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ABSTRACT: Nanoporous materials (NPMs) selectively adsorb
and concentrate gases into their pores and thus could be used to
store, capture, and sense many different gases. Modularly
synthesized classes of NPMs, such as covalent organic frameworks
(COFs), offer a large number of candidate structures for each
adsorption task. A complete NPM-property table, containing
measurements of relevant adsorption properties in candidate
NPMs, would enable the matching of NPMs with adsorption
tasks. However, in practice, the NPM-property matrix is only
partially observed (incomplete); many different properties of many
different NPMs have not been measured. The idea in this work is
to leverage the observed (NPM, property) values to impute the missing ones. Similarly, commercial recommendation systems
impute missing entries in an incomplete product−customer ratings matrix to recommend products to customers. We demonstrate a
COF recommendation system to match COFs with adsorption tasks by training a low-rank model of an incomplete COF−
adsorption-property matrix constructed from simulated uptakes of CH4, H2O, H2S, Xe, Kr, CO2, N2, O2, and H2 at various
conditions. A low-rank model of the COF−adsorption-property matrix, fit to the observed (COF, adsorption property) values,
provides (i) predictions of the missing (COF, adsorption property) values and (ii) a “map” of COFs, wherein COFs, represented as
points, with similar (dissimilar) adsorption properties congregate (separate). The COF recommendation system is able to rank
COFs reasonably well for most of the adsorption properties, but imputation performance diminishes precipitously when the fraction
of missing entries exceeds 60%. The concepts in our COF recommendation system can be applied broadly to impute missing data
pertaining to many different materials and properties.

1. INTRODUCTION

Nanoporous materials (NPMs)1 often exhibit permanent
porosity and possess large-area internal surfaces2 decorated
with functional groups. This enables them to (selectively)
adsorb and concentrate gases in their pores.3−5 As a result,
NPMs have applications in storing,5 separating,4,6 and sensing7

gases, as well as in catalysis.8

Advanced families of NPMs, such as metal-organic frame-
works (MOFs),9 covalent organic frameworks (COFs),10

porous polymer networks (PPNs),11 porous organic cages
(POCs),12 and metal-organic polyhedra (MOPs),13,14 are
constructed modularly from molecular building blocks. The
copiousness of compatible building blocks within many
topologies, together with postsynthetic modifiability,15 makes
the number of possible NPM structures extremely large.16

Thus, we have a large list of candidate NPMs and a list of
their adsorption properties we wish to know for their many
applications. If this NPM-property data table were complete,
both searching for (i) the optimal NPM for a given
application1 and (ii) the optimal application for a given
NPM17 would be trivial look-up problems. However, in

practice, the NPM-property data table, whether constructed
from experimental adsorption measurements18,19 or molecular
simulations of gas adsorption in libraries of NPMs,17 is likely
incomplete because many (NPM, property) values have not
been observed, i.e., (i) for any given NPM, only a proportion
of its adsorption properties have been measured, and (ii) for
any given adsorption property, it has been measured in only a
proportion of NPMs (see Figure 1).
The idea in this work is to leverage the observed (NPM,

property) values to predict the missing onesi.e., to impute
the missing values in, or complete, the NPM-property matrix.
A machine learning strategy to complete the NPM-property
matrix is much less expensive and time consuming than
experimentally measuring or computationally simulating these
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missing properties. The machine-completed NPM-property
matrix is valuable because it can be used to direct higher
fidelity but more expensive (experimental or simulated)
measurements toward the most promising materials, thereby
using less resources in the search for the optimal NPM for a
given application.
Our hypothesis, which would permit accurate matrix

completion, is that the NPM-property matrix exhibits a low-
rank structure,20,21 owing to underlying structural and chemical
similarities among both NPMs and gases that dictate their
interactions. Specifically, we assume a low-rank structure where
both NPMs and adsorption properties can be represented by
low-dimensional vectors that together express the affinity
between a (NPM, property) pair. These latent representations
can be jointly machine learned using the observed (NPM,
property) values, then used to impute the missing ones.22,23

Our goal to “fill in” the missing values in the NPM-property
matrixprimarily to recommend NPMs for specific adsorp-
tion tasksis analogous to the goal of a commercial
recommendation system that recommends products to
customers. For example, consider a movie recommendation
system at Netflix.23 Movie ratings by Netflix users are stored in
a movie-user rating matrix (rows: movies, columns: users,
entries: ratings).23 The movie-user ratings matrix is incom-
plete; most entries are missing because (i) each user rated only
a small proportion of the movies and (ii) each movie is rated
by only a small proportion of the users. A movie
recommendation system leverages the observed (movie,
user) ratings (perhaps, in addition to features of the movies
and users) to impute the missing ones.24 The machine-
completed movie-user rating matrix is then used to make user-
specific recommendations of movies. Thus, the (material,
property) values in our material recommendation system are
analogous to (product, customer) ratings in commercial
recommendation systems.

Herein, we demonstrate a prototype recommendation
system, based on a low-rank matrix model,22,23 that
recommends COFs for various gas adsorption tasks. The
COF−gas-adsorption-property matrices pertain to 572 exper-
imentally reported COFs25 and the simulated adsorption of
CH4, H2O, H2S, Xe, Kr, CO2, N2, O2, and H2 in those COFs at
various conditions17 relevant to different gas storage and
separation applications. Advantageously, this COF−gas-
adsorption-property matrix is in reality complete, allowing us
to ablate different fractions of the entries and investigate how
imputation performance depends on the fraction of missing
values. From the observed (COF, gas adsorption) values, we
machine-learn a low-rank model of the COF−gas-adsorption-
property matrix, yielding low-dimensional latent vector
representations of both COFs and adsorption properties.
This low-rank model provides: (i) predictions of the missing
(COF, gas adsorption property) values and (ii) a “map,”
wherein COFs are represented as points and COFs with
similar (dissimilar) adsorption properties congregate (sepa-
rate). Such a map of COFs is useful for experimental design to
explore COF space and for the optimization of promising but
still suboptimal “lead”-COFs.

1.1. Review of Previous Work.Machine learning plays an
important role in the discovery and deployment of NPMs.26−33

Supervised machine learning models have been widely used to
predict the adsorption properties of NPMs34−43 from vectors
of hand-crafted structural features44,45 or graph representa-
tions.46,47 Unsupervised machine learning methods have been
used to embed NPMs into a low-dimensional “material
space”48 and cluster together NPMs with similar struc-
tures.49−52 Genetic algorithms,53−56 Monte Carlo tree
search,57 and Bayesian optimization58,59 have been used to
more efficiently search for the NPM(s) with an optimal
adsorption property. Finally, recently60 an autoencoder
enabled inverse design61,62 of NPMs, where one specifies a
desired adsorption property, and the machine learning model
generates a NPM structure with that property. To enable
machine learning approaches to NPM discovery, several open,
structured databases63−65 of (i) crystal structure models of
NPMs,25,66−70 (ii) simulated17,69,71,72 and experimentally
measured19 adsorption properties of NPMs, and (iii)
electronic properties of NPMs73,74 have been curated. Text
mining and natural language processing could be used to
extract data and knowledge from the literature for machine
learning studies as well.75−77

Our material recommendation system deviates from
previous data-driven approaches to predict properties of
NPMs by: (i) as a latent variable model, embedding materials
into a latent space, negating the need for explicit, hand-crafted
features of NPMs, and (ii) performing multitask prediction
while (a) transferring knowledge between tasks and (b)
handling missing values in the target vectors associated with
NPMs. Loosely related, meta-learning has been used to predict
an adsorption property of materials at different conditions by
learning an intermediate representation of the material based
only on available adsorption data.78 N.b., recommendation
systems have been built for use in chemical sciences to impute
missing gas permeabilities in polymers,79 antiviral activities of
molecules,80 and stabilities of inorganic materials.81,82

2. MATERIAL RECOMMENDATION SYSTEM
Here, we formulate the general problem of material−property
matrix completion.

Figure 1. Recommendation system for nanoporous materials
(NPMs). In this toy NPM−adsorption-property matrix, entry (m,
p) represents the value of adsorption property p of NPM m. Many
entries are unobserved (“?”) because measurements are missing. The
goal of our NPM recommendation system is to use the observed
entries (values depicted by color) to impute the unobserved entries,
allowing recommendation of NPMs for various adsorption tasks
(requiring a certain adsorption property). This is analogous to
commercial recommendation systems that aim to make product
recommendations tailored for specific customers, with NPM :
adsorption property :: product : customer.
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A material recommendation system jointly machine learns,
from observed (material, property) values, low-dimensional
latent vector representations of the materials and properties
that express (material, property) affinities. These learned
representations allow us to (i) impute missing (material,
property) values and (ii) draw a map of the materials, wherein
materials with similar properties congregate.
2.1. Material−Property Matrix. Suppose we have M

candidate materials with P properties of interest. Entry (m, p)
of theM × P material−property matrix A, Amp ∈ , represents
the value of property p of material m.
2.2. Observations (Data). We have observations of Amp

for (m, p) ∈ Ω ⊂ {1, 2, ..., M} × {1, 2, ..., P}, which defines Ω
as the set of ordered pairs describing the entries in A that are
observed. That is, the material−property matrix A is not
complete; some entries are missing (|Ω| < MP).
2.3. Objective. The objective is to leverage the

observations {Amp}(m,p)∈Ω to complete the material−
property matrix, i.e., to predict the missing entries,
{Amp}(m,p)∈{1, 2, ..., M} × {1, 2, ..., P}\Ω.
2.4. Low-Rank Matrix Model. From an element

perspective, the low-rank model22,23 assumes that each element
of the matrix, Amp, decomposes into

A m pmp m p m
T μ≈ + (1)

where mm
k∈ and pp

k∈ are low-dimensional (k < M, P),

latent vector representations of material m and property p,
respectively, and mμ ∈ is a bias for material m. The

material−property interaction term, the dot product m pm p
T ,

represents the “affinity” (if positive) or “aversion” (if negative)
of material m for property p. Geometrically, the interaction
term (i) depends on both the norm of the vectors mm and pp
and the angle between them and (ii) is positive (negative) if
the vectors point in roughly the same (opposite) directions.
The material bias μm reflects variation of the values of the
properties of material m independent of interactions; some
materials may simply tend to have higher or lower values of the
properties.
From a matrix perspective, the low-rank model factorizes the

material−property matrix A as

A M P 1T Tμ≈ + (2)

with the columns of matrices M k M∈ × and P k P∈ ×

containing the latent representations of materials and proper-
ties, respectively; the entries of the column vector Mμ ∈
containing material biases; and 1 P∈ a column vector of
ones (see Figure 2). The dimensionality of the latent space, k <
M, P, imposes the constraint kM Prank( )T ≤ ; hence, eq 2 is a
low-rank approximation of the matrix A.
2.5. Utility of the Low-Rank Model. The low-rank model

of the material−property matrix is useful for two purposes.22

(1) Imputation of missing entries. The decomposition in eq 1
holds for both observed and unobserved (material, property)
values. Thus, once we learn M, P, and μ from the observed
entries, we can predict the unobserved entries, as is clear from
eq 2.
(2) Construction of a low-dimensional map of materials and

properties. The rows of a fully observed version of A, which lie
in a P-dimensional vector space, can be viewed as feature
vectors of the materials. In this view, each material is

represented by a list of its properties. The set of latent vector

representations of the materials, in the rows of MT, are
embeddings/compressions of the rows of A into a lower (k <
P) dimensional vector space.22 Within this latent space,
materials, represented by {mm}, that tend to have similar
(dissimilar) properties congregate (separate). Using dimension
reduction techniques, we can visualize the scatter of materials
in the low-dimensional space to draw a map of materials. The
latent representations of materials, {mm}, and the map that
visualizes them are useful for: (i) grouping together/organizing
materials with similar properties, (ii) lead optimization, where
we search the map for materials nearby a “lead” material with a
good but still suboptimal property, (iii) selecting diverse
materials to efficiently explore material space in an
experimental design, and (iv) training supervised machine
learning models for other prediction tasks, as mm is a feature
vector for material m.
Similarly, the columns of a complete version of A can be

viewed as vector representations of properties, and the
columns of P, the latent vector representations of the
properties, are embeddings/compressions of them. Within
this latent space, properties, represented by {pp}, that tend to
take on similar (dissimilar) values in NPMs congregate
(separate).
The geometric interpretation of the dot product m pm p

T in eq

1 makes a comparison between the map of materials and the
map of properties useful. The magnitudes of and the angle
between a pair of latent material and property vectors (mm,
pp), taken together, indicate the affinity/aversion of material m
with property p.

2.6. Machine-Learning the Low-Rank Model. We learn
the latent representations of materials and properties and
material biases from the observed (material, property) values
by balancing (i) the matching of the observed entries of the
matrix by the model given in eq 1 and (ii) the simplicity of
latent vector representations, to avoid overfitting. Specifically,
we aim to choose M, P, and μ that minimize the loss function:

Figure 2. Low-rank model of the material−property matrix
A M P 1T Tμ≈ + . The columns of M and P contain the latent
representations of M materials and P properties, respectively, which
lie in a k-dimensional space. The vector μ contains M material biases.
Entry (m, p) of A is modeled as A m pmp m p m

T μ≈ + .
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The first term is the approximation error, measured over all
observations. The second term provides L2 regularization of
the latent vector representations of materials and properties to
prevent overfitting and improve generalization, where λ > 0 is
the regularization parameter. The sums are normalized to
properly weigh regularization of the latent material and
property vectors.
Stochastic gradient descent or alternating minimization are

commonly used to find a (M, P, μ) that (locally22) minimize
.22,23 In alternating minimization, we alternate between
optimizing M with P fixed and optimizing P with M fixed.
Two hyperparameters are involved in fitting a low-rank

matrix model to the observed entries of A: (1) k ∈ {0, 1, ...,
min(M, P)}, the dimensionality of the vector space containing
the latent representations of materials and properties and (2) λ
∈ [0, ∞), the regularization parameter that trades off
prediction accuracy on the training data and the simplicity of
the latent vector representations.

3. CASE STUDY: A COF RECOMMENDATION SYSTEM
We now demonstrate a material recommendation system
based on a low-rank matrix model. Here, materials are COFs,
and properties are the equilibrium uptakes of a variety of gases
at different conditions, obtained from molecular simulations.
The Julia code to reproduce all of our work is available at
github.com/SimonEnsemble/material_recommendation_
system.
3.1. Data Set.We construct the COF−adsorption-property

matrix using an open data set (v9 on Materials Cloud64) of
simulated gas adsorption properties in M = 572 experimentally
reported, porous COF materials.17,25 We selected P = 16
simulated adsorption propertiesthe uptake [units: mmol/g]
and Henry coefficients [mmol/(g·bar)] of a variety of gases
(CH4, H2O, H2S, Xe, Kr, CO2, N2, O2, and H2) at various
conditions pertinent to gas storage and separation applications
(see Table 1). We log10-transformed Henry coefficients
because of the relatively long tail of their distributions.
The resu l t ing COF−adsorpt ion-proper ty mat r i x

Acomplete
572 16∈ × is fully observed, allowing us to study

how imputation performance of the low-rank model depends
on the completeness of the matrix.
Figure 3 displays the distribution of and pairwise relation-

ships between [standardized] adsorption properties, and
Figure S1 displays a pairwise correlation matrix of properties.
Some properties are strongly correlated, e.g., CH4 uptake at
(298 K, 65 bar) and O2 uptake at (298 K, 140 bar), while
others, such as H2 uptake at (77 K, 5 bar) and H2S Henry
coefficients at 300 K, are not. The low-rank model exploits
these correlations between properties to learn low-dimensional
representations of materials and properties.
3.2. Methods. 3.2.1. Simulating the Process of Data

Collection. We simulate the stochastic process of incomplete
data collection to construct an incomplete COF−adsorption-
property matrix A(θ) (still M = 572 × P = 16) with a fraction θ
∈ [0,1] of observed entries. We construct A(θ) by (uniform)
randomly sampling, without replacement, (1 − θ)MP entries

to ablate (change to missing) from the MP entries of
Acomplete. Figure S2 in the Supporting Information visualizes an
instance of an incomplete COF−adsorption-property matrix
A(θ=0.4).

3.2.2. Standardization of Adsorption Properties. In
accordance with standard practice,22 we z-score standardize
each adsorption property, i.e., we subtract from each column of
A(θ) the mean of the corresponding adsorption property and
then divide by its standard deviation (each computed using
only the observed, training examples). We z-score standardize
the adsorption properties for two reasons. First, stand-
ardization prevents properties with a larger range/variance
from dominating the loss function in eq 3. Second, z-score
standardization centers the latent vectors at the origin and is
consistent with underlying model assumptions, e.g., a
probabilistic interpretation of (closely related) principal
component analysis83 is that the data matrix is observed with
normally distributed errors, justifying z-score standardization
as opposed to Min−Max normalization.22

3.2.3. Training, Hyperparameter Tuning, and Testing.
Given an incomplete COF−adsorption-property matrix A(θ),
we outline how we arrive at a low-rank model for deployment
and test its imputation performance. Naturally, the [simulated]
observed entries of A(θ) are used for training and hyper-
parameter tuning, while [simulated, but actually known]
unobserved entries are used as test data to evaluate the
generalization error of the final deployment low-rank model.

3.2.4. Fitting. To fit a low-rank matrix model to training
observations, we use LowRankModels.jl22 in the Julia
programming language.84 LowRankModels.jl imple-
ments alternating proximal gradient descent22 to minimize
the loss in eq 3 over the training observations.

3.2.5. Hyperparameter Selection. We aim to determine the
optimal hyperparameters (kopt

(θ), λopt
(θ)) for the low-rank model.

We randomly partition the [simulated] observed entries of A(θ)

into an 80/20% training/validation set. We then fit a set of
low-rank models, each with different hyperparameters, to the
training data. The optimal hyperparameters follow from those
of the model that gives the lowest imputation error (RMSE)
over the validation set. The hyperparameter search is
conducted over a regular 2D grid of (1) k ∈ {1,2,...,15} and

Table 1. List of Equilibrium Adsorption Properties Included
in Our COF Recommendation System

adsorption property thermodynamic condition units

O2 uptake 298 K, 5 bar mmol/g
O2 uptake 298 K, 140 bar mmol/g
CO2 uptake 300 K, 0.001 bar mmol/g
CO2 uptake 300 K, 30 bar mmol/g
N2 uptake 300 K, 0.001 bar mmol/g
N2 uptake 300 K, 30 bar mmol/g
H2 uptake 77 K, 5 bar mmol/g
H2 uptake 77 K, 100 bar mmol/g
H2 uptake 298 K, 5 bar mmol/g
H2 uptake 298 K, 100 bar mmol/g
CH4 uptake 298 K, 65 bar mmol/g
CH4 uptake 298 K, 5.8 bar mmol/g
H2O Henry coefficient 300 K mmol/(g·bar)
H2S Henry coefficient 300 K mmol/(g·bar)
Xe Henry coefficient 300 K mmol/(g·bar)
Kr Henry coefficient 300 K mmol/(g·bar)
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(2) 25 values of λ ranging from 10 to 1000 and evenly spaced
on a log scale.
3.2.6. Deployment of Low-Rank Model and Testing.

Finally, the deployment low-rank model is a new low-rank
model fit to all [simulated] observed entries in A(θ) with
hyperparameters (kopt

(θ), λopt
(θ)). We evaluate the performance of

the deployment model by comparing its predictions of the
missing entries to the actual values of the missing entries that
comprise the test data.
N.b., the loss and performance metrics are computed on the

standardized and, in the case of Henry coefficients, log10-
transformed values.
3.3. Results for Observed Fraction θ = 0.4. We now

demonstrate the utility of a low-rank matrix model, using a
particular instance of an incomplete COF−adsorption-

property matrix A(θ=0.4) (so 60% of the entries are missing),
for (i) imputing missing (COF, adsorption property) values
and (ii) drawing of a map of COFs and adsorption properties.
Figures 4−6 all pertain to the same deployment low-rank
model trained using the instance of A(θ=0.4) visualized in Figure
S2. Our hyperparameter sweep found kopt

(0.4) = 9, λopt
(0.4) = 100.

3.3.1. Imputing the Missing Entries. We judge the
performance of the deployment low-rank matrix model for
imputing the missing entries of the COF−adsorption-property
matrix A(θ=0.4) by comparing the predictions of the missing
entries to the actual values in the test data set, composed of the
[simulated] unobserved entries.
The parity plot in Figure 4a shows the joint distribution of

the predictions for and actual values of the missing (COF,
adsorption property) entries in the test data set. The density is

Figure 3. Distribution of (diagonal) and pairwise relationships between (off-diagonal; each point represents a COF) the simulated gas adsorption
properties of COFs (data from ref 17). Each property was z-score standardized to have zero mean and unit variance.
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greatest along the diagonal line of equality. The mean absolute
error (MAE), root mean square error (RMSE), and coefficient
of determination (R2) are 0.3, 0.52, and 0.71, respectively. The
magnitude of the RMSE and MAE are directly interpretable as
units of a standard deviation in the adsorption property
because they are computed on z-score standardized properties.
These metrics indicate that the low-rank model imputes the
missing entries of the matrix with reasonable accuracy.
The ultimate utility of the recommendation system is to rank

COFs according to specific properties (for specific applica-
tions). Spearman’s rank (here, a ranking of COFs) correlation
coefficient, ρ, between the prediction of a missing (COF,
adsorption property) value by the deployment low-rank model
and its actual value (from the test set), grouped by adsorption
property, is shown in Figure 4b (blue bars). If the
recommendation system were to randomly rank COFs, ρ
would be zero, and the search for the optimal COF
orchestrated by the recommendation system would be

equivalent to a random, trial-and-error search; a perfectly
accurate ranking of the COFs would result in ρ = 1. With the
exception of H2O Henry coefficients, the recommendation
system ranks COFs according to their properties reasonably
well, with ρ > 0.6. The relatively poor ranking of COFs by
H2O Henry coefficient is explained by its very weak correlation
with the other properties (see Figure S1).
Figure S3 shows the correlation between and the

distributions of material biases {μm} and interaction terms
m pm p

T{ }, for the unobserved entries, in the deployment low-

rank model. The distributions are centered around approx-
imately zero and exhibit a similar range, indicating that both
play a role in the prediction of the missing adsorption
properties.

3.3.2. Comparing Imputation Performance to a Bench-
mark Model Amp ≈ μm. As a baseline to judge the imputation
performance of our recommendation system, we also train and

Figure 4. Performance of the deployment low-rank model in the task of imputing the missing (COF, adsorption property) values in A(θ = 0.4)

comprising the test set. (a) Parity plot showing the joint distribution of predicted and actual missing (COF, adsorption property) values. The
diagonal line represents perfect prediction. (b) Bar plot showing Spearman’s rank correlation coefficient ρ between the predicted and actual missing
(COF, adsorption property) values, grouped by adsorption property. For comparison, the stars show ρ for the benchmark, material bias model
where Amp ≈ μm (interaction term excluded).
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test (on the same data) a benchmark model that excludes the
interaction term m pm p

T in eq 1 (k = 0). This material bias

model Amp ≈ μm [naively] considers only whether the COF in
question tends to exhibit high or low values of the properties
(reflected in μm) when predicting Amp. By comparing the
imputation performance of this k = 0 material bias model with
the k > 0 low-rank model, we quantify the extent to which
interactions between COFs and gas adsorption properties,
encoded in m pm p

T terms for k > 0, are useful in the

recommendation system for imputing the missing values.
For each adsorption property, the stars in Figure 4b show

Spearman’s rank correlation coefficients between the pre-
dictions of the missing (COF, adsorption property) values
made by the benchmark material bias model Amp ≈ μm and the
actual values. Indeed, the interaction term enhances the ability
of the recommendation system to rank COFs according to
each adsorption property, though by different margins
depending on the property. O2 adsorption at (298 K, 5 bar)
and N2 adsorption at (300 K, 0.001 bar) are two properties
where the interaction term is playing only a marginal role.
Overall, this indicates that our recommendation system is (i)
learning interactions between COFs and adsorption properties
and (ii) more likely to suggest high-performing COFs for an
application than a simpler strategy that selects COFs purely
based on how they perform on average (as in the material bias
model).
Unsurprisingly, material biases μm in the k > 0 low-rank

model in eq 1 are strongly correlated with material biases in
the benchmark material bias model Amp ≈ μm (see Figure S4).
3.3.3. COF Biases. The learned material bias of COF m, μm

in eq 1, roughly describes the typical value of the (stand-
ardized) gas adsorption properties of COF m. Figure 5 shows a
partial, sorted bar plot of the material biases {μm} of COFs and

displays COF structures with the lowest and highest material
biases. Py-1P-quasi-AB (COF-LZU8) has the largest (smallest)
μm, indicating that Py-1P-quasi-AB (COF-LZU8) tends to
exhibit the highest (lowest) values of (standardized) gas
adsorption properties among the COFs. Given a new gas
adsorption task for which we seek a COF with maximal uptake,
the high material bias μm of Py-1P-quasi-AB makes it a good
candidate for measurements, in the absence of any other
information; in the analogy of movie recommendation systems,
Py-1P-quasi-AB is like a movie that is widely liked. Figure S3
shows the distribution of {μm}.

3.3.4. Learned Map of COFs and Gas Adsorption
Properties. We now visualize and analyze the learned latent
vector representations of COFs, {mm}, and of the adsorption
properties, {pp}, in the deployment low-rank matrix model of
A(θ=0.4). We resort to principal component analysis (PCA) to
project {mm} and {pp}, contained in the columns of M and P,
respectively, onto the 2D subspace spanned by the first two
principal components of M∥P, where ∥ denotes horizontal
concatenation. The dimension reduction incurred a relative
reconstruction error of 63% based on the Frobenius norm.
The resulting map of COFs in Figure 6a visualizes the

organization of COF vectors {mm} in the latent space. Because
the learned latent representation of COF m, mm, encodes its
adsorption properties, COFs with similar (dissimilar)
adsorption properties are expected to congregate (separate)
in the map. To illustrate, each COF vector in Figure 6a is
colored by the (left) CH4 adsorption at (298 K, 65 bar),
(middle) H2S Henry coefficient at 300 K, and (right) H2O
Henry coefficient at 300 K. Indeed, nearby COFs in the map
tend to exhibit similar values of a given adsorption property:
COFs with the highest CH4 uptake at (298 K, 65 bar), H2S
Henry coefficients at 300 K, and H2O Henry coefficients at
300 K, respectively, tend to lie on the bottom left, top, and top

Figure 5. Ranked COF biases, {μm}, from the deployment low-rank model. Only the COFs with the lowest and highest μm are shown. The bottom
row visualizes the three top- and bottom-ranked COF structures.
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right of the latent COF space. Figure S7 shows the COF map
colored by the remaining adsorption properties.
Figure S8 shows the complete map of adsorption proper-

tiesi.e., the organization of the adsorption property vectors
{pp} in the latent space. Because the interaction term in eq 1 is
the dot product m pm p

T , the location of the latent property

vector pp indicates the region of latent space that tends to
contain COFs with high values of adsorption property p. To
illustrate, compare (i) the location of the latent property
vectors {pp} pertaining to the CH4 adsorption at (298 K, 65
bar), H2S Henry coefficient at 300 K, and H2O Henry
coefficient at 300 K in Figure 6b and (ii) the location of the
COFs with the highest and lowest values of these properties in
Figure 6a. The COFs whose latent vectors are oriented in the
same (opposite) direction of the latent vector of a property
tend to have large (small) values of that property.
In summary, Figure 6 illustrates that a low-rank model of an

incomplete COF−adsorption-property matrix machine learns a

map of COFs, wherein COFs with similar adsorption
properties congregate. These latent representations were
learned from the observed values in an incomplete COF−
adsorption-property matrix. The map of COFs, wherein
proximity implies similarity of adsorption properties, is
practically useful for: (1) lead optimization, where we search
the latent space for nearest neighbors of a lead COF with good
but insufficient performance, (2) selecting diverse sets of
COFs in an experimental design strategy to efficiently explore
COF space, and (3) building supervised machine learning
models to predict other properties of COFs, where the latent
representations of COFs can serve as feature vectors.
In movie recommendation systems, the latent variables of

movies, contained in the vector representations of movies
learned via a low-rank model from the observed (movie, user)
ratings, may correspond to interpretable, intuitive features of
movies such as genre or orientation toward children; however,
they may also be uninterpretable.23 It would be interesting to

Figure 6. Learned map of COFs and gas adsorption properties: the latent representations of (a) COFs, {mm}, and (b) a subset of the adsorption
properties, {pp}, projected onto the 2D subspace spanned by the first two principal components (PCs) of M∥P. (a) Each point represents a COF,
colored by (left) CH4 adsorption at (298 K, 65 bar), (middle) H2S Henry coefficients at 300 K, and (right) H2O Henry coefficients at 300 K
(Outlier: Py-1P-quasi-AB). (b) Each point represents an adsorption property.
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inspect the relationship between the learned latent variables in
the vectors {mm} and the structures of COFs they represent,
which were not explicitly input to the recommendation system.
3.4. Effect of Observed Fraction θ on Performance.

How complete must the COF−adsorption-property matrix be
for the recommendation system to reliably rank COFs
according to their adsorption properties? Because the COF−
adsorption-property matrix is in reality complete, we have the
luxury of studying the impact of the fraction of observed
entries, θ, on the imputation performance of the recom-
mendation system.
For a fraction of observed values θ ∈ {0.1, 0.2, ..., 0.9}, we

sampled an ensemble of COF−adsorption property matrices
A(θ) (50 simulations of data collection for each θ). For each
instance of A(θ), we conducted a hyperparameter sweep using a
training/validation split of the observed entries, trained a
deployment model on all observed entries using the optimal
hyperparameters, and then tested the imputation performance
of the deployment model on the unobserved entries serving as
test data. Figure S5 shows the distribution (among the
simulations of data collection) of optimal hyperparameters
(kopt

(θ), λopt
(θ)) for each θ. Figure 7 shows Spearman’s rank

correlation coefficient, ρ, between the prediction of the missing
(COF, adsorption property) value by the deployment low-rank
model and its actual value, grouped by adsorption property, as
θ varies. The bands show the standard deviation over the 50
simulations of data collection. As in Figure 4b, ρ for the H2O
Henry coefficient is unsatisfactory ∀θ owing to its poor
correlation with the other properties. For the majority of gas
adsorption properties, the recommendation system ranks
COFs according to the property reasonably well (i.e., a
reasonably high ρ > 0.7), until θ is reduced below θ = 0.4. With
such a paucity of training examples for θ < 0.4, the low-rank
model cannot learn useful latent representations of COFs and
adsorption properties, resulting in diminished imputation
performance. For comparison, ρ for the baseline material
bias model is also shown in Figure 4b; the interaction term
provides significant predictive value, with the exception of N2

adsorption at (300 K, 0.001 bar) and O2 adsorption at (298 K,
5 bar).
In conclusion, the imputation performance of the low-rank

matrix model rapidly diminishes when more than 60% of the
entries in the COF−adsorption-property matrix are missing. As
the fraction of observed entries θ in the matrix increases, the
recommendation system ranks COFs according to their
adsorption properties more reliably.

3.5. Uncertainty Quantification. Suppose our material
recommendation system predicts some missing (material,
property) value to be optimal for an adsorption-based
engineering application. To motivate an experimental measure-
ment in the lab, we may wish to quantify the uncertainty
associated with this prediction. One approach to quantify the
uncertainties associated with the (material, property) values
imputed by the low-rank model in eq 2 is through bootstrap
resampling of the observed entries.
We demonstrate uncertainty quantification via bootstrapping

for our COF recommendation system based on an instance of
an incomplete COF−adsorption-property matrix, A(θ=0.4). First,
we select 100 bootstrap samples of the observed (COF,
adsorption property) values (bootstrap sample = random
sample of the observations Ω, with replacement, of size |Ω|).
Then, we fit a low-rank model to each bootstrap sample of
observations, giving us an ensemble of 100 different low-rank
models. The point prediction of a missing (material, property)
value follows from the mean prediction among the ensemble of
low-rank models; the associated uncertainty follows from the
standard deviation of the predictions. Figure S9a shows
bootstrap confidence intervals overlaid on the true values of
the missing (COF, adsorption property) values. The width of
each bootstrap confidence interval reflects the uncertainty in
the prediction. To assess whether the uncertainty estimates via
bootstrap resampling indeed capture uncertainty, we show the
sharpness and calibration/honesty of the uncertainty esti-
mates85 in Figure S9b and S9c. Indeed, the uncertainty
estimates are satisfactorily honest, demonstrating that boot-
strap resampling is an easy-to-implement, but computationally

Figure 7. Effect of the fraction of observed values θ on the performance of the recommendation system for imputing missing (COF, adsorption
property) values. Blue circles show the mean (over 50 simulations of data collection) Spearman’s rank correlation coefficient between the
prediction of the missing (COF, adsorption property) value and its true value, as a function of θ, grouped by adsorption property. Yellow stars show
the mean Spearman’s rank correlation coefficient for the benchmark material bias model. Shaded bands signify the standard deviation.
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expensive, means to quantify uncertainty in a recommendation
system.

4. DISCUSSION
4.1. Challenges. The success of a recommendation system

for NPMs is predicated on structured, open, and high-fidelity
databases of NPMs and their adsorption properties.86−88 The
NIST/ARPA−E Database of Novel and Emerging Adsorbent
Materials19 (NIST-ISODB) is a collection of compiled gas
adsorption measurements in NPMs from the literature, from
both experimental and simulation sources, for a variety of gases
at a wide range of conditions. We initially set out to develop a
recommendation system using Henry coefficients extracted
from experimental data in the NIST-ISODB, but we found the
resultant recommendation system to perform poorly. We
discuss this further and provide possible explanations in
Section S7.
Our material recommendation system suffers from the cold

start24 problem. Suppose a new material is reported, but none
of its properties have been observed. Then, the model in eq 1
is unable to make a prediction about any of this material’s
properties because we do not have data to learn its latent
representation, mM+1.
Some material properties of interest may be derived from

properties that appear in the material−property matrix. Owing
to error propagation, the ranking by the recommendation
system according to a derived property may be less accurate
than according to a property that directly appears in a column
of the matrix. We illustrate this in Section S9 for dilute Xe/Kr
selectivity in COFs, which follows from the ratio of Xe and Kr
Henry coefficients that appear in two separate columns. For
this reason, it may be beneficial to include the derived property
of interest as a separate column in the matrix; however, if it is
derived from many other properties, this column will be sparse.
Likely, new (material, property) observations, perhaps

pertaining to new materials and new properties, will be
continually acquired. To update the recommendation system
in light of newly acquired data, we do not need to retrain the
low-rank model from scratch. The loss in eq 3 (with Ω
augmented) can be minimized on-line with, e.g., alternating
minimization. Given new observations pertaining to existing
materials and properties, the current low-rank model serves as
a warm start for minimizing the loss, and a few more iterations
of alternating minimization will update the latent vectors of
materials and properties and material biases. Given new
observations pertaining to a new material (property), we can
learn the latent vector of the new material (property) by
treating the latent vectors of properties (materials) as static,
much like conducting an iteration of alternating minimiza-
tion.22 That said, the run time of training a new low-rank
model from scratch is likely to be insignificant given the typical
size of (material, property) data sets. For example, in this work,
the run time to fit a low-rank model with LowRankMo-
dels.jl, on the 572 × 16 COF−adsorption-property
matrix, is on the order of seconds.
We introduced missing entries in the (in reality, fully

observed) COF−adsorption-property matrix by (uniform)
randomly selecting entries to ablate. In practice, however, (i)
some properties are more commonly measured than others,
(ii) some materials are more commonly studied than others
owing to, e.g., ease of synthesis, and (iii) there are likely
correlations between and temporal trends with binary random
variables that represent whether the (material, property) values

are observed. To expand on (iii), for example, a material with a
superior (inferior) value of a desired property may become
popular (unpopular) for measurements of other properties. In
Section S8, we show the imputation performance of a low-rank
model fit to an incomplete COF−adsorption-property matrix,
where entries were observed in a bias manner; 10% of the
COFs were popular for measurements and 10 % of the COFs
were unpopular. Unsurprisingly, the imputation performance
of the recommendation system was enhanced and diminished
among the popular and unpopular COFs, respectively.
Below, we propose future research directions to address each

of these challenges and improve the imputation performance of
a material recommendation system.

4.2. Future Research Directions. 4.2.1. Structural and
Chemical Features of Materials. Most importantly, we
propose to build a recommendation system that leverages
structural and chemical features of materials, in addition to the
observed adsorption properties, to impute the missing entries
in the material−property matrix. A strength of the low-rank
model in eq 1 is that vector representations of materials are not
needed to impute the missing entries of the material−property
matrix; rather, the vector representations of materials are
learned from their observed properties. However, a recom-
mendation system that uses chemical and structural features of
materials to learn structure−property relationships will boost
imputation performance and solve the cold start problem for
new materials or properties.
A list of hand-crafted features of materials, such as the void

fraction, surface area, pore size, percent carbon atoms, etc.,
could be input to the recommendation system for it to learn
their relationships with the properties. In the analogy with
movie recommendation systems, this is like including features
about movies, such as the genre, directors, year of production,
and actors. A simple approach to include hand-crafted features
of materials is to append each feature as a (fully observed)
column to the material−property matrix. However, then latent
material vectors will encode the structural features of materials
in addition to (more relevant to applications) properties.

4.2.2. Address Selection Bias. To characterize selection
bias, it would be interesting to construct a temporal model for
the process by which materials and properties are selected for
experimental investigation. More, we can work to debias a
recommendation system trained on experimental data with
selection bias.89

4.2.3. Active Learning and Bayesian Optimization in a
Low-Rank Model Framework. In an active learning strategy,
we aim to decide which missing (material, property) values to
observe/measure to reduce the uncertainty in predictions by
the recommendation system.90,91 In Bayesian optimization,92

we aim to find the material with the optimal property in a
column of the material−property matrix using the fewest
experimentsby revealing the fewest missing entries in the
column. The property of interest could be a property currently
covered by the recommendation system or a new, unseen
property. Both active learning and Bayesian optimization will
require a matrix completion method that quantifies uncertainty
in its predictions.

4.2.4. Uncertainty Quantification. We demonstrated boot-
strap resampling of observations for quantifying uncertainty in
the predictions of the recommendation system. However,
training many low-rank matrix models, one for each bootstrap
sample, is computationally expensive. More advanced,
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probabilistic matrix completion methods are designed to
quantify uncertainties in the imputed entries of the matrix.93,94

4.2.4.. Nonlinear Models. The low-rank model in eq 1
models property p of material m as a linear model in terms of
the material vector input: A f m p m( )mp p m p m m

T μ≈ = + (view

pp as parameters of the function f p(·)). In contrast, a nonlinear
version of matrix factorization95 that treats f p(·) as a nonlinear
function may grant us more expressiveness for capturing
complex relationships between materials and adsorption
properties, thereby improving imputation performance.

5. CONCLUSIONS

In materials science, we are often interested in many different
properties of many different materials. The corresponding
material−property matrix often, in practice, has many missing
entries since every property of every material has not been
measured. The idea of a material recommendation system is to
leverage the observed (material, property) values to impute the
missing ones. Interestingly, the (material, property) values in a
material recommendation system are mathematically analo-
gous to (product, customer) ratings in commercial recom-
mendation systems. A material recommendation system is
useful for recommending (i, application-led material search1) a
material that optimizes a specific property or (ii, material-led
application search17) an optimal application for a given
material.
A material recommendation system constituted by a low-

rank model of the incomplete material−property matrix, fit to
the observed (material, property) values, (i) provides
predictions of the missing entries in the material−property
matrix and (ii) generates a map of materials, wherein materials
with similar properties congregate.
We demonstrated a recommendation system that recom-

mends COFs for different gas adsorption tasks. We
constructed incomplete COF−adsorption-property matrices
from 16 simulated gas adsorption properties of 572 COF
structures from Ongari et al.17 Then, we trained low-rank
models22 of the incomplete COF−adsorption-property ma-
trices and (i) assessed their performance on the task of
predicting the missing entries and (ii) inspected their learned
map of COFs. Given that fewer than 60 % of the entries of the
matrix were missing, the recommendation system was able to
rank COFs according to their (missing) adsorption properties
reasonably well (Spearman’s rank correlation coefficient > 0.6),
with the exception of H2O Henry coefficients. Imputation
performance diminishes rapidly when more than 60% of the
entries in the material−property matrix are missing. Though
the 60% figure does not necessarily generalize to other data
sets, this demonstrates that the success of a material
recommendation system is predicated on having a sufficient
amount of training data. Finally, we drew the map of COFs
and colored each COF vector by the adsorption properties to
find that, indeed, COFs with similar (dissimilar) adsorption
properties clustered together (separated) in the map.
We conclude that material recommendation systems, if

sufficient training data is available, could be widely useful for
leveraging existing measurements of properties of materials to
fill in missing measurements. In turn, this could accelerate the
matching of materials for specific applications.
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