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ABSTRACT: Oceanic mesoscale motions including eddies, meanders, fronts, and filaments com-

prise a dominant fraction of oceanic kinetic energy and contribute to the redistribution of tracers in

the ocean such as heat, salt, and nutrients. This reservoir of mesoscale energy is regulated by the

conversion of potential energy and transfers of kinetic energy across spatial scales. Whether and

under what circumstances mesoscale turbulence precipitates forward or inverse cascades, and the

rates of these cascades, remain di�cult to directly observe and quantify despite their impacts on

physical and biological processes. Here we use global observations to investigate the seasonality

of surface kinetic energy and upper ocean potential energy. We apply spatial filters to along-track

satellite measurements of sea surface height to diagnose surface eddy kinetic energy across 60-300

km scales. A geographic and scale dependent seasonal cycle appears throughout much of the

mid-latitudes, with eddy kinetic energy at scales less than 60 km peaking 1-4 months before that at

60-300 km scales. Spatial patterns in this lag align with geographic regions where an Argo-derived

estimate of the conversion of potential to kinetic energy are seasonally varying. In mid-latitudes,

the conversion rate peaks 0-2 months prior to kinetic energy at scales less than 60 km. The consis-

tent geographic patterns between the seasonality of potential energy conversion and kinetic energy

across spatial scale provide observational evidence for the inverse cascade, and demonstrate that

some component of it is seasonally modulated. Implications for mesoscale parameterizations and

numerical modeling are discussed.
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Significance Statement: This study investigates the seasonality of upper ocean potential and26

kinetic energy in the context of an inverse cascade, consisting of energy transfers to and through27

the mesoscale. Observations show a scale-dependent cycle in kinetic energy that coincides with28

temporal variability in mixed layer potential energy and progresses seasonally from smaller to29

larger scales. This pattern appears dominant over large regions of the ocean. Results are relevant30

to ocean and climate models, where a large fraction of ocean energy is often parameterized. A31

customizable code repository and dataset are provided to enable comparisons of model-based32

resolved and unresolved kinetic energy to observational equivalents. Implications result for a range33

of processes including mixed layer stratification and vertical structure of ocean currents.34

1. Introduction35

Mesoscale turbulence represents a dominant fraction of ocean kinetic energy (KE) and consists36

of flows that evolve on O[10�300] km spatial scales and week to month time scales (Ferrari and37

Wunsch 2009). Motions outside of these spatio-temporal bounds can act as sources or sinks of this38

mesoscale energy. For instance, instabilities of western boundary currents can generate smaller-39

scale fluctuations like Gulf Stream rings; mesoscale eddies can break apart into smaller filaments40

with shorter space and time scales; an inverse cascade can import energy from submesoscales41

(O[1�10] km); and mesoscale motions can merge with mean flows. E�orts to model the ocean42

and climate system crucially depend on energy transfers within and through the mesoscale range,43

with such motions either parameterized or only partially resolved in numerical models. The inverse44

cascade at mesoscales is one component of a two-part energy cycle: first, available potential energy45

(PE) is converted to KE at instability scales, and second, KE at small scales is transferred to KE46

at larger scales. This idealized description of an inverse cascade, however, assumes the flow to be47

balanced, with competing dynamics playing a minimal role. In reality only some fraction of small48

scale KE moves to larger scales. The inverse cascade of KE from submesoscales to mesoscales49

to larger scales is predicted and required by quasi-two-dimensional geostrophic turbulence theory50

and assumes a steady-state balance between production and dissipation (Kraichnan 1967; Charney51

1971; McWilliams 1989). It occurs in the ocean alongside forcings that act across a range of scales52

and unbalanced motions that can simultaneously precipitate a forward cascade towards dissipation53

(Roullet et al. 2012). A main source of KE at submeso- and mesoscales is PE stored in the upper54
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ocean. This PE reservoir, larger in winter due to deepened mixed layers and stronger horizontal55

density gradients, is a source of KE converted via baroclinic instability at scales near to or smaller56

than the first baroclinic deformation radius (Smith and Vallis 2001; Mensa et al. 2013; Sasaki57

et al. 2014; Callies et al. 2015, 2016; Dong et al. 2020a). Along with horizontal density gradients58

and mixed layer depths, the conversion of PE to KE varies seasonally, with mixed layer eddies59

generated via frontal adjustment contributing to springtime vertical restratification (Johnson et al.60

2016). Modeling studies have shown this frontal adjustment mechanism for generating eddies at61

submesoscales to act as a key source of mesoscale energy evolving on both seasonal and longer62

time scales (e.g., Fox-Kemper et al. 2008).63

While the inverse cascade across mesoscales itself has been infrequently observed, its result64

has been inferred from observations revealing eddy energy-containing scales to be larger than65

predicted instability scales (Chelton et al. 2007). The inverse cascade is further complicated in66

a three-dimensional ocean with variable vertical stratification, but modeling studies have shown67

that an inverse cascade does occur in both barotropic and baroclinic modes and across a range of68

wavenumbers between instability scales and the Rhines’ scale (Scott and Arbic 2007; Serazin et al.69

2018). Direct observations of these KE fluxes, however, are limited to either select locations or70

across spatial scales greater than ⇠ 150 km (Scott and Wang 2005; Callies and Ferrari 2013).71

Space-borne observations of sea surface height (SSH) provide a means of quantifying ocean KE72

and eddy kinetic energy (EKE) globally. These measurements have long been used to characterize73

ocean energetics (Stammer and Dieterich 1999; Scott and Wang 2005; Chelton et al. 2007, 2011;74

Xu and Fu 2012; Arbic et al. 2013; Rocha et al. 2016), develop eddy censuses (Chelton et al. 2011),75

and determine the spectral flux of KE across mesoscales (Scott and Wang 2005; Arbic et al. 2014).76

Analyses often partition ocean KE into time-mean and varying components and/or use gridded77

altimetry products that reduce horizontal resolution to ⇠ 150 km due to smoothing associated with78

interpolation (Taburet et al. 2020). Individual satellite altimeters o�er higher spatial resolution, but79

are still limited by along-track altimeter resolution relative to a latitudinally-dependent eddy length80

scale, instrument noise, track repeat time, and spatial gaps between adjacent tracks. Despite these81

limitations, recent along-track analysis by Chen and Qiu (2021) show their utility by quantifying82

the fraction of SSH variability at scales unresolved by gridded products, using spectral methods to83

partition variance, and finding seasonality in this signal.84
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Here, a framework is constructed to capitalize on the availability of high resolution along-track85

measurements and to apply a scale-aware spatial filtering method. We determine the partitioning86

of energy across 60-300 km horizontal scales and seasons globally. The methods developed and87

used in this analysis uniquely permit KE to be partitioned across mesoscales without needing to88

choose interpolation parameters, such as spatial and temporal decorrelation scales, and windowing89

or tapering scales required in spectral analysis. These methods complement and extend those90

of Chen and Qiu (2021) by considering EKE, employing di�erent methods of spatial filtering,91

interpreting results alongside observations of upper ocean PE, and reconciling seasonal patterns92

with mesoscale turbulence theory. Results reveal regions in the ocean where an imprint of the93

inverse cascade is apparent, specifically where a seasonal imbalance in the PE to EKE conversion94

rate appears linked to a scale-dependent seasonal cycle in mesoscale KE. This increased level95

of spatio-temporal detail regarding the partitioning of KE within the ocean is a crucial part of96

understanding ocean dynamics and whether numerical models, from regional simulations to global97

climate models, correctly represent oceanic processes.98

2. Data99

As provided by the Copernicus European Earth Observation program [https://marine.100

copernicus.eu], SSH measurements from three altimeter missions are considered, including101

a twenty-year (1993-2012) multi-satellite-derived mean sea surface (MSS) estimate. These data102

are accessed via Pangeo, a cloud-based platform with ready-to-analyze large datasets, such that103

analysis tools developed here can be used by the community without individually downloading104

and processing locally. Here we primarily consider measurements from the Jason-2 mission (j2),105

with minor comparisons to SARAL-AltiKa (al) and Sentinel-3A (s3a). In all cases, we use a106

pre-processed low-pass filtered variable, ‘sla_filtered’, which minimizes instrument error (average107

SSH error of j2=1.1, al=0.8, s3a=0.9 cm rms) and has an approximate horizontal resolution of 50,108

40, and 40 km for the three satellites, respectively (Taburet et al. 2020; Dufau et al. 2016). Jason-2109

measurements represent the longest available measurement time series of ⇠ 8 years (2008-2015).110

SARAL-AltiKa (2013-2019) and Sentinel-3A (2016-2019) altimeters are both more accurate, with111

lower rms instrument noise, but occupy orbital tracks less frequently. For additional di�erences112

among altimeters, including seasonality in instrument error, see Dufau et al. (2016). Authors113
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specifically highlight altimeter limitations in the Southern Ocean, a region included in this analy-114

sis, and confirm resolution capabilities down toO[50km]. While di�erences in altimeter instrument115

accuracy and mission duration motivate separate analysis for each satellite, statistical properties116

and spatial patterns of eddy variability are comparable.117

Two products derived from Argo float observations are used to estimate the conversion rate of PE118

to KE. The first is a database of monthly temperature and salinity profiles on a 1� x 1� grid, created119

using Argo float profiles collected between 2007 and present (Roemmich and Gilson 2009). The120

second provides mean monthly mixed layer depth and densities (Holte et al. 2017), and is used to121

vertically partition density profiles from Roemmich and Gilson (2009). Profiles contributing to the122

mixed layer depth climatology were collected between 2000 and 2021. This product is used to take123

advantage of the careful application of mixed layer depth selection criteria and is more accurate124

than the former product as it is derived from individual profiles rather than a monthly average.125

These data products represent the climatological state of mesoscale and larger ocean properties.126

3. Analysis Framework127

a. Scale-Aware Eddy Kinetic Energy128

The following analysis does not attempt to resolve individual eddy features, but rather geographic129

and seasonal patterns in velocity variance and EKE. Briefly, we construct a general spatial filtering130

framework designed to filter any variable along a single spatial dimension. This framework is then131

applied to cross-track estimates of geostrophic velocity calculated from along-track gradients of132

absolute dynamic topography (ADT). We then partition observed variance into mean and eddy133

KE components. While SSH variance can be estimated at a relatively finer horizontal resolution134

without having to calculate a gradient (and is also useful for model validation purposes), we focus135

here on eddy energetics.136

1) G���������� ��������137

The along-track SSH measurements used here are all available with 7 km spacing. Data are first138

linearly interpolated to 20 km spacing and across intermittent data gap segments of less than 50139

km. The choice of 20 km spacing improves the implementation of the spatial filter introduced140
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below. ADT, [(G, C), represents the dynamical component of the satellite measurement and is141

defined everywhere as142

[(G, C) = ((� �"(( +"⇡) = ((� �"(( + ("((�⌧4>83) = ((� �⌧4>83 (1)

where, for each unique track, G is along-track distance in meters, C time, MSS the temporal mean sea143

surface height, and mean dynamic topography MDT is the temporal mean of SSH above the geoid144

(Pujol and Mertz 2020). The geoid is the baseline surface height of the ocean under the influence145

of gravity and rotation alone and is included in the MDT estimate. Cross-track geostrophic velocity146

D is then estimated as147

D(G, C) =
6

5

m[

mG

(2)

where 6 = 9.81 m/s2 and 5 is the local Coriolis frequency. A negative sign is omitted as we consider148

only the magnitude of cross-track velocity and its spatial and temporal variability. The along-track149

gradient of ADT is estimated using a 3-point center di�erence gradient stencil (Arbic et al. 2012).150

Cross-track velocities are calculated for each cycle of each track (Fig. 1a,b) of the desired151

altimeter. The assumption that these estimates equally represent zonal and meridional components152

of an isotropic field is justified based on consistency among three altimeters having di�erent orbital153

track geometries. While the gradient wind balance becomes relevant at smaller scales, no bias154

as a result of assuming geostrophic balance is expected here because the isotropic assumption155

implies flows with anticyclonic and cyclonic curvature are equally sampled (Chelton et al. 2011).156

Comparisons between these estimates and gridded velocities produced by AVISO (not shown)157

reveal significant di�erences, largely due to the increased horizontal resolution at which KE can158

be estimated using along-track measurements.159
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F��. 1. a) Cross-track geostrophic velocities (grey) as a function of along-track distance along the Jason-2

altimeter track 24 from 2008-2015 (258 cycles). Track 24 and cycle 21 (black) is selected as an example and

filtered using the Gaussian (purple) and taper (green) filters to 140 km. b) Path over ground of Jason-2 tracks

with track 24 in yellow. Along-track distance increases north to south. c) Fourier transform of boxcar (blue),

target and approximate Gaussian (purple), and target and approximate taper (green) filter kernels for a 140 km

filter. Horizontal axis is the normalized horizontal wavenumber with 3G and G the grid spacing and grid indices.

Vertical lines identify the normalized filter scale. d) Seasonal cycle in EKE at [92�E, 19�S] for three filter scales

(60, 140, 300 km) and two filter types: taper (green) and Gaussian (purple). EKE at each scale is normalized

by its annual mean. The shaded regions are the standard deviation of 250 Monte Carlo simulations showing the

e�ect of random instrument error added to absolute dynamic topography measurements.
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2) M��� ��� E��� K������ E�����170

We use spatial filtering to decompose geostrophic velocity into contributions from eddying171

motions at specific spatial scales. Specifically, for a spatial filter of length ; denoted by hi; , the172

eddy kinetic energy at scales smaller than the filter scale (EKE) and mean kinetic energy at scales173

larger than the filter scale (MKE) are:174

⇢ ⇢; = g(D,D); = hD
2
i; � hDi

2
;

(3)

" ⇢; = hDi
2
;
, (4)

where small-scale variance g is defined as g(D,D); = hD
2
i; � hDi

2
;

following Germano (1992), Aluie175

et al. (2018), and Sadek and Aluie (2018). Note that these estimates exclude an along-track176

velocity component and that a factor of 1
2 is implicit in estimates of KE. This follows from the177

assumption that the geometries of altimeter orbital tracks result in adequate sampling of both178

zonal and meridional components of the surface velocity field, and that they are isoptropic. This179

framework prevents the need to define an anomaly quantity (i.e., D0 = D � hDi) and the need to180

address the magnitude of cross terms (i.e., hDiD0) following substitution into momentum equations.181

The partitioning of variance into large- and small-scale bins is then framed about the filter scale182

;. In practical terms, this filtering framework prescribes set scales across which variance can be183

partitioned, analogous to resolvable and sub-grid variance in an ocean model.184

The energy or variance of a field can also be decomposed into # distinct bands. Let W= be the185

operator that isolates a band. For a single filter, MKE and EKE are given by:186

" ⇢ =
9’

==1

W= (D
2
) = hDi

2
✓ 9

(5)

⇢ ⇢ =
#’

== 9+1

W= (D
2
) = hD

2
i✓ 9 � hDi

2
✓ 9
= g(D,D) (6)

where the angle brackets represent the convolution with a filter of length scale ✓1. This acts as a187

low-pass filter, passing variance at scales larger than ✓1. For two filter scales, energy within a band188

bounded by scales ✓1 and ✓2 (i.e., a band pass filter) is189
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W2(D
2
) = hDi

2
✓2
� hDi

2
✓1
. (7)

For # bands, we want this to satisfy the integral constraint that190

π
D

2
3G =

#’
==1

π
W= (D

2
)3G. (8)

The largest-scale energy is defined as191

W1(D
2
) = hDi

2
✓1
. (9)

This continues until the highest bands (smallest filter scales):192

W#�1(D
2
) = hDi

2
✓#�1

� hDi
2
✓#�2

(10)

W# (D
2
) = D2

� hDi
2
✓#�1

(11)

where the last band, W# (D2
), is the high-pass filtered energy. For this decomposition, it is straight-193

forward to show that194

#’
==1

W= (D
2
) = D2

. (12)

This decomposition of velocity variance into # distinct bands reveals the partitioning of KE across195

scales and serves as a discrete analogue to the wavenumber spectra (Sadek and Aluie 2018).196

3) I�������������197

Following methods employed by Grooms et al. (2021), a spatial filter is applied to velocity from198

each cycle of each altimeter track as a convolution of a desired filter kernel with D as199

hD(G, C)i; = ⌧; ⇤D(G, C), (13)
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where ⌧; represents a general filter kernel of width ; with = number of measurements that span the200

distance ;. For ; = 5 and along-track velocity interpolated to a 20 km grid, the filter would have201

zero variance at scales less than 100 km. Three filter kernels are considered: boxcar, Gaussian,202

and taper, each defined to have comparable length scales for a single input ; (Fig. 1). The boxcar203

filter kernel most simply applies this filtering framework and has a uniform set of weights of width204

! 5 = =�G (14)

where ! 5 is the filter width more generally defined above as ;, �G is the grid step, and filter weights205

are 1/=. A Gaussian kernel of the same characteristic scale takes the form206

⌧! 5 (G) = 4
�6|G/! 5 |

2

. (15)

This expression was selected by considering the Fourier transform of both the boxcar and Gaussian207

filters and identifying first zero crossings. Equivalently, the taper filter is designed to eliminate208

contributions from wavenumbers : greater than 2c/! 5 . These di�usion-based Gaussian and taper209

filters employ Laplacian and biharmonic operators to iteratively approximate a target step-like filter210

constructed in Fourier space using Chebyshev polynomials (Fig. 1). Stability of this smoothing211

technique is ensured for filtering scales generally less than 50 times larger than the grid scale and212

is here no larger than 15 (Grooms et al. 2021).213

To make this filtering framework both dynamically relevant and useful in an observational-model214

comparison, the filter scale ; can be defined in one of three ways: a fixed length scale (e.g., 100 km),215

a scale tied to a model grid scale (e.g., 1�), or a scale tied to a varying dynamical scale (e.g., the first216

deformation radius !31). The majority of this analysis uses a fixed filter scale and the taper kernel.217

A fixed length scale is most appropriate for deriving physical meaning from the decomposition of218

EKE into contributions across scales, while the choice of filtering to the deformation radius would219

be desirable if the altimeter could resolve !31 at all latitudes. After estimating total resolvable KE220

and filtering all cross-track velocity estimates using the taper filter and a fixed length scale, global221

maps of KE, MKE, and EKE are constructed by bin-averaging along-track fields within 4� x 4�222

bins on a 1� longitude-latitude grid (e.g., KE in Fig. 2a).223
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F��. 2. Gridded maps of a) mean total KE from Jason-2 (2009-2016) cross-track geostrophic velocity estimates

with colored boxes identifying seven select locations individually considered, b) Mean EKE at scales less than

140 km with the first baroclinic deformation radius contoured in white, and c) Mesoscale EKE estimated as the

mean KE within the 60-300 km band (Eq. 7). In (a), zonal mean total KE for Jason-2 (blue), SARAL-AltiKa

(orange), and Sentinel-3a (green) altimeters is also shown. In (c), the zonal average of KE within the 60-300 km

band for the Atlantic (blue), Indian (green), and Pacific (orange) basins is shown as a fraction of mean total KE.

White regions in (a-c) are those where, at the equator, geostrophy is a poor assumption and, at higher latitudes,

where sea ice impacts altimeter measurements. d) KE within the 60 - 300 km band at the seven locations

identified and numbered in (a). Estimates are normalized by band width. Location details are provide in Figure

5a.
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4) E���� P����������234

While a filter kernel can be selected to minimize spectral leakage, time-varying instrument error235

reduces confidence in a seasonal analysis. In order to approximate the e�ect of this temporal236

variability and gain confidence in these results, normally distributed random errors in ADT were237

added to each cycle of all tracks falling within a 10� x 10� box (Fig. 2a: green site indicates238

box center location). For each cycle of each track, 250 Monte-Carlo simulations were run, adding239

random error with a standard deviation equal to the maximum seasonal change in SSH error (Dufau240

et al. 2016). Cross-track geostrophic velocities were then estimated, filtering applied, and EKE241

estimated at three scales. The standard deviation of these 250 runs (shaded green regions in Figure242

1d) reveals added uncertainty in the observed EKE estimate and its scale-dependent seasonal cycle.243
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The signal that we subsequently diagnose, a temporal lag in peak EKE at di�erent scales, is further244

detailed in the upcoming sections, but remains significant with confidence bounds of approximately245

± 1 month. The e�ect of this seasonal instrument noise decreases many-fold with increasing filter246

scale. Monte-Carlo error analyses carried out at two additional sites in the North Pacific (not247

shown) exhibit similar standard deviations across 250 runs and suggest these error estimates are248

representative despite expected spatial variability in instrument errors.249

b. Available Potential Energy and Conversion to Kinetic Energy250

We estimate the mean conversion rate of PE to submesoscale EKE, F0
1
0, using an often em-251

ployed parameterization since it is not possible to directly estimate it from observations. The252

parameterization of Fox-Kemper et al. (2008) and Fox-Kemper et al. (2011) diagnoses a PE to253

EKE conversion rate as:254

F
0
1
0 =

�B
! 5

�
2

| 5 |

 ✓
m1

mG

◆2

+

✓
m1

mH

◆2
!
, (16)

where � is the mixed layer depth, 5 is again the local Coriolis parameter, and buoyancy 1 =255

�6(d � d0)/d0. The first term in this equation, �B
! 5

is a scaling factor recommended by Fox-256

Kemper et al. (2011) to account for the sensitivity of this estimate to the distance (�B) over which257

horizontal buoyancy gradients are estimated relative to the horizontal scale of mixed layer instability258

(! 5 = #�/| 5 | ⇡ |r⌘1 |�/ 5
2). These choices are intended to produce an estimate representative259

of mesoscale fronts that drive mixed layer instabilities (Johnson et al. 2016; Uchida et al. 2017).260

Johnson et al. (2016) characterize these large-scale gradients as comprised of smaller-scale and261

sharper-gradient fronts susceptible to baroclinic instability, while Uchida et al. (2017) use a high-262

resolution model to show that conversion estimates calculated from time-dependent mesoscale263

gradients are representative of direct flux estimates. Overall, this parameterization reveals when264

and where PE stored in mixed layer fronts is converted to EKE via mixed layer baroclinic instability.265

We use Argo-derived upper ocean density climatologies to estimate the horizontal buoyancy266

gradients and mixed layer depths needed for Equation 16. Horizontal buoyancy gradients are267

estimated at 19 m depth and across 2 degree distances. In Equation 16, �B varies latitudinally as268

the distance, in meters, of 2 degrees of longitude, and the length scale of instability ! 5 has typical269

values of a few hundred meters to a few kilometers. Two locations, one in the western North270
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Atlantic and one in the western South Atlantic, highlight the distinct seasonal cycles of mixed271

layer depth, horizontal buoyancy gradients, and PE to EKE conversion (Fig. 3). In particular272

they show the di�ering contributions to this conversion estimate of horizontal buoyancy gradient273

changes and mixed layer depth changes. These sites were selected to highlight di�erences in274

upper ocean seasonality. While mixed layer depths at the South Atlantic site change seasonally by275

almost 200 m, horizontal buoyancy gradients are weaker such that the conversion rate has a similar276

peak amplitude to the site in the North Atlantic, where mixed layer depth changes are smaller and277

horizontal buoyancy gradients stronger. In both cases, the seasonal change in conversion rate is278

comparable to or larger than the annual mean conversion rate.279

4. Results286

a. Mesoscale Eddy Kinetic Energy Across Seasons and Scales287

By filtering geostrophic velocities using the taper filter, we estimate MKE and EKE across288

di�erent horizontal scales and seasons. We calculate MKE (Eq. 4) and EKE (Eq. 3) at length289

scales ; = 60-300 km in 20 km intervals and first generate global maps of KE (Fig. 2a), MKE,290

and EKE (shown for ; = 140 km in Figure 2b). KE within the 60-300 km band is estimated by291

summing across wavenumbers spanning our chosen filtering band (Fig. 2c,d). This set of filter292

scales includes the smallest scales resolved by the altimeter and extends up to the larger mesoscales.293

We refer to energy at specific scales wherever possible, with the 60-300 km band approximating294

the mesoscale energy in much of the region equatorward of 60°. Because the deformation radius295

varies with latitude, the 60-300 km band does not include the smallest scales within the mesoscale296

poleward of approximately 20°. Although our results do not focus on the region equatorward297

of approximately 20°, here the 60 km scale represents the uppermost scales of the submesoscale298

energy band. These issues are discussed further in Section 5.299

Several aspects of KE are geographically variable (e.g., Figure 2). Consistent with prior studies,300

total KE in the Antarctic Circumpolar Current and western boundary current regions is over an301

order of magnitude more energetic than in eastern ocean basins. MKE, or the energy at and302

above a certain filter scale, generally decreases with increasing filter length scale, but the rate of303

this decrease, akin to a spectral slope, also varies with location (Fig. 2d). Specific locations were304

selected for illustrative purposes to consider variability in each ocean basin, at a variety of latitudes,305
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F��. 3. a-b) Upper ocean density profiles for each month in a) the western north Atlantic Ocean [292�E, 32�N],

and b) the southwestern Atlantic Ocean [312�E, 52�S] from Argo float observations (Roemmich and Gilson,

2009). Colored circles identify mixed layer depth for each month with the black square denoting the deepest

mixed layer depth. The black dashed line is the corresponding density profile. c-d) Seasonal cycle of the PE

to EKE conversion rate (black; Eq. 16) and sum of squared horizontal buoyancy gradients (pink) at c) [292�E,

32�N] and d) [312�E, 52�S]. e-f) Seasonal cycle of mixed layer depth at e) [292�E, 32�N] and f) [312�E, 52�S].
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and at sites both energetic and quiet. Within the 60-300 km range, here defined as the mesoscale306

band, slopes are steeper where eddy energy is high. In other words, the partitioning of energy307

across scales varies geographically. The result is a varying fraction of KE contained within the308

mesoscale band, with values approaching 50% of total resolvable KE in western boundary current309
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regions (Fig. 2c). The fraction of energy contained in this mesoscale band decreases near the310

equator and at latitudes greater than ⇠ 45�, where deformation radii fall outside the upper (equator)311

and lower (high-latitude) limits of our 60-300 km band.312

Seasonal variability is first considered by estimating the fraction of KE within two wavelength313

bands (60-140 km and 140-300 km) in late Northern Hemisphere winter (Feb. - Apr.) and summer314

(Jul. - Sept.) months (Fig. 4a,b,d,e). The choice of 140 km as the scale to divide this wavenumber315

band reflects the intent to consider small and large scale KE separately, with the smaller band316

encompassing motions no larger than twice the deformation radius. The results are not sensitive to317

the choice of 140 km. These months were selected to align with months of maximal and minimal318

KE at scales less than 140 km. In the Northern Hemisphere, the fraction of energy at 60-140 km319

scales is elevated outside of western boundary current regions, and is overall larger in wintertime320

(Fig. 4c). At 140-300 km scales, western boundary current regions have a larger fraction of321

energy at these scales during summertime (Jul-Sept in the Northern Hemisphere, Feb-April in the322

Southern Hemisphere; Fig. 4d,e). From this basic partitioning, it is clear that the seasonality of323

ocean KE is scale dependent (i.e., it di�ers at large and small spatial scales).324

F��. 4. Fraction of a) FMA and b) JAS total KE in the 60-140 km band. c) FMA fraction minus JAS fraction.

d-f) as in a-c but for 140-300 km scales.

325

326
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The largest winter-to-summer di�erences of approximately 25% variation occur in the 60-140327

km band, equatorward of western boundary currents (Fig. 4c). The finding that energy at 60-140328

km scales peaks in late winter is consistent with the theory that submesoscale EKE can act as a329

time-dependent source of mesoscale EKE that reaches the mesoscale via the inverse cascade (Qiu330

et al. 2014; Callies et al. 2015; Uchida et al. 2017; Dong et al. 2020b). At 140-300 km scales,331

di�erences between winter (FMA) and summertime (JAS) KE are smaller in magnitude (Fig. 4f),332

as the months of maximal and minimal KE at these scales often occur in other months such that these333

winter and summer time periods do not represent the full seasonal change. The Agulhas Current334

region is an exception, with significantly elevated KE in Southern Hemisphere winter, consistent335

with prior studies (Matano et al. 1998). Overall, this observed seasonality compares favorably to336

previous observational studies, which have been limited to analysis of a single mesoscale range337

typically larger than 150 km (e.g., Schar�enberg and Stammer (2010)).338

A mean seasonal cycle for each filter scale is constructed by partitioning filtered velocities from339

all altimeter tracks into monthly bins before averaging into latitude-longitude bins. Seven locations340

spanning all ocean basins are selected to highlight the mean seasonal cycle for three filter scales341

(60, 140, 300 km; Fig. 5). At a subset of these example locations (Fig. 5e,g,h), a progression in the342

month of maximum EKE is identified, with the peak occurring first at small (60 km), then medium343

(140 km), and finally large (300 km) scales. This progression reveals a scale-dependent shift in344

the seasonal cycle of EKE, with the di�erence in peak EKE month identified as a temporal lag.345

Among the selected sites, not all exhibit this sequence of events (Fig. 5c,d,f,i). At these locations,346

a seasonal cycle is often observed but is similar at all spatial scales (peak EKE occurs in the same347

month). These examples show that the amount of total KE does not determine whether or not a348

region exhibits a scale-dependent shift in the seasonal cycle of EKE.349

To investigate global patterns, we consider the peak month of PE to EKE conversion rate (Fig.355

6a), EKE60:< (Fig. 6b), and EKE60�300:< (Fig. 6c). At many locations, a seasonal progression356

from EKE60:< to EKE60�300:< is apparent (Fig. 6b,c), even in regions with relatively little total357

KE (Fig. 2a). At scales less than 60 km, peak EKE occurs in wintertime months. At 60-300 km358

scales, spatial variability in the month of maximal EKE is more pronounced, with western boundary359

current regions peaking several months later than neighboring gyre regions. The di�erence in the360

month of maximal EKE60:< and maximal EKE60�300:< (Fig. 6e) reveals large-scale geographic361
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F��. 5. Mean seasonal cycle as a function of scale at seven select locations (same locations as in Fig. 2).

a) Map of locations. b) Mean seasonal cycle of total KE at each location. c-i) Mean seasonal cycle of EKE

normalized by its annually averaged value for 300 (dash-dot), 140 (dash), and 60 (solid) km filter scales. Black

line (dashed) is the PE to EKE conversion rate normalized by its annual average. Symbols identify the month of

peak conversion (star) and peak EKE60:<, EKE140:<, and EKE300:< (downward triangles).

350

351

352

353

354

patterns in a scale-dependent seasonal cycle of EKE. Throughout much of the mid-latitudes, ⇠ 20�362

- 40�, as well as in the sub-polar North Atlantic, this lag is positive and between 1 and 4 months363

(Fig. 6e, orange regions). Lags are only shown where the amplitude of the seasonal cycle exceeds364

25% of its annual mean value, a criteria satisfied at ⇠ 95 percent of locations. Lags appear greatest365

in the eddy recirculation region of the subtropical gyres, compared to the eastern North Pacific or366

South Atlantic where lags approach zero or do not have a definitive sign. Regions with lags outside367

of the 1 to 4 month range are found closer to the equator, in the North Pacific north of 40�N, and368

south of 45�S where deformation radii are outside the 60-300 km scale range considered here.369
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In summary, large regions of the global ocean, with both high and low levels of mesoscale KE,370

appear to experience a seasonal cascade of energy from the smallest scale resolvable by the altimeter371

to ⇠ 300 km scales. Here, the observed di�erence in seasonal cycles between EKE60�300:< and372

EKE60:< (Fig. 6) reveals a temporal lag consistent with predictions as to the inverse cascade and373

prior modeling results (Qiu et al. 2014; Dong et al. 2020b).374

F��. 6. Month of maximum a) PE to EKE conversion b) EKE60:< and c) EKE60�300:<. Temporal lag, in

months, between d) peak EKE60:< and peak PE to EKE conversion rate, and e) EKE60:< and EKE60�300:<.

Green regions are those omitted from the lag calculation, including where the total seasonal range in EKE at <

300 km scales is less than 20% of the annual mean EKE. White and light orange regions in (d) identify where

the conversion from PE to EKE occurs at the same time or just prior to the peak in EKE at small scales. These

regions correspond to the orange regions in (e) where the peak in EKE at large scales follows the peak in EKE

at small scales by 1 to 4 months.
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b. Seasonal Variations of Available Potential Energy and Conversion to Kinetic Energy382

The seasonal cycle in the PE to EKE conversion rate is independently estimated from observations383

to aid interpretation of EKE seasonality and scale-dependence. Temporally, this conversion rate384
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exhibits a distinct peak during specific winter months, often aligning with EKE60:< (Fig. 5).385

Both the mean and seasonal amplitude of this estimated rate are elevated in subtropical western386

boundary current regions, the subpolar North Atlantic, and the Southern Ocean (Fig. 7), with the387

seasonal amplitude often larger than the annual mean. The PE to EKE conversion rate is a proxy388

for EKE generation at submesoscales. We argue that some of this submesoscale energy likely389

moves upscale, and thus that understanding seasonal modulations in the PE to EKE conversion rate390

is important in understanding and modeling mesoscale motions.391

F��. 7. a) Mean PE to EKE conversion rate. b) Seasonal amplitude (maximum - minimum) of the PE to EKE

conversion rate.

392

393

To relate the seasonality of the PE to EKE conversion rate to that of small and larger-scale EKE,394

we first consider the seven locations highlighted in Figure 5. The PE to EKE conversion rate395

is elevated in specific winter months, but remains non-zero throughout the year. This pattern is396

interpreted as an increased pool of PE susceptible to baroclinic instability, which, as implied by397

Fox-Kemper et al. (2008), occurs principally at scales smaller than the deformation radius. At398

20



many locations, this expectation is corroborated by the fact that the conversion rate reaches its399

elevated wintertime level in the months preceding or at the same time as the peak EKE at scales400

less than 60 km. At sites where the PE to EKE conversion rate peaks before EKE at any scale,401

the subsequent progression in EKE across increasing scales follows (Fig. 5e,f,g,h). At sites where402

this does not occur, the seasonal cycles in mixed layer PE and EKE may be related via di�erent403

dynamics such as a forward cascade of KE.404

In general, if mixed layer instability generates small-scale EKE as quantified by Eq. 16 (Fig. 7),405

we would expect geographic overlap between regions with seasonality in PE to EKE conversion406

and EKE at small scales. If this EKE then moves to larger scales via the inverse cascade, we would407

expect geographic overlap among regions with seasonality in PE to EKE conversion, seasonality in408

EKE at small scales, and seasonally-lagged EKE at large scales. We first investigate the geographic409

overlap between where the seasonal amplitude of the conversion rate is greater than its annual mean410

(Fig. 7) and where the seasonal amplitude in EKE at 60 - 140 km scales, expressed as a fraction of411

total KE, is greater than its annual mean (Fig. 8a,b). These independently estimated quantities are412

both elevated throughout the mid-latitude gyres (Fig. 8b). Regions where this overlap occurs are413

interpreted as experiencing both a strong seasonal cycle in PE to EKE conversion and in resolved414

EKE at scales closest to those energized via the conversion of PE to KE. Within regions of this415

overlap, nearly 50% of EKE lag estimates (Fig. 8c) are between one and four months while416

outside of these regions, this percentage drops to less than 20%. We next compare regions where417

the seasonal amplitude of the PE to EKE conversion rate exceeds its annual mean and where we418

observe a positive lag of 1 to 4 months lag between peak EKE60:< and peak EKE60�300:< (Fig.419

8c,d). Again the mid-latitude gyres stand out as regions of overlap (Fig. 8d). The alignment of420

these overlap regions (Figure 8b,d) suggests a correspondence between the seasonal cycle in EKE421

across mesoscales and the presumed source of this energy: PE stored in the upper ocean. While422

we are unable to resolve EKE at and below deformation radius scales, spatial patterns in the lag423

between month of peak PE to EKE conversion and month of peak EKE60:< align with regions424

where we also observe a 1 to 4 month lag between EKE60:< and EKE60�300:<.425

To summarize, regions of strongly seasonal elevated conversion rates identify the presence of426

submesoscale EKE. Within these regions, specifically within mid-latitude gyres, altimeter-observed427

small-scale EKE is also elevated and nearly in phase with Argo-derived conversion rates (white428
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areas in Fig. 6d). Furthermore, these same locations stand out as where the time lag between429

seasonal maxima in EKE, defined above, is positive (orange areas in Fig. 6e). Combined, these430

results are consistent with the hypothesis that mesoscale KE in these regions is at least partly431

derived from smaller-scale KE generated via mixed layer baroclinic instability that then moves432

upscale via the inverse cascade. Outside of these regions of overlap (blue regions in Fig. 8b,d),433

mesoscale turbulence may be less energetic, forced at larger scales, and/or driven by factors other434

than seasonal variability.435

F��. 8. a) Seasonal amplitude of the fraction of KE within the 60 - 140 km wavelength band. b) Regions

(yellow) where the seasonal amplitudes in the PE to EKE conversion rate and fraction of EKE60�140:< exceed

their annual mean values. c) Regions (red) where the lag between peak EKE60:< and EKE60�300:< is greater

than or equal to 1 month and less than or equal to 4 months. d) Regions (yellow) where the seasonal amplitude

in the PE to EKE conversion rate exceeds the annual mean and EKE lags fall between 1 and 4 months.
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437

438

439
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5. Discussion441

a. Interpretation as an inverse cascade442

We interpret these results as indirect observation of the inverse cascade through two pieces of443

evidence. The first is a 1 to 4 month lag between the seasonal peak of EKE60:< and EKE60�300:<.444
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The second is that seasonality in an independent estimate of PE to EKE conversion peaks at the445

same time as small-scale EKE, and is elevated in regions where EKE lags are positive. Overall,446

observed PE to EKE60:< lags of 0-2 months and EKE60:< to EKE60�300:< lags of 1-4 months447

occur in overlapping regions (Fig. 6d,e). In these regions, we identify a progression in the month448

of peak PE to EKE conversion, EKE60:<, EKE140:<, and finally EKE300:<. These features are449

consistent with high-resolution modeling studies that explicitly diagnose seasonality in the strength450

of the inverse cascade (Qiu et al. 2014; Sasaki et al. 2014; Uchida et al. 2017).451

We emphasize that the results and evidence for an inverse cascade are not overly dependent on452

the choice of scales in the present analysis. The scales chosen here (60 km, 140 km, and 300453

km) illustrate the seasonality and scale dependence of KE in the ocean. We have estimated MKE454

and EKE at a range of scales, including the deformation radius, degree resolution for comparison455

with model output, and a variety of fixed length scales (see Data Availability), and find that the456

geographic patterns are generally insensitive to the scale.457

It is presumed that seasonal mixed layer PE, deriving from wintertime mixed layer deepening and458

elevated horizontal buoyancy gradients, is a source of EKE predominantly at scales smaller than459

those resolved by along-track altimeter observations. Where an inverse cascade is local and moves460

this energy to larger scales, we expect geographic alignment in the PE to EKE conversion rate461

and small-scale EKE resolved here. This expectation is tested by considering the intersection of462

regions where the seasonal cycle in the rate of PE to EKE conversion is large and where significant463

seasonality in EKE at 60-140 km scales is observed (Fig. 8b). The resulting overlap suggests464

a dynamical correspondence between these independent observations linking the reservoir of PE465

in the upper ocean, strong seasonality in small-scale EKE, and a progression in the month of466

peak EKE first at small and then large scales. These observations reveal an energy cycle that467

can be sequentially interpreted as: a wintertime increase in PE to EKE conversion, driven by468

deeper wintertime mixed layers susceptible to baroclinic instability in the presence of stronger469

lateral buoyancy gradients, followed by elevated eddy activity at scales less than or equal to470

the first baroclinic deformation radius (Smith 2007), and finally an inverse cascade of KE up to471

altimeter-resolved scales evidenced by a lag in the month of peak EKE60:< preceding that of472

EKE60�300:<.473
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Geographic patterns in PE to EKE conversion specifically align with regions where a majority474

of springtime restratification is generated via the lateral slumping of horizontal density gradients475

(Johnson et al. 2016). In their analysis, Johnson et al. (2016) discuss the contribution to this476

conversion of horizontal density gradients to vertical density gradients by mixed layer eddies477

(Figure 4 of Johnson et al. (2016)). The formation of these eddies, representing the conversion of478

PE to EKE, in regions where we observe a 0-2 month lag between peak PE to EKE conversion and479

EKE60:< (Fig. 6d) lends support to our interpretation that the smallest scale EKE observed by480

the altimeter reflects energy derived from mixed layer baroclinic instability. The relatively short481

lag suggests this energy moves upscale at the ⇠1-month time scale. This result is consistent with482

Uchida et al. (2017), who calculated a 40 - 50 day eddy turnover time scale for regions with elevated483

eddy activity. In these same regions we observe a lag of 1 to 4 months between peak EKE at 484

60 km scales and between 60 - 300 km scales. Interpreted together, these regions identify where485

geostrophic turbulence drives an inverse cascade from submeso- through mesoscales. Note that486

these regions are a conservative estimate of where the inverse cascade occurs. It may additionally be487

present in other locations with decreased seasonality or at a faster pace such that no perceptible time488

lag is identified from monthly observations. The sequence of peaks interpreted here as evidence489

of an inverse cascade does not suggest the absence of a forward cascade, especially at scales equal490

to and smaller than ⇠ 60 km and in regions with observed lags of 0 to 4 months. Instead, we491

argue that the progression from conversion scale to three subsequently larger wavelengths within492

the mesoscale (Fig. 5e,g,h) cannot be explained by independent forcings, but rather is the result of493

an inverse cascade.494

Several studies have documented a link between mixed layer instability and mesoscale EKE.495

Using a high resolution realistic numerical simulation of the North Pacific, Sasaki et al. (2014)496

consider additional sources, including Charney-like and Phillips-like instability processes, and497

conclude that seasonally-varying mixed layer instability is a dominant source of mesoscale EKE.498

Both high resolution simulations (Mensa et al. 2013), and observations in the North Atlantic499

(Callies et al. 2015), have shown a correspondence between mixed layer depth and submesoscale500

EKE. This correspondence aligns with the temporal patterns of mixed layer PE and small-scale501

EKE shown here.502
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Other sources of mesoscale KE are considered unlikely to cause the pattern of lag shown here.503

Investigating the temporal o�set between seasonal cycles of EKE and its presumed energy source504

mechanism, baroclinic instability, Zhai et al. (2008) rule out seasonal variations in Ekman pumping505

as a driver of EKE seasonality. Their results can be reinterpreted by acknowledging that their506

observed summertime peak in EKE is defined relative to a temporal mean. This likely corresponds507

to peak EKE at large scales while small-scale EKE, contributing less to total KE, peaks earlier in508

the year and closer to their observed time of peak eddy growth rate. Other sources of mesoscale509

KE that may be seasonally varying, like large-scale wind forcing or baroclinic instability at scales510

greater than the deformation radius, are considered unlikely to cause the pattern of lag shown here.511

Wind forcing and its seasonal variability largely occur at basin scales and although surface ocean512

temperature fronts can alter the wind field at mesoscales, these feedbacks don’t appear to have513

widespread seasonal scale-dependence (Risien and D.B 2008; Serazin et al. 2018).514

In high resolution simulations south of the Kuroshio, Sasaki et al. (2014) and Qiu et al. (2014)515

consider mesoscale KE and the influence of interior baroclinic instability. The authors conclude516

that contributions to larger scale KE include a seasonally dependent upscale cascade as well as a517

persistent source of EKE associated with vertically sheared mean flows. However, the seasonal518

amplitude of KE at these larger scales associated with interior instability is weaker than that at519

smaller scales. Sasaki et al. (2014) conclude from this that most of the KE in the mesoscale band520

is a�ected by seasonality generated in wintertime at submesoscales.521

Implicit in these arguments is the assumption that SSH anomalies used in estimating KE reflect522

predominantly balanced motions. Qiu et al. (2014) identify spatial variability in the transition scale523

between balanced and unbalanced motions, revealing much of the EKE at mid-latitudes, especially524

within the western halves of ocean basins, to reflect balanced motions. These regions again align525

with those here associated with a lag in the peak month of EKE, suggesting that the progression in526

EKE is not the result of seasonally varying unbalanced motions. The correspondence of locations527

of lag in EKE from smaller to larger scales and locations of both increased wintertime mixed layer528

PE conversion and small-scale EKE provide additional support to the argument that these lags529

identify regions where geostrophic turbulence moves energy from smaller to larger scales.530

A scale energy flux could be directly estimated if both components of the horizontal velocity531

field were resolved along with their zonal and meridional gradients. These estimates have been532
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made in high resolution simulations (Schubert et al. 2020), but at present, even gridded altimeter533

fields are inadequate as gridding introduces scale-dependent biases.534

b. Implications and practical applications535

The generalized spatial filtering framework applied here is applicable to any along-track observa-536

tion. Satellite, time window, filter length scale including degree or kilometer options, filter kernel,537

and gridding scheme parameters can be varied in this scale-aware framework to explore specific538

questions or compare to model output. A resulting dataset and example code have been made539

publicly available, and we encourage its use. As a contribution to the current Ocean Transport540

and Eddy Energy Climate Process Team (Zanna 2019; Cole et al. 2020), this analysis framework541

is intended to aid in e�orts to partition energy across reservoirs and regulate cross-scale transfers542

using parameterizations.543

Comparison of boxcar, Gaussian, and taper filters reveals the taper filter as the sharpest in spectral544

space. As a low-pass filter with a cuto� wavelength of ! 5 , this kernel most closely approximates a545

step-function in wavenumber space (Fig. 1c). Use of this filter thus produces a field with the least546

smearing of wavelengths across scales. The e�ect of this design and result of its implementation,547

as compared to equivalent analysis using a Gaussian filter kernel, reveal a more distinct signal of548

seasonality in EKE at di�erent scales. In particular, the month of peak EKE at any given scale is549

more pronounced and sometimes di�erent for the taper filter than the Gaussian filter (Fig. 1d).550

This framework and data processing can be applied to filtered sea level anomaly, cross-track551

geostrophic velocity, or an arbitrary 1-D scalar field across multiple scales using a desired filter552

kernel. If a�orded by horizontal resolution, the filter scale can be selected to spatially vary with553

the local first baroclinic radius of deformation (Chelton et al. 1998). Applying this variable filter554

to geostrophic velocity results in estimates of EKE at scales less than those at which mesoscale555

eddies are expected to equilibrate, and also quantifies energy at scales greater than the deformation556

radius and within the realm of geostrophic turbulence. Selection of a filter scale tied to a model557

grid scale, however, allows for direct comparisons between observations and models that have558

geographically-varying grid scales. This may be particularly relevant for models that may only559

resolve eddies regionally, depending on their e�ective resolution relative to the local scale at which560

eddies equilibrate (Hallberg 2013).561
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As an example of how this filtering framework can be used to gauge resolved seasonality in562

a global climate model with relatively coarse resolution, we filter along-track velocities using a563

spatial filter kernel of width equal locally to 1 degree of longitude. Comparison of seasonality564

in the resulting MKE estimate to that of the unfiltered KE (Fig. 9) shows that while nearly ⇠565

60% of the seasonal change in total KE is resolved in western boundary current regions, this is566

reduced to less than a third in the eastern half of the main ocean basins. Together with the observed567

seasonality in PE to EKE conversion that is greater than the annual mean, these results stress the568

need to implement time-varying parameterizations for energy conversion (such as Eq. 16), as well569

as those for sub-grid scale EKE.570

F��. 9. Fraction of total KE seasonality resolved in 1 degree MKE estimate. This quantity is the ratio

(filtered/total) of maximum - minimum KE across a seasonal cycle.

571

572

6. Conclusions573

We identify stastically significant geographic and seasonal variations in EKE using a spatial574

filtering framework applied to along-track satellite altimeter derived estimates of geostrophic575

velocity. The partitioning of KE across spatial scales into mean and eddy components reveals a576

large fraction of total energy falls within the mesoscale band (60 - 300 km), varying with latitude577

and increasing with proximity to western boundary currents. This analysis also reveals that most578

regions of the ocean exhibit a winter-to-summer change in KE of ⇠ 20% for scales of 60-140 km579

(Fig. 4), while seasonal peaks at 140-300 km scales occur over a range of months and depend580

on the local energy transfer pathways. These results highlight a scale-dependent seasonal cycle581
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in EKE observed primarily at mid-latitudes where large scales attain a seasonal maximum in the582

months following small scales, consistent with an inverse energy cascade.583

The presence and seasonality of an inverse energy cascade is confirmed from concurrent estimates584

of seasonality in the conversion of PE to KE via mixed layer instability. The mean PE to EKE585

conversion rate, estimated via a parameterization (Fox-Kemper et al. 2008), is elevated at mid-586

latitudes, with the peak conversion rate occurring typically in mid-winter (Fig. 5). At most587

locations the seasonal amplitude in this conversion rate is larger than its annual average.588

Taken together, the temporal and geographic patterns of the PE to EKE conversion rate and EKE589

across spatial scales reveal a seasonally varying inverse cascade throughout the subtropical gyres.590

The geographic co-location of seasonality in each of these components of the energy cascade591

(conversion rate, small-scale, and large-scale EKE) as well as seasonal timing consistent with an592

energy cascade supports this conclusion. The timing in particular of PE to EKE conversion and593

maximum EKE at 60-140 km scales suggests KE released via mixed layer instability is a source of594

mesoscale KE moving upscale throughout late winter months. We have conservatively estimated595

the regions in which an inverse cascade occurs, and it is possible that some of the regions where a596

lag of zero months is observed also contain an energy cascade that occurs more rapidly than the597

regions identified here. We are able to identify regions where the total time lag between PE to EKE598

conversion and large-scale EKE is 1-6 months (0-2 month lag to small-scale EKE followed by a599

1-4 month lag to large-scale EKE). While we are limited by the ⇠50 km resolution of along-track600

satellite observations, it may be possible that an inverse cascade exists at smaller spatial scales601

in some locations, particularly higher latitudes where the deformation radius is smaller. These602

results, specifically a scale dependent seasonal cycle in EKE linked to seasonality in the conversion603

of PE to EKE, confirm similar seasonal energy cycles seen in high resolution models (Uchida et al.604

2017).605

A widespread inverse cascade has implications spanning the water column. If some portion606

of wintertime submesoscale KE in the mixed layer energizes the mesoscale, then restratification607

of the mixed layer and related biological processes, like the springtime phytoplankton bloom,608

could depend on this inverse cascade and its timescale (Mahadevan et al. 2012). Where energy609

moves from smaller to larger horizontal scales, a similar cascade is also expected in the vertical,610

resulting in the barotropization, or transfer of energy to greater depths, of eddy vertical structures611
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(Smith and Vallis 2001). Where barotropization is enhanced, so too may be bottom velocities that612

drive dissipation at the sea floor. In general, an improved understanding of processes controlling613

mesoscale energy levels, as well as cascade rates across space and time scales, is needed to614

predict and model ocean energetics. These questions, along with investigations of the steady-state615

component of the inverse cascade, are left for future studies.616

In addition to these results, the importance of a scale-aware view of the ocean’s KE resides in617

its use as a validation metric for numerical models that resolve, partially resolve, or parameterize618

KE sources and sinks. The scale-aware and customizable nature of the one-dimensional analysis619

tool developed here provides the flexibility needed for a comprehensive evaluation of mesoscale620

processes in a range of numerical models. Using this tool to explore seasonality reveals the preva-621

lence of an inverse cascade and stresses the importance of adequately resolving or parameterizing622

mesoscale eddy activity in global climate models. It is critical that energy in these models is623

properly partitioned across scales, locations, and seasons, as mesoscale turbulence redistributes624

heat and nutrients under the influence of changing large-scale circulation patterns.625

29



Acknowledgments. This work was generously funded by NSF grants OCE-1912302, OCE-626

1912125 (Drushka), and OCE-1912325 (Abernathey) as part of the Ocean Energy and Eddy627

Transport Climate Process Team. We would like to thank Laure Zanna and the rest of the team for628

their feedback, guidance, and support.629

Data availability statement. All altimeter measurements employed in this analysis can be obtained630

on Pangeo Abernathey et al. (2021) [https://catalog.pangeo.io/browse/master/ocean/631

altimetry/] and are pre-processed for easy access. As presented here, filtering can be applied and632

scale-aware MKE and EKE estimated from Jason-2, SARAL-AltiKa, and Sentinel-3A along-track633

measurements using examples provided on github [https://github.com/ocean-eddy-cpt/634

WP1T2-2D-EKE-Analysis/along_track_filtering.ipynb]. This repository also contains635

ready-made maps of EKE defined for various filter scales and types. Data files corresponding to636

filtering with Gaussian and taper filters in kilometers have been made available in NetCDF format637

(DOI: 10.5281/zenodo.6471003). Gridded climatology of upper ocean density and mixed layer638

depth is generated from databases of Argo derived temperature and salinity profiles (Roemmich639

and Gilson 2009) [http://sio-argo.ucsd.edu/RG_Climatology.html], as well as mixed layer depths640

(Holte et al. 2017). These data were collected and made freely available by the International Argo641

Program and the national programs that contribute to it [http://www.argo.ucsd.edu]. The Argo642

Program is part of the Global Ocean Observing System.643

References644

Abernathey, R., and Coauthors, 2021: Cloud-native repositories for big scientific data. Computing645

in Science & Engineering, 23, 26–35, https://doi.org/10.1109/MCSE.2021.3059437.646

Aluie, H., M. Hecht, and G. Vallis, 2018: Mapping the energy cascade in the north atlantic ocean:647

The coarse-graining approach. Journal of Physical Oceanography, 48, 225–244, https://doi.org/648

https://doi.org/10.1175/JPO-D-17-0100.1.649

Arbic, B., M. Muller, J. Richman, J. Shriver, A. Morten, R. Scott, G. Serazin, and T. Pen-650

du�, 2014: Geostrophic turbulence in the wavenumber-frequency domain: Eddy-driven low-651

frequency variability. Journal of Physical Oceanography, 44, 2050–2069, https://doi.org/652

https://doi.org/10.1175/JPO-D-13-054.1.653

30



Arbic, B., K. Polzin, R. Scott, J. Richman, and J. Shriver, 2013: On eddy viscosity, energy654

cascades, and the horizontal resolution of gridded satellite alimeter products. Journal of Physical655

Oceanography, 43, 283–300, https://doi.org/https://doi.org/10.1175/JPO-D-11-0240.1.656

Arbic, B., R. Scott, D. Chelton, J. Richman, and J. Shriver, 2012: E�ects of stencil width on657

surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data.658

Journal of Geophysical Research, 117, https://doi.org/https://doi.org/10.1029/2011JC007367.659

Callies, J., and R. Ferrari, 2013: Interpreting energy and tracer spectra of upper-ocean turbulence660

in the submesoscale range (1-200 km). Journal of Physical Oceanography, 43, 2456–2474,661

https://doi.org/https://doi.org/10.1175/JPO-D-13-063.1.662

Callies, J., R. Ferrari, J. Klymak, and J. Gula, 2015: Seasonality in submesoscale turbulence.663

Nature Communications, 6, https://doi.org/https://doi.org/10.1038/ncomms7862.664

Callies, J., G. Flierl, R. Ferrari, and B. Fox-Kemper, 2016: The role of mixed-layer instabilities in665

submesoscale turbulence. Journal of Fluid Mechanics, 788, 5–41, https://doi.org/10.1017/jfm.666

2015.700.667

Charney, J., 1971: Geostrophic turbulence. Journal of the Atmospheric Sciences, 28, 1087–1095.668

Chelton, D., R. deSzoeke, M. Schlax, K. El Naggar, and N. Siwertz, 1998: Geographical variability669

of the first-baroclinic rossby radius of deformation. Journal of Physical Oceanography, 28, 433–670

460, https://doi.org/https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2.671

Chelton, D., M. Schlax, R. Samelson, and R. de Szoeke, 2007: Global observations of672

large oceanic eddies. Geophysical Research Letters, 34, https://doi.org/https://doi.org/10.1029/673

2007GL030812.674

Chelton, D., M. Schlax, R. Samelson, and R. de Szoeke, 2011: Global observations of nonlinear675

mesoscale eddies. Progress in Oceanography, 91, 167–216, https://doi.org/https://doi.org/10.676

1016/j.pocean.2011.01.002.677

Chen, S., and B. Qiu, 2021: Sea surface height variability in the 30-120 km wavelength band from678

altimetry along-track observations. Journal of Geophysical Research: Oceans, https://doi.org/679

https://doi.org/10.1029/2021JC017284.680

31



Cole, S., K. Drushka, and R. Abernathey, 2020: Toward an observational synthesis of eddy energy681

in the global ocean. CLIVAR Exchanges / US CLIVAR Variations, 18, 37–41, https://doi.org/682

10.5065/g8w0-fy32.683

Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020a: The scale of submesoscale baroclinic684

instability globally. Journal of Physical Oceanography, 50, 2649–2667, https://doi.org/10.1175/685

JPO-D-20-0043.1.686

Dong, J., B. Fox-Kemper, H. Zhang, and C. Dong, 2020b: The seasonality of submesoscale687

energy production, content, and cascade. Geophysical Research Letters, https://doi.org/https:688

//doi.org/10.1029/2020GL087388.689

Dufau, C., M. Orsztynowicz, G. Dibarboure, R. Morrow, and P. Le Traon, 2016: Mesoscale690

resolution capability of altimetry: Present and future. Journal of Geophysical Research: Oceans,691

121, 4910–4927, https://doi.org/https://doi.org/10.1002/2015JC010904.692

Ferrari, R., and C. Wunsch, 2009: Ocean circulation kinetic energy: Reservoirs, sources,693

sinks. Annual Review of Fluid Mechanics, https://doi.org/https://doi.org/10.1146/annurev.fluid.694

40.111406.102139.695

Fox-Kemper, B., R. Ferrari, and R. Hallberg, 2008: Parameterization of mixed layer eddies. part696

i: Theory and diagnosis. Journal of Physical Oceaongraphy, 38, 1145–1165, https://doi.org/697

10.1175/2007JPO3792.1.698

Fox-Kemper, B., and Coauthors, 2011: Parameterization of mixed layer eddies. iii: Implementation699

and impact in global ocean climate simulations. Ocean Modelling, 39, 61–78, https://doi.org/700

10.1016/j.ocemod.2010.09.002.701

Germano, M., 1992: Turbulence: The filtering approach. Journal of Fluid Mechanics, 238, 325–702

336.703

Grooms, I., N. Loose, R. Abernathey, J. Steinberg, S. Bachman, G. Marques, A. Guillaumin,704

and E. Yankovsky, 2021: Di�usion-based smoothers for spatial filtering of gridded geophysical705

data. Journal of Advances in Modeling Earth Systems, https://doi.org/https://doi.org/10.1029/706

2021MS002552.707

32



Hallberg, R., 2013: Using a resolution function to regulate parameterizations of oceanic mesoscale708

eddy e�ects. Ocean Modelling, 72, 92–103, https://doi.org/https://doi.org/10.1016/j.ocemod.709

2013.08.007.710

Holte, J., L. Talley, J. Gilson, and D. Roemmich, 2017: An argo mixed layer climatol-711

ogy and database. Geophysical Research Letters, 44, 5618–5626, https://doi.org/10.1002/712

2017GL073426.713

Johnson, L., C. Lee, and E. D’Asaro, 2016: Global estimates of lateral springtime restratification.714

Journal of Physical Oceanography, 46, 1555–1573, https://doi.org/10.1175/JPO-D-15-0163.1.715

Kraichnan, R., 1967: Inertial ranges in two-dimensional turbulence. The Physics of Fluids, 10,716

1417–1423, https://doi.org/https://doi.org/10.1063/1.1762301.717

Mahadevan, A., E. D’Asaro, C. Lee, and M. Perry, 2012: Eddy-driven stratification initiates north718

atlantic spring phytoplankton blooms. Science, 337, 54–58, https://doi.org/10.1126/science.719

1218740.720

Matano, R., C. Simionato, W. de RuÚter, P. Van Leeuwan, P. Strub, D. Chelton, and M. Schlax,721

1998: Seasonal variability in the agulhas retroflection region. Geophysical Research Letters, 25,722

4361–4364, https://doi.org/https://doi.org/10.1029/1998GL900163.723

McWilliams, J., 1989: Statistical properties of decaying geostrophic turbulence. Journal of Fluid724

Mechanics, 198, 199–230, https://doi.org/10.1017/S0022112089000108.725

Mensa, J., Z. Garra�o, A. Gri�a, T. Ozgokmen, A. Haza, and M. Veneziani, 2013: Seasonality726

of the submesoscale dynamics in the gulf stream region. Ocean Dynamics, https://doi.org/727

https://doi.org/10.1007/s10236-013-0633-1.728

Pujol, M., and F. Mertz, 2020: Product user manual for sea level sla products (cmems-sl-pum-009-729

032-062). Copernicus Marine Environment Monitoring System.730

Qiu, B., S. Chen, P. Klein, H. Sasaki, and S. Y., 2014: Seasonal mesoscale and submesoscale eddy731

variability along the north pacific subtropical countercurrent. Journal of Physical Oceanography,732

44, 3079–3098, https://doi.org/https://doi.org/10.1175/JPO-D-14-0071.1.733

33



Risien, C., and C. D.B, 2008: A global climatology of surface winds and surface wind stress734

fields from eight years of quikscat scatterometer data. Journal of Physical Oceanography,735

https://doi.org/https://doi.org/10.1175/2008JPO3881.1.736

Rocha, C., T. Chereskin, S. Gille, and D. Menemenlis, 2016: Mesoscale to submesoscale wavenum-737

ber spectra in drake passage. Journal of Physical Oceanography, 46, 601–620, https://doi.org/738

https://doi.org/10.1175/JPO-D-15-0087.1.739

Roemmich, D., and J. Gilson, 2009: The 2004-2008 mean and annual cycle of temperature, salinity,740

and steric height in the global ocean from the argo platform. Progress in Oceanography, 82,741

81–100.742

Roullet, G., J. McWilliams, X. Capet, and M. Molemaker, 2012: Properties of steady743

geostrophic turbulence with isopycnal outcropping. Journal of Physical Oceanography, 42,744

18–38, https://doi.org/https://doi.org/10.1175/JPO-D-11-09.1.745

Sadek, M., and H. Aluie, 2018: Extracting the spectrum by spatial filtering. Physical Review746

Fluids, 3, https://doi.org/https://doi.org/10.1103/PhysRevFluids.3.124610.747

Sasaki, H., P. Klein, B. Qiu, and Y. Sasai, 2014: Impact of oceanic-scale interactions on the seasonal748

modulation of ocean dynamics by the atmosphere. Nature Communications, https://doi.org/749

https://doi.org/10.1038/ncomms6636.750

Schar�enberg, M., and D. Stammer, 2010: Seasonal variations of the large-scale geostrophic flow751

field and eddy kinetic energy inferred from the topex/poseidon and jason-1 tandem mision data.752

Journal of Geophysical Research, 115, 3523–3537, https://doi.org/10.1029/2008JC005242.753

Schubert, R., J. Gula, G. R.J., B. Baschek, and A. Biastoch, 2020: The submesoscale kinetic energy754

cascade: Mesoscale absorption of submesoscale mixed layer eddies and frontal downscale755

fluxes. Journal of Physical Oceanography, 50, 2573–2589, https://doi.org/https://doi.org/10.756

1175/JPO-D-19-0311.1.757

Scott, R., and B. Arbic, 2007: Spectral energy fluxes in geostrophic turbulence: Implications758

for ocean energetics. Journal of Physical Oceanography, 37, 673–688, https://doi.org/https:759

//doi.org/10.1175/JPO3027.1.760

34



Scott, R., and F. Wang, 2005: Direct evidence of an oceanic inverse kinetic energy cascade761

from satellite altimetry. Journal of Physical Oceanography, 35, 1650–1666, https://doi.org/762

https://doi.org/10.1175/JPO2771.1.763

Serazin, G., T. Pendu�, B. Barnier, J. Molines, B. Arbic, M. Muller, and L. Terray, 2018: In-764

verse cascades of kinetic energy as a source of intrinsic variability: A global ogcm study.765

Journal of Physical Oceanography, 48, 1385–1408, https://doi.org/https://doi.org/10.1175/766

JPO-D-17-0136.1.767

Smith, K., 2007: The geography of linear baroclinic instability on earth’s oceans. Journal of768

Marine Research, 65, 655–683, https://doi.org/10.1357/002224007783649484.769

Smith, K., and G. Vallis, 2001: The scales and equilibrium of midocean eddies: Freely evolving770

flow. Journal of Physical Oceanography, 31, 554–571, https://doi.org/https://doi.org/10.1175/771

1520-0485(2001)031<0554:TSAEOM>2.0.CO;2.772

Stammer, D., and C. Dieterich, 1999: Space-borne measurements of the time-dependent773

geostrophic ocean flow field. Journal of Atmospheric and Oceanic Technology, 16, 1198–1207,774

https://doi.org/https://doi.org/10.1175/1520-0426(1999)016<1198:SBMOTT>2.0.CO;2.775

Taburet, G., M. Pujol, and S.-T. team, 2020: Quality information document: Sea level tac - duacs776

products (cmems-sl-quid-008-032-062). Copernicus Marine Environment Monitoring System.777

Uchida, T., R. Abernathey, and S. Smith, 2017: Seasonality of eddy kinetic energy in an eddy778

permitting global climate model. Ocean Modelling, 118, 41–58, https://doi.org/https://doi.org/779

10.1016/j.ocemod.2017.08.006.780

Xu, Y., and L. Fu, 2012: The e�ects of altimeter instrument noise of the estimation of the781

wavenumber spectrum of sea surface height. Journal of Physical Oceanography, 42, 2229–782

2233, https://doi.org/https://doi.org/10.1175/JPO-D-12-0106.1.783

Zanna, L., 2019: Proposal to cvp climate processs teams on “ocean transport and eddy energy".784

figshare, https://doi.org/https://doi.org/10.6084/m9.figshare.10105922.v1.785

Zhai, X., R. Greatbatch, and J. Kohlmann, 2008: On the seasonal variability of eddy kinetic energy786

in the gulf stream region. Geophysical Research Letters, https://doi.org/https://doi.org/10.1029/787

2008GL036412.788

35


