1	A new duplex qPCR assay for the quantification of honey bee (Apis
2	mellifera) parasites Nosema ceranae and N. apis tested with low dose
3	experimental exposure
4	
5	
6	
7	
8	
9	Emma L. Bradford ^{a*} , Casey L. Gregory ^a , Arturo Roman Longoria ^a , Korin Rex Jones ^a , Emma
10	K. Bueren ^a , David C. Haak ^b , Richard Fell ^c , Lisa K. Belden ^a
11	
12	
13	
14	
15	^a Department of Biological Sciences, Virginia Tech, Blacksburg, VA, USA
16	^b School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA
17	^c Department of Entomology, Virginia Tech, Blacksburg, VA, USA
18	
19	*Corresponding author: Emma L. Bradford
20	Email: ebradford@vt.edu
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	

32 Abstract

- 33 Nosema ceranae and N. apis are microsporidian parasites that cause disease in the European
- 34 honey bee. *Nosema* infection is identified as a potential cause of colony loss by beekeepers.
- 35 Given the importance of *Nosema* infection in colony mortality and productivity, developing
- 36 new and improved ways of detecting and quantifying infection loads is vital. We designed
- and tested a new duplex qPCR assay for the accurate quantification of both *N. ceranae* and *N.*
- 38 apis utilising TaqMan chemistry and the new gBlock® method for the standards. The assay
- 39 showed good linearity with natural *Nosema* infection, and strong correlation with
- 40 microscopic spore counts. This new assay has high sensitivity and repeatability and was used
- 41 to investigate *Nosema* infection in hive surveys and following low dose experimental
- 42 exposure. In local hives, we found relativity low levels of *N. ceranae* and very little *N. apis*
- across three sites in Blacksburg, VA. A survey of two bee yards in West Virginia showed
- 44 much higher levels of *N. ceranae*, but consistent low levels of *N. apis*. For the experiment,
- 45 caged bees from two different hives were fed 100 *Nosema* spores (or a control solution).
- Exposed bees were collected after 2 or 5 days, and infection was quantified using the new
- assay. Given the low dose, infection levels were not 100%, with some exposed bees
- 48 remaining *N. ceranae* free, while others only developed low level infection. This low dose
- 49 exposure and subsequent infection status (low level infection or infection free) could provide
- 50 new understanding of *Nosema* infection establishment.

51 Keywords

52 Nosema, Nosema ceranae, qPCR, Apis mellifera, infection

53

54 Introduction

- The European honey bee (*Apis mellifera*) is a globally important insect pollinator,
- 56 contributing over €14.6 billion to the European Union and \$15 billion to the US economy
- 57 (Calderone, 2012, Leonhardt *et al.*, 2013). While honey bees are vital economic pollinators,
- 58 globally, honey bees face a range of threats. These threats include pesticide exposure (Di
- 59 Prisco et al., 2013, van der Zee et al., 2015), land use changes, including loss of forage
- 60 (Naug, 2009), and interactions with parasites and pathogens (Rosenkranz et al., 2010, Evans
- and Schwarz, 2011, Gisder and Genersch, 2017). Multiple pathogens infect honey bees,
- 62 including viruses (Gisder and Genersch, 2017), bacteria (Forsgren, 2010, Poppinga and
- 63 Genersch, 2015), and microsporidia (Milbrath et al., 2015, Goblirsch, 2018, Martín-
- 64 Hernández et al., 2018).
- 65 Microsporidia are obligate intracellular fungal parasites that cause disease in many insect
- species, including honey bees (Martín-Hernández et al., 2017). Nosema apis and N. ceranae
- are the two main microsporidian species that infect honey bees (Milbrath et al., 2015,
- 68 Goblirsch, 2018, Martín-Hernández et al., 2018). A third species, Nosema neumanni was
- 69 identified in Ugandan honeybees in 2017 (Chemurot et al., 2017). Nosema ceranae
- successfully jumped host from the Asian honey bee (A. cerana) into the European honey bee
- 71 (Klee et al., 2007), and now co-infections of N. ceranae and N. apis can occur (Klee et al.,
- 72 2007, Traver and Fell, 2011, Copley et al., 2012, Milbrath et al., 2015). Nosema infection
- 73 impacts honey bees on the cellular level (including gene expression changes), along with

- 74 more obvious physical symptoms (Martín-Hernández et al., 2017). While infection
- 75 mechanisms for both *N. apis* and *N. ceranae* are similar, some symptoms of infection are
- markedly different. *Nosema apis* infection is most commonly associated with crawling bees,
- faecal spots on the hive, and decreased honey yield, while *N. ceranae* is linked to increased
- weakness and colony mortality, along with lower honey yields (Martín-Hernández et al.,
- 79 2018). Part of the weakness caused by *N. ceranae* is reduced flying ability and increased
- 80 energetic stress (Mayack and Naug, 2009, Mayack and Naug, 2010). *Nosema* infection can
- 81 negatively affect the ability of honey bees to successfully return to hives following forage
- 82 flights (Kralj and Fuchs, 2010), and is frequently given as a cause of death in overwinter
- colony loss in surveys of beekeepers (vanEngelsdorp et al., 2012, Lee et al., 2015, Kulhanek
- 84 et al., 2017). However, Nosema infections are frequently detected in hives that are also
- 85 infected with other honey bee pathogens, with interactions between pathogens detected (Ryba
- 86 et al., 2012, Traynor et al., 2016, Gajda et al., 2021), indicating there are likely complex
- 87 interactions of factors affecting overwintering loss.
- 88 Current methods of *Nosema* identification and quantification include both microscopic and
- 89 molecular techniques. Microscopic analysis is often used in *Nosema* infection studies, as it
- allows the number of spores per mL of extracted bee material to be calculated using a
- 91 haemocytometer (Human et al., 2013, Roberts and Hughes, 2015, Kurze et al., 2018).
- 92 Molecular methods, including PCR and qPCR, are utilised to obtain current infection levels
- 93 in surveys and infection studies (Martín-Hernández et al., 2007, Bourgeois et al., 2010,
- Forsgren and Fries, 2010, Traver and Fell, 2011, Copley et al., 2012). A number of qPCR
- 95 assays exist for *N. ceranae* and *N. apis* using both TaqMan (Bourgeois *et al.*, 2010, Traver
- and Fell, 2011, Copley et al., 2012) and SYBRGreen chemistry (Forsgren and Fries, 2010).
- 97 Several duplex assays have also been developed (Bourgeois et al., 2010, Traver and Fell,
- 98 2011); however, for this study, we chose to develop a new assay using a gBlock® gene
- 99 fragment standard. The gBlock® standard allows a standardised, custom-designed, synthetic
- nucleotide fragment to be used for the absolute quantification of *Nosema*, which is highly
- reproducible and time efficient when compared to usual cloning procedures (Conte et al.,
- 102 2018).
- Our goals with this study were two-fold. First, we developed and optimized a probe-based
- 104 qPCR assay using a gBlock® standard, and second, we used this assay to examine honey bee
- infection levels in a hive survey and following low dose (100 spores) exposure to *Nosema*
- 106 ceranae in a lab study. Previous Nosema studies have used much higher spore doses (>10⁴
- spores), resulting in high infection levels (Antúnez et al., 2009, Forsgren and Fries, 2010,
- Roberts and Hughes, 2015, Li et al., 2018). Huang et al. (2015) found that 10 days after
- exposure to >3000 *N. ceranae* spores 50% of inoculated worker bees were infected. We are
- 110 ultimately interested in studying physiological factors that determine whether infections will
- become established following exposure, and therefore we chose a low dose and short time
- frame, which could result in more variable infection outcomes across individuals. Thus, to
- begin to explore responses to low doses and to test our new qPCR assay, we designed a study
- exposing honey bees from two hives to 100 spores of *N. ceranae* and quantified infection at
- days 2 and 5 after exposure.

- Nosema qPCR duplex assay, validation, and sample processing
- Levels of *N. ceranae* and *N. apis* within pooled samples were calculated using a new qPCR
- TaqMan duplex assay adapted from Traver and Fell (2011). rRNA gene sequences for *N*.
- 121 ceranae and N. apis, including the internal transcribed spacer and the small and large rRNA
- subunits, were downloaded from the GenBank database (Accession No. DQ486027.1 and
- 123 U97150.1, respectfully) and used to design the qPCR assay and gBlock® standards. The
- duplex assay was designed using the PrimerQuest® Tool from IDT (Integrated DNA)
- Technologies, Coralville, IA, USA). All primer and probe sequences were assessed for cross-
- dimers using the Multiple Primer Analyzer tool (ThermoFisherScientific, Waltham, MA,
- USA). *In silico* analysis was performed on all proposed primer and probe sequences to ensure
- 128 chosen sequences did not cross-dimer, and sequences were checked to ensure only *Nosema*
- was detected using Blastn (NCBI).
- For the *N. ceranae* assay, primers created a 133 bp amplicon, using *N. ceranae* F primer:
- 131 GGTTGGGAGAAGCCGTTAC, and *N. ceranae* R primer:
- 132 CGCTGACTCAATCGTCAGTTTA. A N. ceranae probe
- 133 (CTGATCCAACGCAAATGCTACGGC) was labelled with a FAM reporter dye and was
- ZEN/Iowa Black FQ double quenched. The *N. apis* assay primers created a 118 bp amplicon,
- using the *N. apis* F primer: GTTATCCTTCGGGAAATCTCTAAAC, and *N. apis* R primer:
- 136 AAATCGCCTGGTTCAATACAC. A N. apis probe
- 137 (AGTGAGGCTCTATCACTCCGCTGA) was labelled with a Cy5 dye and was Iowa Black
- RQ quenched. Both assays' were produced by IDT, as PrimerTime® XL qPCR Assay's, with
- HPLC purification of the probe, and containing 12.5 nmoles of probe and 25 nmoles of each
- primer (Integrated DNA Technologies, Coralville Iowa, USA). A gBlock® gene fragment
- standard was designed for the *N. ceranae/N. apis* duplex assay comprised of both assay
- amplicon sequences (Integrated DNA Technologies, Coralville Iowa, USA). A small section
- of 22 bp is followed by the *N. apis* amplicon, including an additional EcoR1 restriction
- enzyme site (AA insert), followed by a 55 bp section, then the *N. ceranae* amplicon, again
- with an EcoR1 restriction enzyme site added (AT addition), followed by a final 11 bp
- sequence (Figure 1).
- 147 qPCRs were performed using a CFX96 Real-Time System (Bio-Rad, Hercules, CA, USA)
- under the following conditions: 50 °C for 2 minutes, 95 °C for 10 minutes, followed by 40
- cycles of 95 °C for 15 seconds, 60 °C for 1 minute. All qPCRs were performed in 20 µL
- 150 reactions (10 µL PrimeTime® Gene Expression Master Mix (Integrated DNA Technologies,
- 151 Coralville, IA, USA), 1 µL of 20X N. ceranae custom PrimeTime XL qPCR Assay, 1 µL of
- 152 20X N. apis custom PrimeTime XL qPCR Assay, 3 μL molecular grade H₂O, and 5 μL
- template DNA/gBlock® standard. The gBlock® was serial diluted to give a linear curve from
- 154 100,000,000 to 100 genome equivalents per 5 μL. Assay linearity was assessed with 11
- samples per dilution (except the 100 dilution, for which we had 10 samples). Linearity was
- also tested using honey bee DNA from hives that had natural *Nosema* infection, created by
- pooling 16 hive samples from West Virginia. Each West Virginia hive sample was created by
- pooling 5 whole bee guts and extracting the DNA (as described below), from samples
- 159 collected in Fall 2018, from across five bee yards in West Virginia maintained by the
- Appalachian Beekeeping Collective (Hinton, WV, USA). This linearity pooled sample was
- serial diluted (1 in 10 dilutions) to give five dilutions, with each dilution run in triplicate. The
- limit of detection (LOD) for each assay was calculated via the LOD_{95%} method, testing 75,

- 50, 40, 30, 25, 10, and 5 gBlock[®] genome equivalents per reaction based on the lowest
- quantity that can be detected in 95% of wells (Bustin et al., 2009). LOD was tested on 20
- samples of each dilution.
- The correlation between microscopic *Nosema* spore counts and the qPCR values was
- assessed using West Virginia bee samples. A pool of five bee guts was created from a yard in
- West Virginia sampled in Fall 2018, as above. Individual bees were briefly thawed and
- surfaced- sterilized in 5% bleach followed by three sterile water rinses (Engel et al., 2013),
- and whole guts were dissected. The 5 guts were then placed in a 1.5 mL microcentrifuge tube
- 171 containing 500 µL MilliQ water. Guts were homogenized using a sterile plastic pestle and
- MilliQ water was added to a final volume of 1 mL. The initial solution was used to create
- 173 five serial dilutions (1 in 10 dilutions) with initial volumes of 1 mL. Spore amounts in the
- initial solution and subsequent dilutions were calculated using an improved Neubauer 0.1 mm
- haemocytometer (ThermoFisherScientific, Waltham, MA, USA). Spore counts were
- calculated for each solution by counting all 25 squares in the central large square from three
- different views. Following microscopic analysis, all remaining liquid was used in DNA
- extractions, with the volume per dilution divided between two tubes for initial extraction
- steps. For DNA extraction, each tube had 180 µL DNA lysis buffer (containing 20 mM Tris-
- HCL pH 8, 2 mM EDTA pH 8, and 1.2% Triton-x-100) with lysozyme (20 mg lysozyme per
- 181 1 mL lysis buffer) added and was incubated at 37 °C for 1 hour (adapted from Koch and
- Schmid-Hempel (2011)). Following incubation steps, the two tubes of total volume of each
- spore dilution were combined together into one DNeasy spin column per spore dilution and
- DNA extraction was carried out using an adapted Qiagen DNeasy Kit (Qiagen, Germantown,
- MD, UDA) protocol, with final DNA eluted in 100 µL molecular grade water. Each sample
- was run in triplicate using the new duplex *Nosema* assay. *Nosema ceranae* and *N. apis*
- average genome equivalents per sample well were calculated using the linear regression
- equation for the gBlock[®] standard curve (Log₁₀ genome equivalents vs Cq values).
- 189 *Nosema* survey
- 190 Twenty-nine honey bee hives in the Blacksburg area (Virginia, USA) were sampled for both
- 191 N. ceranae and N. apis levels. Seventeen hives were from the Hale Community Garden,
- seven hives from a Virginia Tech apiary, and five hives from a private garden. They were
- sampled over a two week period in late June/early July 2019. Two bee yards in West Virginia
- were also surveyed in April 2019; these yards are maintained by the Appalachian Beekeeping
- 195 Collective (Hinton, WV, USA), with eight hives from each yard sampled. From each hive,
- worker bees were collected from internal frames and were stored at -70 °C until DNA
- extraction. Five dissected whole guts were pooled per hive and DNA was extracted as
- described above, with guts homogenized using a sterile plastic pestle in the initial DNA lysis
- buffer solution, and with final DNA eluted in 200 uL molecular grade water. Each sample
- was run in triplicate using the new duplex *Nosema* assay. *Nosema ceranae* and *N. apis*
- average genome equivalents per sample well were calculated using the linear regression
- 202 equation for the gBlock® standard curve (Log₁₀ genome equivalents vs Cq values).
- Honey bee collection
- Honey bees used in the experiment were collected from two hives in August, 2019 from the
- Hale Community Garden showing low levels of *Nosema* infection following the

206	aforementioned	hive	infection	survey.	To allow	the use of	f known-aged l	bees, emerging	bees

- were marked by taking a single capped brood frame from each of the two hives and
- 208 incubating them overnight in the laboratory at 30 °C inside emergence cages. The next day,
- 209 newly emerged bees were collected and sedated following brief CO₂ exposure. Sedated bees
- 210 were colour marked on the thorax using Uni Posca paint pens (bullet tip medium line), with
- 211 each hive marked with a different colour. Marked bees and brood frames were returned to
- their respective hives for 7 days to facilitate the natural establishment of microbiomes
- 213 (Powell et al., 2014), as these bees were also used in a microbiome-Nosema study. After 7
- 214 days, marked bees were collected from the hives along with un-marked nestmates, and
- 215 moved into plastic cages (9x9x8 cm). They were given access to ad lib 50% w/v sucrose and
- 216 kept in a 30 °C incubator in the laboratory. For each hive, three marked bees were collected
- 217 and immediately frozen at -70 °C to provide information on pre-exposure background levels
- of *Nosema* infection. Bees were kept in cages for 2 days prior to experimental infection, with
- a density of around 50 bees per cage (two cages per hive of marked bees and two cages per
- hive unmarked bees).
- 221 Exposure experimental setup
- 222 Nosema spore collection
- 223 Two hives from the surveyed West Virginia yards with high *N. ceranae* loads, and no *N*.
- 224 apis, were selected as the source of spores for the experiment (Figure 4B). Guts from five
- 225 foragers were dissected and put in 500 μL distilled H₂O. Dissected guts were homogenized,
- and filtered through a Millipore Nylon Net Filter (20 µm pore size) (Millipore Sigma, St
- Louis, MO, USA) using a method adapted from Fries et al. (2013). The filtered solution was
- 228 then centrifuged at 5000 g for 5 minutes, the supernatant was removed and the pellet was
- resuspended in 1 mL distilled H₂O. This process was repeated twice (3 times total), with the
- pellet resuspended in 1 mL distilled H₂O after the final spin (Fries et al., 2013). Spore
- concentration was calculated using an improved Neubauer 0.1 mm haemocytometer
- 232 (ThermoFisherScientific, Waltham, MA, USA) to give a spore concentration of 16,820
- 233 spores per µL (Human et al., 2013).
- 234 Experimental exposure procedure
- 235 Marked bees were fed either 10 µL 50% w/v sucrose (control) or 10 µL Nosema dose (100
- spores in 50% w/v sucrose). This low spore dose of 100 spores was chosen as these bees
- 237 were also used in a microbiome-*Nosema* study. Prior to experimental exposures, bees were
- starved for 5 hours to ensure the experimental bolus would be consumed. To allow for
- 239 individual feeding, marked bees were placed at -20 °C until fully immobilised, then placed
- 240 head first into 0.5 mL micro-centrifuge tubes with the ends cut off (Roberts and Hughes,
- 241 2015). Once bees had fully reawakened, they were fed either the sucrose (control) or *Nosema*
- dose. Only bees that consumed the entire bolus were included in the study. Following dosing,
- bees were kept in tubes for 15-30 minutes to ensure the liquid was fully ingested. Bees were
- separated into groups of 10 marked *Nosema* or sucrose-exposed bees and 10 un-marked non-
- exposed nest mates and put into clean cages with ad lib access to 50% w/v sucrose. For each
- 246 hive, two control cages (20 sucrose-exposed bees in total), and three *Nosema* cages (30
- Nosema-exposed bees in total) were established for the two day exposure experiment, and for
- one of the hives, an additional one control cage (10 sucrose-exposed bees total) and three

- Nosema cages (30 Nosema-exposed bees total) were established for the five day exposure
- experiment. We chose these times points because we expected that the 2 day samples would
- provide information on *Nosema* survival following the initial exposure and the five day
- samples would provide more of an indication of successful parasite establishment and
- exposure outcome. Survival was checked twice daily, with all dead bees removed, and
- sucrose feeders re-filled.

255 Sample collection, processing and qPCR analysis

- On sampling days (2 or 5 days post exposure), selected marked bees were snap frozen in
- 257 liquid Nitrogen and stored in 1.5 mL micro-centrifuge tubes filled with 1 mL of RNAlater
- 258 (Millipore Sigma, St. Louis, MO, USA). Tubes containing snap frozen bees in RNAlater
- 259 were then stored at -70 °C until sample processing. The bees collected at day 0 from each
- 260 hive (to give pre-exposure background), and the snap frozen samples from days 2 and 5, were
- processed as follows. Bees were briefly thawed, and individually surface-sterilized, using 5%
- bleach followed by three sterile water rinses (Engel et al., 2013). The whole gut was
- 263 dissected using sterile technique, the mid-gut section was isolated from the whole gut, then
- individual mid-guts were placed into 1.5 mL micro-centrifuge tubes containing 300 µL 1X
- 265 DNA/RNA Shield and homogenized using a sterile plastic pestle (Zymo, Irvine, CA, USA).
- 266 Mid-gut DNA/RNA extraction was carried out according to the "solid tissue and blood cells"
- protocol with in-column DNase 1 treatment using the Zymo Quick-DNA/RNA Microprep
- 268 plus kit (Zymo, Irvine, CA, USA). DNA was eluted in 50 μL molecular grade H₂O, and the
- 269 RNA was eluted in 25 μL molecular grade H₂O. At the two day collection point, 38 Nosema
- exposed bees were collected (Hive A = 20, Hive B = 18), and 18 sucrose control bees (Hive
- A = 10, Hive B = 8), after five days 20 Nosema exposed bees and 10 sucrose control bees
- 272 from Hive A were collected. For our experimental samples, mid-gut samples and gBlock®
- standards were run in triplicate. *Nosema ceranae* and *N. apis* loads per sample were
- 274 calculated using the linear regression equation for the gBlock® standard curve (Log₁₀ ge vs
- 275 Cq values). *N. ceranae* load is given as the average amount of detected genome equivalents
- per sample well, either per spore solution, per group (survey data), or per individual
- 277 (exposure experiment).

278 Statistical analysis

- 279 Nosema ceranae and N. apis assay linearity across standard curve values and DNA serial
- dilution was assessed using regression analysis on Cq values and log₁₀ transformed known
- values for both the duplex reactions, and the actual N, ceranae \log_{10} values given for the
- DNA serial dilution analysis. Mean bias and linearity uncertainty (U_{LINi}) of the assays were
- determined for each primer/probe pair according to the methods of Blanchard et al. (2012).
- The relationship between the qPCR results and microscopic counts of *Nosema* were analysed
- using log₁₀ transformed data, using Pearson's product-moment correlation. All *Nosema* levels
- given are mean \pm standard error genome equivalents per sample well. All experimental
- analysis was done on N. ceranae using the log_{10} transformed load data. While many
- calculated *Nosema* quantifications are below the assay's 95% limit of detection (below 30 N.
- 289 apis and N. ceranae genome equivalents), due to low levels of infection, we used these
- values in the analysis, as they still provide details about the different infection levels, and
- take into account that infection did occur, as even values below 5 genome equivalents had
- 292 LODs above 50%. As the three day 0 samples per hive were collected only to provide the

- 293 potential range of background infection levels in the hives, they were not included in the
- statistical analysis; however, the infection intensity is presented in Figure 3B. From initial
- Nosema analysis of the Nosema source hives, showing only N. ceranae infection, we have
- 296 focused solely on *N. ceranae* infection in the experimental study. To assess the effect of
- treatment (Nosema or control), hive (A or B), and their interaction on N. ceranae levels, a
- 298 mixed linear model was used with Day 2 samples. To investigate the effect of treatment
- 299 (Nosema or control), day (2 or 5 post exposure) and their interaction on N. ceranae levels, a
- mixed linear model was used on the samples from hive A (Day 2 and Day 5). All statistical
- analysis on experimental samples was carried out in R version 4.0.0 (2020-04-24) using the
- package lme4.

304

305

Results

- Standard curves and assay linearity
- Each assay within the duplex had good efficiency (98.1% (*N. ceranae*) 97.1% (*N. apis*))
- producing dynamic linear curves across a large range (100,000,000 to 100 genome
- 308 equivalents per reaction) for both *N. ceranae* ($F_{(df=1,74)}=75960$, p=<0.0001, $R^2=0.999$) and
- 309 N. apis ($F_{(df=1.74)}$ = 100900, p=<0.0001, R^2 = 0.9993) (Figure 2A and C). Mean bias and
- linearity of uncertainty (U_{LINi}) were determined to test the performance of the linear
- regression of each primer assay, with the absolute mean biases values at each dilution tested
- $\leq 0.25 \log_{10}$, the critical bias value described by Blanchard *et al.* (2012) (Figure 2B and D).
- As described in Bustin et al. (2009), N. ceranae and N. apis had LOD_{95%} of 30 average
- genome equivalents. N. ceranae could also still detect 10 genome equivalents with an
- LOD_{95%}, followed by a drop to an LOD_{55%} at 5 genome equivalents, while *N. apis* dropped to
- LOD_{90%} at 10 genome equivalents, and an LOD_{75%} at 5 genome equivalents. The serial
- 317 diluted honey bee DNA did not contain any N. apis, however N. ceranae was present and
- 318 diluted samples produced a linear curve ($F_{(df=1.16)}$ = 13590, p=<0.0001, R^2 = 0.9988) (Figure
- 319 2E). To investigate the relationship between microscopic *Nosema* counts and qPCR data, a
- dilution curve was created using pooled guts. An initial pool was serial diluted (1 in 10
- dilution) five times, with microscopic spore counts done on every sample. Positive spore
- 322 counts were found in the initial sample and the first four dilutions, with no spore found in the
- final dilution. All dilutions were tested using the duplex qPCR, with *N. ceranae* detected in
- all dilutions, and no *N. apis* found. From the five samples that had both microscopic and
- qPCR counts, a significant correlation was found (Pearson, $T_{(df=3)}=11.093$, p=0.0016,
- R=0.988) between microscopic count and qPCR data (Figure 2F). With increasing qPCR
- 327 values corresponding with higher microscopic spore counts. For the final dilution, no spores
- 328 could be counted, however the qPCR showed 530 ± 106 N. ceranae genome equivalents.
- 329 *Nosema* survey data
- 330 The *Nosema* survey highlighted relativity low *N. ceranae* levels at all three locations in
- 331 Blacksburg (Figure 3A). *Nosema apis* was also surveyed, but was only detected in two hives
- at very low levels (below 4 genome equivalents). The Hale community garden hives had the
- highest average loads with 412.95 ± 199.11 genome equivalents, followed by the private
- garden hives which had on average 260.07 ± 148.33 genome equivalents, and the Virginia
- Tech hives which had 163.12 ± 31.38 genome equivalents (Figure 3A). While the Hale hives

- had higher average *N. ceranae* loads, there was a greater number of hives with low infection
- levels. Given the results of this survey, two hives from the Hale community garden were
- chosen as a source of bees for the *Nosema* lab exposure experiment. The hives chosen had
- low *N. ceranae* loads with 24.6 (Hive A) and 21.2 (Hive B) genome equivalents,
- respectively. While the hives chosen from the Hale community garden did have low *N*.
- ceranae loads and no N. apis, some natural variation in levels between sampled honey bees
- was detected in the Day 0 samples collected from the two chosen hives. Hive A Day 0
- samples had 5.66 ± 3.16 average *N. ceranae* genome equivalents and 3.59 ± 2.06 *N. apis*
- genome equivalents, and Hive B Day 0 samples having 5.3 ± 2.4 N. ceranae genome
- equivalents, and 5.2 ± 2.1 *N. apis* genome equivalents.
- 346 The two bee yards sampled in West Virginia had high levels of *N. ceranae* and no detected *N.*
- 347 apis (Figure 3B). Hives were chosen from within each yard, that had the highest levels of
- 348 Nosema infection as our source of experimental spores for infection (WV yard 1 hive=
- $1.7 \times 10^6 \pm 4.1 \times 10^4 N$. ceranae and 0 N. apis genome equivalents and WV yard 2 hive =
- $2.0 \times 10^6 \pm 4.0 \times 10^4 N$. ceranae and 0 N. apis genome) (Figure 3C). Worker bees from these
- 351 two hives were used to create the spore solution for the exposure experiment, as these yards
- had the highest level of *Nosema* infections from all the ones surveyed.

353 Experimental *N. ceranae* exposure experiment

- Two days post inoculation, *N. ceranae* levels in *Nosema* exposed bees had increased to 111.5
- \pm 71.7 average genome equivalents, while the sucrose control bees had on average 12.4 \pm 4.1
- 356 genome equivalents for hive A bees (Figure 4A). After 2 days, *Nosema* exposed bees from
- hive B had on average 162.6 ± 69.2 N. ceranae genome equivalents, and sucrose control bees
- having on average 33.9 ± 25.8 N. ceranae genome equivalents (Figure 4A). While levels of
- 359 N. ceranae increased after 2 days in honey bees from both hives after the bees were exposed
- 360 to the *Nosema* dose, treatment (*N. ceranae* or sucrose bolus) had a marginally significant
- effect on *N. ceranae* levels ($F_{(df=1)}=3.949$, p=0.052), however any detected treatment effect
- was not dependent on which hive the bees came from $(F_{(df=1)}=0.608, p=0.439)$. We also
- found that initial hive did not have any significant effect on N. ceranae ($F_{(df=1)}=0.224$, p =
- 364 0.638).
- Nosema exposed bees had on average $236,398 \pm 128,801$ genome equivalents of N. ceranae
- after 5 days of exposure (Figure 4B). Sucrose control bees had on average $4.4 \pm 1.29 N$.
- 367 ceranae genome equivalents after 5 days (Figure 4B). The day 5 samples allowed us to
- 368 investigate the impact of the exposure dose on *N. ceranae* levels over time. While the average
- 369 N. ceranae load is higher at day 5 compared to day 2, this is mainly due to a few individuals
- with no overall significant effect of day found ($F_{(df=1)} = 0.0360$, p = 0.8502). Treatment (N.
- 371 ceranae or sucrose control) also did not have a significant effect on N. ceranae levels after 5
- days ($F_{(df=1)}$ = 2.487, p = 0.120), and the treatment type did not depend on which day the
- 373 samples were collected ($F_{(df=1)} = 0.664$, p = 0.419).

375 Discussion

- 376 The accurate and sensitive quantification of *Nosema* infection levels in honey bees is of vital
- importance when looking at both disease incidence and more complex host-pathogen

378 relationships. We developed and tested a new duplex qPCR assay for quantifying both N. 379 ceranae and N. apis. This new assay utilizes TagMan chemistry and an external standard. The use of TagMan chemistry allows a high level of specificity to be achieved between N. 380 381 ceranae and N. apis within a duplex reaction. This specificity is due to the use of probes within the reaction, which therefore requires binding at three different unique regions for a 382 positive fluorescent to be detected. Many pathogen detection assays use external standards to 383 aid in quantification, including a known amount of positive PCR product (Kukielka et al., 384 385 2008, Kukielka and Sánchez-Vizcaíno, 2009), a plasmid standard (Bourgeois et al., 2010, Forsgren and Fries, 2010, Traver and Fell, 2011, Copley et al., 2012) and gBlock® gene 386 fragments (Alger et al., 2018, Alger et al., 2019). We chose to use a gBlock® design for 387 several reasons, including the ability to decide every base within the sequence, the option to 388 389 insert a restriction digest site, ease in obtaining them, no laboratory biosecurity certification 390 requirement, and stable long-term storage. The ability to include a restriction digest site is useful for ensuring that contamination can be easily detected in potentially contaminated 391 392 wells, with the qPCR product being used in a restriction digest assay. This method of 393 contamination checking is similar to what can be used with plasmid standards, which can 394 utilize either restriction digest sites or primers that cover the plasmid itself. As far as we are 395 aware, this new duplex Nosema qPCR is the only published Nosema method that utilizes a 396 gBlock® design for its external standard. Given this assay is a duplex, the ability to specify each base allows the target sequences of both N. ceranae and N. apis to be combined into a 397 398 single sequence without the need for further downstream modification. Other ways to 399 combine two separate sequences like this would involve using other methods, such as Gibson Assembly or GenScript to combine DNA sequences in a plasmid prior to cloning (Carrillo-400 Tripp et al., 2016, Bradford et al., 2017). As the gBlock[®] is manufactured, a known 401 concentration can be ordered, which is easily checked when eluting the received dry material, 402 403 allowing an easy calculation to produce consistent standard curves.

The range and efficiency of the assay was tested using both a linear standard curve, linearity of uncertainty analysis, and limits of detection. A wide and dynamic range was tested in the standard curve from 100 genome equivalents to 100,000,000 genome equivalents per reaction well, with each assay giving high qPCR efficiency (97-98%). This large linear range was used to calculate the linearity of uncertainty and mean bias values for each dilution for both Nosema species. These analyses give an indication of the reliability of the assay, with each dilution giving a result below the critical value ($< 0.25 \log_{10}$ (Blanchard et al., 2012). The limit of detection is calculated so that the confidence in low detected values can be assessed. Both assays have low 95% limit of detections (LOD_{95%}) of 30 genome equivalents for each assay, with N. ceranae still having an LOD_{95%} of 10 genome equivalents in a well. We also found that 5 genome equivalents could be accurately detected in 55% of N. ceranae wells and 75% of N. apis wells. The assay was tested with samples of known Nosema spores following microscopic counts. This allowed the relationship between qPCR values and microscopic counts to be analysed. *Nosema* values were significantly correlated with higher qPCR results correlating with higher microscopic spore counts. The assay's ability to detect lower infection levels was highlighted in that no spores were counted using the microscopic method at the maximum dilution, while 530 genome equivalents were detected in those samples with qPCR. The lower sensitivity of microscopic counts has been previously seen, with Traver and Fell (2011) finding 51.1% of microscopic spore negative counts to be N. ceranae positive

404

405

406

407

408

409

410 411

412413

414

415

416

417

418

419

420

421

- after qPCR analysis, while Copley et al. (2012) found 61.5% microscope negative samples
- were positive after qPCR analysis.
- The various methods of assay validation highlight the high sensitivity of the duplex assay and
- why we used the low infection load data from the experimental study in analysis. The design
- of this assay allows it to detect the combined active and vegetative load of *Nosema* in honey
- bee samples. This combined approach would be highly beneficial for large scale survey data
- 429 collection. This method could be easily combined with haemocytometer analysis of other
- samples from a hive. qPCR methods of *Nosema* load quantification are also used in many
- 431 studies focusing on microbiome-*Nosema* interactions (Maes et al., 2016, Li et al., 2017,
- Rubanov et al., 2019), as DNA extraction is required for assessment of the bacterial
- community, and you can thus collect both *Nosema* infection data and microbiome data from a
- 434 single extracted sample.
- In the experimental study, the *Nosema* dose chosen was low (100 spores) compared to other
- previously published *Nosema* infection studies that generally used infective doses ranging
- from $10^4 10^5$ spores (Antúnez et al., 2009, Forsgren and Fries, 2010, Roberts and Hughes,
- 438 2015, Li et al., 2018), resulting in higher infection loads. Most Nosema infection studies also
- investigate infection over longer periods of time, often between 6 and 21 days (Forsgren and
- 440 Fries, 2010, Roberts and Hughes, 2015, Li et al., 2018). There is limited information about
- infection intensity during early infection. A previous dose response study showed that after
- 442 14 days an infective dose of 100 will give around 30-60% infected bees (depending on
- whether either *N. apis* or *N. ceranae* spores were ingested, respectfully), while a dose of
- 10,000 results in 100% infection (Forsgren and Fries, 2010). While the time frame of that
- study is longer than the 2 and 5 days used in our study, it confirmed that infection can be
- achieved with a low 100 spore dose. Compared to Forsgren and Fries (2010), we had between
- 90-95% *N. ceranae* infection after 2 days and 75% infection after 5 days, with the 100 spore
- dose. While we did have high infection prevalence, the levels of infection were low
- regardless of collection day or original hive identity. The low infection loads seen in the bees
- did, however, correspond to the low detected loads in the hives found in that apiary, and in
- 451 the hive prior to the experiment. These low natural hive *Nosema* infection loads also
- 452 correspond to the low levels of *Nosema* detected in the control individuals at all time points.
- 453 Mulholland et al. (2012) have also shown natural levels of individual Nosema variation
- within hives. These low levels of *N. ceranae* infections were seen in all three sites in
- Blacksburg, VA, potentially indicating a low natural prevalence in the area. A previous study
- in Virginia showed a high prevalence of *N. ceranae* in hives, with peak loads seen in
- 457 March/April, followed by decreasing levels through to September (Traver and Fell, 2011),
- which corresponds to when our experimental samples were collected in late August. The low
- 459 to non-existent *N. apis* levels seen during our hive survey in both Blacksburg, VA, and the
- yards in West Virginia, was expected based on the Virginia survey results from Traver and
- 461 Fell, (2011). In this study *N. apis* infections were low level coinfections when detected, but
- extremely rare, only being found in 2.7% of hives surveyed (Traver and Fell, 2011).
- This failure of *N. ceranae* establishment following low spore exposure could be due to the
- impact of physiological factors within the individual honey bees, such as their gut
- 465 microbiome or their ability to evade the immune response. Li et al. (2017) found that levels
- of *N. ceranae* infection were higher in bees that were subsequently exposed to antibiotics,
- which significantly disrupted their gut microbiome, compared to bees not treated with

468 469 470 471 472 473 474 475 476 477 478 479	antibiotics. Individual gut bacterial strains may also be important in initial infection supplemental hive feeding of the gut bacterium <i>Parasaccharibacter apium</i> resulted in lower <i>N. ceranae</i> spore loads following individual treatment of a 10,000 spore dose compared to bees from a hive with no supplemental hive feeding (Corby-Harris <i>et al.</i> , 2016), and two <i>Gilliamella</i> strains were positivity associated with higher <i>N. ceranae</i> levels in nine study hives (Rubanov <i>et al.</i> , 2019). Antúnez <i>et al.</i> (2009) showed that 7 days post infection with <i>N. ceranae</i> downregulation in the expression of abaecin and hymenoptaecin, which is not detected after 4 days or seen in <i>N. apis</i> infection which sees upregulation of abaecin, defensin and hymenoptaecin after 4 days, and defensin after 7 days. These potential physiological impacts on <i>Nosema</i> infection success highlight the need to further investigate the initial stages of infection and individuals with low level infection, which can be achieved in the laboratory following low dose exposure, such as the 100 spore dose we explored.
480	
481	Conclusion
482 483 484 485 486 487 488 489	In conclusion, our study presents a new duplex <i>N. ceranae/N. apis</i> qPCR assay, using a newly-designed combined <i>Nosema</i> gBlock® standard for accurate quantification. The assay shows high sensitivity and repeatability across a linear dynamic range, with a low limit detection, and strong correlation with microscopic spore counts. We also provide evidence that a low 100 spore <i>Nosema</i> dose can result in increased <i>Nosema</i> infection intensity in some caged honey bees within two days of exposure. While the low dose is capable of infection establishment, some bees were able to resist infection, which may provide future insights into other aspects of honey bee biology that are involved in host defence against pathogens.
490	
491	Disclosure statement
492	The authors declare that there is no conflict of interest.
493	
494	Acknowledgements
495 496 497	The authors thank Richard Reed for the access and use of his apiary at the Hale Community Garden, and the Appalachian Beekeeping Collective for access to two bee yards in West Virginia to sample their hives and collecting bees for <i>Nosema</i> spore extraction.
498	
499	Funding
500	This work was supported by the National Science Foundation under grant MCB-1817736.
501	
502	Figure Legends
503 504	Figure 1: Nucleotide sequence for gBlock® synthesis for the <i>N. ceranae/N. apis</i> duplex qPCR assay. Nucleotides in bold represent primer sites, with the <i>N. apis</i> amplicon first, followed by

505 506 507	the <i>N. ceranae</i> amplicon. Nucleotides in <i>italics</i> represent the qPCR probe sequences. The underlined nucleotides represent the EcoR1 restriction digest sites, with the added nucleotides shown in lower case.
508	
509 510 511 512 513 514 515 516 517 518 519 520	Figure 2: Standard curves across a dynamic linear range $(100-100,000,000 \text{ genome})$ equivalents) for the <i>N. ceranae</i> (A) and <i>N. apis</i> (C) assays using the gBlock® standard. Each dot indicates average Cq of each dilution. Linear regression performance of each assay was assessed using the mean bias and linearity uncertainty (U_{LINi}) for each dilution for each assay [N . C
521	
522 523 524 525 526 527 528 529	Figure 3: A.) Levels of <i>Nosema ceranae</i> found during the Blacksburg, Virginia hive survey using three locations: Hale community garden (N=17), a private garden (N=5), and a Virginia Tech apiary (N=7). Points in the plot represent individual hives. B.) <i>Nosema ceranae</i> infection loads from two bee yards in West Virginia (N=8 hives/yard). Boxplots show median load along with the 25 th and 75 th percentiles, with dots representing individual hives. C.) Levels of <i>Nosema ceranae</i> infection in the two chosen hives from each yard that were chosen as the source for <i>N. ceranae</i> spores for the experiment. Bar charts show mean and standard error. No <i>N. apis</i> were detected.
530	
531 532 533 534	Figure 4: Levels of log <i>Nosema ceranae</i> genome equivalents in caged honey bees (A.) 2 days post exposure from two different original hive stock (Hive A or Hive B), and (B.) from Hive A, 2 and 5 days post exposure to either <i>Nosema</i> or sucrose control doses. Boxplots show median loads along with the 25 th and 75 th percentiles.
535	
536	References
537 538 539 540 541 542 543 544 545 546	 Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K., (2019). RNA virus spillover from managed honeybees (<i>Apis mellifera</i>) to wild bumblebees (<i>Bombus spp.</i>). <i>PLoS ONE</i>, 14(6). 10.1371/journal.pone.0217822 Alger, S. A., Alexander Burnham, P., Lamas, Z. S., Brody, A. K. & Richardson, L. L., (2018). Home sick: Impacts of migratory beekeeping on honey bee (<i>Apis mellifera</i>) pests, pathogens, and colony size. <i>PeerJ</i>, 2018(11). 10.7717/peerj.5812 Antúnez, K., Martín-Hernández, R., Prieto, L., Meana, A., Zunino, P. & Higes, M., (2009). Immune suppression in the honey bee (<i>Apis mellifera</i>) following infection by <i>Nosema ceranae</i> (<i>Microsporidia</i>). <i>Environmental Microbiology</i>, 11(9), pp. 2284-2290. 10.1111/j.1462-2920.2009.01953.x

- 547 Blanchard, P., Regnault, J., Schurr, F., Dubois, E. & Ribière, M., (2012). Intra-laboratory 548 validation of chronic bee paralysis virus quantitation using an accredited standardised 549 real-time quantitative RT-PCR method. *Journal of Virological Methods*, **180**(1-2), pp. 550 26-31. 10.1016/j.jviromet.2011.12.005
- Bourgeois, A. L., Rinderer, T. E., Beaman, L. D. & Danka, R. G., (2010). Genetic detection and quantification of *Nosema apis* and *N. ceranae* in the honey bee. *Journal of Invertebrate Pathology*, **103**(1), pp. 53-58. 10.1016/j.jip.2009.10.009
- Bradford, E. L., Christie, C. R., Campbell, E. M. & Bowman, A. S., (2017). A real-time PCR method for quantification of the total and major variant strains of the deformed wing virus. *PLoS ONE*, **12**(12). 10.1371/journal.pone.0190017
- Bustin, S. A., Benes, V., Garson, J. A., Hellemans, J., Huggett, J., Kubista, M., Mueller, R.,
 Nolan, T., Pfaffl, M. W., Shipley, G. L., Vandesompele, J. & Wittwer, C. T., (2009).
 The MIQE guidelines: Minimum information for publication of quantitative real-time
 PCR experiments. *Clinical Chemistry*, **55**(4), pp. 611-622.
 10.1373/clinchem.2008.112797
- Calderone, N. W., (2012). Insect pollinated crops, insect pollinators and US agriculture:
 Trend analysis of aggregate data for the period 1992-2009. *PLoS ONE*, 7(5).
 10.1371/journal.pone.0037235

566

567

568

569

570

571

572

573574

575

576

577

578

579

580

581

582

583 584

585

586

587

588

589

590

- Carrillo-Tripp, J., Dolezal, A. G., Goblirsch, M. J., Miller, W. A., Toth, A. L. & Bonning, B. C., (2016). *In vivo* and *in vitro* infection dynamics of honey bee viruses. *Scientific Reports*, **6**. 10.1038/srep22265
 - Chemurot, M., De Smet, L., Brunain, M., De Rycke, R. & de Graaf, D. C., (2017). *Nosema neumanni* n. sp. (Microsporidia, Nosematidae), a new microsporidian parasite of honeybees, *Apis mellifera* in Uganda. *European Journal of Protistology*, **61**, pp. 13-19. 10.1016/j.ejop.2017.07.002
- Conte, J., Potoczniak, M. J. & Tobe, S. S., (2018). Using synthetic oligonucleotides as standards in probe-based qPCR. *BioTechniques*, **64**(4), pp. 177-179. 10.2144/btn-2018-2000
- Copley, T. R., Chen, H., Giovenazzo, P., Houle, E. & Jabaji, S. H., (2012). Prevalence and seasonality of *Nosema* species in Québec honey bees. *Canadian Entomologist*, **144**(4), pp. 577-588. 10.4039/tce.2012.46
- Corby-Harris, V., Snyder, L., Meador, C. A. D., Naldo, R., Mott, B. & Anderson, K. E., (2016). *Parasaccharibacter apium*, gen. Nov., sp. Nov., Improves Honey Bee (Hymenoptera: Apidae) resistance to *Nosema*. *Journal of Economic Entomology*, **109**(2), pp. 537-543. 10.1093/jee/tow012
- Di Prisco, G., Cavaliere, V., Annoscia, D., Varricchio, P., Caprio, E., Nazzi, F., Gargiulo, G. & Pennacchio, F., (2013). Neonicotinoid clothianidin adversely affects insect immunity and promotes replication of a viral pathogen in honey bees. *Proceedings of the National Academy of Sciences of the United States of America*, **110**(46), pp. 18466-18471. 10.1073/pnas.1314923110
- Engel, P., James, R. R., Koga, R., Kwong, W. K., McFrederick, Q. S. & Moran, N. A., (2013). Standard methods for research on *Apis mellifera* gut symbionts. *Journal of Apicultural Research*, **52**(4). 10.3896/IBRA.1.52.4.07
- Evans, J. D. & Schwarz, R. S., (2011). Bees brought to their knees: Microbes affecting honey bee health. *Trends in Microbiology*, **19**(12), pp. 614-620. 10.1016/j.tim.2011.09.003
- Forsgren, E., (2010). European foulbrood in honey bees. *Journal of Invertebrate Pathology*, 593 **103**(SUPPL. 1), pp. S5-S9. 10.1016/j.jip.2009.06.016
- Forsgren, E. & Fries, I., (2010). Comparative virulence of *Nosema ceranae* and *Nosema apis* in individual European honey bees. *Veterinary Parasitology*, **170**(3-4), pp. 212-217. 10.1016/j.vetpar.2010.02.010

- Fries, I., Chauzat, M. P., Chen, Y. P., Doublet, V., Genersch, E., Gisder, S., Higes, M.,
 McMahon, D. P., Martín-Hernández, R., Natsopoulou, M., Paxton, R. J., Tanner, G.,
 Webster, T. C. & Williams, G. R., (2013). Standard methods for Nosema research.
 Journal of Apicultural Research, 52(1), 10.3896/IBRA.1.52.1.14
- Gajda, A. M., Mazur, E. D., Bober, A. M. & Czopowicz, M., (2021). Nosema ceranae
 interactions with *Nosema apis* and Black Queen Cell Virus. *Agriculture*, 11(10).
 10.3390/agriculture11100963
- Gisder, S. & Genersch, E., (2017). Viruses of commercialized insect pollinators. *Journal of Invertebrate Pathology*, **147**, pp. 51-59. 10.1016/j.jip.2016.07.010
- 606 Goblirsch, M., (2018). *Nosema ceranae* disease of the honey bee (*Apis mellifera*).

 607 *Apidologie*, **49**(1), pp. 131-150. 10.1007/s13592-017-0535-1
- Huang, W. F., Solter, L., Aronstein, K. & Huang, Z., (2015). Infectivity and virulence of
 Nosema ceranae and Nosema apis in commercially available North American honey
 bees. Journal of Invertebrate Pathology, 124, pp. 107-113. 10.1016/j.jip.2014.10.006
- Human, H., Brodschneider, R., Dietemann, V., Dively, G., Ellis, J. D., Forsgren, E., Fries, I.,
 Hatjina, F., Hu, F. L., Jaffé, R., Jensen, A. B., Köhler, A., Magyar, J. P., Özkýrým,
 A., Pirk, C. W. W., Rose, R., Strauss, U., Tanner, G., Tarpy, D. R., Van Der Steen, J.
 J. M., Vaudo, A., Vejsnæs, F., Wilde, J., Williams, G. R. & Zheng, H. Q., (2013).
 Miscellaneous standard methods for *Apis mellifera* research. *Journal of Apicultural Research*, 52(4). 10.3896/IBRA.1.52.4.10
- Klee, J., Besana, A. M., Genersch, E., Gisder, S., Nanetti, A., Tam, D. Q., Chinh, T. X.,
 Puerta, F., Ruz, J. M., Kryger, P., Message, D., Hatjina, F., Korpela, S., Fries, I. &
 Paxton, R. J., (2007). Widespread dispersal of the microsporidian *Nosema ceranae*, an
 emergent pathogen of the western honey bee, *Apis mellifera*. *Journal of Invertebrate*Pathology, 96(1), pp. 1-10. 10.1016/j.jip.2007.02.014
- Koch, H. & Schmid-Hempel, P., (2011). Bacterial Communities in Central European
 Bumblebees: Low Diversity and High Specificity. *Microbial Ecology*, 62(1), pp. 121-133. 10.1007/s00248-011-9854-3
- Kralj, J. & Fuchs, S., (2010). *Nosema* sp. influences flight behavior of infected honey bee (*Apis mellifera*) foragers. *Apidologie*, **41**(1), pp. 21-28. 10.1051/apido/2009046
- Kukielka, D., Esperón, F., Higes, M. & Sánchez-Vizcaíno, J. M., (2008). A sensitive one-step
 real-time RT-PCR method for detection of deformed wing virus and black queen cell
 virus in honeybee *Apis mellifera*. *Journal of Virological Methods*, **147**(2), pp. 275 281. 10.1016/j.jviromet.2007.09.008
- Kukielka, D. & Sánchez-Vizcaíno, J. M., (2009). One-step real-time quantitative PCR assays
 for the detection and field study of Sacbrood honeybee and Acute bee paralysis
 viruses. *Journal of Virological Methods*, **161**(2), pp. 240-246.
 10.1016/j.jviromet.2009.06.014
- Kulhanek, K., Steinhauer, N., Rennich, K., Caron, D. M., Sagili, R. R., Pettis, J. S., Ellis, J.
 D., Wilson, M. E., Wilkes, J. T., Tarpy, D. R., Rose, R., Lee, K., Rangel, J. &
 vanEngelsdorp, D., (2017). A national survey of managed honey bee 2015–2016
 annual colony losses in the USA. *Journal of Apicultural Research*, 56(4), pp. 328-340. 10.1080/00218839.2017.1344496
- Kurze, C., Le Conte, Y., Kryger, P., Lewkowski, O., Müller, T. & Moritz, R. F. A., (2018).
 Infection dynamics of *Nosema ceranae* in honey bee midgut and host cell apoptosis.
 Journal of Invertebrate Pathology, 154, pp. 1-4. 10.1016/j.jip.2018.03.008
- Lee, K. V., Steinhauer, N., Rennich, K., Wilson, M. E., Tarpy, D. R., Caron, D. M., Rose, R., Delaplane, K. S., Baylis, K., Lengerich, E. J., Pettis, J., Skinner, J. A., Wilkes, J. T., Sagili, R. & vanEngelsdorp, D., (2015). A national survey of managed honey bee

- 646 2013–2014 annual colony losses in the USA. *Apidologie*, **46**(3), pp. 292-305. 10.1007/s13592-015-0356-z
- Leonhardt, S. D., Gallai, N., Garibaldi, L. A., Kuhlmann, M. & Klein, A. M., (2013).

 Economic gain, stability of pollination and bee diversity decrease from southern to
 northern Europe. *Basic and Applied Ecology,* **14**(6), pp. 461-471.

 10.1016/j.baae.2013.06.003
- Li, J. H., Evans, J. D., Li, W. F., Zhao, Y. Z., DeGrandi-Hoffman, G., Huang, S. K., Li, Z. G., Hamilton, M. & Chen, Y. P., (2017). New evidence showing that the destruction of gut bacteria by antibiotic treatment could increase the honey bee's vulnerability to Nosema infection. *PLOS ONE*, **12**(11), pp. e0187505. 10.1371/journal.pone.0187505
- Li, W., Chen, Y. & Cook, S. C., (2018). Chronic *Nosema ceranae* infection inflicts comprehensive and persistent immunosuppression and accelerated lipid loss in host *Apis mellifera* honey bees. *International Journal for Parasitology*, **48**(6), pp. 433-444. 10.1016/j.ijpara.2017.11.004
- Maes, P. W., Rodrigues, P. A. P., Oliver, R., Mott, B. M. & Anderson, K. E., (2016). Dietrelated gut bacterial dysbiosis correlates with impaired development, increased mortality and Nosema disease in the honeybee (*Apis mellifera*). *Molecular Ecology*, **25**(21), pp. 5439-5450. 10.1111/mec.13862
- Martín-Hernández, R., Bartolomé, C., Chejanovsky, N., Le Conte, Y., Dalmon, A.,
 Dussaubat, C., García-Palencia, P., Meana, A., Pinto, M. A., Soroker, V. & Higes, M.,
 (2018). Nosema ceranae in Apis mellifera: a 12 years postdetection perspective.
 Environmental Microbiology, 20(4), pp. 1302-1329. 10.1111/1462-2920.14103
- Martín-Hernández, R., Higes, M., Sagastume, S., Juarranz, Á., Dias-Almeida, J., Budge, G.
 E., Meana, A. & Boonham, N., (2017). Microsporidia infection impacts the host cell's cycle and reduces host cell apoptosis. *PLoS ONE*, 12(2).
 10.1371/journal.pone.0170183

- Martín-Hernández, R., Meana, A., Prieto, L., Salvador, A. M., Garrido-Bailón, E. & Higes, M., (2007). Outcome of colonization of *Apis mellifera* by *Nosema ceranae*. *Applied and Environmental Microbiology*, **73**(20), pp. 6331-6338. 10.1128/AEM.00270-07
- Mayack, C. & Naug, D., (2009). Energetic stress in the honeybee *Apis mellifera* from
 Nosema ceranae infection. *Journal of Invertebrate Pathology*, **100**(3), pp. 185-188.
 10.1016/j.jip.2008.12.001
- Mayack, C. & Naug, D., (2010). Parasitic infection leads to decline in hemolymph sugar
 levels in honeybee foragers. *Journal of Insect Physiology*, **56**(11), pp. 1572-1575.
 10.1016/j.jinsphys.2010.05.016
- Milbrath, M. O., van Tran, T., Huang, W. F., Solter, L. F., Tarpy, D. R., Lawrence, F. &
 Huang, Z. Y., (2015). Comparative virulence and competition between *Nosema apis* and *Nosema ceranae* in honey bees (*Apis mellifera*). *Journal of Invertebrate Pathology*, 125, pp. 9-15. 10.1016/j.jip.2014.12.006
- Mulholland, G. E., Traver, B. E., Johnson, N. G. & Fell, R. D., (2012). Individual variability of *Nosema ceranae* infections in *Apis mellifera* colonies. *Insects*, **3**(4), pp. 1143-1155. 10.3390/insects3041143
- Naug, D., (2009). Nutritional stress due to habitat loss may explain recent honeybee colony collapses. *Biological Conservation*, **142**(10), pp. 2369-2372.

 10.1016/j.biocon.2009.04.007
- Poppinga, L. & Genersch, E., (2015). Molecular pathogenesis of American Foulbrood: How paenibacillus larvae kills honey bee larvae. Current Opinion in Insect Science, **10**, pp. 29-36. 10.1016/j.cois.2015.04.013

- Powell, J. E., Martinson, V. G., Urban-Mead, K. & Moran, N. A., (2014). Routes of acquisition of the gut microbiota of the honey bee *Apis mellifera*. *Applied and Environmental Microbiology*, **80**(23), pp. 7378-7387. DOI: 10.1128/AEM.01861-14
- Roberts, K. E. & Hughes, W. O. H., (2015). Horizontal transmission of a parasite is influenced by infected host phenotype and density. *Parasitology*, **142**(2), pp. 395-405. 10.1017/S0031182014001243
 - Rosenkranz, P., Aumeier, P. & Ziegelmann, B., (2010). Biology and control of *Varroa destructor*. *Journal of Invertebrate Pathology*, **103**(SUPPL. 1), pp. S96-S119. 10.1016/j.jip.2009.07.016

- Rubanov, A., Russell, K. A., Rothman, J. A., Nieh, J. C. & McFrederick, Q. S., (2019). Intensity of *Nosema ceranae* infection is associated with specific honey bee gut bacteria and weakly associated with gut microbiome structure. *Scientific Reports*, **9**(1). 10.1038/s41598-019-40347-6
- Ryba, S., Titera, D., Schodelbauerova-Traxmandlova, I. & Kindlmann, P., (2012). Prevalence of honeybee viruses in the Czech Republic and coinfections with other honeybee disease. *Biologia*, **67**(3), pp. 590-595. 10.2478/s11756-012-0038-5
- Traver, B. E. & Fell, R. D., (2011). Prevalence and infection intensity of *Nosema* in honey bee (*Apis mellifera* L.) colonies in Virginia. *Journal of Invertebrate Pathology*, **107**(1), pp. 43-49. 10.1016/j.jip.2011.02.003
- Traynor, K. S., Rennich, K., Forsgren, E., Rose, R., Pettis, J., Kunkel, G., Madella, S., Evans, J., Lopez, D. & van Engelsdorp, D., (2016). Multiyear survey targeting disease incidence in US honey bees. *Apidologie*, **47**(3), pp. 325-347. 10.1007/s13592-016-0431-0
- van der Zee, R., Gray, A., Pisa, L. & De Rijk, T., (2015). An observational study of honey bee colony winter losses and their association with *Varroa destructor*, neonicotinoids and other risk factors. *PLoS ONE*, **10**(7). 10.1371/journal.pone.0131611
- vanEngelsdorp, D., Caron, D., Hayes, J., Underwood, R., Henson, M., Rennich, K., Spleen,
 A., Andree, M., Snyder, R., Lee, K., Roccasecca, K., Wilson, M., Wilkes, J.,
 Lengerich, E. & Pettis, J., (2012). A national survey of managed honey bee 2010-11
 winter colony losses in the USA: Results from the Bee Informed Partnership. *Journal of Apicultural Research*, 51(1), pp. 115-124. 10.3896/IBRA.1.51.1.14

Figure 1

CCATTGCCGGATAAGAGAGTCCGTTATCCTTCGGGAAATCTCTAAACTTTGACC
TGAGGGAGGTCAGGCATGATAGTGAGGCTCTATCACTCCGCTGAACTGAGTTGTGa
aTTCTTAAATGGTGTATTGAACCAGGCGATTTTGTTCCTATACTCTTAACTGAGT
TGTATCCTAAGGGAACACCTTTTCTATCCAGTGCCGGTTGGGAGAAGCCGTTAC
CCTTCGGGGAATCTTCAAAAAAACACACACACTGGGGGAGGGTTTGGCAAGCTGC
TGACGCCGTAGCATTTGCGTTGGATCAGGTCAGAatTCCTTAAACTGACGATTGAG
TCAGCGTGTTATCCCTA

Figure 2

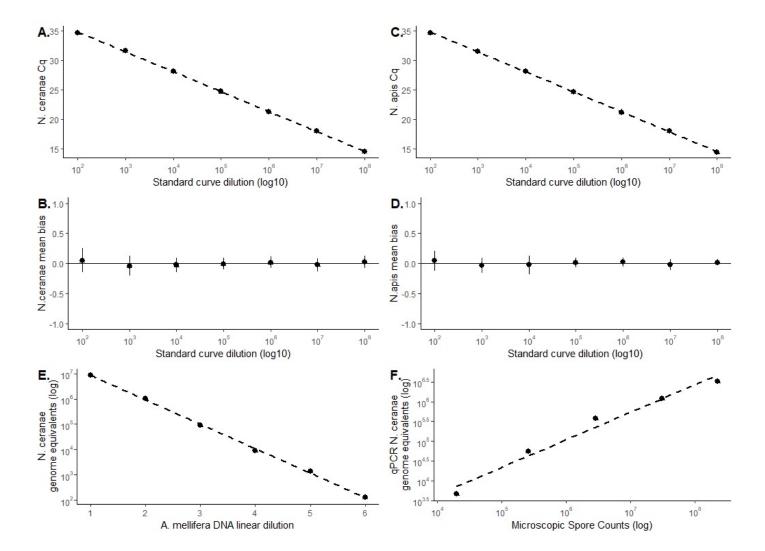


Figure 3

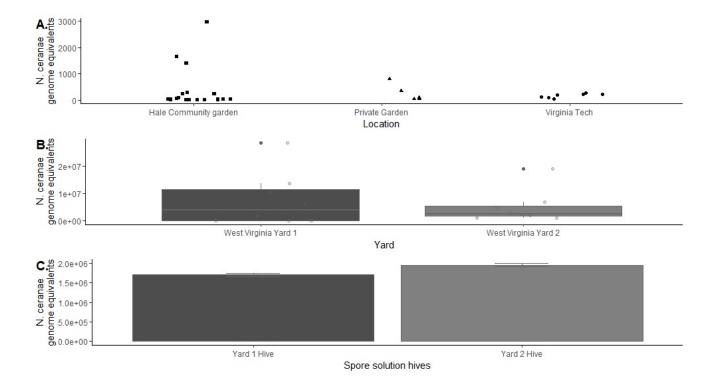
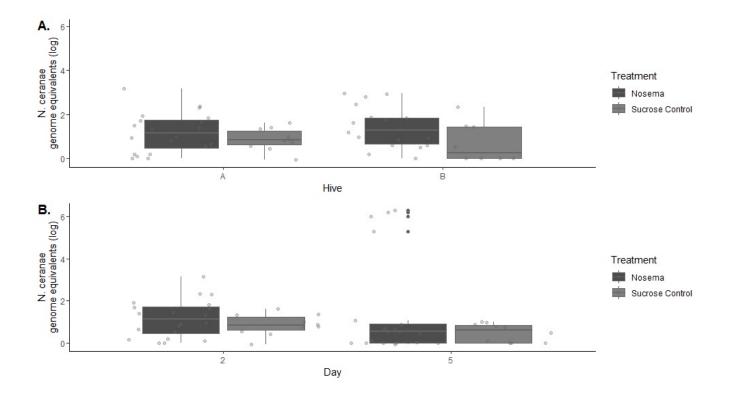



Figure 4

