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Abstract: Physiological and kinematic signals from humans are often used for monitoring health.
Several processes of interest (e.g., cardiac and respiratory processes, and locomotion) demonstrate
periodicity. Training models for inference on these signals (e.g., detection of anomalies, and extrac-
tion of biomarkers) require large amounts of data to capture their variability, which are not readily
available. This hinders the performance of complex inference models. In this work, we introduce
a methodology for improving inference on such signals by incorporating phase-based interpretability
and other inference tasks into a multi-task framework applied to a generative model. For this purpose,
we utilize phase information as a regularization term and as an input to the model and introduce
an interpretable unit in a neural network, which imposes an interpretable structure on the model.
This imposition helps us in the smooth generation of periodic signals that can aid in data augmen-
tation tasks. We demonstrate the impact of our framework on improving the overall inference
performance on ECG signals and inertial signals from gait locomotion.

Keywords: multi-task learning; interpretability; synthetic signal generation; physiological signals;
periodic signals; ECG; IMU; deep learning; forecasting; classification

1. Introduction

In recent years, time series have gained attention in the scientific community due to
their importance in numerous applications (e.g., computer vision, and natural language
processing). There are many studies in the literature trying to model these signals with
different techniques to improve state-of-the-art performance for different tasks [1-4]. Mod-
eling times series, in general, is a particularly challenging task due to many factors, such as
uncertainty, quality of data acquisition, and data scarcity, to name a few [3-5]. These factors
worsen when signals are collected from physiological processes and wearable devices due
to the quality of the devices and human factors. These factors make modeling the data
extremely difficult. On top of the aforementioned reasons, another important issue with
modeling these types of time series are the complex underlying dynamics, which can
change drastically over time. These dynamics are the key to successfully understanding
how those signals behave. There are some studies that have tried to tackle some of these
issues for different tasks (e.g., classification, and forecasting) by leveraging deep neural net-
works to model the signals [6-9]. Some authors use recurrent neural networks (RNNs) and
convolutional neural networks (CNNs) for long-term and short-term prediction [6-9]. Prior
work has also used attention mechanisms and transformers [10,11] to extract relevant infor-
mation for forecasting. Others use ordinary differential equations (ODEs) solvers [12,13] to
model the signals directly. Some of these frameworks can be interpreted as a continuous
version of ResNet [12]. In this paper, we focus on forecasting and classification while
addressing the challenges applied to physiological and inertial data.
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Deep neural networks typically have thousands if not millions of parameters, which
makes it difficult to understand how information flows from input to output. Despite hav-
ing high accuracy and good performance, it was shown in [14] that sometimes, the models
do not necessarily pick relevant information to reach a high level of accuracy. Being able to
provide an interpretation of how the model picks the features can make them more reliable
for specific applications (e.g., medical). There has been effort in computer vision and
natural language processing to provide some interpretability on how the models perform
prediction [15,16]. Specifically, most of these methods are limited to explaining the classifi-
cation task. One way to provide explainability is to add an interpretable unit (very simple
neural network) to the model in the training process [16-18]. Authors in [17,18] worked on
interpretability for times series to be able to explain the process with which their models
make decisions. The interpretability in this paper follows the methodology in [16] where
a separate unit is used to impose structure on the model. In our case, since the signals are
periodic, we use phase information as a means to impose structure. In Sections 3.4 and 3.6,
we provide more explanation on the details of the process and how this interpretability can
help us with signal generation.

For medical applications, a reliable, robust, and interpretable model is crucial for deci-
sion making. In this work, we focus on measurements from wearable devices and sensors
that collect inertial measurement unit (IMU) data, consisting of gyroscope, accelerometer,
and also electrocardiography (ECG) signals. In [19], the authors use IMU signals in con-
junction with some video information to perform forecasting and classification for terrain
change for wearable robotic applications. Forecasting, in this case, will help patients to
experience a smooth impedance transition from one terrain to another. In the case of ECG
signals, reliable forecasting would play a significant role in patients” health. We use these
signals to perform prediction, forecasting, classification, and signal generation. Generating
realistic signals in this application can be especially useful due to the difficulty of data
collection and scarcity.

The main motivation for this paper is leveraging multi-task learning, including in-
ference tasks (classification and forecasting) and phase-based interpretability to improve
model performance and explainability. It was shown in [3,4,20,21] that model perfor-
mance can be improved by using multi-task learning. In the following, we summarize
our contributions:

¢ Infusing phase information to the input and as a regularizer to improve model performance.

*  Adding a unit for inducing interpretability for periodic physiological and sensory data.

e Exploring the trade-off between performance and interpretability for better under-
standing the underlying system.

*  Generating synthetic sensory data by leveraging the interpretable unit.

As far as the authors are aware, there is no other work which combines multi-task
learning with interpretability based on phase information and explores the trade-off be-
tween model performance and explainability on physiological periodic signals.

The organization of the paper is as follows. In Section 2, we introduce the notations,
formulate the problem, and thoroughly explore different parts of the problem. In Section 3,
we conduct experiments to verify our claims in this paper. We discuss the results in Section 4
and conclude the paper in Section 5.

2. Materials and Methods
2.1. Mathematical Formulation

A time-dependent signal x : R — RNe, where N, indicates the number of channels
in the signal, is considered. The signal is processed over a window of length 7. The signal
over a fixed window [t — 7, t], with t indicating the current time, is denoted by xj;_ .
The signal is accompanied by a derived phase angle ¢|; . ;;, which is available over the same
window. In general, an auto-encoder structure can be imposed in this problem, such that
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Zt = f(x[t—r,t])

Ry = 8(zt)

/ )

where f is the encoder and g is the decoder. As shown in Figure 1, more structure is
introduced by using ¢ as an additional input and encoding the phase information using
the function «(+) (see Section 2.2). This structure allows to incorporate phase to the model
for multi-task learning and interpretability. This gives a new set of equations:

zt = f(Xp—r 2(Plr—r))
Rtz p] = 8r(zt) ’ &)
§t = h(Zt)

where f is the encoder and g, is the decoder for the signal, and & is used to recover
a summary of the phase (denoted as s;) employed for regularization (see Section 2.2).

X[t—1,t] ¢’|t—-r,t|

Classification Forecasting Signal Rec.

Figure 1. Illustration of multi-task and interpretability pipeline. f represents the encoder and
maps the input to z¢. The decoder is split into g, for reconstructing the input signal and gy for
forecasting. k is the network for classification.  takes care of estimation of the phase summary s; for
regularization purposes.

The main inference tasks under consideration are signal forecasting and classification.
Additional functions of the latent representation are introduced to accommodate these
predictions, which are given in the following form

Rpppe = 8r(zt)
:l?t — k(Zt) 7 (3)

where gr and k are the forecasting and classification networks. It is noted that we have
specified the forecasting to be over a window of size T for simplicity and this can be
generalized without any restrictions.

We focus on signal reconstruction and forecasting in our use cases when quantify-
ing performance. The model will be trained by considering different combinations of
the inference and regularization tasks. The overall loss function for training has the form

L= (Lx + Lrg) + (Lfc + Lcl)/ 4)

where the first two terms correspond to the reconstruction of x; ., and a regularization
term on §; to improve interpretability, and the last two terms correspond to forecasting and
classification tasks, respectively.

Details about the different components of this model are described in the remainder
of this section. Each term in the loss function is introduced in detail.

2.2. Phase Computation and Encoding

In periodic signals, the phase information can be very helpful in modeling the signals’
dynamic. In this section, we explain the procedure used to incorporate the phase in the sig-
nal modeling. In Figure 2, we show an example of the IMU and ECG signals used for our



Information 2022, 13, 326

40f17

applications and how their phase information was extracted. We calculated the phase by
using peak detection to account for any variability in the frequency. Peaks are located and
used to perform temporal alignment between consecutive periods by normalizing the time
window to the interval [0,1]. A phase is assigned to each period of the signal based on its
phase on the standard [0, 1] interval. It is shown that this information can help the model
to improve the performance compared to when this information is not incorporated.
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Figure 2. Showing IMU (only a single channel for illustration) and ECG signal with their peaks and
extracted phase (in radians) information.

We further encode the phase value for a window using the function & which represents
either a one-hot or Gaussian encoding. The latter builds on the one-hot encoding by center-
ing a narrow Gaussian function around the non-zero component of the array. This allows
for a more continuous encoding of the phase rather than a discrete one. Intuitively speaking,
one may think that the one-hot version is less noisy (having just one non-zero component
in each array) than the Gaussian version, which indicates that the one-hot version might
have better performance; however, this is not what it is observed empirically. To summarize
the above description: first, we calculate the phase for a given window, then we calculate
the one-hot encoded (or Gaussian) version of the phase using the « function. The raw phase
is used as part of the latent space regularization, and the encoded version of historic values
is concatenated to the input. In Section 3.3, we thoroughly explain and compare these two
encoding schemes.
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2.3. Signal Encoder and Decoder Architecture

We use an auto-encoder architecture for modeling the signals. This architecture will
allow us to impose meaningful restrictions on the latent dimensions for interpretability
purposes. The encoder, f, consists of a featured network that downsamples the input and
passes it into an ODE-Net to map the data to a certain latent space. Details on the architecture
can be seen in the Appendix A.2. Both networks are composed of linear and convolutional
layers. The decoder g is another convolutional network that maps the encoder output back to
the original input space. Network g is divided into two portions, as shown in Figure 1, where
gr shows reconstruction for the original input to the model while g; shows the forecasted
signal. The loss function for reconstruction becomes as follows:

1
L = —_— —x
* = NiNaN; o ¥ = fie

,w,c

2 (5)

where x;_. jand £ ., € RNw*Ne are the input and the corresponding output of the model
with N, Ny, and N, representing the number of training samples, length of the window
and number of channels in a signal, respectively.

2.4. Phase Regularization

In order to use some information about the phase of the signal as a way of regularizing
our model, we extract a summary s; from the phase ¢|; . ;). We use a summary to avoid
having to reconstruct a full phase and reduce the number of parameters in our model. We
consider two summaries: (1) the phase value in the middle of a window, and (2) the mean
phase value of a window. For the discussion in this section, the phase values are initially
represented using a unit-vector representation in R? corresponding to the cosine and sine of
the corresponding phase angle. As described before, we use a window of data as the input
to the model. In case of the middle phase, for each window, we choose the middle element
as a representation of the phase to be reconstructed. In this way, we evade the problem
that we have with the mean phase. We obtain a mean phase over a window by averaging
the continuous phase vectors. Unfortunately, this process does not provide an informative
summary of the phase over a window. This is because the mean phase tends to go to zero
due to the nature of the oscillating signals, and our choice of T which covers a few periods
of the signals. In Figure 3 (bottom), we show what the cosine component of the phase
vector looks like for both the mean and middle phases. As it can be observed, most of
the mean phases are close to zero. We also provide the histograms in Figure 3 (top) for
both cases to observe their spread. We observe empirically that the middle phase summary
leads to the best performance. So, for all the experiments performed in this paper, we use
the middle phase.

Next, we discuss the choices for learning the phase summary through / as shown
in Figure 1. We explore two possibilities for h:

z¢11: 2] First two dimension of z; (referred to as M1
h(Zt):{ ([1:2] £ ) ©)

L(z¢) mapping z; to 2D by L (referred to as M2)

The first choice relies directly on the latent space to capture phase information while
the other introduces a new neural network, L, to map the latent space to a 2D space to induce
interpretability and regularization. Remember that we use a unit-vector representation for
the phase summary s;. In the second case, we have more flexibility in the data modeling
due to the non-linear transformations applied by the network L.
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Figure 3. Comparing the cosine component of two phase modalities. (Bottom) The mean phase
shows less variability compared to the middle phase. (Top) The histogram of the mean phases (right)
maps most values near zero while the middle phase (left) has a greater spread distribution.

For neural networks, it is often valuable to add structure to the network to give us
some insight on what is being learned. To do so, we add two terms in the regularization
loss Lyg. The first imposition corresponds to the phase reconstruction term. The second
term ensures that the radius of our reconstructed phase stays around one. These two terms
are defined as follows:

Lign = 2N Z||St—5t)|| @)

and
rgz—NZIIII fl =117 ®)

then
Lrg = Lrgl + LrgZ )

where §; and s; € R? are the predicted and the ground-truth phase summaries, respec-
tively. The hyper-parameters A1 and A; are chosen empirically. We go into detail on how
these parameters are chosen in Section 3.2. It is shown that there is a meaningful rela-
tionship between these two hyper-parameters that can help us pick them more carefully
for interpretability. The first term helps make the latent space more structured and more
interpretable for the cyclic behavior of the periodic signals. The second term imposes
the magnitude restriction to avoid having outliers in the latent space, which may not
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necessarily correspond to the actual signal and to make the latent space a bit more compact.
Intuitively, this compactness helps with data modeling. We discuss more on the effect of
these terms in subsequent sections.

2.5. Forecasting Task

As it is shown in Figure 1, forecasting is one of the inference tasks considered. This is
a challenging task in time series, which motivates our paper to improve its performance [2].
When forecasting is included, our reconstruction network is expanded to return £;_ s, .
This means that the first portion of the output is associated with g, and the reconstructed
signal £;_. , and the second half is associated with g¢ and the forecasted signal £[;; , ]
In this context, the loss for the forecasting signal becomes

1
Lifg=——— X — % 2, 10
fe = NN.N. t,;c %[t 4] — £t 41 ] (10)

The loss function has the same form as the one for L,; the only difference is in the win-
dow of data considered.

2.6. Classification Task

Classification is a challenging task for physiological signals [5]. Models with high
classification accuracy tend to have a feature space where all the classes are well separated.
This property can be leveraged to improve model performance for other tasks described
in the previous sections by imposing an additional regularization term on the latent space.
This idea is inspired by [20,21], where the authors discussed that multiple projections of
the same procedure can result in better performance. Improving performance through
multi-task learning is the main motivation to include classification.

We introduce network k, which consists of convolutional layers to map the input to
the labels. For details, please refer to Appendix A.2, Figure A2. This network is applied to
the latent space with z; as the input to network k. The loss function is given by

Lo =A3Y E(yi, ) (11)
t

where y; are the true labels and the f; are the predicted labels, E(.,.) represents the cross-
entropy loss, and A3 is a weight that is adjusted empirically. In Section 3.2, it is explained
how A3 is chosen. It is shown that by adding this new task to the model, the model
performance is improved for both reconstruction and classification. This technique is
referred to as auxiliary tasks or multi-task learning, depending on the application [20].
If the main goal is to use the additional task for model improvement in inference time, then
it is called auxiliary task learning, whereas if the task is of interest in the inference time,
then it is called multi-task learning. In the experiment section, we will explore the effects of
multi-task learning thoroughly.

2.7. Weighting Loss Terms

In previous sections, we introduced different portions of the model for training.
The main component of the model is the reconstruction and forecasting losses for the auto-
encoder. The rest were introduced to boost the performance and provide interpretabil-
ity for the model. Besides the reconstruction loss, all the other losses have coefficients
(e.g., A1, A2, A3) that need to be picked carefully. The pair (A1, A2) imposes some structure
to the model and provides some interpretability. There is a meaningful trade-off between
these two coefficients, which we fully explore in Section 3.4. The A3 hyper-parameter
controls the contribution of the classification term.
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3. Results

In previous sections, we discussed the best possible encoding scheme, the best option
for phase modeling (without using multi-task learning), and explained the different aspects
of the multi-task learning scheme that are used. In this section, we will go through various
experiments to explore the proposed model. We will be using an IMU dataset for lower
limb gait analysis [19], which is the main dataset that motivated this study, as well as
the MIT-BIH dataset, which consists of respiratory and ECG signals [22]. We focus on these
two datasets due to their periodic behavior.

3.1. IMU Dataset and Preprocessing for Gait Task

The IMU Dataset [19] was developed to predict the type of terrain that an individual
was about to step on by using inertial as well as visual sensing. The objective of the research
was to use such models for context awareness of a lower-limb prosthetic worn by amputees
to enable mechanical adaptation based on the type of gait to be executed. The data consist
of inertial and visual measurements from a device placed on the shin of individuals walking
through different indoor and outdoor settings. We only focus on the analysis using inertial
sensing for this study. The types of gaits considered include: (C1) walking on soft terrain
(grass), (C2) walking on flat solid terrains (bricks, concrete or tiles), (C3) going upstairs,
and (C4) going downstairs. The data consist of 8 subjects in total with their accelerometer
and gyroscope signals recorded (6 channels in total). For each subject, the data were
collected across multiple sessions.

Before feeding these data to our model, we standardize the input. As mentioned before,
the dataset is composed of accelerometer and gyroscope signals. These two modalities have
different units and magnitudes, which make this step necessary. For this purpose, we per-
form z-standardization on the whole dataset. For this purpose, we calculate the mean and
standard deviation over the whole dataset to perform the standardization (z = =%, where
x, 4, and o are the data, mean, and standard deviation, respectively). Additionally, due to
label imbalance, we use data augmentation techniques (e.g., Gaussian noise, stretching,
and shortening) to compensate for this issue. We use the “tsaug” package [23] in Python to
perform the augmentation above. It contains all the necessary tools for augmentation in this
paper. For each session, we use overlapping windows with T = 2 Section (80 samples) and
an overlap ratio of 64%. The code is available online [24].

3.2. Model and Training for Gait Task

Details on the specifics of the model architectures can be found in Appendix A.2.
For training, we concatenate the IMU signals with the encoded version of the phase
information (i.e., a(.)). Each phase is mapped to a vector of 8 dimensions (i.e., 8 bins are
used for the encoding). So, in total, the number of channels for the input becomes 14 (6
for the IMU and 8 for the phase information). We pick a batch size of 128, which seems to
work best for our application. Ay, Ay, and A3 are chosen by performing cross-validation
in a grid between [10~#,10%]. The criterion for finding the best parameters is total RMSE
to guarantee the best model performance. The best values for A1, A;, and A3 are 0.1, 0.01,
and 0.02 respectively. In Section 3.4, the relationship between Aj, Ay, and the interpretability
are explored in detail. We test different optimizers, but only two seem to be appropriate for
our application: AdamW [25] and RMSprop [26] with the default settings and learning rate
of 1072.

In subsequent sections, we break down Equation (4) to gradually build up our model
to completion. First, we study the impact of the different encoding schemes described
in Section 2.4. For this experiment, we use Ly and L. in our training and ignore all other
terms in Equation (4). By doing so, we can observe how much performance gain we obtain
by using phase encoding. In Section 3.4, we add L;¢ to the training to explore the rela-
tionship between A1 and A, and find the best values for them, as reported in the previous
paragraph. These two parameters have key roles in the interpretability of the model (see
Sections 3.4 and 3.6). Finally, in Section 3.5, we use the full loss in Equation (4) to leverage
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the benefits of multi-task learning. The A3 hyper-parameter is also optimized in this section
to achieve the best model performance.

3.3. Impact of Encoding and h on Gait Task

In this section, we provide results comparing the use of one-hot encoding vs. Gaussian
encoding for the phase. We focus on the forecast task for simplicity. For this experiment,
we pick the best A} and A; (A; = 0.1 and A, = 0.01) via cross-validation for the M1
(i.e., the first model for h specified in Equation (6)), and apply them to M2. Although these
parameters are not optimal for the M2, as shown in Table 1, it still outperforms M1. Our
choice of T = 2 s ensures that we obtain a forecast for 2 s. However, it is still useful
to compare the results for the first 1 s of the forecast, compared to the overall forecast.
This gives us an idea of how much error is built up over time. In Table 1, we show model
performance for the 1 s and 2 s windows. Here, we use both versions of the modeling
scheme for 1 (M1 and M2). These experiments are performed to find the best candidate for £,
which properly models the phase and helps with performance improvement. The selected
model is utilized for multi-task learning in the subsequent section. We report the RMSE
(root mean square error) with encoding and without encoding. In Table 1, we can clearly
see the performance boost that the model gains by adding the encoded phase information.
As mentioned earlier, Gaussian encoding provides an overall improvement in performance.
Hence, we choose the second model from this point on for the rest of the experiments.
We also provide the detailed RMSE for each terrain for both encodings in Table 2. In Figure 4,
we show a sample with the corresponding signal input, reconstruction, and prediction for
these experiments.

Table 1. RMSE report for different setup. First and second rows show the RMSE for 1 s and 2 s
forecasting using the first model (M1) for k. Third and fourth rows correspond to the second model
(M2) for h. The columns show the type of encoding that is used.

Model h None One-Hot Gauss.
Forecast 1s M1 0.7884 0.5584 0.5241
Forecast2 s M1 0.8211 0.5824 0.5464
Forecast 1s M2 0.6212 0.4322 0.4147
Forecast 2 s M2 0.6998 0.4837 0.4616

Table 2. RMSE report for different terrains using M2.

Type Fcst. c1 C2 C3 C4
Onehot 1s 0.434 0.539 0.427 0.411
ne-ho 2s 0.482 0.589 0.468 0.467
Caussian 1s 0.413 0.520 0.412 0.402
25 0.458 0.571 0.443 0.453

3.4. Relationship between Ay and Ay for Gait Task

When we were exploring the relationship between the regularization coefficients, we no-
ticed three different patterns based on the ratio % given that the As are large enough. If the As
are too small, then regularization does not impose any structure on the model. As a reminder,
we represent the phase information in the latent space using two components, which corre-
spond to the sine and cosine components of the phase. If phases are reconstructed perfectly,
we will have a perfect circle for the latent space. The purpose of exploring the relationship
between A; and A; is to find which values result in a fully learned phase regime. When
the ratio is greater than 1, the projected phase in the latent space will look like a full circle,
which indicates that the continuous transitions in a periodic gait cycle are captured. When
the fraction is equal to 1, the structure is still captured, but it is not as prominent. If the ratio
is less than one, the projected phase either forms an incomplete circle (i.e., it does not learn
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an interpretable structure that captures the periodic gait cycle) or some other shape. We show
some of these patterns in Figure 5. The interpretability induced by these coefficients will help
us with synthetic signal generation for IMU signals (see Section 3.6). It should be mentioned
that the most interpretable architectures do not yield the best performance. This trade-off is
expected. If we use bigger A1 and A, values, then we are enforcing more structure, which
results in loss of performance on the inference tasks. In our cases, the best-performing models
do have a nice full circle latent space structure.

Input — Reconstruct+Forecast
— True
2 1 H
©
c
.20
)
< 11
Q
N
o
—
o
c 07
©
i)
wn
-1 A1
0 20 40 60 80 100 120 140 160

Samples

Figure 4. Forecasting for IMU signals. The first 80 samples (2 s) are given to the model as an input.
The reconstructed signal consists of the first 80 samples, and the forecasted signal is the last 80.
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Figure 5. Showing different variants for % Each plot is within the range [—2,2] for both x and y axis.
The rows (from top to bottom) refers to the ratio being greater than one, equal to one and less than
one respectively. Note that the full cyclic structure is not captured for % < 1. The last column does
not capture the desired structure due to a low magnitude on the A regularization weights.
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3.5. Multi-Task Learning for Gait Task

In this section, we fully explore the different combinations of loss functions in Equation (4).
The results are shown in Table 3. The left-hand side of the table indicates which loss function is
used in the modeling, and the right-hand side shows the different metrics for model evaluation.
Lo and L.y indicate whether we are doing classification for [t — T,¢] (i.e., the portion of
data that we have as input), for [t,t + 7| (i.e., the portion of data that we do forecast for),
or both. We use the following metrics: RMSE (for the whole window;, the first half which
corresponds to reconstruction; the second half which is forecasting), sSMAPE (forecasting),
MAE (forecasting), and fl-score (whole window). All the metrics are defined in Appendix A.1.
In all the experiments (except the first one), the model includes reconstruction losses and
regularization losses in the latent space. We also use one-hot encoding for convenience and
select the second modeling scheme (M2) with a small network for / due to its better capacity
and performance. All the weights in these experiments are fixed for fair comparison. The first
row in Table 3 serves as the baseline for model performance.

Table 3. Multi-task performance comparison. “y/” represents the loss terms included in the training
and “x” represents the ones that are absent in the training process.

L Ly Ly La Lgyi RMSEp: RMSEg. RMSEr, SMAPE  MAE f1
v ox Vv x x 0.4843 0.3671 05782 1.4954 03166 -
v v x VX - 02611 - - - 0.58
v v X x - 02712 - - - 0.48
v v x - 0.2765 - - - 0.68
v v Vv x x 0.4850 0.3730 05757 1.4973 03177 -
v v v x 04817 0.3699 0.5720 1.4943 03142 0.48
v v v VX 0.4846 03738 0.5744 1.4954 03162 0.54
v v v VY 04814 0.3648 0.5748 1.4917 03159 0.76

Impact of Regularization. Comparing the first row against the fifth row, we observe
some improvement in RMSE for the forecasting portion. Remember that the phase regu-
larization is mainly imposing structure on the model for interpretability, which may not
necessarily help with model performance. The results are very close, which shows that
the additional regularization did not sacrifice performance.

Impact on Classification. When classification is considered, we observe a higher
fl-score when including Ly and L. This is observed for both cases: without (rows 2—4)
and with (rows 6-8) the forecasting portion. The highest overall performance is obtained
when forecasting is also included (row 8).

Impact on Forecasting. When considering the case when forecasting is included
(rows 5-8), we observe that all models with some classification (rows 6-8) have a lower
RMSEF,, than the base model (row 1) without classification. The best RMSEF,, performance
is obtained if only the L.j; term is included (row 6). However, the best sSMAPE is obtained
by the model with all classification tasks included (row 8). Remember that this model
also provided much higher performance for classification. This indicates a small trade-off
between classification and forecasting tasks, but an overall boost in performance when
considering them jointly.

Based on the experiments in Table 3, we can conclude that the multi-task learning
indeed helped with model performance. In our case, it helped both with the f1-score and
other metrics in the table.

3.6. Gait Signal Generation

As part of the main contributions of this paper, we propose a model to generate realistic
IMU signals which properly construct a continuous and smooth times series. For that purpose,
we leveraged the interpretability of the latent space that we imposed. In Figure 6, a typical
projection of the latent space into a 3-dimensional space using PCA is depicted. From the
figure, we can observe that the plot consists of a circular shape and a tail (blue). Since these data
correspond to walking on different terrains, we know the most important part of the signal
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should lie in the circular region. Building on that intuition, we ignore the tail and directly
used the circular part. We postulate that even this circular region can be mapped to something
even simpler by considering a single circular trajectory. A least squares approach is used to
fit the circle (orange) to the PCA output as shown in Figure 6. By using the PCA’s inverse
transform, we project back the circle to the proper dimension for the latent space and feed
the output to the decoder to generate the IMU signals. In Appendix A.3, we provide a couple
of snapshots of this procedure to show how smooth this data generation is. We can use this
signal generation for augmentation to alleviate the cost of data collection. An animation is
provided in the supplementary material.

® Projected 3D
Projected Circle

Figure 6. Fitting a circle in 3D on the circular part of the latent space PCA projection.

3.7. ECG Forecasting

As an extension, in this section, we apply the aforementioned techniques to ECG
signals from the MIT-BIH dataset [22]. We use bandpass filtering and normalization
(re-scaling the data to be in [—1, 1] range) on the data to make it less noisy and also
partition all the data into windows with length 1024 samples, which correspond to 4 s
worth of data (i.e., T = 2 s). With some minor adjustments to the model architecture
and using one-hot encoding with the second model for i (M2), we train the model on
this dataset to perform multi-task learning. The input to the model is half of the window
(512 samples), and we forecast the next 512 samples. In Figure 7, a sample from the model
is depicted. The model reasonably follows the trend for the ECG signal. The trend could
have been improved if we had more data. The MIT-BIH dataset set is relatively small,
making it difficult to model all the variations reliably. In Table 4, we providethe model
performance for this dataset on multi-task learning. As before, the first row corresponds
to pure reconstruction and forecasting without phase regularization and classification,
which will serve as the baseline for the other experiments. In the fifth row, we add phase
regularization to the model. We can clearly observe the improvement throughout all
the metrics compared to the baseline. From the second through fourth rows, we are
adding classification for both reconstruction and forecasting individually and combined.
In all cases, the model’s performance is improved. In the sixth row, we combine phase
regularization with classification for the forecasting portion. This combination results
in the best performance in the RMSE total. As expected, multi-task learning helps with
performance improvement compared to the baseline in all cases. Although the focus of
this paper is on total RMSE as the performance metric, we can also see improvement
in F1 scores in the different model combinations. We can conclude that phase information
and regularization help the model performance by a respectable margin. On top of that,
adding classification helps the model to improve even further. It should be mentioned
that the model successfully recovers the QRS section of the signals, while it has difficulty
capturing the (P, T) pair. This can be related to the reconstruction loss, which is more biased
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to reconstruct more prominent parts of the signals (QRS). Perhaps by applying some weight
on the reconstruction loss we can improve the model performance on (P, T) pair, which is
worth exploring in future work to resolve this issue.

— True
——— Reconstruct+Forecast |
Input |
0.4 1 \
| [l
v 0.3 ‘ ‘
e)
2 ‘
g
(o]
©
=
0.2 - \
| | AV L
0.11 \ e N o Y /
LM;}‘J/ 5o Y W

0 200 400 600 800 1000
Samples

Figure 7. Forecasting for ECG signals. The first 512 samples (2 s) are used as an input to the model and
for the reconstruction task, while the second half of the signal is predicted by the model for forecasting.

Table 4. Multi-task performance for ECG dataset. “y/” represents the loss terms included in the
training and “x” represents the ones that are absent in the training process.

Ly Lg Lg Ly Lai RMSEry RMSEg. RMSEr, sMAPE MAE f1
4 X V4 X X 0.2023 0.1943 0.2099 1.6703 0.1033 -
v v X v X - 0.1440 - - - 0.33
Vv Vv X X Vv - 0.1528 - - - 0.28
v v % v - 0.1559 - - - 0.45
4 4 V4 X X 0.1911 0.1821 0.1997 1.6643 0.0941 -
Vv Vv vV X Vv 0.1855 0.1721 0.1981 1.6594 0.0927 0.27
4 4 Vv vV X 0.1972 0.1898 0.2044 1.6664 0.1040 0.37
v v v Y 0.1932 0.1860 0.2002 1.6640 0.0977 0.45

4. Discussion

Throughout this work, we studied the effects of phase information and multi-task
learning on the modeling of periodic signals. We started by incorporating phase into
the model in two ways: (1) as an 8-dimensional vector to be concatenated to the input,
and (2) in the latent space to add some structure to the model to help us with the inter-
pretability of the model for signal forecasting and generation. In the first case, we clearly
observed the benefit of using both phase information and multi-tasking. In the second case,
as shown in Section 3.6, we can find a 3D plane to which we can project a circle and reliably
generate new sequences, given that the model properly learns the phase information. Using
this technique, we can generate synthetic data reliably in cases where data are difficult
to acquire from patients. We also extended our work to ECG signals. In Table 4, we can
observe the impact of the modeling on the MIT-BIH dataset. We analyzed the model per-
formance in detail in Section 3.7. It is worth mentioning that modeling both datasets was
challenging, but the MIT-BIH dataset was more difficult due to the low number of samples,
which made it difficult to properly capture the underlying uncertainties and dynamics.

5. Conclusions

In this paper, we were able to boost model performance by incorporating phase
information and multi-task learning. Our formulation and modeling allowed us to build
a phase-based interpretable unit, which enabled us to gain some insight into the signal
behavior. This insight resulted in reliable signal generation for sensory data. Overall, our



Information 2022, 13, 326

14 of 17

scheme can be used in a medical settings, where periodic (e.g., ECG) signals are available.
This scheme can help with predicting heart disease-related problems in advance. Due to
the interpretable and reliable signal generation that our modeling offers, this method can
be used as a synthetic generator in cases where data are scarce or acquiring new data is
very expensive.

For future work, in order to overcome some of the difficulties related to data scarcity
and modeling, we are planning to use transfer learning techniques to leverage training
on larger, more general datasets to improve results on the smaller datasets related to
our application. It should also be mentioned that the aforementioned techniques and
methodology can be applied to any periodic signal. So, another direction would be to
extend our model to any signal with a certain periodic behavior.
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Appendix A
Appendix A.1. Metric Definition

In the section, we define the evaluation metric that we used in the experiment section.
Here X, Y are row vectors for convenience where they belong to RN. The metrics are
defined as follows:

X-Y
RmsE — X=Xl (A1)
VN
[|X =Y
MAE = ————, A2
= (42)
|Xi —Yil
SMAPE = p 12T il (A3)
N D2
F1 — score = 7 L , (A4)
TP+ L(FP + FN)
where ||.|| is the norm operator and TP, FP, and FN refer to true positive, false positive,

and false negative, respectively.

Appendix A.2. Model Architecture

In this section, we describe all the models in detail. In Figure A1, the model for the first
setup where the phase is part of the latent space has been described. We provided all
the details. Norm in the network refers to group norm in Pytorch. In Figure A2, we show
the architecture for the the ODE-net, phase network, and the classifier. We can clearly see
the difference between this model and the first one. We have more flexibility and capacity
to model the complex signals. In Figure A2, we show the down sampling and the decoder
for the second modeling scheme. This summarizes all of the modeling architecture that
we described in the multi-task section.
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Appendix A.3. IMU Generation

In Figure A3, we can observe how the sequence of the IMU signals is generated.
By generating this synthetic data with the projected circle, we can argue there is a lot of
redundancy in the data. The tail in Figure 6 seems to be the result of the uncertainty in data
collection. So, just by having the phase incorporated into the model, not only we provide
interpretability for the model, but also, we are able to reliably generate synthetic data.
The spike-like points in the signal generation in couple of snapshots is very common
in the actual data. So, it is not surprising that they appear in the data generation.
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Figure A3. IMU signal generation using the mapped circle in 3D space. Each point on the circle
corresponds to a time series. In total, we have 14 sequence, which are sequentially related. This shows
that our intuition about the phase information is valid. Just by having the mapped circle, as it can
be observed, we successfully generated a continuous time variant IMU signal. The resolution can
be increased, and it depends on the number samples on the mapped circle. This signal generation
can be used for augmentation to compensate for data imbalance. The sequence starts at the top of
the first column to the bottom and continues to the top of the second column to the bottom.
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