be observed that the instance-

view contains many more triples than the ontology-view and that

DB111K-174 contains a larger proportion of entity-concept triples

(10.35%) compared to YAGO26K-906 (2.43%).

4.2 Models

4.2.1 Baselines. We compare DGS to state-of-the-art neural net-

work embedding models, which include Euclidean, non-Euclidean,

and product space KGE models, as well as GNN-based models for

KG completion and entity typing.

• TransE [6], one of the first KGE models, which simply

captures the relationship between entities as a translation.

• DistMult [28], amatrix factorization KGEmodel, modeling

the relationship between entities via multiplication.

• ComplEx [25], a KGE model that extends DistMult into

the complex number field.

• RotatE [23], a recent KGE model, based on the rotation

assumption where a relation is a rotation from the subject

to the object in the complex vector space.

• JOIE [12] and M2GNN [27]: Refer to Section 2.3 where this

is discussed.

• HyperKG [15], a KGE model extending translational KGE

methods to the Poincaré-ball model of hyperbolic geometry.

• HAKE [30], which extends RotatE by having relations

combining modulus scaling with rotation.

• ConE [1], a KGE model embedding entities into hyperbolic

cones and relations as transformations between cones.

• RefH/RotH/AttH [8], which are hyperbolic KGE models

that combine hyperbolic spaces using hyperbolic attention,

where RefH and RotH are variants of AttH using only

reflections and rotations respectively.

• HGCN [9], a hyperbolic GCN model utilizing Riemannian

geometry and the hyperboloid model.

• HyperKA [22], which extends GCNs from the Euclidean

to hyperbolic space using the Poincaré ball model.

4.2.2 DGS Variants. We describe variant models of DGS below.

• DGS-RO-FC, which is DGS with the Riemannian operator

(RO) used for vector transformation instead of our proposed

closed spherical space vector transformation procedure in

Section 3.1.1, and with fixed center (FC) of spherical ball at

0, which is the same center as the Poincaré disk. For single

geometric spaces of S𝑑 and H𝑑 for non-bridge nodes and

concepts, the Riemannian operator is performed as a retrac-

tion operation to the tangent Euclidean spaces. However, we

extend the Riemannian operator when performing retraction

for the intersection ring of the bridge space, which is formed

by intersecting the spherical ball’s surface and Poincaré disk.

This is described in the Supplements.

• DGS-SO-FC, which is DGS with the proposed closed spher-

ical space operator (SO), and with FC of spherical ball at 0,

which is the same center as the Poincaré disk.

• DGS (ours), which is DGS with the proposed closed SO,

and with learnable center (LC) of spherical ball, which for

simplicity of constructing the intersection space for bridge

nodes, is set to the last dimension to only allow for vertical

shift. Note that we do not need to also make the center of

the Poincaré disk learnable as this shift is already introduced

with making one of the centers learnable. For learning the

spherical center,𝜔 , in the model, we follow the same training

procedure for Section 3.2 but for the non-bridge entities and

bridge entities, we perform the operations by temporarily

shifting to the center 0 (e.g., −𝜔 shift), then shift back to the

new center 𝜔 (e.g., +𝜔 shift) after the updates are performed.

4.2.3 DGS Ablation Models. We study different ablations models

of DGS, which are formed by utilizing different combinations of

manifold spaces for each type of link of DGS (𝑅𝐼 /𝑅𝑂) in the two-

view KG including the spherical space, S𝑑 , hyperbolic space using

the Poincaré model,H𝑑 , or Euclidean space, E𝑑 . These include:DGS

(S𝑑/S𝑑), MGS (H𝑑/H𝑑), DGS (E𝑑/H𝑑), and DGS (S𝑑/E𝑑). Since

𝑅𝐼𝑂 is always at the intersection of the two spaces 𝑅𝐼 and 𝑅𝑂 , we

do not need to specify the geometric space separately.

4.3 Evaluation

In this section, we detail our evaluation on the tasks of KG triple

completion and entity typing. The goal of triple completion is to

construct the missing relation facts in a KG structure. Specifically,

we test constructing a missing target node, from each of the ontol-

ogy or instance views: or queries (𝑒𝑖 , 𝑟𝑘 , ?𝑒 𝑗) and (𝑐𝑖 , 𝑟𝑘 , ?𝑐 𝑗), such

that each model evaluated is trained on the entire two-view KG.

The goal of entity typing is to predict the concepts that correspond

to the entities, or queries (𝑒𝑖 , 𝑟𝑘 , ?𝑐 𝑗).

Using plausibility scores to rank each test candidate set, for each

task, we report results for the evaluation metrics of mean reciprocal

rank (𝑀𝑅𝑅) and Hits@, e.g., 𝐻𝑖𝑡𝑠@1, 𝐻𝑖𝑡𝑠@3, 𝐻𝑖𝑡𝑠@10. Table 2

reports our data splits for each task. For triple completion, this is

chosen to be embedding distance of the source node to the missing

target node modeled under the relation, and for entity typing, this

is chosen to be the embedding distance from the entity’s representa-

tion in the concept space to the concept. [12] provides more details

682

KDD ’22, August 14ś18, 2022, Washington, DC, USA Roshni G. Iyer et al.

Table 3: Results of KG triple completion. 𝑴 denotes the 𝑑-dimensional manifold space, 𝑅𝐼 are entity links, 𝑅𝑂 are concept links. For each group of models,

the best results are bold-faced. The overall best results on each dataset are underscored.

Datasets YAGO26K-906 DB111K-174
Type 𝑴 Graphs 𝑅𝐼 KG Completion 𝑅𝑂 KG Completion 𝑅𝐼 KG Completion 𝑅𝑂 KG Completion

Metrics MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10 MRR H@1 H@10

E
𝑑 TransE 0.187 13.73 35.05 0.189 14.72 24.36 0.318 22.70 48.12 0.539 47.90 61.84

E
𝑑 DistMult 0.288 24.06 31.24 0.156 14.32 16.54 0.280 27.24 29.70 0.501 45.52 64.73

non-GNN based C
𝑑 ComplEx 0.291 24.85 37.28 0.180 14.83 22.97 0.321 27.39 46.63 0.549 47.80 62.23

KGE models C
𝑑 RotatE 0.302 25.31 42.17 0.228 16.35 27.28 0.356 29.31 54.60 0.557 49.16 68.19

E
𝑑 JOIE 0.316 24.62 51.85 0.289 18.66 39.13 0.479 35.21 72.38 0.602 52.48 79.71

H
𝑑 HyperKG 0.215 18.35 36.02 0.174 14.50 23.26 0.302 23.31 46.72 0.542 47.59 62.11

H
𝑑 HAKE 0.293 23.04 40.19 0.301 19.27 41.09 0.391 31.10 60.46 0.638 55.69 81.07

H
𝑑 ConE 0.299 23.56 41.23 0.313 20.05 41.80 0.422 33.69 68.12 0.639 55.89 81.45

H
𝑑 RefH 0.282 23.19 40.52 0.298 19.70 41.26 0.407 30.06 66.93 0.622 55.35 81.09

H
𝑑 RotH 0.295 23.50 41.03 0.308 19.97 41.78 0.418 30.18 67.05 0.639 55.82 81.44

GNN-based models H
𝑑 AttH 0.298 23.43 41.20 0.310 19.99 41.53 0.419 30.10 66.58 0.629 55.37 81.39

H
𝑑 HGCN 0.307 23.04 40.25 0.302 19.38 40.49 0.396 31.54 61.78 0.638 55.81 81.60

H
𝑑 HyperKA 0.320 26.71 52.09 0.305 18.83 40.28 0.486 35.79 72.33 0.613 53.36 80.59

P
𝑑 M2GNN 0.347 29.63 54.28 0.341 23.70 42.19 0.506 36.52 73.11 0.644 56.82 83.01

ś DGS (S𝑑/S𝑑) 0.338 27.15 53.20 0.318 20.36 41.02 0.491 34.58 71.40 0.606 53.29 80.17

Ablation variants: ś DGS (H𝑑/H𝑑) 0.314 25.11 52.02 0.358 24.61 43.28 0.502 35.79 73.61 0.663 57.59 84.16

DGS (𝑅𝐼 /𝑅𝑂) ś DGS (E𝑑/H𝑑) 0.327 25.32 52.89 0.343 23.95 41.62 0.498 35.11 72.37 0.640 56.17 82.68

ś DGS (S𝑑/E𝑑) 0.322 24.91 52.36 0.297 19.43 40.61 0.484 33.29 73.54 0.619 53.72 80.51
ś DGS-RO-FC 0.352 29.79 55.21 0.364 25.04 43.27 0.518 37.65 73.97 0.681 59.23 84.16

DGS variants ś DGS-SO-FC 0.364 30.15 55.93 0.369 25.81 44.18 0.536 38.29 74.28 0.687 59.26 84.82
ś DGS (ours) 0.366 30.15 56.06 0.372 25.88 44.38 0.536 38.31 74.85 0.690 59.88 84.82

on the evaluation procedure. For evaluation consistency, for both

tasks, model training hyperparameters are chosen for dimensional-

ity 𝑑 ∈ {50, 100, 200, 300} for all triples, learning rate 𝜂 ∈ {5e-4, 1e-3,

1e-2, 1e-1} and margins 𝛾 ∈ {0.5, 1}. Further, different batch sizes

and epochs are used according to the type and size of the graphs.

KGTripleCompletionResults. Results are reported in Table 3.

DGS outperforms all of the baseline models on both datasets. DGS

achieves an average performance gain over all baselines by 32.36%

on𝑀𝑅𝑅, 27.59% on 𝐻𝑖𝑡@1, and 29.17% on 𝐻𝑖𝑡@10 for the instance-

view completion across both YAGO26K-906 and DB111K-174. DGS

achieves an average performance gain over all baselines by 23.43%

on𝑀𝑅𝑅, 28.41% on𝐻𝑖𝑡@1, and 18.11% on𝐻𝑖𝑡@10 for the ontology-

view completion across both YAGO26K-906 and DB111K-174.

It can be observed that in both the instance and ontology views

on both datasets, the hyperbolic-based KGE models outperform

their Euclidean and complex space counterparts. Further, hyperbolic

KGE models perform better on ontology view than instance view

likely due to there being prevalence of hierarchy in the ontology. It is

also seen that usingmultiple geometric spaces is more effective than

using a single geometric space. For GNN-based models,M2GNN,

which uses a product space, P𝑑 combining Euclidean, spherical, and

hyperbolic spaces, outperforms the models using only one of the

spaces. Compared toM2GNN, the most competitive baseline model

in most cases, DGS shows significant improvement of 3.25% on

𝑀𝑅𝑅, 5.15% on 𝐻𝑖𝑡@1, and 2.73% on 𝐻𝑖𝑡@10 on average for both

YAGO26K-906 and DB111K-174. This is likely because hierarchy in

the KG is better modeled through the hyperbolic space than with

influence from the spherical or Euclidean space, and cyclic links

are better modeled through the space than with influence from the

hyperbolic or Euclidean space. For bridge entities involved in both

hierarchical and cyclic links, we see it is beneficial to model them

in an intersection space to better model both of these properties.

Entity Typing Results. Results are reported in Table 4. Con-

sistent with the KG completion results, it can be seen that DGS

Table 4: Results of entity typing. For each group of models, the best results

are bold-faced. The overall best results on each dataset are underscored.

Datasets YAGO26K-906 DB111K-174
Metrics MRR Acc. Hit@3 MRR Acc. Hit@3

TransE 0.144 7.32 35.26 0.503 43.67 60.78
DistMult 0.411 36.07 55.32 0.551 49.83 68.01
ComplEx 0.519 43.08 59.28 0.583 55.07 70.17
RotatE 0.673 58.24 73.95 0.721 61.48 75.67
JOIE 0.899 85.72 96.02 0.859 75.58 96.02

HyperKG 0.627 55.39 65.64 0.736 61.20 74.29
HAKE 0.905 87.42 96.37 0.866 76.04 96.22
ConE 0.912 87.51 96.39 0.869 76.85 96.38

RefH 0.907 87.49 96.37 0.867 76.26 96.31
RotH 0.909 87.49 96.39 0.868 76.55 96.36
AttH 0.910 87.50 96.38 0.868 76.50 96.33
HGCN 0.905 87.44 96.37 0.867 76.11 96.27

HyperKA 0.918 87.76 96.45 0.871 76.65 96.50
M2GNN 0.922 88.16 97.01 0.880 77.58 96.94

DGS (S𝑑/S𝑑) 0.919 87.94 96.81 0.875 77.03 96.78

DGS (H𝑑/H𝑑) 0.924 88.12 97.01 0.887 77.53 96.95

DGS (E𝑑/H𝑑) 0.922 88.07 96.91 0.883 77.37 96.58

DGS (S𝑑/E𝑑) 0.917 87.68 96.41 0.866 76.33 96.48
DGS-RO-FC 0.930 88.47 97.32 0.891 77.81 97.04
DGS-SO-FC 0.938 89.02 98.11 0.895 77.92 97.40
DGS (ours) 0.939 89.07 98.18 0.895 77.94 97.47

variants outperform the baseline models on both datasets for en-

tity typing. DGS achieves an average performance gain over all

baselines of 24.49% on𝑀𝑅𝑅, 26.39% on 𝐴𝑐𝑐 , and 18.78% on 𝐻𝑖𝑡@3

for YAGO26K-906. DGS achieves an average performance gain

over all baselines of 14.86% on𝑀𝑅𝑅, 13.74% on 𝐴𝑐𝑐 , and 12.15% on

𝐻𝑖𝑡@3 for DB111K-174. Compared to the most competitive GNN-

based model, M2GNN, DGS has nearly a 2% gain in𝑀𝑅𝑅 for each

YAGO26K-906 and DB111K-174.

Ablation Studies. Tables 3 and 4 report our results for ablation

studies in models belonging to the category Ablation variants. It can

be seen that using the spherical space for 𝑅𝐼 links learns a better

representation than its hyperbolic or Euclidean space counterparts.

This indicates the prevalence of cyclic relations between entities.

Utilizing the hyperbolic space for 𝑅𝑂 and 𝑅𝐼𝑂 links learns a better

683

	Abstract
	1 Introduction
	2 Preliminary and Related Work
	2.1 Problem Formulation
	2.2 Non-Euclidean Geometric Spaces
	2.3 Two-View KG Models

	3 DGS Architecture
	3.1 Modeling
	3.2 Training

	4 Experiments
	4.1 Datasets
	4.2 Models
	4.3 Evaluation

	5 Conclusions
	6 Acknowledgements
	References
	A General Polar-Cartesian Conversion Framework
	A.1 MCP Transformation Procedure.
	A.2 MPC Transformation Procedure.

	B Batch Vector Transformation Procedure
	C Riemannian retraction operation for the bridge space of DGS

