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Abstract

Ancestral sequence reconstruction (ASR) uses an alignment of extant protein sequences, a phylogeny describing the history of the
protein family and a model of the molecular-evolutionary process to infer the sequences of ancient proteins, allowing researchers to
directly investigate the impact of sequence evolution on protein structure and function. Like all statistical inferences, ASR can be
sensitive to violations of its underlying assumptions. Previous studies have shown that, whereas phylogenetic uncertainty has only a
very weak impact on ASR accuracy, uncertainty in the protein sequence alignment can more strongly affect inferred ancestral
sequences. Here, we show that errors in sequence alignment can produce errors in ASR across a range of realistic and simplified
evolutionary scenarios. Importantly, sequence reconstruction errors can lead to errors in estimates of structural and functional
properties of ancestral proteins, potentially undermining the reliability of analyses relying on ASR. We introduce an alignment-
integrated ASR approach that combines information from many different sequence alignments. We show that integrating alignment
uncertainty improves ASR accuracy and the accuracy of downstream structural and functional inferences, often performing as well as
highly accurate structure-guided alignment. Given the growing evidence that sequence alignment errors can impact the reliability of
ASR studies, we recommend that future studies incorporate approaches to mitigate the impact of alignment uncertainty.
Probabilistic modeling of insertion and deletion events has the potential to radically improve ASR accuracy when the model reflects
the true underlying evolutionary history, but further studies are required to thoroughly evaluate the reliability of these approaches
under realistic conditions.
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Significance

Ancestral sequence reconstruction is a powerful technique for directly investigating the sequence, structure and
function of ancient molecules to better understand molecular-evolutionary processes. However, ancestral reconstruc-
tion may not always be accurate under challenging conditions that make it difficult to correctly align protein sequen-
ces. We found that integrating information from many different alignment methods can produce reliable ancestral
seguence reconstructions, even when the individual protein alignments have many errors. Our study suggests align-
ment-integrated methods may be an important approach for improving ancestral sequence reconstruction accuracy
under challenging conditions.

Introduction sequence, structure and function of ancient molecules.

Because ASR studies rely on statistical inferences of ancestral
Aside from happening upon a piece of preserved ancient DNA sequences that cannot be validated directly, the accuracy with
(Meyer et al. 2016) or reversing the arrow of time (Micadei which ancestral protein sequences can be inferred has been a
et al. 2019), ancestral sequence reconstruction (ASR) is the major concern of the ASR research community (Hall 2006;
only available technique for directly investigating the Randall et al. 2016; Eick et al. 2017). Previous studies have
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suggested that ASR is expected to be highly accurate in many
cases (Randall et al. 2016; Vialle et al. 2018). Interestingly,
studies have shown that the accuracy of the phylogenetic
tree describing the evolutionary history of the protein fam-
ily has only a very weak impact on ASR accuracy and
generally only affects the most statistically ambiguous se-
guence positions (Hanson-Smith et al. 2010). This largely
counterintuitive result is due to the fact that the same
evolutionary scenarios that make the phylogenetic tree un-
certain also make ancestral sequences more similar across
different phylogenies.

Some studies have suggested that there may be a trade-off
between sequence reconstruction accuracy and the accuracy
with which some structural and functional properties of the
sequence can be inferred (Williams et al. 2006; Matsumoto
et al. 2015; Arenas et al. 2017). Specifically, maximum-a-
posteriori (MAP) ASR [also referred to as maximum-
likelihood {ML} ASR], which reconstructs the most accurate
protein sequences, can produce biased inferences of struc-
tural stability. This stability bias can be alleviated using a sam-
pling approach that randomly generates ancestral sequences
from the posterior probability (PP) distributions at each site.
However, this sampling approach produces sequences that
are less accurate than MAP reconstruction, which can impact
inferences of other structural or functional properties (Eick
etal. 2017).

One recent study found that the alignment of extant pro-
tein sequences forming the basis for phylogenetic inference
and ASR can have a potentially strong affect on ASR accuracy
(Vialle et al. 2018). That ASR accuracy depends on alignment
accuracy is concerning, as the “correct” alignment of extant
protein sequences can hardly ever be known with certainty,
and there are few reliable methods for diagnosing alignment
error or ambiguity (Dickson et al. 2010; Penn et al. 2010). It is
currently unknown whether the same alignment errors that
cause ASR errors also impact the inferred structural or func-
tional properties of reconstructed ancestral sequences, and no
general methodologies exist to alleviate the impact of align-
ment error on ASR.

Here, we develop and evaluate a novel ASR approach that
combines information from many different sequence align-
ments to infer “alignment-integrated” ancestral sequences.
Although this approach does not completely eliminate the
impact of alignment errors on ASR accuracy, we found that
integrating sequence alignments reduces both ASR errors and
errors in the structural and functional properties of inferred
ancestral sequences, often performing as well as structure-
guided sequence alignment. Our study suggests that, partic-
ularly for cases in which diverse structures of different protein
family members are not available to guide the alignment pro-
cess, integrating different alignments can be a reliable ap-
proach for mitigating the impact of alignment errors on
ASR accuracy.

Results and Discussion

Alignment Errors Vary with Alignment Method and Protein
Domain Family

To assess the impact of alignment errors on ASR accuracy, we
used structural alignments of individual protein domains to
simulate sequence data along empirical domain-family phy-
logenies (see supplementary table S1 and fig. S1,
Supplementary Material online), with sequence composition
and insertion—deletion (indel) patterns inferred from the struc-
tural alignment (see Materials and Methods section).
Simulated data were then aligned using a variety of
sequence-based methods as well as a “structure-guided” ap-
proach that used the original structural alignment to “seed”
the alignment of additional sequences (see Materials and
Methods section). Comparing sequence-alignments and
structure-guided alignments to the correct simulated align-
ment allowed us to evaluate the extent to which the simula-
tion conditions generated alignment errors that could
potentially impact ASR accuracy.

In general, both sequence-alignments and structure-
guided alignments underestimated the correct alignment
length by placing fewer gaps in the alignment, resulting in
overestimation of the proportion of variable and parsimony-
informative positions (supplementary table S2 and fig. S2,
Supplementary Material online). Across the five different
protein-domain families used in this study, inferred align-
ments underestimated alignment length by 1.3-fold, on aver-
age (t-test P=6.41e~%), and the number of gaps by 1.2-fold
(P=1.69e3). The proportion of variable sites was overesti-
mated by 1.8-fold (P=4.97e"'), and the proportion of
parsimony-informative sites was overestimated by 1.9-fold
(P=2.28e""3). Structure-guided alignments were no differ-
ent from sequence-alignment methods in any of the calcu-
lated alignment attributes (t-test P>0.10), suggesting
structure-guided and sequence-alignment methods tend to
make similar errors in alignment length and the numbers of
variable and parsimony-informative sites.

Although the general trend of alignment length underes-
timation is strongly supported by our data and is consistent
with results from a previous study (Fletcher and Yang 2010),
we observed significant variation in alignment errors, both
across protein domain families and across alignment methods
(supplementary table S2 and fig. S2, Supplementary Material
online). For example, ClustalW tended to underestimate align-
ment length to a greater degree than other sequence-
alignment methods (by 2.3-fold on average, vs. 1.1-fold for
other methods; t-test P< 0.034). Across all alignment meth-
ods, the caspase activation and recruitment domain (CARD)
protein domain family’s correct alignment length was under-
estimated to a greater degree (1.9-fold) than the other pro-
tein domain families (1.2-fold; t-test P < 0.06). In contrast to
this general trend of alignment length underestimation,
mafft, probalign and tcoffee tended to overestimate the
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lengths of the correct DSRM1 and DSRM2 protein domain
family alignments (by 1.3-fold; P< 4.07e™¥). These results
suggest different alignment methods produce different types
of alignment errors for different protein domain families.
However, variation in alignment accuracy across replicate
data sets of the same protein domain family was low, with
the standard deviation (SD) never exceeding 11% of the in-
ferred mean value of each alignment attribute (see supple-
mentary table S2, Supplementary Material online). This
suggests that most of the variation in alignment accuracy is
expected to be due to the particular interaction between a
chosen alignment algorithm and the way a protein domain
family has evolved, rather than stochastic variation in the sim-
ulated evolutionary process.

We quantified the distance of each inferred alignment
from the correct simulated alignment using a position-wise
distance metric, which estimates the probability that a ran-
domly selected residue from a randomly selected sequence
was aligned to an incorrect residue from another randomly
selected sequence (Blackburne and Whelan 2012). In general,
the results of this distance-based alignment assessment (sup-
plementary table S3 and fig. S3, Supplementary Material on-
line) were consistent with those of more traditional alignment
metrics (supplementary table S2 and fig. S2, Supplementary
Material online). Across all protein domain families and align-
ment methods, the probability of randomly selecting an in-
correctly aligned residue was 0.31. However, there was
strong variation in alignment distances across both domain
families and alignment methods (supplementary table S3 and
fig. S3, Supplementary Material online). The CARD family pro-
duced larger average alignment distances than the other do-
main families (0.72 across alignment methods, vs. 0.21 for the
other domain families; t-test P< 9.67e7°). Across protein
domains, structure-guided alignments were >1.25-fold closer
to the correct alignment than any of the sequence-alignment
methods (t-test P < 0.033). There were no detectable system-
atic differences in alignment distances among sequence-
alignment methods, which produced average distances be-
tween 0.24 (msaprobs and probcons) and 0.43 (probalign;
one-factor ANOVA P=0.92).

Overall, these results suggest the test cases used in this
study cover a range of alignment difficulties that do not
strongly favor particular sequence-alignment algorithms
over others and represent a reasonable test suite for assessing
the impact of alignment errors on ASR under realistic condi-
tions. Structure-guided alignment methods have been shown
to out-perform sequence-alignment in previous studies (Kim
and Lee 2007), which has typically been attributed to the
generally stronger conservation of protein structure versus
sequence (Ingles-Prieto et al. 2013). Our alignment-distance
results are consistent with these findings, but more traditional
alignment metrics did not strongly differentiate structure-
guided from sequence-alignment methods, suggesting the
structure-guided approach might produce only marginally

better alignments under the challenging conditions used in
this study.

Alignment Errors Reduce ASR Accuracy

Each set of empirical simulation conditions (see Materials and
Methods section) was used to generate replicate correctly
aligned extant protein sequences at the tips of the phylogeny
and correct ancestral sequences at every internal node. We
assessed ASR error rates at each node on the phylogeny by
comparing the ancestral sequence inferred using only an
alignment of the extant protein sequences to the correct sim-
ulated ancestral sequence at that node. Three types of ASR
errors were considered: 1) residue errors, in which both the
inferred and correct ancestral sequences have an amino-acid
residue at the given alignment position, but the residues dif-
fer; 2) insertion errors, in which the inferred ancestral se-
guence has a residue at the given alignment position, but
the correct ancestral sequence has a gap character (“—"),
and 3) deletion errors, in which the inferred ancestral se-
qguence has a gap character, but the correct ancestral se-
guence has an amino-acid residue. The ASR error rate for
an inferred ancestral sequence was calculated as the number
of ASR errors, divided by the length of the pairwise alignment
of the correct to the inferred ancestral sequence (i.e. errors/
site). The expected ASR error rate for a given ancestral node
was calculated as the mean error rate over replicates.

Given a sequence alignment, phylogenetic tree and statis-
tical model of the molecular-evolutionary process, reconstruc-
tion of the most likely residue at each position in the
alignment and node on the phylogeny has been well-
described, as has the assessment of statistical confidence in
the residue reconstruction (Yang et al. 1995; Koshi and
Goldstein 1996). However, due to the way gap characters
are encoded in most phylogenetic models, standard ASR
does not reconstruct historical insertions or deletions (indels),
resulting in ancestral sequences with no gap characters (Hall
2006). Unfortunately, the methodological details of ancestral
indel reconstruction are poorly described in many published
ASR studies (Chang et al. 2002; Gaucher et al. 2003;
Bridgham et al. 2006; Voordeckers et al. 2012; Tan et al.
2016), making it difficult to assess how ancestral gaps were
inferred. Although some methods have been developed that
infer ancestral gaps as part of a more complex likelihood
model (Redelings and Suchard 2005; Herman et al. 2014;
Holmes 2017; Shim and Larget 2018), these approaches are
largely untested and have not been adopted in many ASR
studies. Many historical ASR studies probably used
maximum-parsimony reconstruction of presence—absence an-
cestral states or a parsimony-like subjective criterion to place
ancestral gap characters (Hall 2006; Hanson-Smith and
Johnson 2016). Other studies have suggested using ML
(MAP) reconstruction of presence-absence states to infer

Genome Biol. Evol. 12(9):1549-1565 doi:10.1093/gbe/evaal64

1551

220z ¥snbny gz uo 1senb Aq 1.991685/6%/5 1/6/Z L /21911E/2q6/Ww0d dno-djwapede//:sdly Wwolj papeojumoq



Aadland and Kolaczkowski

GBE

ancestral gaps (Ashkenazy et al. 2012), which is the approach
we take here (see Materials and Methods section).

Assuming the correct simulated alignment, we found that
site-wise MAP reconstruction of ancestral gap states gener-
ated error rates comparable with residue reconstruction (sup-
plementary tables S4-S8 and figs. S4-S7, Supplementary
Material online). Averaged across all protein domain families
and ancestral nodes, ASR error rates were low when the cor-
rect alignment was known in advance (supplementary table
S4, Supplementary Material online), and the rate of residue-
reconstruction errors (6.18e~3 errors/site) was slightly worse
than the rate of erroneous insertions (8.49e~* errors/site) or
deletions (8.17e™%: t-test P< 0.013). This pattern was gener-
ally observed across all the protein domain families (supple-
mentary tables S4-S8 and figs. S4-S7, Supplementary
Material online). Only in the case of the CARD family was
the residue reconstruction error rate (3.37e73) slightly lower
than the rate of erroneously inferred insertions (3.55¢73) or
deletions (3.44e~3), and these differences were not statisti-
cally significant (t-test P> 0.31). For all other domain families,
residue reconstruction error rates were slightly higher than
indel reconstruction error rates (P < 0.039). These results sug-
gest site-wise MAP reconstruction of ancestral gap states—
although failing to accurately model statistical dependencies
among contiguous gaps (Ashkenazy et al. 2012)—provides a
robust methodology for systematically inferring ancestral
insertions and deletions under realistic conditions, provided
the alignment is accurate.

When the alignment is not known in advance and must be
inferred from the sequence data, we found errors in ASR were
higher overall and increased with increasing distance from the
correct alignment (fig. 1; supplementary tables S4-S8 and
figs. S4-57, Supplementary Material online). Total ASR error
rates were >4.8-fold higher when ancestral sequences were
inferred  using  sequence-alignment methods  (t-test
P<5.78e). Even when structure-guided alignments were
used to infer ancestral sequences, total ASR error rates were
4.4-fold higher than when the correct alignment was known
in advance (t-test P< 6.84e~3). These results were generally
consistent across ASR error types and protein domain families
(supplementary tables S4-58 and figs. S4-S7, Supplementary
Material online). Residue errors increased by at least 2.6-fold
when sequence-alignment was used, compared with the cor-
rect alignment (t-test P< 0.013), and indel errors increased by
12.3- and 12.7-fold, respectively (t-test P< 4.37e73). In all
cases, structure-guided alignments produced ancestral
sequences that had >1.5-fold fewer errors than sequence-
alignment methods (t-test P < 8.43e73).

In general, there was a strong correlation between an in-
ferred alignment’s distance from the correct alignment and
total ASR error rate (fig. 1; # > 0.78, mean r* = 0.88).
Similarly high correlations were observed for rates of insertion
and deletion errors (7 > 0.76, mean r» > 0.85). However,
residue errors were less strongly correlated with the distance
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Fig. 1—Errors in ASR correlate with alignment errors. We simulated
protein evolution using empirically derived conditions from five protein
domain families and aligned the resulting sequences using structure-
guided and seven different sequence-alignment methods. We measured
the position-wise distance of each alignment from the correct simulated
alignment (x axis), which estimates the probability of selecting two incor-
rectly aligned residues at random. We used each alignment to infer the
most likely ancestral sequence at each node on the phylogeny and com-
pared the inferred ancestral sequence to the correct simulated sequence to
estimate ASR error rates. ASR errors were divided into four categories: 1)
residue errors, in which both correct and inferred ancestral sequences have
a residue at a given position in the alignment, but the residues differ; 2)
insertion errors, in which the inferred sequence has a residue at a given
alignment position, but the correct sequence has a gap; 3) deletion errors,
in which the inferred sequence has a gap, but the correct sequence has a
residue, and 4) total errors. Sequence-wide error rates (errors/site; y axis)
were computed by dividing the number of errors by the length of the
pairwise alignment of the inferred and correct ancestral sequences. Dotted
lines indicate least-squares linear regressions.

from the correct alignment (mean r? =0.55), largely because
muscle and probcons residue-errors were only very weakly
correlated with alignment distance (# < 0.23). Interestingly,
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whereas error rate increased with alignment distance at
roughly the same rate for alignment algorithms other than
ClustalW (slope of the best-fit regression line was 0.25-0.45
for total ASR error rate), ClustalW's total ASR error rate in-
creased much more rapidly as the alignment diverged from
the correct alignment (slope = 1.08; ANCOVA P< 1.63e73).
ClustalW'’s ASR error rates were generally higher than the
other alignment methods, even at comparable alignment dis-
tances (see fig. 1), suggesting that, in addition to an align-
ment's distance from the correct alignment, the specific types
of alignment errors made can also affect how alignment
errors impact ASR accuracy.

Our results confirm that ASR accuracy can be negatively
impacted by alignment errors (Vialle et al. 2018) and suggest
structure-guided alignment—although not a panacea—gen-
erally produces more accurate ancestral sequences than
sequence-alignment methods.

Alignment-Integrated ASR Improves Accuracy

Unlike the phylogeny (Hanson-Smith et al. 2010), our results
and those of a previous study (Vialle et al. 2018) strongly
suggest the sequence alignment—which can never be known
with certainty in practice—can have a strong impact on ASR.
We hypothesized that integrating over alignment uncertainty
could potentially alleviate this negative impact. To test this
hypothesis, we developed a heuristic approach that recon-
structs ancestral residues and gap states by integrating infor-
mation from the seven sequence-alignment methods
examined in this study, placing equal prior weight on each
alignment (see Materials and Methods section).

We found that integrating information from many
sequence-alignment algorithms reduced ASR error rates,
compared with relying on any single sequence-alignment
method (fig. 2; supplementary tables S4-5S8 and figs. S4—
S7, Supplementary Material online). On average, integrating
over alignment uncertainty improved total ASR error rates by
>1.3-fold, compared with choosing any single sequence-
alignment method (t-test P< 0.022). Although alignment-
integrated ASR always generated fewer errors in residue
and deletion reconstructions, improvements in these types
of ASR errors were generally small and not always statistically
significant. The fold-improvement in residue reconstruction
error rates ranged from 1.1 (compared with tcoffee; t-test
P=0.17) to 1.8 (ClustalW; t-test P=0.012), whereas the im-
provement in deletion error rates ranged from 1.1-fold (prob-
cons; P=0.18) to 2.1-fold (probalign; P= 8.43e3). The most
dramatic reduction in ASR error rate was observed for inser-
tion errors, for which alignment-integration improved error
rates by >2.9-fold, compared with single sequence-
alignment methods (t-test P < 7.04e73).

The same general pattern was consistently observed across
all of the protein domain families examined in this study
(supplementary  tables S5-S8 and  figs. S$4-57,

Supplementary Material online): compared with choosing a
single sequence-alignment method, alignment-integration
improved overall ASR error rates in all cases (by >1.1-fold),
primarily by reducing the rate of insertion errors (by > 1.8-fold;
t-test P< 0.022). In the case of the DSRM3 and RNA recog-
nition domain (RD) families, the improvement in total ASR
error rate was not always statistically significant, compared
with some of the sequence-alignment methods. In both
cases, mafft, msaprobs, muscle, and probcons were statisti-
cally equivalent to alignment-integration (t-test P> 0.057),
and probalign was equivalent to alignment-integration for
the RD family (t-test P=0.063).

These results suggest integrating over different sequence-
alignment methods generally improves the accuracy of ASR,
compared with choosing a single sequence-alignment
method, primarily by reducing the rate of erroneously inferred
insertions. The improvement in total ASR accuracy may be
small for highly conserved protein families or other scenarios
in which sequence-based alignments are generally accurate.

Interestingly, integrating over many sequence-alignments
slightly improved ASR error rates, even compared with the
highly accurate structure-guided alignment approach.
Overall, total ASR error rates were reduced by 1.2-fold using
alignment—integration, compared with structure-guided
alignment (fig. 2; t-test P=0.035), even though each of the
individual sequence-alignments was farther away from the
correct alignment than was the structure-guided alignment
(see supplementary table S3 and fig. S3, Supplementary
Material online). Compared with structure-guided alignment,
alignment-integration produced 1.2-fold more residue recon-
struction errors (t-test P=0.059), the same number of dele-
tion errors (t-test P=0.088), and 3.0-fold fewer insertion
errors (t-test P=7.68e3). This improvement in insertion error
rate was observed for all domain families except the RD
(P<0.033; see supplementary table S7 and fig. S6,
Supplementary Material online), and total ASR error rates
were never significantly better using the structure-guided
alignment (t-test P> 0.11). These results suggest alignment—
integration is a promising technique for reducing ASR error
rates, even for protein families for which diverse structural
data are not available to generate structure-guided
alignments.

Protein sequence alignments are inferred using diverse
methodologies, and new alignment methods are developed
regularly. Most widely used methods rely on heuristic strate-
gies to place gap characters, with a rough “guide tree” being
used to order pairwise alignments (Chatzou et al. 2016).
However, some methods have extended phylogenetic models
to explicitly incorporate indel events within a probabilistic
framework (Redelings and Suchard 2005; Loytynoja 2014).
We evaluated the accuracy of ancestral sequences recon-
structed from two different “phylogenetically aware” proba-
bilistic alignment methods: PRANK, which uses an indel
model assuming a rough guide-tree approximation of the
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Fig. 2—Alignment-integrated and structure-guided approaches produce fewer ASR errors than single sequence-alignment methods. We simulated
extant and ancestral sequences for five protein domain families, using empirically derived conditions, and aligned the resulting extant sequence data using
the correct simulated alignment, structure-guided, and seven different sequence-alignment methods. We used each alignment to infer the most likely
ancestral sequence at each node on the phylogeny. In addition, alignment-integrated ancestral sequences were generated by combining inferences from the
seven sequence-alignment methods. In each case, we compared the inferred ancestral sequence to the correct simulated ancestral sequence to estimate ASR
error rates (expected errors/site). Error rate distributions were calculated over 10 replicate simulations and all nodes on each of the five protein domain family
phylogenies. We plot the distributions of total- (top), residue-, insertion-, and deletion-errors (bottom) for each alignment method.

phylogeny (Loytynoja and Goldman 2008; Loytynoja 2014),
and BAli-Phy, which uses Bayesian co-estimation of phylogeny
and sequence alignment (Redelings and Suchard 2005).
Because BAli-Phy is extremely computationally costly (Nute
et al. 2019), analyses were conducted assuming the correct
phylogenetic tree. To facilitate comparisons, PRANK and BAli-
Phy were used only to generate sequence alignments, with
ancestral sequences reconstructed using the same approach
as for other alignment programs (see Materials and Methods
section).

Interestingly, we found that using the MAP alignment gen-
erated by BAli-Phy to reconstruct ancestral sequences was
statistically indistinguishable from assuming the correct simu-
lated alignment (see fig. 2; t-test P=0.16), whereas PRANK
alignments generated using a similar indel model (but without
conditioning on the correct phylogenetic tree topology)
resulted in among the least accurate ancestral sequences
(fig. 2). These results are consistent with those of a recent
study examining protein sequence alignment accuracy, in
which  BAli-Phy generated highly accurate sequence

alignments from simulated data, whereas PRANK did not
(Nute et al. 2019). Although these results suggest probabilistic
modeling of indel events could be a productive strategy for
improving the accuracy of protein sequence alignment and
ancestral reconstruction, future studies will be required to
determine why similar approaches can produce very different
results.

Alignment—Integration Increases ASR Ambiguity

It is common practice in many ASR studies to reconstruct
“plausible alternative” states at positions with ambiguous
reconstructions, to evaluate the impact of ASR uncertainty
on downstream analyses (Eick et al. 2017). ASR errors that
are only weakly supported are likely to be identified by this
approach, whereas errors with very high PP will likely be ac-
cepted as “correct,” potentially undermining the validity of
downstream structural or functional analyses.

We found that integrating many sequence-alignment
methods, in addition to reducing ASR error rates, also reduced
the PPs of erroneous ancestral states, when they were inferred
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(fig. 34; supplementary table S9, Supplementary Material on-
line). On average, the PP of erroneously inferred ancestral
states was >0.9 when any single sequence-alignment or
the structure-guided alignment was used to infer ancestral
sequences. In contrast, the alignment-integrated approach
had an average PP of 0.67 for erroneous ancestral states,
which was much more similar to that of the correct alignment
(0.65; t-test P=0.066). Interestingly, this strong similarity be-
tween the alignment-integrated approach and the correct
alignment was primarily confined to residue errors, for which
alignment-integration produced an average PP of 0.59, and
the correct alignment’s mean PP was 0.57 (P=0.093). In the
case of insertion or deletion errors, the correct alignment pro-
duced low average PPs for erroneously inferred ancestral
states (<0.43), whereas alignment—integration’s PPs were
much higher (>0.71, on average; t-test P< 6.85e73). Even
in these cases, however, alignment-integration produced
much more weakly supported errors than any single
seguence-alignment or structure-guided alignment, whose
mean PPs for erroneously inferred ancestral states were al-
ways >0.9 (t-test P< 8.15e3).

When ASR errors were made, alignment-integration also
generated much stronger support for the correct ancestral
state than any of the other alignment strategies, including
the correct alignment (fig. 3B; supplementary table S10,
Supplementary Material online). On average, the PP of the
correct ancestral state using sequence-alignment or
structure-guided alignment was <0.046 when the correct
state was not the MAP reconstruction. Assuming the correct
alignment improved the mean PP of the correct state by ~3-
fold (to 0.14; t-test P< 8.42e~3). However, alignment-inte-
gration further increased the mean PP of the correct ancestral
state by 2.4-fold, compared with the correct alignment
(P=5.78"3). Importantly, alignment-integration increased
the PP of the correct state to 0.33, on average, which is higher
than the cutoff of 0.2-0.3 commonly used to identify plausi-
ble alternative ancestral reconstructions (Eick et al. 2017). This
large increase in statistical support for the correct ancestral
state when errors were made by alignment-integration was
most pronounced for deletion errors (mean PP 0.46) and less
pronounced for insertion (mean PP =0.30) or residue errors
(mean PP=0.21). For all types of errors, however, alignment
integration produced > 1.3-fold higher PPs for the correct an-
cestral state, compared with the correct alignment (t-test
P <0.021) and >3.1-fold higher support than any other align-
ment method (P < 4.78e73).

Although alignment-integration is obviously not a pana-
cea, these results suggest, in addition to improving ASR ac-
curacy, alignment—integration might be an important
approach for “exposing” some potential errors to down-
stream robustness analysis by reducing the statistical support
for erroneously inferred ancestral states and increasing the PP
of the correct ancestral state when it is not inferred as the
MAP state.

The generally favorable increase in statistical ambiguity
when ASR errors are made by alignment-integration does
come at the cost of increased ambiguity for correctly inferred
ancestral states (supplementary table S11 and fig. S8,
Supplementary Material online). On average, correct ancestral
state inferences were made with high statistical confidence
using any of the methods examined in this study (>0.97 mean
PP). However, alignment-integration generated lower statis-
tical confidence in correct ancestral state inferences than any
of the other methods, all of which had >0.99 mean PP for
correctly inferred states (t-test P< 4.07e3). All of the ASR
methods exhibited stronger statistical support for correctly
inferred ancestral gap states versus correctly inferred amino-
acid residues (t-test P< 0.011). However, this difference was
more pronounced for alignment-integration, compared with
the other ASR methods. When using alignment-integration,
the mean PP of correctly inferred residues was 0.84 (>0.94
for the other methods), whereas the mean PP was 0.98 for
gap states correctly inferred by alignment-integrated ASR.
These results suggest the reduced susceptibility to ASR error
enjoyed by alignment-integration is also associated with in-
creased ambiguity in reconstructed amino-acid residues, even
when they are correctly inferred. This increased ASR ambigu-
ity could potentially increase the operational costs of evaluat-
ing robustness to uncertainty as part of a typical ASR study.

Alignment-Integration Improves Structural and Functional
Inferences

In many ASR studies, the actual ancestral sequences are only
of secondary interest, being commonly used to better under-
stand how the protein’s structural and functional properties
evolved (Eick et al. 2017). In some cases, researchers may
decide to tolerate additional errors in sequence reconstruc-
tion, provided they result in more accurate inferences of spe-
cific structural or functional properties (Williams et al. 2006;
Matsumoto et al. 2015; Arenas et al. 2017). To investigate the
potential impact of alignment errors on the accuracy of down-
stream structural and functional investigations, we generated
structural models of ancestral DSRM1 protein sequences in-
ferred using each alignment method and estimated each pro-
tein’s structural stability and double-stranded RNA (dsRNA)-
binding affinity using computational approaches (see
Materials and Methods section).

We found alignment-integrated ASR generally improved
computational estimates of structural stability and RNA-
binding affinity, compared with relying on a single
sequence-alignment method (fig. 4; supplementary table
S12 and fig. S9, Supplementary Material online). Aside from
probcons, alignment-integration had significantly smaller
errors in inferred structural stability than sequence-alignment
methods (>1.14-fold; t-test P < 0.048), performing similarly to
structure-guided alignment (fig. 4; t-test P=0.19). In this case,
alignment-integration and probcons produced equivalent
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Fig. 3—Alignment-integrated ASR generates lower statistical confidence in erroneous ancestral states and stronger support for the correct state when

errors are made. We used the correct simulated alignment, seven different sequence-alignment methods, structure-guided alignment, and alignment—
integration to infer ancestral protein sequences from five empirically derived simulation conditions. Total- (top), residue-, insertion-, and deletion- (bottom)
error rates (expected errors/site; x axis) were calculated by comparing the inferred ancestral sequence to the correct simulated sequence at each node on the
phylogeny. We used kernel density estimation to calculate the frequency distributions (y axis) of PPs for erroneous MAP ancestral states (left) and the correct
ancestral state (right) when the correct state was not the inferred MAP state.
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Fig. 4—Alignment-integrated and structure-guided approaches produce less error in inferred structural properties of ancestral proteins than single
sequence-alignment methods. We simulated replicate extant and ancestral sequences by evolving an RNA-binding protein domain along its empirically
determined phylogeny, using a structure-guided alignment to determine the amino-acid composition and pattern of insertions/deletions. Ancestral sequen-
ces were inferred using the correct simulated alignment, structure-guided alignment, seven different sequence-alignment methods, and alignment-inte-
gration. We modeled the structure of each ancestral sequence and estimated its structural stability (AG) using a computational approach. Errors in structural
stability were calculated by comparing values estimated from the correct ancestral sequences to those estimated using each alignment method. Error rate
distributions were calculated over 10 replicate simulations and all nodes on the phylogeny.

errors in structural stability estimates (t-test P=0.12). We
observed similar results for estimated dsRNA-binding affinity
(supplementary fig. S9, Supplementary Material online).
Alignment-integration produced >1.14-fold smaller errors in
affinity estimates, compared with all sequence-alignment
methods other than msaprobs (t-test P< 0.041). Binding
affinity errors were equivalent, on average, among
alignment-integrated, structure-guided, and msaprobs align-
ments (t-test P> 0.055).

As expected, having the correct sequence alignment im-
proved inferences of ancestral structural and functional prop-
erties in all cases (t-test P< 0.017) but did not completely
alleviate errors in structural stability or binding affinity esti-
mates. On average, stability and affinity estimates deviated
by >25% from the values inferred using the correct ancestral
sequences (supplementary table S12 and fig. S10,
Supplementary Material online). The mean structural stability
(AG) of correct ancestral DSRM1 domains was 0.087 cal/(mol
x K) per residue (i.e. the change in per-residue free energy of
the native state, compared with misfolded or unfolded states,
calculated using a contact-based energy model; see Materials
and Methods section), and structural stability estimates were
typically 29.7% away from the correct values. Similarly,
dsRNA-affinity estimates were, on average, 26.7% away
from the values inferred using the correct ancestral
sequences.

Together, these results suggest ambiguity or bias in the
ASR process can itself contribute to errors in downstream
structural and functional inferences under challenging condi-
tions (Williams et al. 2006; Arenas et al. 2017). Alignment
errors appear to exacerbate errors in estimated structural
stability and binding affinity of ancestral proteins, but
structure-guided alignment or alignment-integration signifi-
cantly reduced these errors.

There was a weak but significant positive correlation be-
tween ASR errors and errors in structural and functional esti-
mates for all alignment methods (supplementary table 513
and fig. S11, Supplementary Material online). Errors in the
inference of the ancestral sequence explained 40% of the
variation in structural stability error (P < 0.78) and 29% of
the variation in binding affinity error (” < 0.64). The mean
slope of the best-fit regression line across all alignment meth-
ods was 0.44 for structural stability and 4.25 for binding af-
finity, and all slopes were significantly greater than zero (t-test
P < 2.50e3). There were some differences in both correlation
and slope across alignment methods. For example, ClustalW,
mafft, probalign and tcoffee showed weaker correlations be-
tween ASR error rates and structural stability errors r <
0.29), while the remaining alignments had generally higher
correlations (7 > 0.41). Similarly, the slope of the best-fit
regression line varied from a minimum of 0.17 (probalign)
to a maximum of 0.74 (for the correct alignment). Similar
results were observed for the correlation between ASR error
rate and binding affinity errors: correlation varied between r?
= 0.021 (Clustalw) and r* = 0.64 (correct alignment), and
slope varied from 1.07 (ClustalW) to 7.00 (probalign; supple-
mentary table S12, Supplementary Material online).
Qualitatively similar results were observed when considering
different types of ASR sequence errors (see supplementary
table S13 and fig. S11, Supplementary Material online).

These results suggest the overall rate of sequence recon-
struction errors is positively correlated with errors in estimates
of structural and functional properties of ancestral sequences.
The generally lower magnitudes of structural and functional
errors observed for the structure-guided and alignment-
integrated methods can be at least partially explained by their
generally lower sequence-error rates. However, precisely how
sequence-reconstruction errors translate into errors in struc-
tural or functional estimates is expected to be complex in
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realistic cases, and the specific types of sequence-
reconstruction errors made by different alignment algorithms
likely also plays a role in determining errors in structural or
functional estimates.

Integrating PP Distributions Improves ASR Accuracy

To begin systematically investigating the factors impacting
ASR accuracy, we varied the branch lengths and indel rates
along a minimal three-taxon phylogeny with equal branch
lengths and the same indel rate on all branches (supplemen-
tary fig. S12, Supplementary Material online). Sequences
were simulated using the JTT+G evolutionary model, and
indels were placed randomly along the sequence. The ances-
tral sequence at the only node on the phylogeny was recon-
structed using the correct simulated alignment, seven
sequence-alignment methods and the alignment-integrated
approach (see Materials and Methods section).

Results from this three-taxon simulation were largely con-
sistent with those obtained using larger, more realistic phy-
logenies (fig. 5; supplementary figs. S13-516, Supplementary
Material online). Across all simulation conditions, alignment—
integration slightly improved ASR accuracy by 1.06-fold, com-
pared with choosing a single sequence-alignment strategy at
random (ttest P=4.01e ®). Even when the optimal
seguence-alignment strategy was chosen for each set of sim-
ulation conditions, alignment—integration improved ASR ac-
curacy by 1.03-fold (ttest P=3.33e %. Although the
improvement in alignment-integrated ASR accuracy was typ-
ically small in this case (~1%, on average), it was consistent
across the vast majority of simulation conditions. Only under
5/64 conditions was the best sequence-alignment method as
accurate or more accurate than alignment-integration, and
most of these conditions had short branch lengths and low
indel rates, leading to very low ASR errors across all methods.

As expected, ASR error rates increased with increasing
branch lengths for all methods (linear regression slope
>0.38, ¥ > 0.85, t-test P< 1.09e~3; supplementary table
S14 and figs. S13-516, Supplementary Material online). For
short branch lengths, ASR error rates were weakly correlated
with increasing indel rates: when branches were <0.6 sub-
stitutions/site, linear regression slope was >0.19 (> 0.68, t-
test P< 0.012; supplementary table S14 and figs. $13-516,
Supplementary Material online). However, the correlation be-
tween ASR error and indel rates was not observed for branch
lengths >0.6 (t-test P> 0.044).

Interestingly, alignment-integration appeared slightly
more accurate than using the correct sequence alignment
under some conditions, improving ASR error rates by
~0.6%, on average, compared with the correct alignment
(fig. 5); however, this difference was not statistically signifi-
cant (t-test P=0.42). We did observe slightly lower insertion
error rates using alignment-integration, compared with the
correct alignment (t-test P=9.56e ). Residue errors were

Sequence Alignment Integrated Alignment
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Fig. 5—Alignment-integrated ASR produces low rates of reconstruc-
tion errors in simplified three-taxon simulations. We simulated protein
sequences along a three-taxon phylogeny with equal branch lengths (x
axis) and the same indel rate (y axis) across the phylogeny (see supplemen-
tary fig. $12, Supplementary Material online). The most likely ancestral
sequence at the single node on the phylogeny was inferred using the
correct simulated alignment, seven different sequence-alignment meth-
ods, and alignment-integration. Total- (top), residue-, insertion-, and de-
letion- (bottom) error rates were calculated by comparing inferred
ancestral sequences to the correct simulated ancestral sequence. For
each set of simulation conditions, we calculated the difference in error
rates between the correct alignment versus the least-erroneous sequence-
alignment method (left column) or versus alignment—integration (right
column). Positive values (blue) indicate that the correct alignment pro-
duced more errors than the given inference method, and negative values
(red) indicate that the correct alignment produced fewer errors.

more  frequent  for  alignment—integration  (t-test
P=4.85e~%), and there was no overall difference in deletion
error rates between the two methods (t-test P=0.25).
These results suggest alignment—integration can consis-
tently improve ASR error rates, compared with single
sequence-alignment methods, even under an extremely sim-
plified three-taxon model system with random indels. Under
some of these simplified conditions, alignment-integration
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Fig. 6—"Majority-rule” explains the majority of cases in which align-
ment-integration improves ASR error rates. We simulated protein sequen-
ces along a simplified three-taxon phylogeny, varying the branch length
and indel rate (see supplementary fig. S12, Supplementary Material on-
line). Ancestral sequences were inferred using seven different sequence-
alignment methods and alignment—integration. Total- (top), residue-, in-
sertion-, and deletion- (bottom) errors were calculated by comparing in-
ferred ancestral sequences to the correct simulated ancestral sequence.
Here, we consider only those cases in which a single sequence-alignment
method produces an ASR error that is “repaired” by alignment-integra-
tion. Left panel. For each branch length (x axis) and indel rate (y axis), we
plot the proportion of alternative sequence-alignment methods that in-
ferred the correct ancestral state when one sequence-alignment method
generated an ASR error that was not found in the alignment-integrated
ancestral sequence. Right panel. Across all simulation conditions, we con-
sider all cases in which a sequence-alignment method makes an error, and
that error is repaired by alignment—integration. We report the proportion
of such cases in which 1) the majority of alternative sequence-alignment
methods infer the correct ancestral state (“correct”; blue), 2) the majority
of alternative sequence-alignment methods infer an incorrect ancestral
state, but that state is different from the original error (“different”; or-
ange), 3) the majority of alternative sequence-alignment methods infer the
same incorrect ancestral state (“same”; green), and 4) other scenarios
("other”; red).

can produce error rates comparable with those obtained
when the correct alignment is known in advance.

Results from three-taxon simulations suggest that simple
“majority-rule” is sufficient to explain most of the cases in
which alignment-integration improves ASR accuracy (fig. 6).
On average, when one of the alignment methods produced
an error that was not present in the alignment-integrated
ancestral sequence, 66.3% of the other sequence-
alignment methods reconstructed the correct ancestral state.
This result was consistent across all simulation conditions
(standard error 0.002; see fig. 6). Interestingly, residue-
reconstruction errors tended to have a weaker majority in
favor of the correct ancestral residue; on average only
60.0% of other alignments recovered the correct ancestral
residue when one alignment made a residue-reconstruction
error (z-test P=9.17e3%). Insertion errors had the strongest
majority in favor of the correct ancestral state, with, 82.5% of
alternative alignments recovering the correct gap state when
one alignment erroneously inferred an insertion at that posi-
tion (z-test P< 1.75e ).

When alignment—integration was able to “repair” an ASR
error made by a single sequence-alignment method, 78.4%
of these repairs were explainable by majority-rule (fig. 6).
However, in 8.1% of cases, the majority of alternative align-
ments also produced ASR errors, but the errors differed across
alignments. Interestingly, in 11.5% of cases, the majority of
sequence-alignments actually produced the same ASR error,
even though alignment-integration reconstructed the correct
ancestral state. Although the specific proportions differed
somewhat across different types of ASR errors (see fig. 6),
the pattern of ASR error repairs due to alignment—integration
was consistent: most repairable errors (70.0-97.0%, depend-
ing on error type) could be attributed to majority-rule, with
smaller proportions of errors being repaired by alignment-in-
tegration when most sequence-alignments generate different
ASR errors (0.2-11.4%) or when most alignments make the
same ASR error (2.6-16.3%).

For cases in which majority-rule could not explain align-
ment-integration repair of the ASR error, we observed an
upward shift in the PP of the correct ancestral state, compared
with similar scenarios that were not repaired by alignment—
integration (fig. 7). The proportion of cases in which the cor-
rect ancestral state had PP <0.1 fell from 0.65 when align-
ment-integration did not repair the ASR error to 0.51 when
alignment—integration repaired the ASR error, even though
the majority of sequence-alignments produced an erroneous
ancestral state (z-test P< 1.0e~2). Similarly, the proportion of
correct ancestral states with PP <0.05 fell from 0.48 when
alignment-integration did not repair the error to 0.21 when it
did (z-test P< 1.0e729).

When alignment—integration was able to repair an ASR
error by mechanisms other than majority-rule, we observed
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Fig. 7—Alignment-integration can “repair” ASR errors when the
correct ancestral state is not strongly disfavored across sequence-align-
ment methods. We simulated protein sequences along a three-taxon phy-
logeny, varying the branch length and indel rate (see supplementary fig.
S$12, Supplementary Material online). Ancestral sequences were inferred
using seven sequence-alignment methods and alignment-integration.
Total- (top), residue-, insertion-, and deletion- (bottom) errors were calcu-
lated by comparing inferred ancestral sequences to the correct ancestral
sequence. Here, we consider only those cases in which a single sequence-
alignment method produces an ASR error, and the majority of alternative

a large peak in frequency at the PP making the ancestral re-
construction maximally ambiguous (fig. 7), which occurs at
0.05 for residue- and deletion-errors (for which the correct
ancestral state is one of the 20 amino-acid residues) and at 0.5
for insertion-errors (for which the correct ancestral state is the
gap state). This suggests that a relatively large proportion of
ASR errors which majority-rule fails to repair—but which
alignment—integration still repairs by other mechanisms—oc-
cur at highly ambiguous positions with relatively flat PP dis-
tributions across many possible ancestral states. Interestingly,
the peak at 0.5 PP for insertion-errors was particularly pro-
nounced when alignment-integration repaired the ASR error
(fig. 7), suggesting “balance-of-probability” repairs may be
particularly efficacious in cases of insertion errors, which may
contribute to alignment-integration’s very low insertion error
rates (see fig. 2).

Overall, these results suggest majority-rule accounts for
~80% of cases in which alignment-integration is able to
“repair” an ancestral reconstruction error generated by a sin-
gle sequence-alignment method, but more subtle effects of
integrating PP distributions also contribute to improved ASR
accuracy by alignment-integration. When the correct ances-
tral state does not have very low PP across all sequence align-
ments, alignment-integration can sometimes repair ASR
errors, even when the majority of sequence alignments recon-
struct the wrong ancestral state.

Conclusions

For future ASR studies, our results add to the emerging evi-
dence that alignment errors cannot always be ignored when
evaluating the accuracy of ASR (Vialle et al. 2018), and in
practice, sequence-alignment methods cannot always be re-
lied upon to generate alignments accurate enough to ensure
reliable ASR. When multiple structures from across the protein
family are available, our results suggest that structure-guided
alignment is an efficient approach for improving ASR accu-
racy, but many protein families lack the rich empirical struc-
tural data necessary for structure-guided alignment. In these
cases, we recommend that future studies make some effort
to evaluate the impact of alignment ambiguity on ASR results.
The alignment-integration approach we present here is one
mechanism for incorporating alignment ambiguity into ASR
studies, which so-far appears to perform well across a variety
of realistic and simplified model problems.

The empirically derived simulation conditions used in this
study represent realistic but highly challenging ASR problems,

Fig. 7—Continued
sequence-alignment methods do not infer the correct ancestral state. We
further divide such cases into 1) errors that are “repaired” by alignment—
integration (blue) and 2) errors that are not repaired by alignment-inte-
gration (orange). Under each scenario, we estimate the frequency distri-
bution of the PP of the correct ancestral state by kernel density estimation.
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with generally long branches and large phylogenies (see sup-
plementary fig. S1, Supplementary Material online), which are
expected to contribute to elevated alignment and ASR error
rates (Vialle et al. 2018). Under less challenging conditions,
standard ASR methodology has been found to be highly re-
liable (Hanson-Smith et al. 2010; Randall et al. 2016; Vialle
et al. 2018), and alignment—integration is unlikely to provide
any benefits under conditions in which most sequence-
alignment methods are extremely accurate.

Alignment-integration is computationally costly, as many
different alignments need to be inferred, and phylogenetic
model parameters and ancestral sequences need to be com-
puted using each alignment before being combined.
Alignments that are very similar to one another may be at
best redundant and at worst could bias the ASR toward a
“false consensus.” Similarly, wildly inaccurate alignments
could introduce statistical noise or generate biased results
when included in the integration process. The identification
of a set of alignment algorithms that tend to produce highly
accurate but different alignments is expected to be important
for reducing the computational demands of alignment-
integrated ASR while maintaining its useful statistical proper-
ties and low error rates.

In many of our analyses, specific sequence-alignment algo-
rithms are able to generate ancestral sequences that are
nearly as accurate as those generated by alignment integra-
tion or structure-guided alignment, suggesting that using a
single sequence-alignment method may be adequate, even in
some challenging cases. However, the specific alignment al-
gorithm that will perform well for a specific ASR study may be
difficult to determine in practice and would likely require
comparisons with other alignment algorithms, which would
be nearly as computationally costly as alignment-integrated
ASR. Because there is no known alignment method that per-
forms optimally in all cases, we recommend that, at mini-
mum, future ASR studies that rely on a single sequence
alignment strongly justify the specific approach chosen as
the most appropriate for the study.

Our cursory analysis of probabilistic alignment methods
suggests Bayesian co-estimation of the alignment and phylo-
genetic tree has the potential to provide exceptionally accu-
rate ASRs, at least under some conditions. However, we
remain cautious about recommending this approach for a
number of reasons. First, our analyses were conditioned on
the correct phylogenetic tree, which is hardly ever known
with certainty, and the accuracy of ASR under the more real-
istic case of joint alignment—phylogeny co-estimation has not
been investigated. Second, the existing implementation of
this approach is extraordinarily computationally intensive,
which might necessitate trade-offs in practice that could par-
tially undermine the method’s high accuracy. Finally, a recent
study of alignment accuracy found that BAli-Phy’s
co-estimation approach was accurate only when sequence
data was simulated and not when biological benchmark

data sets were used to evaluate alignment accuracy (Nute
et al. 2019), suggesting the exceptional accuracy of this ap-
proach could be partially explained by strong similarity be-
tween the simulation model and that used to analyze the
data, which might not translate into high accuracy on biolog-
ical data. By using Bayesian Markov chain Monte Carlo to
sample alignments, phylogenies, and ancestral sequences
from the PP distribution, BAli-Phy implements an elegant ap-
proach at alignment-integrated ASR with a stronger formal
justification than the heuristic method we present here.
However, it is unknown whether integrating over the uncer-
tainty associated with a single alignment model will accrue
the same benefits as integrating many different alignment
algorithms. Future studies will be needed to address these
guestions before the BAli-Phy approach or similar methods
can be recommended in general for ASR.

Materials and Methods
Software and Data Availability

All analyses presented in this study were performed using
objective, transparent, reproducible algorithms documented
in readable source code. All input data and analysis/visualiza-
tion scripts are freely available under the General Public
License as open-access documentation associated with this
publication at: https:/github.com/bryankolaczkowski/airas

Empirical Sequence Simulations

Empirical structures of diverse CARD, double-stranded RNA-
binding motif (DSRM), and RDs were obtained from the pro-
tein data bank (Berman et al. 2000) and edited to remove any
ligands or structural data from outside the annotated domain
of interest. Structures from each domain family were aligned
using the iterative_structural_align function in MODELLER
v9.19 (Sali and Blundell 1993; Madhusudhan et al. 2009) to
generate a multiple sequence alignment based primarily on
structural superposition. This alignment was further edited
manually to ensure that all aligned residues overlapped in
the aligned structures.

Sequence data sets and consensus phylogenies for each
domain family were curated from previous studies of DSRM
(Dias et al. 2017), RIG-like receptor (Mukherjee et al. 2014,
Pugh et al. 2016), and CARD (Korithoski et al. 2015) families.
Sequences were aligned to the structure-based alignment us-
ing the —seed option in mafft ginsi v7.402 (Katoh et al. 2002),
and sequence regions not globally alignable to the structure-
based alignment were trimmed. To simulate sequences with
more realistic distributions of insertions and deletions (indels)
across the sequence, we used the distribution of indels in
the structure-guided alignment to determine the placement
of indels in simulated sequences. Positions in the
structure-guided alignment having at least three contiguous
nongap residues were considered impermissible to indels for
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the purposes of sequence simulation, whereas indels were
allowed at all other positions in the alignment.

Simulation of 10 replicate data sets for each protein do-
main family—including correct ancestral sequences at each
node on the phylogeny—was performed using indel-Seg-Gen
v2.1.03 (Strope et al. 2006), assuming the consensus phylog-
eny, the JTT evolutionary model (Jones et al. 1992) and a four-
category discrete gamma model of among-site rate variation
with shape parameter «=1.75 (Yang 1994). For each repli-
cate, the root sequence was generated randomly from the
structure-guided multiple sequence alignment by sampling
amino-acid residues at each position based on the frequency
of the amino-acid at that position. Columns in the multiple
sequence alignment with >50% gap characters were not
sampled when generating root sequences. Insertions and
deletions were generated at permissible positions using the
distributions from (Chang and Benner 2004), with a maxi-
mum indel size of 2 for CARD and DSRM3 domains, 4 for
DSRM1 and DSRM2 domains, and 5 for the RD.

Sequence Alignment

Simulated sequences were aligned using ClustalW v2.1
(Sievers et al. 2011), mafft ginsi v7.402 (Katoh et al. 2002),
msaprobs v0.9.7 (Liu et al. 2010), muscle v3.8.31 (Edgar
2004), probalign v1.4 (Roshan and Livesay 2006), probcons
v1.12 (Do et al. 2005), and tcoffee v10.00.r1613 (Notredame
et al. 2000), all with default parameters. In addition to
sequence-based alignments, structure-guided alignments
were generated by aligning each set of simulated sequences
to the structure-based alignment (see above) using the —seed
option in mafft ginsi (Katoh et al. 2002). Alignment errors
were quantified by measuring the distance of each sequence
alignment from the correct simulated alignment, using the
d_pos option in MetAl v1.1, which estimates the probability
that a randomly selected residue aligns to an incorrect posi-
tion in a randomly selected sequence (Blackburne and Whelan
2012).

Ancestral Sequence Reconstruction

Ancestral sequences were reconstructed from each alignment
using marginal reconstruction (Yang et al. 1995) implemented
in RAXML v8.2.10 (Stamatakis 2014), assuming the correct
phylogeny and evolutionary model but estimating branch
lengths and model parameters from each input data set.
Each sequence alignment was converted to a binary pres-
ence-absence alignment, and ancestral gap states were in-
ferred by marginal reconstruction using the BINCAT model in
RAXML (Lewis 2001; Stamatakis 2006), assuming the correct
tree topology with branch lengths and model parameters es-
timated from each data set. If the PP of the gap state was
>0.5 in the presence—absence reconstruction, that position
was reconstructed as a gap character; otherwise, the position

was reconstructed as whichever amino-acid residue had the
largest PP in the sequence reconstruction.

Alignment-integrated ASRs were produced by respectively
combining sequence-reconstruction PPs and presence-ab-
sence PPs across all sequence-alignment methods (excluding
data from structure-guided and correct alignments), assum-
ing equal prior weights over sequence alignments. Let P; be
the prior weight of alignment method /, and A{j, k, m | /) be the
probability of ancestral state j at sequence position k and node
m on the phylogeny, assuming alignment method /. Then, the
heuristic “alignment-integrated posterior probability” of an-
cestral state j at position k and node m is given by:

PG, k,m) =" PG, k,m | i)P.

Here, we set the prior weight of each alignment method P, =
1/n, where n is the number of alignment methods.

Alignment-integration requires mapping all sequence
alignments to one another, so that homologous columns
from different alignments can be integrated. This was done
using the —merge option in mafft ginsi.

After respective integration of sequence- and presence—
absence reconstructions, the MAP ancestral sequence was
generated as described above for single sequence-
alignments.

ASR errors were calculated by comparing the MAP recon-
structed ancestral state to the correct simulated ancestral state.
For each inferred ancestral sequence, we calculated the num-
ber of errors divided by the length of the alignment generated
by mapping the inferred ancestral sequence to the correct
ancestral sequence. In addition to total ASR error rates, we
also separately calculated the three possible types of ASR
errors: 1) residue errors, in which both correct and inferred
sequences have amino-acid residues at the same alignment
position, but the inferred residue is different from the correct
residue; 2) insertion errors, in which the correct ancestral se-
guence has a gap character, but the inferred sequence has a
residue at that position, and 3) deletion errors, in which the
correct sequence has a residue, but the inferred sequence has
a gap. For each ancestral node on the phylogeny, we calcu-
lated the expected ASR error rate as the mean over 10 repli-
cate data sets. Differences in error rates among methods
across all replicates and nodes on the phylogeny were assessed
using the two-tailed independent two-sample t-test, assuming
unequal variances. Gaussian kernel density estimates were
generated using least squares cross validation to estimate
the smoothing parameter (Rudemo 1982).

Probabilistic Sequence Alignment

Probabilistic sequence alignments were inferred using PRANK
v170427 (Loytynoja 2014), with default parameters, and
BAli-Phy v3.5 (Redelings and Suchard 2005). BAli-Phy analyses
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were conducted assuming the correct phylogeny, the JTT+G
evolutionary model and the rs07 indel model (Redelings and
Suchard 2007). Following the approach described in Nute
et al. (2019), we concatenated the Markov chain Monte
Carlo samples from 32 independent BAIi-Phy runs, each exe-
cuted for a minimum of 1,000 generations, after discarding
the first 25% of samples from each run. The MAP alignment
calculated over all BAli-Phy runs was used to reconstruct an-
cestral sequences, using the approach outlined above.

Structural Modeling and RNA-Affinity Estimation

Structural homology models of DSRM1 domains were gener-
ated using MODELLER v9.19 (Sali and Blundell 1993). We
used multi-template modeling (Larsson et al. 2008), assuming
the structures and structure-based alignment generated for
the DSRM1 domain simulations (see above). For each ances-
tral sequence, 50 models were generated and ranked using
the MODELLER obijective function, DOPE and DOPEHR assess-
ment scores (Shen and Sali 2006). Each score was normalized
by dividing it by its SD across the 50 models, and we chose the
best structural model as that with the optimal mean of nor-
malized scores.

The structural stability of each protein structural model was
inferred using DeltaGREM 2009, which estimates the change
in free-energy/sequence-length of a given protein structure,
compared with a statistical model of misfolded or unfolded
protein ensembles, using a contact-based energy function
(Minning et al. 2013; Bastolla 2014). We calculated structural
stability errors as the absolute value of the difference in esti-
mated stabilities between the correct ancestral sequence’s
structural model and that of the inferred ancestral sequence.
The expected stability error for each node on the phylogeny
was calculated as the mean over 10 replicates.

DSRM1-dsRNA-binding affinities were inferred using a
previously developed statistical machine learning approach
(Dias and Kolazckowski 2015). For each ancestral sequence,
a structural homology model was generated as described
above, but including the dsRNA ligand from PDBID 5N8L.
The pKd = —logqo(Kd) was estimated using a support-
vector machine trained on a large ensemble of protein-RNA
and protein—-DNA complexes with associated empirically de-
termined binding affinities. Errors in affinity predictions were
calculated as the absolute value of the difference in estimated
affinities between the correct ancestral sequence’s protein—
RNA structural model and that of the inferred ancestral se-
guence, with expected errors calculated as the mean over 10
replicates.

Three-Taxon Simulations

The JTT+G model (four-category discrete gamma approxima-
tion with shape parameter «=1.75) was used to simulate
100 replicate data sets along three-taxon phylogenies with

branch lengths ranging from 0.1 to 0.8 substitutions/site
(see supplementary fig. S9, Supplementary Material online).
Starting sequences of 200 residues were generated at ran-
dom from the JTT amino-acid frequency distribution and
“evolved” along the phylogeny using indel-seg-gen v2.1.03
(Strope et al. 2006). Insertions and deletions were generated
at random, with the indel rate varying from 0.001 to 0.05
times the branch length (Pervez et al. 2014). Indel length was
capped at 20 residues, with the length distribution of inser-
tions and deletions taken from Chang and Benner (2004).

Supplementary Material

Supplementary data are available at Genome Biology and
Evolution online.
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